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Abstract

For an arbitrary invariant ρ(G) of a graph G the ρ-edge stability number
esρ(G) is the minimum number of edges of G whose removal results in a
graph H ⊆ G with ρ(H) 6= ρ(G) or with E(H) = ∅.

In the first part of this paper we give some general lower and upper
bounds for the ρ-edge stability number. In the second part we study the χ′-
edge stability number of graphs, where χ′ = χ′(G) is the chromatic index of
G. We prove some general results for the so-called chromatic edge stability
index esχ′(G) and determine esχ′G) exactly for specific classes of graphs.
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1. Introduction

We consider in this paper finite simple graphs G = (V (G), E(G)). A graph is
empty if E(G) = ∅.

Definition. A (graph) invariant ρ(G) is a function ρ : I → R
+
0 ∪ {∞}, where

I is the class of finite simple graphs. An invariant ρ(G) is integer valued if its
image set consists of non-negative integers, that is, ρ(I) ⊆ N0.

An invariant ρ(G) is monotone increasing if H ⊆ G implies ρ(H) ≤ ρ(G),
and monotone decreasing if H ⊆ G implies ρ(H) ≥ ρ(G); ρ(G) is monotone if it
is monotone increasing or monotone decreasing.
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If H1 and H2 are disjoint graphs, then an invariant is called additive if ρ(H1∪
H2) = ρ(H1) + ρ(H2) and maxing if ρ(H1 ∪H2) = max{ρ(H1), ρ(H2)}.

Example 1. The chromatic number χ(G) is integer valued, monotone increasing,
and maxing, and χ(G)− 1 ≤ χ(G− e) ≤ χ(G) holds for any edge e of G.

Example 2. The domination number γ(G) is integer valued, not monotone, and
additive, and γ(G) ≤ γ(G− e) ≤ γ(G) + 1 holds for any edge e of G.

Definition. Let ρ(G) be an arbitrary invariant of a graph G. We define the
ρ-edge stability number esρ(G) of G as the minimum number of edges of G whose
removal results in a graph H ⊆ G with ρ(H) 6= ρ(G) or with E(H) = ∅.

In [2] the ρ-edge stability number is also defined and called ρ-line-stability.

The ρ-edge stability number esρ(G) is an integer valued invariant. Some easy
observations follow directly from the definition. For example, esρ(G) = 0 if and
only if G is empty. If G is not empty, then 1 ≤ esρ(G) ≤ |E(G)|. If ρ(G) does
not change by any edge removal, for example, the order of the graph G, then
esρ(G) = |E(G)|.

If ρ(G) is monotone increasing, then the subgraph H in the definition on the
previous page fulfills ρ(H) < ρ(G) or H is empty. Conversely, if ρ(G) is monotone
decreasing, then this subgraph H fulfills ρ(H) > ρ(G) or H is empty.

For some specific invariants ρ(G) the problem of determining the ρ-edge sta-
bility number was already considered, for example for the chromatic number χ(G)
and particularly for the domination number γ(G). In this paper the attention is
drawn to the χ′-edge stability number where χ′ = χ′(G) is the chromatic index
of G.

The χ-edge stability number or chromatic edge stability number esχ(G) was
introduced in [1, 5] and also studied in [3].

The increase of the domination number γ(G) with respect to edge removal
was extensively studied (see e.g. [2] or [6] for a survey). The so-called bondage

number b(G) is equal to the γ-edge stability number esγ(G) if G is not empty,
and b(G) = ∞ if G is empty.

In this paper we first consider the general case and give bounds for arbitrary
ρ-edge stability numbers of graphs. Section 3 contains some examples of invari-
ants ρ(G) for which esρ(G) can easily be determined. In Sections 4 and 5 we
study the χ′-edge stability number of graphs.

2. General Results

An easy observation for the bondage number b(G) and some implications (see [6])
can be transferred to arbitrary edge stability numbers esρ(G).
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Proposition 3. Let H be a spanning subgraph of G obtained from G by removing

k edges. Then esρ(G) ≤ esρ(H)+k. Moreover, if ρ(G) 6= ρ(H), then esρ(G) ≤ k.

Proof. Let H = G − E′ where E′ ⊂ E(G) with |E′| = k. If ρ(G) 6= ρ(H) =
ρ(G− E′), then esρ(G) ≤ |E′| = k ≤ esρ(H) + k.

Therefore, assume in the following that ρ(G) = ρ(H). If ρ(H) cannot be
changed by edge removal, then esρ(H) = |E(H)|, and esρ(G) ≤ |E(G)| =
|E(H)|+ |E′| = esρ(H) + k follows.

Otherwise, let E′′ be a set of edges of H such that |E′′| = esρ(H) and
ρ(H − E′′) 6= ρ(H). Set E′′′ = E′ ∪ E′′ with |E′′′| = |E′| + |E′′| = k + esρ(H).
It follows that ρ(G) = ρ(H) 6= ρ(H −E′′) = ρ(G−E′′′), which implies esρ(G) ≤
|E′′′| = esρ(H) + k.

