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Abstract

A set D of vertices in a graph G is a dominating set of G if every vertex
outside D is adjacent in G to some vertex in D. A set D of vertices in
G is a semitotal dominating set of G if D is a dominating set of G and
every vertex in D is within distance 2 from another vertex of D. Given a
graph G and a positive integer k, the semitotal domination problem is to
decide whether G has a semitotal dominating set of cardinality at most k.
The semitotal domination problem is known to be NP-complete for chordal
graphs and bipartite graphs as shown in [M.A. Henning and A. Pandey,
Algorithmic aspects of semitotal domination in graphs, Theoret. Comput.
Sci. 766 (2019) 46–57]. In this paper, we present a linear time algorithm to
compute a minimum semitotal dominating set in block graphs. On the other
hand, we show that the semitotal domination problem remains NP-complete
for undirected path graphs.
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1. Introduction

A dominating set in a graph G is a set D of vertices of G such that every vertex
in V (G) \D is adjacent to at least one vertex in D. The domination number of
G, denoted by γ(G), is the minimum cardinality of a dominating set of G. The
concept of domination and its variations have been widely studied in theoreti-
cal, algorithmic and application aspects; a rough estimate says that it occurs in
more than 6,000 papers to date. A thorough treatment of the fundamentals of
domination theory in graphs can be found in the books [4, 5].

A total dominating set, abbreviated a TD-set, of a graph G with no isolated
vertex is a set D of vertices of G such that every vertex in V (G) is adjacent to at
least one vertex in D. The total domination number of G, denoted by γt(G), is
the minimum cardinality of a TD-set of G. Total domination is now well studied
in graph theory. The literature on the subject of total domination in graphs has
been surveyed and detailed in the recent book [13].

A relaxed form of total domination called semitotal domination was intro-
duced by Goddard, Henning and McPillan [3], and studied further in [6, 7, 8,
9, 10, 11, 12] and elsewhere. A set D of vertices in a graph G with no isolated
vertices is a semitotal dominating set, abbreviated a semi-TD-set, of G if D is a
dominating set of G and every vertex in D is within distance 2 of another vertex
of D. The semitotal domination number of G, denoted by γt2(G), is the minimum
cardinality of a semi-TD-set of G. Since every TD-set is a semi-TD-set, and since
every semi-TD-set is a dominating set, we have the following observation.

Observation 1 [3]. For every isolate-free graph G, γ(G) ≤ γt2(G) ≤ γt(G).

As remarked in [3], by Observation 1 the semitotal domination number
is squeezed between arguably the two most important domination parameters,
namely the domination number and the total domination number. Goddard et al.
[3] established tight upper bounds on the semitotal domination number of a con-
nected graph in terms of its order. Henning [7] established tight upper bounds on
the upper semitotal domination number of a regular graphs using edge weighting
functions. Henning and Marcon [8] explored a relationship between the semito-
tal domination number and the matching number of a graph, and showed that
the semitotal domination number of a connected graph is bounded above by the
matching number plus one. Zhuang and Hao [15] established a lower bound on
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the semitotal domination number of trees and characterized the extremal trees.
Semitotal domination in claw-free cubic graphs has been studied in [10].

Given a graphG and a positive integer k, the semitotal domination problem is
to decide whether G has a semitotal dominating set of cardinality at most k. The
semitotal domination problem is known to be NP-complete for general graphs [3].
Henning and Pandey [12] showed that the semitotal domination problem remains
NP-complete for chordal bipartite graphs, planar graphs and split graphs. On
the positive side, linear time algorithms exist to find a minimum semi-TD-set in
trees [3, 11]. A polynomial time algorithm to compute a minimum cardinality
semi-TD-set in interval graphs, a subclass of chordal graphs, is presented in [12].

In this paper, we design in Section 3 a linear time algorithm for computing a
minimum semitotal dominating set in block graphs, a superclass of trees. On the
other hand, we show in Section 4 that the semitotal domination problem remains
NP-complete for undirected path graphs, a subclass of chordal graphs.

2. Terminology and Notation

For notation and graph theory terminology, we in general follow [13]. Specifically,
let G = (V,E) be a graph with vertex set V = V (G) and edge set E = E(G),
and let v be a vertex in V . The open neighborhood of v is the set NG(v) = {u ∈
V |uv ∈ E} and the closed neighborhood of v is NG[v] = {v}∪NG(v). A vertex v
is said to dominate a vertex u in G if u ∈ NG[v]. The open neighborhood of a set
S of vertices in G is the set NG(S) =

⋃

v∈S NG(v) and its closed neighborhood is
the set NG[S] = NG(S) ∪ S. The degree of a vertex v is |NG(v)| and is denoted
by dG(v). For a set S of vertices in G, the subgraph induced by S in G is denoted
by G[S]. Thus, the edge set of G[S] consists of those edges of G with both ends
in the set S. The set S is a clique of G, if G[S] is a complete subgraph of G.

The distance between two vertices u and v in a connected graph G, denoted
by dG(u, v), is the length of a shortest (u, v)-path in G. For a vertex v in G, the
2-distance neighborhood of v is the set N2

G(v) = {u | 1 ≤ dG(u, v) ≤ 2} of all
vertices at distance 1 or 2 from v in G, while the closed 2-distance neighborhood
of v is N2

G[v] = N2
G(v) ∪ {v}. A vertex in N2

G(v) is called a 2-distance neighbor
of the vertex v in G.

A rooted tree is a tree T in which there is a designated vertex r named as
root. For each vertex v 6= r of T , the parent of v is the neighbor of v on the
unique (r, v)-path, while a child of v is any other neighbor of v.

