ON THE ρ-EDGE STABILITY NUMBER OF GRAPHS

Arnfried Kemnitz
AND
Massimiliano Marangio
Computational Mathematics
Technical University Braunschweig
Universitätsplatz 2, 38106 Braunschweig, Germany
e-mail: \{a.kemnitz, m.marangio\}@tu-bs.de

Abstract

For an arbitrary invariant $\rho(G)$ of a graph G the ρ-edge stability number $e s_{\rho}(G)$ is the minimum number of edges of G whose removal results in a graph $H \subseteq G$ with $\rho(H) \neq \rho(G)$ or with $E(H)=\emptyset$.

In the first part of this paper we give some general lower and upper bounds for the ρ-edge stability number. In the second part we study the χ^{\prime} edge stability number of graphs, where $\chi^{\prime}=\chi^{\prime}(G)$ is the chromatic index of G. We prove some general results for the so-called chromatic edge stability index $e s_{\chi^{\prime}}(G)$ and determine $\left.e s_{\chi^{\prime}} G\right)$ exactly for specific classes of graphs.

Keywords: edge stability number, line stability, invariant, chromatic edge stability index, chromatic index, edge coloring.
2010 Mathematics Subject Classification: 05C15.

1. InTRODUCTION

We consider in this paper finite simple graphs $G=(V(G), E(G))$. A graph is empty if $E(G)=\emptyset$.

Definition. A (graph) invariant $\rho(G)$ is a function $\rho: \mathcal{I} \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$, where \mathcal{I} is the class of finite simple graphs. An invariant $\rho(G)$ is integer valued if its image set consists of non-negative integers, that is, $\rho(\mathcal{I}) \subseteq \mathbb{N}_{0}$.

An invariant $\rho(G)$ is monotone increasing if $H \subseteq G$ implies $\rho(H) \leq \rho(G)$, and monotone decreasing if $H \subseteq G$ implies $\rho(H) \geq \rho(G) ; \rho(G)$ is monotone if it is monotone increasing or monotone decreasing.

If H_{1} and H_{2} are disjoint graphs, then an invariant is called additive if $\rho\left(H_{1} \cup\right.$ $\left.H_{2}\right)=\rho\left(H_{1}\right)+\rho\left(H_{2}\right)$ and maxing if $\rho\left(H_{1} \cup H_{2}\right)=\max \left\{\rho\left(H_{1}\right), \rho\left(H_{2}\right)\right\}$.

Example 1. The chromatic number $\chi(G)$ is integer valued, monotone increasing, and maxing, and $\chi(G)-1 \leq \chi(G-e) \leq \chi(G)$ holds for any edge e of G.

Example 2. The domination number $\gamma(G)$ is integer valued, not monotone, and additive, and $\gamma(G) \leq \gamma(G-e) \leq \gamma(G)+1$ holds for any edge e of G.

Definition. Let $\rho(G)$ be an arbitrary invariant of a graph G. We define the ρ-edge stability number es $\rho(G)$ of G as the minimum number of edges of G whose removal results in a graph $H \subseteq G$ with $\rho(H) \neq \rho(G)$ or with $E(H)=\emptyset$.

In [2] the ρ-edge stability number is also defined and called ρ-line-stability.
The ρ-edge stability number $e s_{\rho}(G)$ is an integer valued invariant. Some easy observations follow directly from the definition. For example, es $s_{\rho}(G)=0$ if and only if G is empty. If G is not empty, then $1 \leq e s_{\rho}(G) \leq|E(G)|$. If $\rho(G)$ does not change by any edge removal, for example, the order of the graph G, then $e s_{\rho}(G)=|E(G)|$.

If $\rho(G)$ is monotone increasing, then the subgraph H in the definition on the previous page fulfills $\rho(H)<\rho(G)$ or H is empty. Conversely, if $\rho(G)$ is monotone decreasing, then this subgraph H fulfills $\rho(H)>\rho(G)$ or H is empty.

For some specific invariants $\rho(G)$ the problem of determining the ρ-edge stability number was already considered, for example for the chromatic number $\chi(G)$ and particularly for the domination number $\gamma(G)$. In this paper the attention is drawn to the χ^{\prime}-edge stability number where $\chi^{\prime}=\chi^{\prime}(G)$ is the chromatic index of G.

The χ-edge stability number or chromatic edge stability number es $\chi_{\chi}(G)$ was introduced in $[1,5]$ and also studied in [3].

The increase of the domination number $\gamma(G)$ with respect to edge removal was extensively studied (see e.g. [2] or [6] for a survey). The so-called bondage number $b(G)$ is equal to the γ-edge stability number $\operatorname{es} \gamma(G)$ if G is not empty, and $b(G)=\infty$ if G is empty.

In this paper we first consider the general case and give bounds for arbitrary ρ-edge stability numbers of graphs. Section 3 contains some examples of invariants $\rho(G)$ for which $e s_{\rho}(G)$ can easily be determined. In Sections 4 and 5 we study the χ^{\prime}-edge stability number of graphs.

2. General Results

An easy observation for the bondage number $b(G)$ and some implications (see [6]) can be transferred to arbitrary edge stability numbers $e s_{\rho}(G)$.

Proposition 3. Let H be a spanning subgraph of G obtained from G by removing k edges. Then es $\rho_{\rho}(G) \leq e s_{\rho}(H)+k$. Moreover, if $\rho(G) \neq \rho(H)$, then es $\rho_{\rho}(G) \leq k$.

Proof. Let $H=G-E^{\prime}$ where $E^{\prime} \subset E(G)$ with $\left|E^{\prime}\right|=k$. If $\rho(G) \neq \rho(H)=$ $\rho\left(G-E^{\prime}\right)$, then $e s_{\rho}(G) \leq\left|E^{\prime}\right|=k \leq e s \rho_{\rho}(H)+k$.

Therefore, assume in the following that $\rho(G)=\rho(H)$. If $\rho(H)$ cannot be changed by edge removal, then $e s_{\rho}(H)=|E(H)|$, and $e s_{\rho}(G) \leq|E(G)|=$ $|E(H)|+\left|E^{\prime}\right|=e s_{\rho}(H)+k$ follows.

Otherwise, let $E^{\prime \prime}$ be a set of edges of H such that $\left|E^{\prime \prime}\right|=e s_{\rho}(H)$ and $\rho\left(H-E^{\prime \prime}\right) \neq \rho(H)$. Set $E^{\prime \prime \prime}=E^{\prime} \cup E^{\prime \prime}$ with $\left|E^{\prime \prime \prime}\right|=\left|E^{\prime}\right|+\left|E^{\prime \prime}\right|=k+e s_{\rho}(H)$. It follows that $\rho(G)=\rho(H) \neq \rho\left(H-E^{\prime \prime}\right)=\rho\left(G-E^{\prime \prime \prime}\right)$, which implies $e s_{\rho}(G) \leq$ $\left|E^{\prime \prime \prime}\right|=e s_{\rho}(H)+k$.

Upper bounds for $e s_{\rho}(G)$ can be obtained by carefully selecting spanning subgraphs H with a fixed ρ-edge stability number. The next result considers as an example the case $e s_{\rho}(H)=1$.