Upper bounds for esρ(G) can be obtained by carefully selecting spanning
subgraphs H with a fixed ρ-edge stability number. The next result considers as
an example the case esρ(H) = 1.

Corollary 4. If H is a spanning subgraph of G with esρ(H) = 1, then esρ(G) ≤
1 + |E(G)| − |E(H)|.

Proof. The result immediately follows from Proposition 3, since H is obtained
from G by removing k = |E(G)| − |E(H)| edges.

In [2] it was stated that if there is at least one vertex v ∈ V (G) such that
γ(G − v) ≥ γ(G), then b(G) ≤ d(v) ≤ ∆(G), where d(v) is the degree of v and
∆(G) the maximum degree of the graph G. This result can be generalized as
follows.

Proposition 5. Let ρ(G) be additive. If there is a vertex v ∈ V (G) such that

ρ(G − v) > ρ(G), or ρ(G − v) = ρ(G) and ρ(K1) > 0, or ρ(G − v) < ρ(G) and

ρ(K1) = 0, then esρ(G) ≤ d(v) ≤ ∆(G).

Proof. The given conditions imply ρ(G) < ρ(G − v) ≤ ρ(G − v) + ρ(K1) =
ρ(G − Ev), or ρ(G) = ρ(G − v) < ρ(G − v) + ρ(K1) = ρ(G − Ev), or ρ(G) >
ρ(G− v) = ρ(G− v) + ρ(K1) = ρ(G−Ev), where Ev is the set of edges incident
to v. Therefore, ρ(G) 6= ρ(G − Ev) and thus esρ(G) ≤ |Ev| = d(v) ≤ ∆(G) by
Proposition 3.

Alternatively, the condition γ(G− v) ≥ γ(G) implies that there is a minimal
dominating set of G − v which contains a neighbor w of v, that is, there is an
induced subgraph H = G − Ev + vw, obtained from G by removing all edges
incident to v except vw, with b(H) = 1, and the conclusion b(G) ≤ d(v) follows
by Corollary 4 (see [6]). This second proof method leads to the following result.
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Corollary 6. If there is an edge set E′ ⊆ Ev such that ρ(G) 6= ρ(G − E′)
or ρ(G − Ev) 6= ρ(G − E′), where Ev is the set of edges incident to v, then

esρ(G) ≤ d(v) ≤ ∆(G).

Proof. If ρ(G) 6= ρ(G−E′), then esρ(G) ≤ |E′| ≤ d(v) ≤ ∆(G). If ρ(G−Ev) 6=
ρ(G−E′), then ρ(G) 6= ρ(G−Ev) or ρ(G) 6= ρ(G−E′) and the result follows by
Proposition 3.

If removing a pending edge always changes ρ(G), then Corollary 6 implies
that esρ(G) ≤ d(v) for each non-isolated vertex v ∈ V (G). Thus the following
holds.

Corollary 7. If G is a graph without isolated vertices and if removing a pending

edge always changes the invariant ρ, then esρ(G) ≤ δ(G).

This holds for example for the number k(G) of components of G, since a
pending edge is a bridge (see also Section 3).

Another result from [2] can be generalized by requesting appropriate condi-
tions for the considered invariant.

Proposition 8. If ρ(G) is additive and ρ(K2) 6= ρ(2K1), then esρ(G) ≤ min{d(u)
+ d(v)− 1 : uv ∈ E(G)}.

Proof. For an arbitrary edge uv ∈ E(G) set H = G − Eu − Ev + uv ∼= G −
{u, v} ∪ K2, which is obtained from G by removing k = d(u) + d(v) − 2 edges.
Since ρ(H) = ρ(G−{u, v})+ρ(K2) 6= ρ(G−{u, v})+ρ(2K1) = ρ(H−uv) implies
esρ(H) = 1, the result follows from Corollary 4.

This result can be generalized by considering an arbitrary subgraph S of G
instead of K2. The additivity of ρ(G) gives an upper bound on esρ(G) which
only depends on S and the number of removed edges.

Theorem 9. Let ρ(G) be additive and S ⊆ G a subgraph for which ρ(S) can be

changed by edge deletions. Then esρ(G) ≤ esρ(S) + |E(V (S), V (G) \ V (S))| +
|E(G[V (S)])| − |E(S)|, where E(U,W ) is the set of edges between vertex sets U
and W .

Proof. Consider the spanning subgraphH = G−V (S)∪S of G which is obtained
from G by removing k = |E(V (S), V (G) \ V (S))|+ |E(G[V (S)])| − |E(S)| edges,
namely all edges between V (S) and V (G) \V (S) as well all edges in G[V (S)] not
contained in S. By Proposition 3, esρ(G) ≤ esρ(H) + k.