For a vertex v of G, the graph G−v is the graph obtained from G by deleting
v and deleting all edges of G incident with v. A vertex v is a cut-vertex of G if
the number of components increases in G− v. A block of a graph G is a maximal
connected subgraph of G has no cut-vertex of its own. Thus, a block is a maximal
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2-connected subgraph of G. Any two blocks of a graph have at most one vertex
in common, namely a cut-vertex. If a connected graph contains a single block,
we call the graph itself a block. A block graph is a connected graph in which every
block is a clique. A block containing exactly one cut-vertex is called an end block.
A non-complete block graph has at least two end blocks.

We use the standard notation [k] = {1, 2, . . . , k}. Let G = (V,E) be a block
graph, and let {B1, B2, . . . Br} and {c1, c2, . . . , cs} be the set of blocks and the
set of cut-vertices of G, respectively. The cut-tree of G is the tree TG defined
by V (TG) = {B1, . . . , Br, c1, . . . , cs} and E(TG) = {Bicj | cj ∈ V (Bi), i ∈ [r], j ∈
[s]}. A block graph G and its associated cut-tree TG is illustrated in Figure 1.
The computation of blocks in a graph G and the construction of the cut-tree TG

can be done in O(|V |+ |E|) time by using depth-first search [1].

Figure 1. A block graph G and its corresponding cut-tree TG.

3. Semitotal Domination in Block Graphs

In this section, we present a linear algorithm to compute a minimum semi-TD-set
of a block graph G on at least two vertices. If G itself is a block, then the graph
G is a complete graph. In this case, any two vertices in G form a semi-TD-set
of G, implying that γt2(G) = 2. Hence it is only of interest for us to consider
non-complete block graphs; that is, block graphs containing at least two blocks.

Let G = (V,E) be a non-complete block graph. The algorithm we present
to compute a minimum semi-TD-set in G runs in O(|V |+ |E|) time, and follows
a certain ordering of the blocks. Let {B1, B2, . . . , Br} and {c1, c2, . . . , cs} be the
set of blocks and the set of cut-vertices of G, respectively. Let TG be the cut-
tree associated with the graph G. Without loss of generality, we assume that
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TG is rooted at the cut-vertex cs of G. Let σ = (B1, B2, . . . , Br) be an ordering
of blocks of G, where σ−1 = (Br, Br−1, . . . , B1) is an ordering of blocks of G
obtained by applying a breadth-first search starting at the root cs of TG. We call
such an ordering of blocks of G as a RBFS-Block-Ordering of the blocks of
G. For every i ∈ [r], we define F (Bi) as the parent of the block Bi in TG. Further
for every i ∈ [r], we define

Gi = G

[

r
⋃

ℓ=i

V (Bℓ)

]

.

We note that for every i ∈ [r − 1], the block Bi is an end block in the graph
Gi with F (Bi) as the unique cut-vertex in Gi that belongs to the block Bi. Since
the Gr is the block Br, we treat any vertex of the block Br as F (Br). For the sake
of simplicity, we denote the vertex F (Bi) simply by Fi for i ∈ [r]. The following
observation follows immediately from the fact that any two blocks of G have at
most one vertex in common, namely a cut-vertex.

Observation 2. For every i ∈ [r−1] and every k > i, we have V (Bi)∩V (Bk) ⊆
{Fi}.

Before formally presenting our algorithm MSTDS-Block(G), we discuss
the main ideas of the algorithm. The algorithm constructs a set D which upon
termination of the algorithm is a semi-TD-set of the non-complete block graph
G. We assign to each vertex v of G a label L(v) = (L1(v), L2(v)) which we call
its L-label. We call the labels L1(v) and L2(v) the L1-label and L2-label of v,
respectively. The label L1(v) is used to determine whether the vertex v is already
dominated or has yet to be dominated. Initially, L1(v) = L2(v) = 0 for every
vertex v of G. As the algorithm progresses, the label of the vertex v changes. If
the vertex v is not dominated by the current set D, then the label L1(v) = 0 is
unchanged; otherwise, L1(v) = 1. The label L2(v) is used to determine whether
the vertex v belongs to the current set D or not. If the vertex v does not belong to
the current set D, then the label L2(v) = 0 is unchanged. If the vertex v belongs
to the current set D but has no 2-distance neighbor in D, then L2(v) = 1. If the
vertex v belongs to the current set D and has a 2-distance neighbor in D, then
L2(v) = 2.

At the i-th iteration, the algorithm systematically considers the vertices of
the block Bi with respect to the RBFS-Block-Ordering σ = (B1, B2, . . . , Br)
of G and takes some action (either the algorithm selects new vertices or updates
some of the vertices of the graph) based on the values of L1 and L2 assigned to the
vertices that belong to V (Bi)\{Fi}. If a vertex u is selected by the algorithm and
added to the set D, then L1(u) is updated to 1, L2(u) is updated to 1 or 2, and
L(y) is made (1, 0) for every neighbor y of u in G such that L(y) = (0, 0). Upon
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termination of the algorithm, the set D consists precisely of the (1, 2)-labeled
vertices and forms a semi-TD-set of G. We now formally describe our algorithm
to construct a semi-TD-set in a non-complete block graph.