Corollary 4. If H is a spanning subgraph of G with $\operatorname{es}_{\rho}(H)=1$, then es $(G) \leq$ $1+|E(G)|-|E(H)|$.

Proof. The result immediately follows from Proposition 3, since H is obtained from G by removing $k=|E(G)|-|E(H)|$ edges.

In [2] it was stated that if there is at least one vertex $v \in V(G)$ such that $\gamma(G-v) \geq \gamma(G)$, then $b(G) \leq d(v) \leq \Delta(G)$, where $d(v)$ is the degree of v and $\Delta(G)$ the maximum degree of the graph G. This result can be generalized as follows.

Proposition 5. Let $\rho(G)$ be additive. If there is a vertex $v \in V(G)$ such that $\rho(G-v)>\rho(G)$, or $\rho(G-v)=\rho(G)$ and $\rho\left(K_{1}\right)>0$, or $\rho(G-v)<\rho(G)$ and $\rho\left(K_{1}\right)=0$, then es $\rho_{\rho}(G) \leq d(v) \leq \Delta(G)$.

Proof. The given conditions imply $\rho(G)<\rho(G-v) \leq \rho(G-v)+\rho\left(K_{1}\right)=$ $\rho\left(G-E_{v}\right)$, or $\rho(G)=\rho(G-v)<\rho(G-v)+\rho\left(K_{1}\right)=\rho\left(G-E_{v}\right)$, or $\rho(G)>$ $\rho(G-v)=\rho(G-v)+\rho\left(K_{1}\right)=\rho\left(G-E_{v}\right)$, where E_{v} is the set of edges incident to v. Therefore, $\rho(G) \neq \rho\left(G-E_{v}\right)$ and thus $e s_{\rho}(G) \leq\left|E_{v}\right|=d(v) \leq \Delta(G)$ by Proposition 3.

Alternatively, the condition $\gamma(G-v) \geq \gamma(G)$ implies that there is a minimal dominating set of $G-v$ which contains a neighbor w of v, that is, there is an induced subgraph $H=G-E_{v}+v w$, obtained from G by removing all edges incident to v except $v w$, with $b(H)=1$, and the conclusion $b(G) \leq d(v)$ follows by Corollary 4 (see [6]). This second proof method leads to the following result.

Corollary 6. If there is an edge set $E^{\prime} \subseteq E_{v}$ such that $\rho(G) \neq \rho\left(G-E^{\prime}\right)$ or $\rho\left(G-E_{v}\right) \neq \rho\left(G-E^{\prime}\right)$, where E_{v} is the set of edges incident to v, then $e s_{\rho}(G) \leq d(v) \leq \Delta(G)$.

Proof. If $\rho(G) \neq \rho\left(G-E^{\prime}\right)$, then $e s_{\rho}(G) \leq\left|E^{\prime}\right| \leq d(v) \leq \Delta(G)$. If $\rho\left(G-E_{v}\right) \neq$ $\rho\left(G-E^{\prime}\right)$, then $\rho(G) \neq \rho\left(G-E_{v}\right)$ or $\rho(G) \neq \rho\left(G-E^{\prime}\right)$ and the result follows by Proposition 3.

If removing a pending edge always changes $\rho(G)$, then Corollary 6 implies that $e s_{\rho}(G) \leq d(v)$ for each non-isolated vertex $v \in V(G)$. Thus the following holds.

Corollary 7. If G is a graph without isolated vertices and if removing a pending edge always changes the invariant ρ, then $\operatorname{es}_{\rho}(G) \leq \delta(G)$.

This holds for example for the number $k(G)$ of components of G, since a pending edge is a bridge (see also Section 3).

Another result from [2] can be generalized by requesting appropriate conditions for the considered invariant.

Proposition 8. If $\rho(G)$ is additive and $\rho\left(K_{2}\right) \neq \rho\left(2 K_{1}\right)$, then es ${ }_{\rho}(G) \leq \min \{d(u)$ $+d(v)-1: u v \in E(G)\}$.

Proof. For an arbitrary edge $u v \in E(G)$ set $H=G-E_{u}-E_{v}+u v \cong G-$ $\{u, v\} \cup K_{2}$, which is obtained from G by removing $k=d(u)+d(v)-2$ edges. Since $\rho(H)=\rho(G-\{u, v\})+\rho\left(K_{2}\right) \neq \rho(G-\{u, v\})+\rho\left(2 K_{1}\right)=\rho(H-u v)$ implies $e s_{\rho}(H)=1$, the result follows from Corollary 4.

This result can be generalized by considering an arbitrary subgraph S of G instead of K_{2}. The additivity of $\rho(G)$ gives an upper bound on $e s_{\rho}(G)$ which only depends on S and the number of removed edges.

Theorem 9. Let $\rho(G)$ be additive and $S \subseteq G$ a subgraph for which $\rho(S)$ can be changed by edge deletions. Then $e s_{\rho}(G) \leq e s_{\rho}(S)+|E(V(S), V(G) \backslash V(S))|+$ $|E(G[V(S)])|-|E(S)|$, where $E(U, W)$ is the set of edges between vertex sets U and W.

Proof. Consider the spanning subgraph $H=G-V(S) \cup S$ of G which is obtained from G by removing $k=|E(V(S), V(G) \backslash V(S))|+|E(G[V(S)])|-|E(S)|$ edges, namely all edges between $V(S)$ and $V(G) \backslash V(S)$ as well all edges in $G[V(S)]$ not contained in S. By Proposition 3, es $\rho_{\rho}(G) \leq e s_{\rho}(H)+k$.

Let $E^{\prime} \subseteq E(S)$ be an edge set such that $\left|E^{\prime}\right|=e s_{\rho}(S)$ and $\rho(S) \neq \rho\left(S-E^{\prime}\right)$. Then by the additivity of the invariant, $\rho(H)=\rho(G-V(S))+\rho(S) \neq \rho(G-$ $V(S))+\rho\left(S-E^{\prime}\right)=\rho\left(H-E^{\prime}\right)$ which implies by Proposition 3 that $e s_{\rho}(H) \leq$ $\left|E^{\prime}\right|=e s_{\rho}(S)$. Thus, $e s_{\rho}(G) \leq e s_{\rho}(S)+k$.

If S is a spanning subgraph, then $V(S)=V(G)$, thus Theorem 9 gives the bound $e s_{\rho}(G) \leq e s_{\rho}(S)+|E(G)|-|E(S)|$, which follows directly by Proposition 3. If S is an induced subgraph, then the bound of Theorem 9 simplifies to $e s_{\rho}(G) \leq e s s_{\rho}(S)+|E(V(S), V(G) \backslash V(S))|$.

An additional condition on the invariant ρ is necessary to prove the corresponding result for maxing invariants.

Theorem 10. Let $\rho(G)$ be maxing and $S \subseteq G$ a subgraph for which $\rho(S)$ can be changed by edge deletions and $\rho(S)>\rho(G-V(S))$. Then es $\rho_{\rho}(G) \leq e s_{\rho}(S)+$ $|E(V(S), V(G) \backslash V(S))|+|E(G[V(S)])|-|E(S)|$.