Let E′ ⊆ E(S) be an edge set such that |E′| = esρ(S) and ρ(S) 6= ρ(S−E′).
Then by the additivity of the invariant, ρ(H) = ρ(G − V (S)) + ρ(S) 6= ρ(G −
V (S)) + ρ(S − E′) = ρ(H − E′) which implies by Proposition 3 that esρ(H) ≤
|E′| = esρ(S). Thus, esρ(G) ≤ esρ(S) + k.
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If S is a spanning subgraph, then V (S) = V (G), thus Theorem 9 gives the
bound esρ(G) ≤ esρ(S) + |E(G)| − |E(S)|, which follows directly by Proposition
3. If S is an induced subgraph, then the bound of Theorem 9 simplifies to
esρ(G) ≤ esρ(S) + |E(V (S), V (G) \ V (S))|.

An additional condition on the invariant ρ is necessary to prove the corre-
sponding result for maxing invariants.

Theorem 10. Let ρ(G) be maxing and S ⊆ G a subgraph for which ρ(S) can

be changed by edge deletions and ρ(S) > ρ(G− V (S)). Then esρ(G) ≤ esρ(S) +
|E(V (S), V (G) \ V (S))|+ |E(G[V (S)])| − |E(S)|.

Proof. As in the proof of Theorem 9, consider the spanning subgraph H =
G−V (S)∪S of G which is obtained by removing k = |E(V (S), V (G) \ V (S))|+
|E(G[V (S)])| − |E(S)| edges from G. By Proposition 3, esρ(G) ≤ esρ(H) + k.

Let E′ ⊆ E(S) be an edge set such that |E′| = esρ(S) and ρ(S) 6= ρ(S−E′).
Since the invariant is maxing and ρ(S) > ρ(G−V (S)) by assumption and ρ(S) 6=
ρ(S − E′), it holds that ρ(H) = max{ρ(G − V (S)), ρ(S)} = ρ(S) 6= max{ρ(G −
V (S)), ρ(S − E′)} = ρ(H − E′). By Proposition 3, esρ(H) ≤ |E′| = esρ(S) and
therefore esρ(G) ≤ esρ(S) + k.

In the proofs of Theorems 9 and 10, the disjoint union of two graphs was
considered. The proof idea can be transferred to the disjoint union of arbitrarily
many graphs.

Theorem 11. Let ρ(G) be additive, let G = H1 ∪ · · · ∪ Hk be a graph whose

subgraphs H1, . . . , Hk and the integer s ≥ 0 are defined such that ρ(Hi) can be

changed by edge deletion if and only if 1 ≤ i ≤ s. Then esρ(G) = |E(G)| if s = 0
and esρ(G) = min{esρ(Hi) : 1 ≤ i ≤ s} if s 6= 0.

Proof. If s = 0, then ρ(Hi) cannot be changed by edge deletion for every sub-
graph Hi, which implies by the additivity that also ρ(G) = ρ(H1) + · · ·+ ρ(Hk)
cannot be changed by edge deletions, that is, esρ(G) = |E(G)|.

If s 6= 0, then let Hj be a subgraph with esρ(Hj) = min{esρ(Hi) : 1 ≤ i ≤ s}
and E′ ⊆ E(Hj) be an edge set with |E′| = esρ(Hj) and ρ(Hj −E′) 6= ρ(Hj). By
the additivity, ρ(G−E′) = ρ(H1)+ · · ·+ ρ(Hj−1)+ ρ(Hj −E′)+ ρ(Hj+1)+ · · ·+
ρ(Hk) 6= ρ(H1) + · · ·+ ρ(Hj−1) + ρ(Hj) + ρ(Hj+1) + · · ·+ ρ(Hk) = ρ(G), which
implies esρ(G) ≤ |E′| = esρ(Hj).

Let E′′ ⊆ E(G) be an edge set with |E′′| < esρ(Hj). By the minimality of
esρ(Hj), ρ(Hi − E′′) = ρ(Hi) for i = 1, . . . , k, which implies ρ(G − E′′) = ρ(G)
since ρ(G) is additive. Therefore, esρ(G) = esρ(Hj).

For maxing invariants we can prove the following result.

Theorem 12. Let ρ(G) be maxing and monotone increasing, let G = H1 ∪ · · ·
∪ Hk be a graph whose subgraphs H1, . . . , Hk and the integer s ≥ 1 are defined
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such that ρ(Hi) = ρ(G) if and only if 1 ≤ i ≤ s. Then esρ(G) = |E(G)| if there
is a subgraph Hj, 1 ≤ j ≤ s, such that ρ(Hj) cannot be changed by edge deletions,

and esρ(G) =
∑s

i=1 esρ(Hi) otherwise.

Proof. If there is a subgraph Hj , 1 ≤ j ≤ s, such that ρ(Hj) cannot be changed
by edge deletions, then ρ(G) = ρ(Hj) = ρ(G − E′) for every E′ ⊆ E(G), since
the invariant is maxing and monotone increasing (that is, removing edges does
not increase the invariant). Therefore, esρ(G) = |E(G)|.