Algorithm 1: MSTDS-Block(G)

Input: A non-complete connected block graph G = (V,E);
Output: A semi-TD-set D of G;

1 Initialize D = ∅;
2 Initialize L(u) = (0, 0) for each vertex u ∈ V ;
3 Compute a RBFS-Block-Ordering σ = (B1, B2, . . . , Br) of the blocks of G;
4 i = 1;
5 while (i < r) do
6 Let Fi be the unique cut-vertex of Gi present in Bi and C(Bi) = V (Bi) \ {Fi};
7 while (C(Bi) 6= ∅) do
8 Choose a vertex v ∈ C(Bi);
9 if (L(v) = (0, 0)) then

10 if (there exists a vertex u ∈ NG[Fi] with L1(u) = 1) then /* Case 1 */

11 L(Fi) = (1, 2) and L2(x) = 2 for every vertex x ∈ NG(Fi) such that
L2(x) = 1;

12 else /* Case 2 */

13 L(Fi) = (1, 1);

14 L1(x) = 1 for every vertex x ∈ NG(Fi);

15 else if (L(v) = (1, 0)) then
16 Let A(v) = {y ∈ NG(v) | L2(y) 6= 0};
17 if (|A(v)| > 1) then /* Case 3 */

18 L2(x) = 2 for every x ∈ NG(v) such that L2(x) = 1;
19 else if (A(v) = {u} such that L2(u) = 1 and u /∈ V (Bi)) then /* Case 4 */

20 L(Fi) = (1, 2) and L1(x) = 1 for every vertex x ∈ NG(Fi);
21 L2(x) = 2 for every vertex x ∈ NG(Fi) ∪ {u} such that L2(x) = 1;

22 C(Bi) = C(Bi) \ {v};

23 i = i+ 1;

24 C(Br) = V (Br);
25 while (C(Br) 6= ∅) do
26 Choose a vertex v ∈ C(Br);
27 if (L(v) = (0, 0)) then /* Case 5 */

28 L(cj) = (1, 2) for some cut-vertex cj of G such that cj ∈ V (Br);
29 L1(x) = 1 for every x ∈ NG(cj);
30 L2(x) = 2 for every vertex x ∈ NG(cj) such that L2(x) = 1;

31 else if (L(u) = (1, 1) for some u ∈ NG(v), where v ∈ V (Br)) then
32 Let B(v) = {y ∈ NG(v) | L2(y) 6= 0};
33 if (|B(v)| > 1) then /* Case 6 */

34 L2(x) = 2 for every x ∈ NG(v) such that L2(x) = 1;
35 else /* Case 7 */

36 L(w) = (1, 2) for some w ∈ V (Br) \ {u} and L(u) = (1, 2);
37 L1(x) = 1 for every vertex x ∈ NG(w);
38 L2(x) = 2 for every vertex x ∈ NG(w) such that L2(x) = 1;

39 C(Br) = C(Br) \ {v};

40 return D = {u ∈ V | L(u) = (1, 2)};
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In Table 1, we illustrate the different iterations of the algorithm MSTDS-
Block(G) on the graph G shown in Figure 1, where we only show the iterations
of the algorithm in which some update has been done. Moreover, in the column
“Considered vertex v ∈ V (Bi) with L(v)” of Table 1, we have only shown those
vertices of the block for which some update has been done. Upon termination
of the algorithm, the resulting set D = {v1, v6, v9, v12, v15, v18, v19} a minimum
semi-TD-set of the graph G shown in Figure 1.

Iteration Considered Considered vertex Fi A(v) or B(v) Applied Update
i block v ∈ V (Bi) with L(v) Case
1 B1 L(v13) = (0, 0) v12 Not computed Case 2 L(v12) = (1, 1)

L(v11) = (1, 0)
L(v13) = (1, 0)

2 B2 L(v20) = (0, 0) v18 Not computed Case 2 L(v18) = (1, 1)
L(v16) = (1, 0)
L(v20) = (1, 0)

3 B3 L(v21) = (0, 0) v19 Not computed Case 2 L(v19) = (1, 1)
L(v21) = (1, 0)
L(v17) = (1, 0)

7 B7 L(v7) = (0, 0) v6 Not computed Case 2 L(v6) = (1, 1)
L(v7) = (1, 0)
L(v5) = (1, 0)

8 B8 (i) L(v10) = (0, 0) v9 (i) Not computed (i) Case 1 (i) L(v9) = (1, 2)
L(v10) = (1, 0)
L(v8) = (1, 0)
L(v3) = (1, 0)

(ii) L(v11) = (1, 0) (ii)A(v) = {v9, v12} (ii) Case 3 (ii) L(v12) = (1, 2)
9 B9 (i) L(v16) = (1, 0) v15 (i) A(v) = {v18}; (i) Case 4 (i) L(v15) = (1, 2)

v18 /∈ V (B9) L(v1) = (1, 0)
L(v14) = (1, 0)
L(v18) = (1, 2)

(ii) L(v17) = (1, 0) (ii) A(v)={v15, v19} (ii) Case 3 (ii) L(v19) = (1, 2)
13 B13 L(v2) = (0, 0) v1 Not computed Case 1 L(v1) = (1, 2)

L(v4) = (1, 0)
L(v2) = (1, 0)

14 B14 L(v5) = (1, 0) v1 B(v) = {v1, v6} Case 6 L(v6) = (1, 2)

Table 1. Illustration of the algorithm on the graph G shown in Figure 1.

Recall that in the i-th iteration of the algorithm MSTDS-Block(G), the
labels of all vertices in Bi are systematically considered. Furthermore, at the
start of the i-th iteration, the labels L(v) of all vertices v in Bj where j < i are
(1, 0), (1, 1) or (1, 2). We state this formally as follows.