Proof. As in the proof of Theorem 9, consider the spanning subgraph $H=$ $G-V(S) \cup S$ of G which is obtained by removing $k=|E(V(S), V(G) \backslash V(S))|+$ $|E(G[V(S)])|-|E(S)|$ edges from G. By Proposition 3, es $(G) \leq e s_{\rho}(H)+k$.

Let $E^{\prime} \subseteq E(S)$ be an edge set such that $\left|E^{\prime}\right|=e s_{\rho}(S)$ and $\rho(S) \neq \rho\left(S-E^{\prime}\right)$. Since the invariant is maxing and $\rho(S)>\rho(G-V(S))$ by assumption and $\rho(S) \neq$ $\rho\left(S-E^{\prime}\right)$, it holds that $\rho(H)=\max \{\rho(G-V(S)), \rho(S)\}=\rho(S) \neq \max \{\rho(G-$ $\left.V(S)), \rho\left(S-E^{\prime}\right)\right\}=\rho\left(H-E^{\prime}\right)$. By Proposition 3, es $\rho_{\rho}(H) \leq\left|E^{\prime}\right|=e s_{\rho}(S)$ and therefore $e s_{\rho}(G) \leq e s_{\rho}(S)+k$.

In the proofs of Theorems 9 and 10, the disjoint union of two graphs was considered. The proof idea can be transferred to the disjoint union of arbitrarily many graphs.
Theorem 11. Let $\rho(G)$ be additive, let $G=H_{1} \cup \cdots \cup H_{k}$ be a graph whose subgraphs H_{1}, \ldots, H_{k} and the integer $s \geq 0$ are defined such that $\rho\left(H_{i}\right)$ can be changed by edge deletion if and only if $1 \leq i \leq s$. Then $\operatorname{es}_{\rho}(G)=|E(G)|$ if $s=0$ and $e s_{\rho}(G)=\min \left\{e s_{\rho}\left(H_{i}\right): 1 \leq i \leq s\right\}$ if $s \neq 0$.
Proof. If $s=0$, then $\rho\left(H_{i}\right)$ cannot be changed by edge deletion for every subgraph H_{i}, which implies by the additivity that also $\rho(G)=\rho\left(H_{1}\right)+\cdots+\rho\left(H_{k}\right)$ cannot be changed by edge deletions, that is, es $\rho(G)=|E(G)|$.

If $s \neq 0$, then let H_{j} be a subgraph with $e s_{\rho}\left(H_{j}\right)=\min \left\{e s_{\rho}\left(H_{i}\right): 1 \leq i \leq s\right\}$ and $E^{\prime} \subseteq E\left(H_{j}\right)$ be an edge set with $\left|E^{\prime}\right|=e s_{\rho}\left(H_{j}\right)$ and $\rho\left(H_{j}-E^{\prime}\right) \neq \rho\left(H_{j}\right)$. By the additivity, $\rho\left(G-E^{\prime}\right)=\rho\left(H_{1}\right)+\cdots+\rho\left(H_{j-1}\right)+\rho\left(H_{j}-E^{\prime}\right)+\rho\left(H_{j+1}\right)+\cdots+$ $\rho\left(H_{k}\right) \neq \rho\left(H_{1}\right)+\cdots+\rho\left(H_{j-1}\right)+\rho\left(H_{j}\right)+\rho\left(H_{j+1}\right)+\cdots+\rho\left(H_{k}\right)=\rho(G)$, which implies $e s_{\rho}(G) \leq\left|E^{\prime}\right|=e s_{\rho}\left(H_{j}\right)$.

Let $E^{\prime \prime} \subseteq E(G)$ be an edge set with $\left|E^{\prime \prime}\right|<e s_{\rho}\left(H_{j}\right)$. By the minimality of $e s_{\rho}\left(H_{j}\right), \rho\left(H_{i}-E^{\prime \prime}\right)=\rho\left(H_{i}\right)$ for $i=1, \ldots, k$, which implies $\rho\left(G-E^{\prime \prime}\right)=\rho(G)$ since $\rho(G)$ is additive. Therefore, es $\rho(G)=e s_{\rho}\left(H_{j}\right)$.

For maxing invariants we can prove the following result.
Theorem 12. Let $\rho(G)$ be maxing and monotone increasing, let $G=H_{1} \cup \ldots$ $\cup H_{k}$ be a graph whose subgraphs H_{1}, \ldots, H_{k} and the integer $s \geq 1$ are defined
such that $\rho\left(H_{i}\right)=\rho(G)$ if and only if $1 \leq i \leq s$. Then es $\rho(G)=|E(G)|$ if there is a subgraph $H_{j}, 1 \leq j \leq s$, such that $\rho\left(H_{j}\right)$ cannot be changed by edge deletions, and $e s_{\rho}(G)=\sum_{i=1}^{s} e s_{\rho}\left(H_{i}\right)$ otherwise.

Proof. If there is a subgraph $H_{j}, 1 \leq j \leq s$, such that $\rho\left(H_{j}\right)$ cannot be changed by edge deletions, then $\rho(G)=\rho\left(H_{j}\right)=\rho\left(G-E^{\prime}\right)$ for every $E^{\prime} \subseteq E(G)$, since the invariant is maxing and monotone increasing (that is, removing edges does not increase the invariant). Therefore, es $\rho(G)=|E(G)|$.

Otherwise, let $E^{\prime}=E_{1}^{\prime} \cup \cdots \cup E_{s}^{\prime}$ with $E_{i}^{\prime} \subseteq E\left(H_{i}\right),\left|E_{i}^{\prime}\right|=e s_{\rho}\left(H_{i}\right)$, and $\rho\left(H_{i}-E_{i}^{\prime}\right) \neq \rho\left(H_{i}\right)$ for $i=1, \ldots, s$. Since the invariant is maxing, $\rho\left(G-E^{\prime}\right)=$ $\max \left\{\rho\left(H_{i}-E_{i}^{\prime}\right): 1 \leq i \leq s\right\} \cup\left\{\rho\left(H_{i}\right): s+1 \leq i \leq k\right\} \neq \rho(G)$ which implies $e s_{\rho(G)} \leq\left|E^{\prime}\right|=\sum_{i=1}^{s} e s_{\rho}\left(H_{i}\right)$. If an edge set $E^{\prime \prime}$ with less than $\left|E^{\prime}\right|$ edges is removed from G, then there is a subgraph $H_{j}, 1 \leq j \leq s$, from which less than $e s_{\rho}\left(H_{j}\right)$ edges are removed, which implies $\rho\left(H_{j}-E^{\prime \prime}\right)=\rho\left(H_{j}\right)$ and thus, since the invariant is maxing and monotone increasing, $\rho\left(G-E^{\prime \prime}\right)=\rho\left(H_{j}\right)=\rho(G)$. Therefore, $e s_{\rho(G)}=\left|E^{\prime}\right|=\sum_{i=1}^{s} e s_{\rho}\left(H_{i}\right)$.