Otherwise, let E′ = E′

1 ∪ · · · ∪ E′

s with E′

i ⊆ E(Hi), |E
′

i| = esρ(Hi), and
ρ(Hi − E′

i) 6= ρ(Hi) for i = 1, . . . , s. Since the invariant is maxing, ρ(G − E′) =
max{ρ(Hi − E′

i) : 1 ≤ i ≤ s} ∪ {ρ(Hi) : s + 1 ≤ i ≤ k} 6= ρ(G) which implies
esρ(G) ≤ |E′| =

∑s
i=1 esρ(Hi). If an edge set E′′ with less than |E′| edges is

removed from G, then there is a subgraph Hj , 1 ≤ j ≤ s, from which less than
esρ(Hj) edges are removed, which implies ρ(Hj − E′′) = ρ(Hj) and thus, since
the invariant is maxing and monotone increasing, ρ(G − E′′) = ρ(Hj) = ρ(G).
Therefore, esρ(G) = |E′| =

∑s
i=1 esρ(Hi).

Theorems 11 and 12 imply that ρ(G) can be computed by the ρ-edge stability
numbers of the components of G if the invariant is additive or if it is maxing and
monotone increasing. Therefore, it is sufficient to consider connected graphs G
in these cases.

A lower bound for esχ(G) given in [3] can be generalized as follows.

Theorem 13. Let ρ(G) be monotone and let G be a nonempty graph with ρ(G) =
k. If G contains s nonempty subgraphs G1, . . . , Gs with ρ(G1) = · · · = ρ(Gs) = k
such that a ≥ 0 is the number of edges that occur in at least two of these subgraphs

and q ≥ 1 is the maximum number of these subgraphs with a common edge, then

both esρ(G) ≥ 1
q

∑s
i=1 esρ(Gi) ≥ s/q and esρ(G) ≥

∑s
i=1 esρ(Gi)− a(q− 1) hold.

Proof. Let ρ(G) be monotone increasing. Let E′ be a set of edges of G with
|E′| = esρ(G) such that ρ(G − E′) < k or G − E′ is empty. If ρ(G − E′) < k,
then the set E′ must contain at least esρ(Gi) edges of each graph Gi, 1 ≤ i ≤ s,
since otherwise k > ρ(G− E′) ≥ ρ(Gj − E′ ∩ E(Gj)) = k for some j, 1 ≤ j ≤ s,
a contradiction. If G − E′ is empty, then E′ = E(G) contains all edges of Gi,
1 ≤ i ≤ s. Therefore, b =

∑s
i=1 |E

′ ∩ E(Gi)| ≥
∑s

i=1 esρ(Gi) ≥ s.

On the other hand, at most ā = min{a, |E′|} edges of E′ are counted at most q
times in b, every other edge of E′ is counted at most once, so b ≤ ā·q+(|E′|−ā)·1 =
|E′|+ ā(q − 1).

Since ā ≤ |E′|, b ≤ q |E′| and therefore esρ(G) = |E′| ≥ b/q ≥ 1
q

∑s
i=1 esρ(Gi)

≥ s/q. On the other hand, ā ≤ a implies esρ(G) = |E′| ≥ b − a(q − 1) ≥
∑s

i=1 esρ(Gi)− a(q − 1).

The proof for monotone decreasing ρ(G) runs analogously.
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Note that we do not require that the graphs Gi are distinct in Theorem 13.
The lower bound of the first inequality can be improved by considering additional
subgraphs Gi with ρ(Gi) = k that do not increase the number q. A refinement of
the latter inequality can be achieved if the number of occurrences of fixed edges
in the subgraphs is taken into account.

Corollary 14. Let ρ(G) be monotone and let G be a nonempty graph with ρ(G) =
k. If G contains s nonempty subgraphs G1, . . . , Gs with ρ(G1) = · · · = ρ(Gs) = k
and pairwise disjoint edge sets, then esρ(G) ≥

∑s
i=1 esρ(Gi) ≥ s.

Proof. Each edge of G is contained in at most q = 1 of the given subgraphs
since they are pairwise edge disjoint. The result follows from Theorem 13.

Corollary 15. Let ρ(G) be monotone. If H ⊆ G and ρ(H) = ρ(G), then esρ(H)
≤ esρ(G).

Proof. If H is empty, then esρ(H) = 0 ≤ esρ(G); otherwise Corollary 14 with
s = 1 implies the result.

Note that in general esρ(G) must not be monotone even if ρ(G) is monotone.

3. Examples for Edge Stability Numbers

In this section the edge stability numbers for some well-known invariants are
considered, beginning with the minimum degree δ(G) and the maximum degree
∆(G).

Proposition 16. esδ(G) = |E(G)| if δ(G) = 0 and esδ(G) = 1 if δ(G) 6= 0.

Proof. If δ(G) = 0, that is, G has isolated vertices, then the minimum degree
cannot be decreased by edge removal, hence esδ(G) = |E(G)| by definition. If
δ(G) 6= 0, then it suffices to remove one edge incident to a vertex of degree δ(G)
in order to decrease the minimum degree, hence esδ(G) = 1.