Observation 3. At the beginning of the i-th iteration of the algorithm MSTDS-
Block(G) where i ≥ 2, we have L(v) ∈ {(1, 0), (1, 1), (1, 2)} for all v ∈ V (Bj) \
{Fj} and j ∈ [i− 1].

Let Bi be the block considered at the i-th iteration. If L(v) = (1, 0) for
some v ∈ V (Bi) \ {Fi}, then the algorithm updates the L-labels of the neighbors
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of v. In particular, upon completion of the i-th iteration, there is no neighbor
u ∈ NG(v) \ V (Bi) of v such that L2(u) = 1. We state this observation formally
as follows.

Observation 4. Let Bi be the block considered at the i-th iteration and let L(y) =
(1, 0) for all y ∈ V (Bi) \ {Fi}. If v ∈ V (Bi) \ {Fi} and there exists a vertex
u ∈ NG(v) \ {Fi} with L2(u) 6= 0, then L(u) = (1, 2) upon completion of the i-th
iteration of the algorithm.

We note that the algorithm MSTDS-Block(G) has r iterations where r is
the number of blocks in G. For i ∈ [r] ∪ {0}, let Di denote the set {u ∈ V (G) |
L2(u) 6= 0} after the i-th iteration of the algorithm MSTDS-Block(G). We
first prove that the set Dr is a semi-TD-set of G.

Lemma 5. The set Dr is a semi-TD-set of G.

Proof. Upon completion of the i-th iteration of the algorithm MSTDS-
Block(G), by Observation 3, L1(x) = 1 for all x ∈ V (Bi) \ {Fi}, where i ∈ [r].
This implies that Dr is a dominating set of G. To prove that Dr is a semi-TD-set
of G, we show that for every v ∈ Dr, there exists a vertex q ∈ Dr \ {v} such that
dG(v, q) ≤ 2. Let v ∈ Dr be arbitrary. Since G is a block graph, v ∈ V (Bi) for
some i ∈ [r]. We consider two cases.

Case 1. i < r. We first prove that if v ∈ V (Bi) \ {Fi}, then there exists a
vertex q ∈ Dr \ {v} such that dG(v, q) ≤ 2. Let v ∈ V (Bi) \ {Fi}. Since i < r,
there exists a block Bj with j > i such that Fi ∈ V (Bj). Since v ∈ V (Bi) \ {Fi},
the vertex v ∈ NG(Fi). If Fi ∈ Dr, then taking q = Fi the desired result holds.
Hence we may assume that Fi /∈ Dr. If z ∈ Dr for some z ∈ NG(Fi), then
dG(v, z) = dG(v, Fi)+dG(Fi, z) = 2 and the desired result follows. Hence we may
further assume that z /∈ Dr for every z ∈ NG(Fi). Thus, the set {y ∈ NG(Fi) |
y ∈ Dr} = {v}.

If j = r, then B(Fi) = {v}, where B(u) = {y ∈ NG(u) | L2(y) 6= 0}. In this
case, the algorithm selects a vertex w ∈ V (Br)\{v} (see Line 36 of the algorithm)
at the r-th iteration. Notice that dG(v, w) ≤ 2.

If j < r, then Fi ∈ V (Bj)\{Fj} and Fi ∈ NG(v). Recall that z /∈ Dr for every
z ∈ NG(Fi). In this case, A(Fi) = {v}, where A(u) = {y ∈ NG(u) | L2(y) 6= 0}.
This implies that A(Fi) = {v} at the beginning of the j-th iteration of the
algorithm noting that Dj ⊆ Dr. In this case since j < r, the algorithm selects Fj

(see Line 20 of the algorithm) at the j-th iteration. We note that dG(Fj , v) ≤ 2.
In all the above cases, we have shown that if v ∈ V (Bi) \ {Fi}, then there exists
a vertex q ∈ Dr \ {v} such that dG(v, q) ≤ 2.

Now let v = Fi. Since i < r, we note that v ∈ V (Bj) where j > i. If j = r,
then the algorithm selects a vertex w ∈ V (Br)\{v} (see Line 36 of the algorithm)
at the r-th iteration. Since dG(v, w) ≤ 2, the desired result follows. If j < r, then
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v = Fi ∈ V (Bj)\{Fj} where j > i. Thus by our earlier observations, there exists
a vertex q ∈ Dr \ {v} such that dG(v, q) ≤ 2. Therefore, Dr is a semi-TD-set
of G.

Case 2. i = r. Suppose that there does not exist a vertex q ∈ Dr \ {v} such
that dG(v, q) ≤ 2. Since the algorithm does not select any vertex with L2-label
1 at the r-th iteration, v ∈ Dr implies that v ∈ Dr−1. Since G is a connected
graph, |V (Br)| ≥ 2. Moreover, since there is no vertex q ∈ Dr \ {v} such that
dG(v, q) ≤ 2, at the beginning of the r-th iteration, we note that L2(v) = 1. Thus
in this case the algorithm selects a vertex w ∈ V (Br) \ {v} (see Line 36 of the
algorithm) such that dG(v, w) ≤ 2. This is a contradiction to the fact that there
does not exist a vertex q ∈ Dr \{v} such that dG(v, q) ≤ 2. Therefore there exists
a vertex q ∈ Dr \ {v} such that dG(v, q) ≤ 2, implying that Dr is a semi-TD-set
of G. This completes the proof of Lemma 5.

We are now in a position to prove the following theorem.

Theorem 6. The set Dr is a minimum semi-TD-set of G.