Theorems 11 and 12 imply that $\rho(G)$ can be computed by the ρ-edge stability numbers of the components of G if the invariant is additive or if it is maxing and monotone increasing. Therefore, it is sufficient to consider connected graphs G in these cases.

A lower bound for $e s_{\chi}(G)$ given in [3] can be generalized as follows.
Theorem 13. Let $\rho(G)$ be monotone and let G be a nonempty graph with $\rho(G)=$ k. If G contains s nonempty subgraphs G_{1}, \ldots, G_{s} with $\rho\left(G_{1}\right)=\cdots=\rho\left(G_{s}\right)=k$ such that $a \geq 0$ is the number of edges that occur in at least two of these subgraphs and $q \geq 1$ is the maximum number of these subgraphs with a common edge, then both es $\rho_{\rho}(G) \geq \frac{1}{q} \sum_{i=1}^{s} e s_{\rho}\left(G_{i}\right) \geq s / q$ and es $\rho_{\rho}(G) \geq \sum_{i=1}^{s} e s_{\rho}\left(G_{i}\right)-a(q-1)$ hold.

Proof. Let $\rho(G)$ be monotone increasing. Let E^{\prime} be a set of edges of G with $\left|E^{\prime}\right|=e s_{\rho}(G)$ such that $\rho\left(G-E^{\prime}\right)<k$ or $G-E^{\prime}$ is empty. If $\rho\left(G-E^{\prime}\right)<k$, then the set E^{\prime} must contain at least $e s_{\rho}\left(G_{i}\right)$ edges of each graph $G_{i}, 1 \leq i \leq s$, since otherwise $k>\rho\left(G-E^{\prime}\right) \geq \rho\left(G_{j}-E^{\prime} \cap E\left(G_{j}\right)\right)=k$ for some $j, 1 \leq j \leq s$, a contradiction. If $G-E^{\prime}$ is empty, then $E^{\prime}=E(G)$ contains all edges of G_{i}, $1 \leq i \leq s$. Therefore, $b=\sum_{i=1}^{s}\left|E^{\prime} \cap E\left(G_{i}\right)\right| \geq \sum_{i=1}^{s} e s_{\rho}\left(G_{i}\right) \geq s$.

On the other hand, at most $\bar{a}=\min \left\{a,\left|E^{\prime}\right|\right\}$ edges of E^{\prime} are counted at most q times in b, every other edge of E^{\prime} is counted at most once, so $b \leq \bar{a} \cdot q+\left(\left|E^{\prime}\right|-\bar{a}\right) \cdot 1=$ $\left|E^{\prime}\right|+\bar{a}(q-1)$.

Since $\bar{a} \leq\left|E^{\prime}\right|, b \leq q\left|E^{\prime}\right|$ and therefore $e s_{\rho}(G)=\left|E^{\prime}\right| \geq b / q \geq \frac{1}{q} \sum_{i=1}^{s} e s_{\rho}\left(G_{i}\right)$ $\geq s / q$. On the other hand, $\bar{a} \leq a$ implies $e s_{\rho}(G)=\left|E^{\prime}\right| \geq b-a(q-1) \geq$ $\sum_{i=1}^{s} e s_{\rho}\left(G_{i}\right)-a(q-1)$.

The proof for monotone decreasing $\rho(G)$ runs analogously.

Note that we do not require that the graphs G_{i} are distinct in Theorem 13 . The lower bound of the first inequality can be improved by considering additional subgraphs G_{i} with $\rho\left(G_{i}\right)=k$ that do not increase the number q. A refinement of the latter inequality can be achieved if the number of occurrences of fixed edges in the subgraphs is taken into account.

Corollary 14. Let $\rho(G)$ be monotone and let G be a nonempty graph with $\rho(G)=$ k. If G contains s nonempty subgraphs G_{1}, \ldots, G_{s} with $\rho\left(G_{1}\right)=\cdots=\rho\left(G_{s}\right)=k$ and pairwise disjoint edge sets, then $e_{\rho}(G) \geq \sum_{i=1}^{s} e s_{\rho}\left(G_{i}\right) \geq s$.

Proof. Each edge of G is contained in at most $q=1$ of the given subgraphs since they are pairwise edge disjoint. The result follows from Theorem 13.

Corollary 15. Let $\rho(G)$ be monotone. If $H \subseteq G$ and $\rho(H)=\rho(G)$, then es $\rho_{\rho}(H)$ $\leq e s_{\rho}(G)$.

Proof. If H is empty, then $e s_{\rho}(H)=0 \leq e s_{\rho}(G)$; otherwise Corollary 14 with $s=1$ implies the result.

Note that in general es $\rho_{\rho}(G)$ must not be monotone even if $\rho(G)$ is monotone.

3. Examples for Edge Stability Numbers

In this section the edge stability numbers for some well-known invariants are considered, beginning with the minimum degree $\delta(G)$ and the maximum degree $\Delta(G)$.

Proposition 16. $e s_{\delta}(G)=|E(G)|$ if $\delta(G)=0$ and es $\delta(G)=1$ if $\delta(G) \neq 0$.
Proof. If $\delta(G)=0$, that is, G has isolated vertices, then the minimum degree cannot be decreased by edge removal, hence $e s_{\delta}(G)=|E(G)|$ by definition. If $\delta(G) \neq 0$, then it suffices to remove one edge incident to a vertex of degree $\delta(G)$ in order to decrease the minimum degree, hence $e s_{\delta}(G)=1$.

Proposition 17. es $s_{\Delta}(G)=0$ if G is empty and es $s_{\Delta}(G)=\left|V_{\Delta}\right|-\alpha^{\prime}\left(G\left[V_{\Delta}\right]\right)$ if G is not empty, where V_{Δ} is the set of vertices of G of degree $\Delta(G)$ and $\alpha^{\prime}(G)$ is the edge independence number or matching number of G.

Proof. If G is empty, then $e s_{\Delta}(G)=0$ by definition. If G is not empty, then $\Delta(G) \geq 1$. Let E^{\prime} be an edge set of G with $\Delta\left(G-E^{\prime}\right)=\Delta(G)-1 \geq 0$. Each vertex from V_{Δ} is incident with at least one edge from E^{\prime}. At most $\alpha^{\prime}\left(G\left[V_{\Delta}\right]\right)$ edges from E^{\prime} connect two vertices each from V_{Δ} such that all these vertices are distinct. The remaining vertices of V_{Δ} need one additional incident edge from E^{\prime} each. Therefore, $e s_{\Delta}(G) \geq \alpha^{\prime}\left(G\left[V_{\Delta}\right]\right)+\left|V_{\Delta}\right|-2 \alpha^{\prime}\left(G\left[V_{\Delta}\right]\right)=\left|V_{\Delta}\right|-\alpha^{\prime}\left(G\left[V_{\Delta}\right]\right)$.

Equality holds by selecting an appropriate maximum matching in $G\left[V_{\Delta}\right]$ and an incident edge for each not matched vertex from V_{Δ}.