Proposition 17. es∆(G) = 0 if G is empty and es∆(G) = |V∆| − α′(G[V∆]) if

G is not empty, where V∆ is the set of vertices of G of degree ∆(G) and α′(G) is
the edge independence number or matching number of G.

Proof. If G is empty, then es∆(G) = 0 by definition. If G is not empty, then
∆(G) ≥ 1. Let E′ be an edge set of G with ∆(G − E′) = ∆(G) − 1 ≥ 0. Each
vertex from V∆ is incident with at least one edge from E′. At most α′(G[V∆])
edges from E′ connect two vertices each from V∆ such that all these vertices are
distinct. The remaining vertices of V∆ need one additional incident edge from E′

each. Therefore, es∆(G) ≥ α′(G[V∆]) + |V∆| − 2α′(G[V∆]) = |V∆| − α′(G[V∆]).
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Equality holds by selecting an appropriate maximum matching in G[V∆] and an
incident edge for each not matched vertex from V∆.

If G is regular and not empty, then es∆(G) = |V (G)| − α′(G). For example,
es∆(Kn) =

1
2n if n is even and es∆(Kn) =

1
2(n+ 1) if n ≥ 3 is odd.

Let k(G) be the number of components of a graph G and λ(G) the edge

connectivity of G, that is, the minimum number of edges whose removal gives a
disconnected graph or the singleton K1. By the definitions it follows that if G
is connected, then esk(G) = λ(G). A direct implication of Theorem 11 is the
following general result which also covers disconnected graphs.

Proposition 18. Let G be a graph with k(G) components H1, . . . , Hk(G). Then

esk(G) = 0 if G is empty and esk(G) = min{λ(Hi) : 1 ≤ i ≤ k(G), Hi 6∼= K1} if

G is not empty.

Proof. The number of components k(H) is additive and can be increased by edge
deletions for nonempty graphs. Let H1, . . . , Hs be the nonempty components of
G and Hs+1, . . . , Hk(G) be singletons K1, 0 ≤ s ≤ k(G). Then Theorem 11 gives
esk(G) = 0 if s = 0, that is, if G is empty, and esk(G) = min{esk(Hi) : 1 ≤ i ≤
s} = min{λ(Hi) : 1 ≤ i ≤ s} otherwise.

Proposition 19. esλ(G) = 1 if G is connected and not a singleton, and esλ(G) =
|E(G)| otherwise.

Proof. If G is connected and not a singleton, then let E′ be an edge set with
|E′| = λ(G) ≥ 1 such that G−E′ is disconnected. For any edge e ∈ E′, λ(G−e) =
λ(G) − 1, hence esλ(G) = 1. If G is disconnected or a singleton, then λ(G) = 0
and the invariant cannot be changed by edge removal, hence esλ(G) = |E(G)| by
definition.

4. General Results for the Chromatic Edge Stability Index

If G = (V (G), E(G)) is a graph, a function c : E(G) → {1, . . . , k} such that
c(e1) 6= c(e2) for any two adjacent edges e1 and e2 is called a k-edge-coloring
of G, and G is called k-edge-colorable. The minimum k for which G is k-edge-
colorable is the chromatic index χ′(G) of G. By Vizing’s Theorem, the chromatic
index can only attain one of two values, ∆(G) ≤ χ′(G) ≤ ∆(G)+1. Graphs with
χ′(G) = ∆(G) are called class 1 graphs and graphs with χ′(G) = ∆(G) + 1 are
called class 2 graphs. We define the invariant class(G) = χ′(G)−∆(G)+1 ∈ {1, 2}.
A graph G is called overfull if its order n is odd and if it contains more than
∆(G)(n− 1)/2 edges. Obviously, an overfull graph must be a class 2 graph.
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Note that χ′(G) is an invariant which is monotone increasing, integer valued,
and maxing, and it holds that χ′(G− e) ≤ χ′(G) ≤ χ′(G− e) + 1 for any edge e
of G.

In this section we consider the χ′-edge stability number esχ′(G) which we
also call chromatic edge stability index of G. Using Theorem 12 we can compute
esχ′(G) by the chromatic edge stability indexes of its components. Let G = H1∪
· · · ∪Hk(G) such that χ′(G) = χ′(Hi) if and only if 1 ≤ i ≤ s for s ≤ k(G). Then
esχ′(G) =

∑s
i=1 esχ′(Hi). Therefore, we can assume without loss of generality in

the following that G is connected.

Proposition 20. esχ′(G) ≤ ⌊|E(G)| /χ′(G)⌋ ≤ α′(G) if G is nonempty, and

esχ′(G) = α′(G) = 0 if G is empty.

Proof. Let t′(G) be the minimum number of edges in a color class of the graph
G where the minimum is taken over all edge colorings of G with χ′(G) colors.

If G is nonempty, then removing any color class from G reduces the chro-
matic index, thus esχ′(G) ≤ t′(G) follows. By the pigeonhole principle, any edge
coloring of G with χ′(G) colors has a color class with at most ⌊|E(G)| /χ′(G)⌋
edges, which implies t′(G) ≤ ⌊|E(G)| /χ′(G)⌋. On the other hand, the lower
bound χ′(G) ≥ |E(G)| /α′(G) implies the second inequality.