Proof. Recall that for i ∈ [r] ∪ {0}, the set Di is the set {u ∈ V (G) | L2(u) ∈
{1, 2}} after the i-th iteration of the algorithmMSTDS-Block(G). By Lemma 5,
the set Dr is a semi-TD-set of G. We prove next that Dr is a minimum semi-
TD-set of G. For this purpose, we prove by induction on i ≥ 0 that the set Di

is contained in some minimum semi-TD-set of G. If i = 0, then D0 = ∅ and
hence the set Di is contained in every minimum semi-TD-set of G. This estab-
lishes the base case. Assume that i ≥ 1 and that the set Di−1 is contained in
some minimum semi-TD-set D′ of G. We now show that Di is contained in some
minimum semi-TD-set of G. Recall that by our earlier assumptions, the graph
G is a non-complete block graph. We proceed further with a series of claims. In
each claim, we construct a minimum semi-TD-set of G containing Di from the
minimum semi-TD-set D′ of G.

Claim 7. If i < r and L(v) = (0, 0) for some vertex v ∈ V (Bi) \ {Fi}, then there
is a minimum semi-TD-set of G containing Di = Di−1 ∪ {Fi}.

Proof. By our induction hypothesis, the set Di−1 is contained in some minimum
semi-TD-set D′ of G. If Fi ∈ D′, then we are done. So we may assume that
Fi /∈ D′. Let u be a vertex in D′ that dominates the vertex v. Since D′ is a
semi-TD-set of G, there is a vertex u′ ∈ D′ such that dG(u, u

′) ∈ {1, 2}. Since
L(v) = (0, 0), we note that u /∈ Di−1. If u ∈ V (Bk) \ {Fk} where k > i, then by
Observation 2, the vertex u = Fi noting that uv ∈ E(G). This is a contradiction
since Fi /∈ D′. Hence, u ∈ V (Bk) \ {Fk} where k ≤ i.

By Observation 3, L(x) ∈ {(1, 0), (1, 1), (1, 2)} for every vertex x ∈ V (Bj) \
{Fj} and all j ∈ [i−1]. Since uv ∈ E(G), the vertex v ∈ V (Bk). If k < i, then by
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Observation 2, the vertex v is the vertex Fk. Notice that {z ∈ NG[u] | L1(z) =
0} ⊆ NG[Fi]∪NG[Di−1], i.e., all the undominated vertices of NG[u] are dominated
by Di−1 ∪{Fi}. Let N2(D

′, u) = {x | x ∈ D′ ∩N2
G(u)}. If dG(Fi, x) ≤ 2 for every

x ∈ N2(D
′, u), then D′′ = (D′ \ {u}) ∪ {Fi} is a minimum semi-TD-set of G

containing Di−1 ∪{Fi}, as desired. Hence, we may assume that dG(Fi, x) > 2 for
some vertex x ∈ N2(D

′, u), for otherwise the desired result follows.

Let p ∈ N2(D
′, u) be an arbitrary vertex such that dG(Fi, p) > 2. Thus,

p ∈ V (Bq) for some q < i and Fq /∈ V (Bi). By Observation 4, either L2(p) = 0
(hence p /∈ Di−1) or L(p) = (1, 2). Let S = {x ∈ N2(D

′, u) | dG(Fi, x) > 2 and
L2(x) = 0} and S′ = {x ∈ S | N2

G(x) \ {u} = ∅}. Notice that each element
of S does not belong to Di−1 and belongs to the blocks that appear before i.
Moreover, NG[S

′] ⊆ NG[Di−1] ∪ NG[Fi]. If |S′| ≥ 2, then (D′ \ S′) ∪ {Fi} is a
semi-TD-set of G of cardinality less than |D′|, contradicting the minimality of
D′. Hence, |S′| ≤ 1. If |S′| = 1, then (D′ \ S′) ∪ {Fi} is a minimum semi-TD-set
of G containing Di−1 ∪ {Fi}, as desired. Hence we may assume that S′ = ∅.

If there is a vertex q ∈ NG[Fi] such that L1(q) = 1, then q ∈ Di−1 or
q′ ∈ Di−1 where qq′ ∈ E(G). In this case, (D′ \ {u}) ∪ {Fi} is a minimum
semi-TD-set of G containing Di−1 ∪ {Fi} since dG(Fi, q) ≤ 2 or dG(Fi, q

′) ≤ 2.
Hence, we may assume that L1(q) = 0 for every vertex q ∈ NG[Fi], for otherwise
the desired result follows. We now let b ∈ NG[Fi], and let b′ be a vertex in D′

that dominates the vertex b. Since i < r, we note that vertices b and b′ exists.
Further since Fi /∈ D′, we note that b′ 6= Fi. Since L1(q) = 0 for all q ∈ NG[Fi],
the vertex b′ /∈ Di−1. Thus since dG(Fi, b

′) ≤ 2, the set (D′ \ {u}) ∪ {Fi} is a
minimum semi-TD-set of G containing Di−1 ∪ {Fi}. This completes the proof of
Claim 7.

Recall that for each vertex v ∈ V (Bi) \ {Fi} with L(v) = (1, 0), the set
A(v) = {y ∈ NG(v) | L2(y) ∈ {1, 2}}. If |A(v)| ≥ 2, then for every x ∈ A(v),
there exists a vertex y ∈ A(v) different from x such that dG(x, y) ≤ 2. So for every
neighbor of v with L2-label 1 (if such a neighbor of v exists), there is another
neighbor of v with L2-label 1 or 2. The following claim shows that if A(v) = {u},
L2(u) = 1, and u /∈ V (Bi), then we can find a neighbor of v within distance 2
from u. Recall that D′ is a minimum semi-TD-set of G and Di−1 ⊆ D′.