If G is regular and not empty, then $e_{\Delta}(G)=|V(G)|-\alpha^{\prime}(G)$. For example, $e s_{\Delta}\left(K_{n}\right)=\frac{1}{2} n$ if n is even and $e s_{\Delta}\left(K_{n}\right)=\frac{1}{2}(n+1)$ if $n \geq 3$ is odd.

Let $k(G)$ be the number of components of a graph G and $\lambda(G)$ the edge connectivity of G, that is, the minimum number of edges whose removal gives a disconnected graph or the singleton K_{1}. By the definitions it follows that if G is connected, then $e s_{k}(G)=\lambda(G)$. A direct implication of Theorem 11 is the following general result which also covers disconnected graphs.

Proposition 18. Let G be a graph with $k(G)$ components $H_{1}, \ldots, H_{k(G)}$. Then $e s_{k}(G)=0$ if G is empty and $e s_{k}(G)=\min \left\{\lambda\left(H_{i}\right): 1 \leq i \leq k(G), H_{i} \neq K_{1}\right\}$ if G is not empty.

Proof. The number of components $k(H)$ is additive and can be increased by edge deletions for nonempty graphs. Let H_{1}, \ldots, H_{s} be the nonempty components of G and $H_{s+1}, \ldots, H_{k(G)}$ be singletons $K_{1}, 0 \leq s \leq k(G)$. Then Theorem 11 gives $e s_{k}(G)=0$ if $s=0$, that is, if G is empty, and $e s_{k}(G)=\min \left\{e s_{k}\left(H_{i}\right): 1 \leq i \leq\right.$ $s\}=\min \left\{\lambda\left(H_{i}\right): 1 \leq i \leq s\right\}$ otherwise.

Proposition 19. es $\lambda_{\lambda}(G)=1$ if G is connected and not a singleton, and es $\lambda_{\lambda}(G)=$ $|E(G)|$ otherwise.

Proof. If G is connected and not a singleton, then let E^{\prime} be an edge set with $\left|E^{\prime}\right|=\lambda(G) \geq 1$ such that $G-E^{\prime}$ is disconnected. For any edge $e \in E^{\prime}, \lambda(G-e)=$ $\lambda(G)-1$, hence $e s_{\lambda}(G)=1$. If G is disconnected or a singleton, then $\lambda(G)=0$ and the invariant cannot be changed by edge removal, hence $e s_{\lambda}(G)=|E(G)|$ by definition.

4. General Results for the Chromatic Edge Stability Index

If $G=(V(G), E(G))$ is a graph, a function $c: E(G) \rightarrow\{1, \ldots, k\}$ such that $c\left(e_{1}\right) \neq c\left(e_{2}\right)$ for any two adjacent edges e_{1} and e_{2} is called a k-edge-coloring of G, and G is called k-edge-colorable. The minimum k for which G is k-edgecolorable is the chromatic index $\chi^{\prime}(G)$ of G. By Vizing's Theorem, the chromatic index can only attain one of two values, $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$. Graphs with $\chi^{\prime}(G)=\Delta(G)$ are called class 1 graphs and graphs with $\chi^{\prime}(G)=\Delta(G)+1$ are called class 2 graphs. We define the invariant class $(G)=\chi^{\prime}(G)-\Delta(G)+1 \in\{1,2\}$. A graph G is called overfull if its order n is odd and if it contains more than $\Delta(G)(n-1) / 2$ edges. Obviously, an overfull graph must be a class 2 graph.

Note that $\chi^{\prime}(G)$ is an invariant which is monotone increasing, integer valued, and maxing, and it holds that $\chi^{\prime}(G-e) \leq \chi^{\prime}(G) \leq \chi^{\prime}(G-e)+1$ for any edge e of G.

In this section we consider the χ^{\prime}-edge stability number $e s_{\chi^{\prime}}(G)$ which we also call chromatic edge stability index of G. Using Theorem 12 we can compute $e s_{\chi^{\prime}}(G)$ by the chromatic edge stability indexes of its components. Let $G=H_{1} \cup$ $\cdots \cup H_{k(G)}$ such that $\chi^{\prime}(G)=\chi^{\prime}\left(H_{i}\right)$ if and only if $1 \leq i \leq s$ for $s \leq k(G)$. Then $e s_{\chi^{\prime}}(G)=\sum_{i=1}^{s} e s_{\chi^{\prime}}\left(H_{i}\right)$. Therefore, we can assume without loss of generality in the following that G is connected.
Proposition 20. es $\chi_{\chi^{\prime}}(G) \leq\left\lfloor|E(G)| / \chi^{\prime}(G)\right\rfloor \leq \alpha^{\prime}(G)$ if G is nonempty, and es $\chi_{\chi^{\prime}}(G)=\alpha^{\prime}(G)=0$ if G is empty.

Proof. Let $t^{\prime}(G)$ be the minimum number of edges in a color class of the graph G where the minimum is taken over all edge colorings of G with $\chi^{\prime}(G)$ colors.

If G is nonempty, then removing any color class from G reduces the chromatic index, thus $e s_{\chi^{\prime}}(G) \leq t^{\prime}(G)$ follows. By the pigeonhole principle, any edge coloring of G with $\chi^{\prime}(G)$ colors has a color class with at most $\left\lfloor|E(G)| / \chi^{\prime}(G)\right\rfloor$ edges, which implies $t^{\prime}(G) \leq\left\lfloor|E(G)| / \chi^{\prime}(G)\right\rfloor$. On the other hand, the lower bound $\chi^{\prime}(G) \geq|E(G)| / \alpha^{\prime}(G)$ implies the second inequality.

If G is empty, then the result is obvious.
Lemma 21. If G is a class 1 graph, then es $\chi^{\prime}(G) \geq e s_{\Delta}(G)$.
Proof. If G is empty, then $e s_{\chi^{\prime}}(G)=e s_{\Delta}(G)=0$. If G is nonempty, then there is a set E^{\prime} of edges of G such that $\left|E^{\prime}\right|=e s_{\chi^{\prime}}(G)$ and $\Delta\left(G-E^{\prime}\right) \leq$ $\chi^{\prime}\left(G-E^{\prime}\right)<\chi^{\prime}(G)=\Delta(G)$. It follows that $\Delta\left(G-E^{\prime}\right)<\Delta(G)$ which implies $e s_{\chi^{\prime}}(G)=\left|E^{\prime}\right| \geq e s_{\Delta}(G)$.

The following proposition gives a class of graphs for which equality always holds.

Proposition 22. If G is a regular class 1 graph, then es $\chi_{\chi^{\prime}}(G)=e s_{\Delta}(G)=\alpha^{\prime}(G)$.
Proof. If G is empty, then $e s_{\chi^{\prime}}(G)=e s_{\Delta}(G)=\alpha^{\prime}(G)=0$. If G is nonempty, then $e s_{\Delta}(G) \leq e s_{\chi^{\prime}}(G) \leq \alpha^{\prime}(G)=\frac{1}{2}|V(G)|$ by Lemma 21 and Proposition 20. Since $e s_{\Delta}(G)=|V(G)|-\alpha^{\prime}(G)=\frac{1}{2}|V(G)|$ by Proposition 17, es ${\chi^{\prime}}(G)=e s_{\Delta}(G)$ $=\alpha^{\prime}(G)=\frac{1}{2}|V(G)|$ follows.