If G is empty, then the result is obvious.

Lemma 21. If G is a class 1 graph, then esχ′(G) ≥ es∆(G).

Proof. If G is empty, then esχ′(G) = es∆(G) = 0. If G is nonempty, then
there is a set E′ of edges of G such that |E′| = esχ′(G) and ∆(G − E′) ≤
χ′(G − E′) < χ′(G) = ∆(G). It follows that ∆(G − E′) < ∆(G) which implies
esχ′(G) = |E′| ≥ es∆(G).

The following proposition gives a class of graphs for which equality always
holds.

Proposition 22. If G is a regular class 1 graph, then esχ′(G) = es∆(G) = α′(G).

Proof. If G is empty, then esχ′(G) = es∆(G) = α′(G) = 0. If G is nonempty,
then es∆(G) ≤ esχ′(G) ≤ α′(G) = 1

2 |V (G)| by Lemma 21 and Proposition 20.
Since es∆(G) = |V (G)| −α′(G) = 1

2 |V (G)| by Proposition 17, esχ′(G) = es∆(G)
= α′(G) = 1

2 |V (G)| follows.

More generally, we can characterize in a certain way all class 1 graphs with
esχ′(G) = es∆(G).

Proposition 23. If G is a class 1 graph, then esχ′(G) = es∆(G) if and only if G
is empty or if there is an edge set E′ such that |E′| = es∆(G), ∆(G−E′) < ∆(G),
and G− E′ is in class 1.
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Proof. Let G be a non-empty class 1 graph.
If esχ′(G) = es∆(G), then let E′ be an arbitrary edge set with |E′| = esχ′(G)

and χ′(G−E′) < χ′(G), which implies χ′(G−E′) = χ′(G)−1. Since ∆(G−E′) ≤
χ′(G − E′) and χ′(G) = ∆(G), ∆(G − E′) < ∆(G). Moreover, |E′| = es∆(G),
which implies that ∆(G− E′) = ∆(G)− 1. Therefore, χ′(G− E′) = ∆(G− E′),
that is, G− E′ is in class 1.

The second assertion follows from Lemma 21, which states esχ′(G) ≥ es∆(G),
and from the properties of the given set E′, since χ′(G − E′) = ∆(G − E′) <
∆(G) = χ′(G) which implies |E′| = es∆(G) ≥ esχ′(G).

Proposition 22 follows from this characterization, since a regular class 1 graph
is 1-factorable, and removing a 1-factor E′ leaves a class 1 graph.

Proposition 23 and Lemma 21 imply that if G is in class 1 but G − E′ is
in class 2 for all sets E′ with |E′| = es∆(G) and ∆(G − E′) < ∆(G), then
esχ′(G) > es∆(G). An example for such graphs is given in Theorem 31.

Theorem 24. If G is a class 2 graph, then esχ′(G) = min{es∆(G), esclass(G)}.

Proof. Since G is in class 2, the graph G is not empty and the invariants ∆(G),
class(G) = 2, and χ′(G) = ∆(G) + 1 can be reduced by edge removal.

By removing es∆(G) edges E′ such that ∆(G−E′) < ∆(G) we obtain χ′(G−
E′) ≤ ∆(G − E′) + 1 < ∆(G) + 1 = χ′(G) which implies |E′| ≥ esχ′(G). By
removing esclass(G) edges E′′ such that class(G−E′′) = 1 we obtain χ′(G−E′′) =
∆(G−E′′) ≤ ∆(G) < ∆(G)+1 = χ′(G) which implies |E′′| ≥ esχ′(G). It follows
that min{es∆(G), esclass(G)} ≥ esχ′(G).

Consider now a set of edges E′′′ such that χ′(G−E′′′) < χ′(G) = ∆(G) + 1,
that is, χ′(G − E′′′) ≤ ∆(G). Then G − E′′′ cannot both be in class 2 and
have the same maximum degree as G since this would imply χ′(G − E′′′) =
∆(G)+1. Therefore, |E′′′| ≥ es∆(G) or |E′′′| ≥ esclass(G) which implies esχ′(G) ≥
min{es∆(G), esclass(G)}.

For overfull graphs we can give a lower bound.

Corollary 25. If G is an overfull graph, then esχ′(G) ≥ |E(G)|−∆(G)(|V (G)|−
1)/2.

Proof. Since G is overfull, G is in class 2, |E(G)| > ∆(G)(n − 1)/2, and the
invariants ∆(G) and class(G) can be reduced by edge deletions.

Let E′ be an edge set such that |E′| = es∆(G) and ∆(G−E′) < ∆(G). By the
handshake lemma, G−E′ may contain at most ∆(G−E′)n/2 ≤ (∆(G)− 1)n/2
edges which implies es∆(G) = |E′| ≥ |E(G)|−(∆(G)−1)n/2 > |E(G)|−∆(G)(n−
1)/2, since n > ∆(G).