Claim 8. Suppose that i < r and L(v) = (1, 0) for some vertex v ∈ V (Bi)\{Fi}.
If A(v) = {u}, where L2(u) = 1 and u /∈ V (Bi), then there is a minimum semi-
TD-set of G containing Di−1 ∪ {Fi}.

Proof. If Fi ∈ D′, then we are done. So we may assume that Fi /∈ D′. By the
choice of u and v, we note that u ∈ V (Bk)\{Fk} where k < i as u /∈ V (Bi). Since
L(v) = (1, 0) and L2(u) = 1, we have u ∈ Di−1. Since D′ is a semi-TD-set of G,
there is a vertex u′ ∈ D′ such that dG(u, u

′) ≤ 2. The fact that L2(u) = 1 implies
that u′ /∈ Di−1. Let u

′ ∈ V (Bℓ) \ {Fℓ} for some integer ℓ ≥ 1. If ℓ > i, then since
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u /∈ V (Bi) and dG(u, u
′) ≤ 2, Observation 2 implies that u′ = Fi, contradicting

the fact that Fi /∈ D′. Hence, ℓ ≤ i.

We note that {z ∈ NG[u
′] | L1(z) = 0} ⊆ NG[Fi] ∪ NG[Di−1], i.e., all the

undominated vertices of NG[u
′] are dominated by Di−1 ∪ {Fi}. Let N2(D

′, u′) =
{x | x ∈ D′ ∩N2

G(u
′)}. If dG(Fi, x) ≤ 2 or dG(u, x) ≤ 2 for every x ∈ N2(D

′, u′),
then D′′ = (D′ \ {u′}) ∪ {Fi} is a minimum semi-TD-set of G containing Di−1 ∪
{Fi}. Hence, we may assume that dG(Fi, x) > 2 and dG(u, x) > 2 for some vertex
x ∈ N2(D

′, u), for otherwise the desired result follows.

Let p ∈ N2(D
′, u) be an arbitrary vertex such that dG(Fi, p) > 2 and

dG(u, p) > 2. Thus, p ∈ V (Bq) for some q < i and Fq /∈ V (Bi). By Observation
4, either L2(p) = 0 (hence p /∈ Di−1) or L(p) = (1, 2). Let S = {x ∈ N2(D

′, u′) |
dG(Fi, x) > 2, dG(u, x) > 2 and L2(x) = 0} and S′ = {x ∈ S | N2

G(x) \ {u
′} = ∅}.

Notice that each element of S′ does not belong to Di−1 and belongs to the blocks
that appear before i. Moreover, NG[S

′] ⊆ NG[Di−1] ∪ NG[Fi]. If |S′| ≥ 2, then
(D′ \ S′) ∪ {Fi} is a semi-TD-set of G of cardinality less than |D′|, contradicting
the minimality of D′. Hence, |S′| ≤ 1. If |S′| = 1, then (D′ \ S′) ∪ {Fi} is a
minimum semi-TD-set of G containing Di−1 ∪ {Fi}, as desired. Hence we may
assume that S′ = ∅. Since dG(u, Fi) ≤ 2, the set (D′ \ {u′})∪ {Fi} is a minimum
semi-TD-set of G containing Di−1∪{Fi}. This completes the proof of Claim 8.

Claim 9. If i = r and L(v) = (0, 0) for some vertex v ∈ V (Br), then there is
a minimum semi-TD-set of G containing Dr−1 ∪ {cj}, where cj ∈ V (Br) is a
cut-vertex of G.

Proof. We once again consider the minimum semi-TD-set D′ of G. Recall that
Dr−1 ⊆ D′. If cj ∈ D′, then we are done. Hence we may assume that cj /∈ D′.
Let u be a vertex in D′ that dominates the vertex v. Since D′ is a semi-TD-set of
G, there is a vertex u′ ∈ D′ such that dG(u, u

′) ≤ 2. Since L(v) = (0, 0), we note
that u /∈ Dr−1. Further, we note that L2(x) = 0 for all x ∈ V (Br). Moreover,
since cj ∈ V (Br) is an arbitrary cut-vertex of G, if u ∈ V (Br), then the vertex u
is not a cut-vertex of G.

By Observation 3, L1(x) = 1 for all x ∈ V (Bj)\{Fj}, where j ∈ [r−1]. This
implies that every vertex of V (G) \ V (Br) is dominated by Dr−1. We note that
{z ∈ NG[u] ∩ V (Br) | L1(z) = 0} ⊆ NG[cj ] ∪ NG[Dr−1], i.e., the undominated
vertices of NG[u] present in V (Br) are dominated by Dr−1 ∪ {cj}. If u ∈ V (Br),
then (D′ \ {u})∪{cj} is a minimum semi-TD-set of G since u is not a cut-vertex
of G and dG(x, cj) ≤ 2 for every x such that dG(x, u) ≤ 2. Hence we may assume
that u /∈ V (Br), for otherwise the desired result follows.

Let N2(D
′, u) = {x | x ∈ D′ ∩ N2

G(u)}. If dG(cj , x) ≤ 2 for every x ∈
N2(D

′, u), then D′′ = (D′\{u})∪{cj} is a minimum semi-TD-set of G containing
Dr−1 ∪ {cj}. Hence, we may assume that dG(cj , p) > 2 for some vertex p ∈
N2(D

′, u), for otherwise the desired result follows. Thus, p ∈ V (Bq) for some
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q < r and Fq /∈ V (Br). By Observation 4, either L2(p) = 0 (hence p /∈ Dr−1) or
L(p) = (1, 2).