More generally, we can characterize in a certain way all class 1 graphs with $e s_{\chi^{\prime}}(G)=e s_{\Delta}(G)$.
Proposition 23. If G is a class 1 graph, then es $\chi_{\chi^{\prime}}(G)=e s_{\Delta}(G)$ if and only if G is empty or if there is an edge set E^{\prime} such that $\left|E^{\prime}\right|=e s_{\Delta}(G), \Delta\left(G-E^{\prime}\right)<\Delta(G)$, and $G-E^{\prime}$ is in class 1 .

Proof. Let G be a non-empty class 1 graph.
If $e s_{\chi^{\prime}}(G)=e s_{\Delta}(G)$, then let E^{\prime} be an arbitrary edge set with $\left|E^{\prime}\right|=e s s_{\chi^{\prime}}(G)$ and $\chi^{\prime}\left(G-E^{\prime}\right)<\chi^{\prime}(G)$, which implies $\chi^{\prime}\left(G-E^{\prime}\right)=\chi^{\prime}(G)-1$. Since $\Delta\left(G-E^{\prime}\right) \leq$ $\chi^{\prime}\left(G-E^{\prime}\right)$ and $\chi^{\prime}(G)=\Delta(G), \Delta\left(G-E^{\prime}\right)<\Delta(G)$. Moreover, $\left|E^{\prime}\right|=e s_{\Delta(G)}$, which implies that $\Delta\left(G-E^{\prime}\right)=\Delta(G)-1$. Therefore, $\chi^{\prime}\left(G-E^{\prime}\right)=\Delta\left(G-E^{\prime}\right)$, that is, $G-E^{\prime}$ is in class 1 .

The second assertion follows from Lemma 21, which states es $\chi^{\prime}(G) \geq e s_{\Delta}(G)$, and from the properties of the given set E^{\prime}, since $\chi^{\prime}\left(G-E^{\prime}\right)=\Delta\left(G-E^{\prime}\right)<$ $\Delta(G)=\chi^{\prime}(G)$ which implies $\left|E^{\prime}\right|=e s_{\Delta}(G) \geq e s_{\chi^{\prime}}(G)$.

Proposition 22 follows from this characterization, since a regular class 1 graph is 1-factorable, and removing a 1 -factor E^{\prime} leaves a class 1 graph.

Proposition 23 and Lemma 21 imply that if G is in class 1 but $G-E^{\prime}$ is in class 2 for all sets E^{\prime} with $\left|E^{\prime}\right|=e s_{\Delta}(G)$ and $\Delta\left(G-E^{\prime}\right)<\Delta(G)$, then $e s_{\chi^{\prime}}(G)>e s_{\Delta}(G)$. An example for such graphs is given in Theorem 31.

Theorem 24. If G is a class 2 graph, then $e s_{\chi^{\prime}}(G)=\min \left\{e s_{\Delta}(G), e s_{\text {class }}(G)\right\}$.
Proof. Since G is in class 2, the graph G is not empty and the invariants $\Delta(G)$, $\operatorname{class}(G)=2$, and $\chi^{\prime}(G)=\Delta(G)+1$ can be reduced by edge removal.

By removing ess (G) edges E^{\prime} such that $\Delta\left(G-E^{\prime}\right)<\Delta(G)$ we obtain $\chi^{\prime}(G-$ $\left.E^{\prime}\right) \leq \Delta\left(G-E^{\prime}\right)+1<\Delta(G)+1=\chi^{\prime}(G)$ which implies $\left|E^{\prime}\right| \geq e s \chi^{\prime}(G)$. By removing $e s_{\text {class }}(G)$ edges $E^{\prime \prime}$ such that class $\left(G-E^{\prime \prime}\right)=1$ we obtain $\chi^{\prime}\left(G-E^{\prime \prime}\right)=$ $\Delta\left(G-E^{\prime \prime}\right) \leq \Delta(G)<\Delta(G)+1=\chi^{\prime}(G)$ which implies $\left|E^{\prime \prime}\right| \geq e s_{\chi^{\prime}}(G)$. It follows that $\min \left\{e s_{\Delta}(G), e s_{\text {class }}(G)\right\} \geq e s_{\chi^{\prime}}(G)$.

Consider now a set of edges $E^{\prime \prime \prime}$ such that $\chi^{\prime}\left(G-E^{\prime \prime \prime}\right)<\chi^{\prime}(G)=\Delta(G)+1$, that is, $\chi^{\prime}\left(G-E^{\prime \prime \prime}\right) \leq \Delta(G)$. Then $G-E^{\prime \prime \prime}$ cannot both be in class 2 and have the same maximum degree as G since this would imply $\chi^{\prime}\left(G-E^{\prime \prime \prime}\right)=$ $\Delta(G)+1$. Therefore, $\left|E^{\prime \prime \prime}\right| \geq e s_{\Delta}(G)$ or $\left|E^{\prime \prime \prime}\right| \geq e s_{\text {class }}(G)$ which implies $e s_{\chi^{\prime}}(G) \geq$ $\min \left\{e s_{\Delta}(G), e s_{\text {class }}(G)\right\}$.

For overfull graphs we can give a lower bound.
Corollary 25. If G is an overfull graph, then es $\chi^{\prime}(G) \geq|E(G)|-\Delta(G)(|V(G)|-$ 1)/2.

Proof. Since G is overfull, G is in class $2,|E(G)|>\Delta(G)(n-1) / 2$, and the invariants $\Delta(G)$ and class (G) can be reduced by edge deletions.

Let E^{\prime} be an edge set such that $\left|E^{\prime}\right|=e s_{\Delta}(G)$ and $\Delta\left(G-E^{\prime}\right)<\Delta(G)$. By the handshake lemma, $G-E^{\prime}$ may contain at most $\Delta\left(G-E^{\prime}\right) n / 2 \leq(\Delta(G)-1) n / 2$ edges which implies ess $(G)=\left|E^{\prime}\right| \geq|E(G)|-(\Delta(G)-1) n / 2>|E(G)|-\Delta(G)(n-$ $1) / 2$, since $n>\Delta(G)$.

Let $E^{\prime \prime}$ be an edge set such that $\left|E^{\prime \prime}\right|=e s_{\text {class }}(G)$ and $\operatorname{class}\left(G-E^{\prime \prime}\right)=1$. Then $G-E^{\prime \prime}$ may contain at most $\Delta\left(G-E^{\prime \prime}\right)(n-1) / 2 \leq \Delta(G)(n-1) / 2$ edges
(otherwise $G-E^{\prime \prime}$ would be still overfull) which implies $e s_{\text {class }}(G)=\left|E^{\prime \prime}\right| \geq$ $|E(G)|-\Delta(G)(n-1) / 2$.

By Theorem 24, es $\chi_{\chi^{\prime}}(G)=\min \left\{e s_{\Delta}(G), e s_{\text {class }}(G)\right\} \geq|E(G)|-\Delta(G)(n-$ 1) $/ 2$.