Let E′′ be an edge set such that |E′′| = esclass(G) and class(G − E′′) = 1.
Then G− E′′ may contain at most ∆(G− E′′)(n− 1)/2 ≤ ∆(G)(n− 1)/2 edges
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(otherwise G − E′′ would be still overfull) which implies esclass(G) = |E′′| ≥
|E(G)| −∆(G)(n− 1)/2.

By Theorem 24, esχ′(G) = min{es∆(G), esclass(G)} ≥ |E(G)| − ∆(G)(n −
1)/2.

5. Chromatic Edge Stability Index for Specific Graph Classes

In this section we use general results of the previous section to determine the
chromatic edge stability index of some well-known graph classes.

Theorem 26. If G is bipartite, then esχ′(G) = es∆(G).

Proof. The result follows from Proposition 23, since every subgraph G − E′ of
G is bipartite and thus in class 1.

Theorem 26 and Proposition 17 imply the following results for complete bi-
partite graphs and paths.

Corollary 27. esχ′(Km,n) = es∆(Km,n) = min{m,n}.

Corollary 28. esχ′(Pn) = es∆(Pn) =











0 if n = 1,

1 if n = 2,

⌈(n− 2)/2⌉ if n ≥ 3.

Proposition 29. esχ′(Cn) = n/2 if n is even, esχ′(Cn) = 1 if n is odd, and

es∆(Cn) = ⌈n/2⌉.

Proof. By Proposition 17, es∆(Cn) = ⌈n/2⌉. If n is even, then Cn is bipartite,
and the result follows from Theorem 26. If n is odd, then χ′(Cn) = 3 and
removing one edge from the cycle gives a 2-edge-colorable path Pn, which implies
esχ′(Cn) = 1.

This proposition shows that the difference between the two invariants es∆(G)
and esχ′(G) may be arbitrarily large, since es∆(C2s+1)− esχ′(C2s+1) = s. More-
over, Lemma 21 does not necessarily hold for class 2 graphs.

Next we consider complete graphs and complete graphs with an additional
vertex.

Proposition 30. esχ′(Kn) = ⌊n/2⌋ =

{

n/2 if n is even,

(n− 1)/2 if n is odd,

and es∆(Kn) = ⌈n/2⌉ if n ≥ 2.



260 A. Kemnitz and M. Marangio

Proof. If n ≥ 2, then es∆(Kn) = ⌈n/2⌉ follows from Propositions 17.

If n = 1 or if n is even, then Kn is a regular class 1 graph, and the result is
an implication of Proposition 22.

If n ≥ 3 is odd, then Kn is overfull and Corollary 25 implies esχ′(Kn) ≥
(

n
2

)

− (n− 1)2/2 = (n− 1)/2. On the other hand, esχ′(Kn) ≤ α′(Kn) = (n− 1)/2
follows from Proposition 20, that is, equality holds.

Theorem 31. Let G be a graph which consists of a complete graph Kn, n ≥ 2,
and an additional vertex w connected to d = d(w) vertices of Kn. Then we have

the following.

1. es∆(G) = ⌈n/2⌉ if d = 0, es∆(G) = ⌈d/2⌉ if 1 ≤ d ≤ n − 1, es∆(G) =
⌈(n+ 1)/2⌉ if d = n.

2. If n ≥ 3 odd, then esχ′(G) = ⌊n/2⌋ if 0 ≤ d ≤ n− 1, esχ′(G) = (n+ 1)/2 if

d = n.

3. If n even, then esχ′(G) = ⌊n/2⌋ if d = 0, esχ′(G) = d if 1 ≤ d ≤ n/2,
esχ′(G) = d− n/2 if n/2 < d ≤ n.

Proof. If d = 0, then G ∼= Kn ∪K1 and if d = n, then G ∼= Kn+1, therefore the
results follow from Propositions 17 and 30. Let 1 ≤ d ≤ n − 1 in the following
and denote the vertices of Kn by v1, . . . , vn such that w is adjacent to v1, . . . , vd.

1. If 1 ≤ d ≤ n− 1, then G has d vertices of maximum degree ∆(G) = n, namely
the neighbors of w. Then, by Proposition 17, es∆(G) = d−α′(Kd) = d−⌊d/2⌋ =
⌈d/2⌉.

2. Since n ≥ 3, n is odd, and Kn ⊆ G ⊆ Kn+1, χ
′(Kn) = χ′(G) = χ′(Kn+1) = n.

By Corollary 15 and Proposition 30, esχ′(G) ≥ esχ′(Kn) = ⌊n/2⌋. Since d < n,
there is a color class with ⌊n/2⌋ edges in every proper n-edge-coloring of G, whose
removal reduces the chromatic index. Therefore, esχ′(G) = ⌊n/2⌋.