Let S = {x ∈ N2(D
′, u) | dG(cj , x) > 2 and L2(x) = 0} and S′ = {x ∈

S |N2
G(x) \ {u} = ∅}. We note that each element of S′ does not belong to Dr−1

and belongs to the blocks that appear before r. Moreover, NG[S
′] ⊆ NG[Dr−1]∪

NG[cj ]. If |S′| ≥ 2, then (D′ \ S′) ∪ {cj} is a semi-TD-set of G of cardinality
less than |D′|, contradicting the minimality of D′. Hence, |S′| ≤ 1. If |S′| = 1,
then (D′ \ S′) ∪ {cj} is a minimum semi-TD-set of G containing Dr−1 ∪ {cj},
as desired. Hence we may assume that S′ = ∅. Since cj is a cut-vertex of G
and G is not complete, there must be a block Bk, where k < r, of G such that
V (Bk) ∩ V (Br) = {cj}. By Observation 3, L1(y) = 1 for all y ∈ V (Bk) \ {Fk}.
This implies that there is a vertex y′ ∈ NG[y] such that y′ ∈ Dr−1. We note that
dG(cj , y

′) ≤ 2, implying that (D′ \ {u}) ∪ {cj} is a minimum semi-TD-set of G
containing Dr−1 ∪ {cj}. This completes the proof of Claim 9.

By Claim 9, if L(v) = (0, 0) for some vertex v ∈ V (Br), then the algorithm
selects any cut-vertex cj ∈ V (Br). Let Bk where k < r be the block such that
V (Br) ∩ V (Bk) = {cj}. By Observation 3, L(x) ∈ {(1, 0), (1, 1), (1, 2)} for every
x ∈ V (Bk) \ {cj}. Thus there exists a vertex y ∈ NG(x) such that L2(y) 6= 0.
We note that dG(y, cj) ≤ 2. The algorithm therefore assigns to cj the label
L(cj) = (1, 2). If there exists a vertex z ∈ NG(u) for some u ∈ V (Br) \ {v} such
that L(z) = (1, 1), then dG(cj , z) = 2. Let L(v) = (1, 0) for some v ∈ V (Br)
and B(v) = {y ∈ NG(v) | L2(y) 6= 0}. If |B(v)| > 1, then for every x ∈ B(v),
there exists a vertex y ∈ B(v) different from x such that dG(x, y) ≤ 2. Hence
for every neighbor of v with L2-label 1 (if such a neighbor of v exists), we can
associate a vertex with L2-label 1 or 2. If |B(v)| = 1 for any vertex v ∈ V (Br)
with L(v) = (1, 0) that has a neighbor with label (1, 1), then the algorithm finds
its 2-distance neighbor vertex by the following claim.

Claim 10. Suppose that L(v) = (1, 0) for some vertex v ∈ V (Br), L(u) = (1, 1)
for some u ∈ NG(v), and B(v) = {y ∈ NG(v) | L2(y) 6= 0}. If |B(v)| = 1,
then there is a minimum semi-TD-set of G containing Dr−1 ∪ {w}, where w ∈
V (Br) \ {u}.

Proof. We once again consider the minimum semi-TD-set D′ of G. Since L(u) =
(1, 1) for some v ∈ V (Br), the vertex u ∈ Dr−1. Since D′ is a semi-TD-set of G,
there is a vertex u′ ∈ D′ such that dG(u, u

′) ≤ 2. If u′ = w, then we are done.
Hence we may assume that u′ 6= w. Since L(u) = (1, 1), we note that u′ /∈ Dr−1,
and so L2(u

′) = 0. Since |B(v)| = 1, there is no vertex y ∈ NG(v) \ {u} such
that L2(y) 6= 0. By Observation 3, L1(x) = 1 for all x ∈ V (Bj) \ {Fj}, where
j ∈ [r−1]. This implies that every vertex of V (G)\V (Br) is dominated by Dr−1.
We note that {z ∈ NG[u

′] ∩ V (Br) | L1(z) = 0} ⊆ NG[w] ∪ NG[Dr−1], i.e., the
undominated vertices of NG[u

′] present in V (Br) are dominated by Dr−1 ∪ {w}.
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Let N2(D
′, u′) = {x | x ∈ D′ ∩ N2

G(u
′)} and w ∈ V (Br) \ {u}. Let p

be an arbitrary vertex in N2(D
′, u′). If dG(p, u) ≤ 2 or dG(p, w) ≤ 2, then

(D′ \ {u′}) ∪ {w} is a minimum semi-TD-set of G containing Dr−1 ∪ {w}, as
desired. Hence we may assume that dG(p, u) > 2 and dG(p, w) > 2. In this case,
p ∈ V (Bq) for some q < k, where u′ ∈ V (Bk) \ {Fk}. We note that L(x) = (1, 0)
for every x ∈ V (Bk) \ {Fk} since L(u) = (1, 1). Thus by Observation 4, either
L2(p) = 0 (hence p /∈ Dr−1) or L(p) = (1, 2).

Let S = {x ∈ N2(D
′, u′) | dG(x,w) > 2, dG(x, u) > 2, and L2(x) = 0} and

S′ = {x ∈ S | N2
G(x) ∩ D′ = {u′}}. We note that each element of S′ does

not belong to Dr−1 and belongs to the blocks that appear before r. Moreover,
NG[S

′] ⊆ NG[Dr−1]∪NG[w]. If |S
′| ≥ 2, then (D′\S′)∪{w} is a semi-TD-set of G

of cardinality less than |D′|, contradicting the minimality of D′. Hence, |S′| ≤ 1.
If |S′| = 1, then (D′ \ S′) ∪ {w} is a minimum semi-TD-set of G containing
Dr−1 ∪ {w}, as desired. Hence we may assume that S′ = ∅. Since dG(u,w) ≤ 2,
the set (D′ \ {u′})∪ {w} is a minimum semi-TD-set of G containing Dr−1 ∪ {w}.
This completes the proof of Claim 9.