5. Chromatic Edge Stability Index for Specific Graph Classes

In this section we use general results of the previous section to determine the chromatic edge stability index of some well-known graph classes.

Theorem 26. If G is bipartite, then $e s_{\chi^{\prime}}(G)=e s_{\Delta}(G)$.
Proof. The result follows from Proposition 23, since every subgraph $G-E^{\prime}$ of G is bipartite and thus in class 1.

Theorem 26 and Proposition 17 imply the following results for complete bipartite graphs and paths.

Corollary 27. es $\chi_{\chi^{\prime}}\left(K_{m, n}\right)=e s_{\Delta}\left(K_{m, n}\right)=\min \{m, n\}$.
Corollary 28. es ${\chi^{\prime}}^{\prime}\left(P_{n}\right)=e s_{\Delta}\left(P_{n}\right)= \begin{cases}0 & \text { if } n=1, \\ 1 & \text { if } n=2, \\ \lceil(n-2) / 2\rceil & \text { if } n \geq 3 .\end{cases}$
Proposition 29. es ${\chi^{\prime}}\left(C_{n}\right)=n / 2$ if n is even, es ${\chi^{\prime}}^{\prime}\left(C_{n}\right)=1$ if n is odd, and $e s_{\Delta}\left(C_{n}\right)=\lceil n / 2\rceil$.

Proof. By Proposition 17, es $\Delta_{\Delta}\left(C_{n}\right)=\lceil n / 2\rceil$. If n is even, then C_{n} is bipartite, and the result follows from Theorem 26. If n is odd, then $\chi^{\prime}\left(C_{n}\right)=3$ and removing one edge from the cycle gives a 2 -edge-colorable path P_{n}, which implies $e s_{\chi^{\prime}}\left(C_{n}\right)=1$.

This proposition shows that the difference between the two invariants es ${ }_{\Delta}(G)$ and $e s_{\chi^{\prime}}(G)$ may be arbitrarily large, since $e s_{\Delta}\left(C_{2 s+1}\right)-e s_{\chi^{\prime}}\left(C_{2 s+1}\right)=s$. Moreover, Lemma 21 does not necessarily hold for class 2 graphs.

Next we consider complete graphs and complete graphs with an additional vertex.
Proposition 30. es ${\chi^{\prime}}^{\prime}\left(K_{n}\right)=\lfloor n / 2\rfloor= \begin{cases}n / 2 & \text { if } n \text { is even, } \\ (n-1) / 2 & \text { if } n \text { is odd, }\end{cases}$ and ess $\left(K_{n}\right)=\lceil n / 2\rceil$ if $n \geq 2$.

Proof. If $n \geq 2$, then $e s_{\Delta}\left(K_{n}\right)=\lceil n / 2\rceil$ follows from Propositions 17.
If $n=1$ or if n is even, then K_{n} is a regular class 1 graph, and the result is an implication of Proposition 22.

If $n \geq 3$ is odd, then K_{n} is overfull and Corollary 25 implies $e s_{\chi^{\prime}}\left(K_{n}\right) \geq$ $\binom{n}{2}-(n-1)^{2} / 2=(n-1) / 2$. On the other hand, es $\chi^{\prime}\left(K_{n}\right) \leq \alpha^{\prime}\left(K_{n}\right)=(n-1) / 2$ follows from Proposition 20, that is, equality holds.

Theorem 31. Let G be a graph which consists of a complete graph $K_{n}, n \geq 2$, and an additional vertex w connected to $d=d(w)$ vertices of K_{n}. Then we have the following.

1. $e s_{\Delta}(G)=\lceil n / 2\rceil$ if $d=0$, ess $(G)=\lceil d / 2\rceil$ if $1 \leq d \leq n-1$, es $(G)=$ $\lceil(n+1) / 2\rceil$ if $d=n$.
2. If $n \geq 3$ odd, then es $\chi_{\chi^{\prime}}(G)=\lfloor n / 2\rfloor$ if $0 \leq d \leq n-1$, es $\chi_{\chi^{\prime}}(G)=(n+1) / 2$ if $d=n$.
3. If n even, then $e s_{\chi^{\prime}}(G)=\lfloor n / 2\rfloor$ if $d=0$, es ${\chi^{\prime}}(G)=d$ if $1 \leq d \leq n / 2$, $e s_{\chi^{\prime}}(G)=d-n / 2$ if $n / 2<d \leq n$.

Proof. If $d=0$, then $G \cong K_{n} \cup K_{1}$ and if $d=n$, then $G \cong K_{n+1}$, therefore the results follow from Propositions 17 and 30 . Let $1 \leq d \leq n-1$ in the following and denote the vertices of K_{n} by v_{1}, \ldots, v_{n} such that w is adjacent to v_{1}, \ldots, v_{d}.

1. If $1 \leq d \leq n-1$, then G has d vertices of maximum degree $\Delta(G)=n$, namely the neighbors of w. Then, by Proposition 17 , ess $(G)=d-\alpha^{\prime}\left(K_{d}\right)=d-\lfloor d / 2\rfloor=$ $\lceil d / 2\rceil$.
2. Since $n \geq 3, n$ is odd, and $K_{n} \subseteq G \subseteq K_{n+1}, \chi^{\prime}\left(K_{n}\right)=\chi^{\prime}(G)=\chi^{\prime}\left(K_{n+1}\right)=n$. By Corollary 15 and Proposition 30 , es ${\chi^{\prime}}^{\prime}(G) \geq e s_{\chi^{\prime}}\left(K_{n}\right)=\lfloor n / 2\rfloor$. Since $d<n$, there is a color class with $\lfloor n / 2\rfloor$ edges in every proper n-edge-coloring of G, whose removal reduces the chromatic index. Therefore, $e s_{\chi^{\prime}}(G)=\lfloor n / 2\rfloor$.
3. If n even, then we consider two cases.

Case 3(a): If $1 \leq d \leq n / 2$, then G is in class 1 . Consider the natural edge coloring of K_{n} with $n-1$ colors where the vertices are in order v_{1}, v_{d+1}, v_{2}, $v_{d+2}, \ldots, v_{d-1}, v_{2 d-1}, v_{d}, v_{2 d}, v_{2 d+1}, \ldots, v_{n}$. Then the edges $v_{1} v_{d+1}, \ldots, v_{d-1} v_{2 d-1}$ are colored pairwise differently. Color these edges as well as edge $w v_{d}$ with the new color n and then color $w v_{i}$ with the old color of $v_{i} v_{d+i}, i=1, \ldots, d-1$. This implies $\chi^{\prime}(G)=\Delta(G)=n$.