3. If n even, then we consider two cases.

Case 3(a): If 1 ≤ d ≤ n/2, then G is in class 1. Consider the natural
edge coloring of Kn with n− 1 colors where the vertices are in order v1, vd+1, v2,
vd+2, . . . , vd−1, v2d−1, vd, v2d, v2d+1, . . . , vn. Then the edges v1vd+1, . . . , vd−1v2d−1

are colored pairwise differently. Color these edges as well as edge wvd with the
new color n and then color wvi with the old color of vivd+i, i = 1, . . . , d−1. This
implies χ′(G) = ∆(G) = n.

Let E′ be a set of edges of G with |E′| = esχ′(G) and χ′(G−E′) < χ′(G) =
∆(G) = n. Then ∆(G − E′) ≤ n − 1. If ∆(G − E′) ≤ n − 2, then the degree of
the d vertices of maximum degree must be reduced by 2, which implies |E′| ≥ d.
If ∆(G − E′) = n − 1, then G − E′ cannot be overfull since otherwise χ′(G −
E′) = ∆(G − E′) + 1 = ∆(G) = χ′(G), a contradiction. Hence |E(G− E′)| =
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(

n
2

)

+ d− |E′| ≤ ∆(G− E′)(|V (G− E′)| − 1)/2 = n(n− 1)/2 =
(

n
2

)

which again
implies |E′| ≥ d. Therefore, esχ′(G) ≥ d.

On the other hand, removing all d edges incident to w gives a graph G−E′ ∼=
Kn ∪K1 with χ′(G− E′) = n− 1, that is, esχ′(G) ≤ d, and equality follows.

Case 3(b): If n/2 < d ≤ n − 1, then G is overfull since |E(G)| =
(

n
2

)

+ d >
n(n − 1)/2 + n/2 = n2/2 = ∆(G)(|V (G)| − 1)/2. Therefore, esχ′(G) ≥ d − n/2
by Corollary 25. On the other hand, removing d− n/2 edges incident to w gives
a class 1 graph (see Case 3(a)), which implies esχ′(G) ≤ d − n/2 and therefore
esχ′(G) = d− n/2.

Parts of Proposition 30 and Theorem 31 follow also from a result by Plan-
tholt [4], which states the following. If G is a graph of odd order n ≥ 3 with a
spanning star, then G is in class 1 if and only if it has at most (n− 1)2/2 edges.
This implies for example that if Kn is a complete graph of odd order n ≥ 3 and
E′ ⊆ E(Kn), then χ′(Kn − E′) = n if and only if |E′| ≤ (n− 3)/2.

The result of Theorem 31 implies that the difference between esχ′(G) and
es∆(G) may be arbitrarily large for class 1 graphs.

Theorem 32. For every pair of positive integers a, b there is a graph G with

es∆(G) = a and esχ′(G) = b.

Proof. If a ≤ b, then for d = 2a and n = 2b+1 it holds that n ≥ 3, n is odd, and
1 ≤ d ≤ n−1, and the class 1 graph G of Theorem 31 fulfills es∆(G) = ⌈d/2⌉ = a
and esχ′(G) = (n− 1)/2 = b.

If a > b, then for d = 2a and n = 2d − 2b (n even) it holds that n/2 =
d − b < d < 2d − 2b = n, and the class 2 graph G of Theorem 31 fulfills again
es∆(G) = ⌈d/2⌉ = a and esχ′(G) = d− n/2 = b.

Note that a graph G with es∆(G) = a, esχ′(G) = b, and a > b is a class 2
graph by Lemma 21.

A wheel Wn with n ≥ 3 is the join of a cycle Cn, say with consecutive vertices
v1, . . . , vn, and a single vertex w. Wheels are class 1 graphs.

Proposition 33. es∆(W3) = 2, es∆(Wn) = 1 for n ≥ 4, esχ′(Wn) = 2 for

n ∈ {3, 4}, esχ′(Wn) = 1 for n ≥ 5.

Proof. If n = 3, then W3
∼= K4 and es∆(W3) = esχ′(W3) = 2 follows from

Propositions 17 and 30.

The wheel Wn has only one vertex of maximum degree for n ≥ 4, hence
es∆(Wn) = 1 for n ≥ 4.

If n = 4, then G ∼= W4 − wvi (i ∈ {1, . . . , 4}) has 5 vertices, 7 edges, and
maximum degree 3. Since 7 = |E(G)| > ∆(G)(|V (G)| − 1)/2 = 6, the graph G is
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overfull and thus χ′(G) = ∆(G) + 1 = 4 = χ′(W4), which implies esχ′(W4) ≥ 2.
On the other hand, esχ′(W4) ≤ α′(W4) = 2, hence equality follows.

Let n ≥ 5 and consider the n-edge-coloring of Wn which assigns color i ∈
{1, . . . , n} to edges wvi and vi+1vi+2 (indices modulo n), and recolor edge v1v2
with color 3. Removing color class n with only one edge wvn reduces the chro-
matic index, which implies esχ′(Wn) = 1 if n ≥ 5.

It would be an interesting task to determine the chromatic edge stability
index for some other classes of graphs. For example, esχ′(P ) = 2 and es∆(P ) = 5
hold for the Petersen graph P .
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