Let E^{\prime} be a set of edges of G with $\left|E^{\prime}\right|=e s_{\chi^{\prime}}(G)$ and $\chi^{\prime}\left(G-E^{\prime}\right)<\chi^{\prime}(G)=$ $\Delta(G)=n$. Then $\Delta\left(G-E^{\prime}\right) \leq n-1$. If $\Delta\left(G-E^{\prime}\right) \leq n-2$, then the degree of the d vertices of maximum degree must be reduced by 2 , which implies $\left|E^{\prime}\right| \geq d$. If $\Delta\left(G-E^{\prime}\right)=n-1$, then $G-E^{\prime}$ cannot be overfull since otherwise $\chi^{\prime}(\bar{G}-$ $\left.E^{\prime}\right)=\Delta\left(G-E^{\prime}\right)+1=\Delta(G)=\chi^{\prime}(G)$, a contradiction. Hence $\left|E\left(G-E^{\prime}\right)\right|=$
$\binom{n}{2}+d-\left|E^{\prime}\right| \leq \Delta\left(G-E^{\prime}\right)\left(\left|V\left(G-E^{\prime}\right)\right|-1\right) / 2=n(n-1) / 2=\binom{n}{2}$ which again implies $\left|E^{\prime}\right| \geq d$. Therefore, es $\chi_{\chi^{\prime}}(G) \geq d$.

On the other hand, removing all d edges incident to w gives a graph $G-E^{\prime} \cong$ $K_{n} \cup K_{1}$ with $\chi^{\prime}\left(G-E^{\prime}\right)=n-1$, that is, es $\chi_{\chi^{\prime}}(G) \leq d$, and equality follows.

Case 3(b): If $n / 2<d \leq n-1$, then G is overfull since $|E(G)|=\binom{n}{2}+d>$ $n(n-1) / 2+n / 2=n^{2} / 2=\Delta(G)(|V(G)|-1) / 2$. Therefore, es $\chi_{\chi^{\prime}}(G) \geq d-n / 2$ by Corollary 25 . On the other hand, removing $d-n / 2$ edges incident to w gives a class 1 graph (see Case $3(\mathrm{a})$), which implies $e s_{\chi^{\prime}}(G) \leq d-n / 2$ and therefore $e s_{\chi^{\prime}}(G)=d-n / 2$.

Parts of Proposition 30 and Theorem 31 follow also from a result by Plantholt [4], which states the following. If G is a graph of odd order $n \geq 3$ with a spanning star, then G is in class 1 if and only if it has at most $(n-1)^{2} / 2$ edges. This implies for example that if K_{n} is a complete graph of odd order $n \geq 3$ and $E^{\prime} \subseteq E\left(K_{n}\right)$, then $\chi^{\prime}\left(K_{n}-E^{\prime}\right)=n$ if and only if $\left|E^{\prime}\right| \leq(n-3) / 2$.

The result of Theorem 31 implies that the difference between $e s_{\chi^{\prime}}(G)$ and $e s_{\Delta}(G)$ may be arbitrarily large for class 1 graphs.

Theorem 32. For every pair of positive integers a, b there is a graph G with $e s_{\Delta}(G)=a$ and $e s_{\chi^{\prime}}(G)=b$.

Proof. If $a \leq b$, then for $d=2 a$ and $n=2 b+1$ it holds that $n \geq 3, n$ is odd, and $1 \leq d \leq n-1$, and the class 1 graph G of Theorem 31 fulfills es $\Delta(G)=\lceil d / 2\rceil=a$ and $e s_{\chi^{\prime}}(G)=(n-1) / 2=b$.

If $a>b$, then for $d=2 a$ and $n=2 d-2 b(n$ even) it holds that $n / 2=$ $d-b<d<2 d-2 b=n$, and the class 2 graph G of Theorem 31 fulfills again $e s_{\Delta}(G)=\lceil d / 2\rceil=a$ and $e s_{\chi^{\prime}}(G)=d-n / 2=b$.

Note that a graph G with $e s_{\Delta}(G)=a, e s_{\chi^{\prime}}(G)=b$, and $a>b$ is a class 2 graph by Lemma 21 .

A wheel W_{n} with $n \geq 3$ is the join of a cycle C_{n}, say with consecutive vertices v_{1}, \ldots, v_{n}, and a single vertex w. Wheels are class 1 graphs.

Proposition 33. es $s_{\Delta}\left(W_{3}\right)=2$ e $e s_{\Delta}\left(W_{n}\right)=1$ for $n \geq 4$, es ${\chi^{\prime}}\left(W_{n}\right)=2$ for $n \in\{3,4\}$, es $\chi_{\chi^{\prime}}\left(W_{n}\right)=1$ for $n \geq 5$.

Proof. If $n=3$, then $W_{3} \cong K_{4}$ and $e s_{\Delta}\left(W_{3}\right)=e s_{\chi^{\prime}}\left(W_{3}\right)=2$ follows from Propositions 17 and 30 .

The wheel W_{n} has only one vertex of maximum degree for $n \geq 4$, hence $e s_{\Delta}\left(W_{n}\right)=1$ for $n \geq 4$.

If $n=4$, then $G \cong W_{4}-w v_{i}(i \in\{1, \ldots, 4\})$ has 5 vertices, 7 edges, and maximum degree 3 . Since $7=|E(G)|>\Delta(G)(|V(G)|-1) / 2=6$, the graph G is
overfull and thus $\chi^{\prime}(G)=\Delta(G)+1=4=\chi^{\prime}\left(W_{4}\right)$, which implies $e s_{\chi^{\prime}}\left(W_{4}\right) \geq 2$. On the other hand, $e s_{\chi^{\prime}}\left(W_{4}\right) \leq \alpha^{\prime}\left(W_{4}\right)=2$, hence equality follows.

Let $n \geq 5$ and consider the n-edge-coloring of W_{n} which assigns color $i \in$ $\{1, \ldots, n\}$ to edges $w v_{i}$ and $v_{i+1} v_{i+2}$ (indices modulo n), and recolor edge $v_{1} v_{2}$ with color 3 . Removing color class n with only one edge $w v_{n}$ reduces the chromatic index, which implies $e s_{\chi^{\prime}}\left(W_{n}\right)=1$ if $n \geq 5$.

It would be an interesting task to determine the chromatic edge stability index for some other classes of graphs. For example, $e s_{\chi^{\prime}}(P)=2$ and $e s_{\Delta}(P)=5$ hold for the Petersen graph P.

References

[1] S. Arumugam, I. Sahul Hamid and A. Muthukamatchi, Independent domination and graph colorings, Ramanujan Math. Soc. Lect. Notes Ser. 7 (2008) 195-203.
[2] D. Bauer, F. Harary, J. Nieminen and C.L. Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1983) 153-161.
https://doi.org/10.1016/0012-365X(83)90085-7
[3] A. Kemnitz, M. Marangio and N. Movarraei, On the chromatic edge stability number of graphs, Graphs Combin. 34 (2018) 1539-1551.
https://doi.org/10.1007/s00373-018-1972-y
[4] M. Plantholt, The chromatic index of graphs with a spanning star, J. Graph Theory 5 (1981) 45-53. https://doi.org/10.1002/jgt. 3190050103
[5] W. Staton, Edge deletions and the chromatic number, Ars Combin. 10 (1980) 103-106.
[6] J.-M. Xu, On bondage numbers of graphs: A survey with some comments, Int. J. Comb. 2013 (2013) ID 595210.
https://doi.org/10.1155/2013/595210
Received 13 June 2019
Revised 26 September 2019
Accepted 26 September 2019