We now return to the proof of Theorem 6. Recall that by the induction
hypothesis, the set Di−1 is contained in some minimum semi-TD-set D′ of G.
Now assume that the algorithm is at the i-th iteration and let Bi be the block of
G considered at the i-th iteration. If L(v) = (0, 0) for some v ∈ V (Bi) \ {Fi} and
i < r, then the algorithm selects the vertex Fi (see Lines 11-13 of the algorithm
MSTDS-Block(G) and notice that in the algorithm L(Fi) is made (1, 2) or
(1, 1)). By Claim 7, Di = Di−1 ∪ {Fi} is contained in some minimum semi-
TD-set of G. If L(v) = (1, 0) for some v ∈ V (Bi) \ {Fi} and i < r, then the
algorithm checks the set A(v). If |A(v)| > 1, then the algorithm does not select
any new vertex; rather it makes L2(x) = 2 for the neighbor x of v if L2(x) = 1.
Hence, Di = Di−1 and therefore the set Di is contained in the minimum semi-
TD-set D′ of G. If |A(v)| = 1, then the algorithm selects Fi (see Line 20 of the
algorithmMSTDS-Block(G) and notice that L(Fi) is made (1, 2)). By Claim 8,
Di = Di−1∪{Fi} is contained in some minimum semi-TD-set of G. If i = r, then
by Claim 9 and 10, the set Di is contained in some minimum semi-TD-set of G.
Therefore, by induction, Dr is a minimum semi-TD-set of G. This completes the
proof of Theorem 6.

By Theorem 6, the algorithmMSTDS-Block(G) produces a minimum semi-
TD-set of G. This establishes the correctness of the algorithm. We discuss next
how a minimum semi-TD-set of a given block graph G can be computed in linear
time. If G is complete, then as observed earlier, any two vertices in G form a
semi-TD-set of G, implying that γt2(G) = 2. If G is not complete, then the
algorithm MSTDS-Block(G) is used to compute a minimum semi-TD-set of
G. We now show that the implementation of MSTDS-Block(G) can be done
in linear time.
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Suppose that G has blocks B1, B2, . . . , Br and cut-vertices c1, c2, . . . , cs. A
cut-tree TG of G can be constructed in linear time [1]. Once a cut-tree is con-
structed, a RBFS-Block-Ordering of the blocks for G can be obtained in
O(r + s) time. The algorithm uses two dimensional array L on each vertex v of
G. This two dimensional array can be seen as two arrays L1 and L2. Here, we use
the array notation (.) instead of [.] for L1 and L2 to avoid confusion as we mean
the same labels L1 and L2 used in the algorithm. Initially, L1(v) = 0 = L2(v) for
every vertex v of G. We also maintain an array F on each block of G, where F
is defined with respect to the RBFS-Block-Ordering σ of the blocks for G.
In particular, for i ∈ [r− 1], F [i] = t if ct is the cut-vertex common to the blocks
Bi and Bi+1. At the i-th iteration, the algorithm considers the block Bi.

• If L1(v) = 0 = L2(v) for some vertex v ∈ V (Bi) \ {Fi}, then L1(Fi) is made 1
and L2(Fi) is made 1 or 2. This takes at most O(V (Bi) + dG(Fi)) = O(dG(Fi))
time. Thus, L1(x) is made 1 for every vertex x ∈ NG[Fi], which takes O(dG(Fi))
time.

• If L1(v) = 1, and L2(v) = 0 for some vertex v ∈ V (Bi) \ {Fi}, then A(v) is
computed which can be done in O(dG(v)) time. If |A(v)| > 1, then L2(x) is
made 2 for every x ∈ NG(v) such that L2(x) = 1. This update can be done in
O(dG(v)) time. If |A(v)| = 1, then L2(F [i]) is made 2 and L2(x) is made 2 for
every x ∈ NG(ct) such that L2(x) = 1, where F [i] = ct. This can be done in
O(dG(v) + dG(Fi)) time.

For i ∈ [r − 1], at the i-th iteration, the algorithm takes

O





∑

v∈V (Bi)\{Fi}

dG(v) + dG(Fi)



 = O





∑

v∈V (Bi)

dG(v)





time. Now consider the r-th iteration of the algorithm. If L1(v) = 0 = L2(v) for
some v ∈ V (Br), then L2(cj) is made 2 and the L-label of the neighbors of cj is
updated. This takes O(dG(cj)) time. If L1(u) = 1 = L2(u) for some u ∈ NG(v),
then a vertex w of V (Br) is chosen and the L-labels of the neighbors of w and v
are updated. This takes O(dG(v)+dG(w)) time. So in total at the r-th iteration,
the algorithm takes

O





∑

v∈V (Br)

dG(v)





time. From the above discussion, we conclude that the algorithm takes at most
O(|V (G)|+ |E(G)|) time. Therefore, we have the following theorem.

Theorem 11. A minimum semitotal dominating set of a given block graph can
be computed in linear time.
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4. NP-Completeness

In this section, we show that the semitotal domination problem is NP-complete for
undirected path graphs, a subclass of chordal graphs. The semitotal domination
problem is shown to be NP-complete for chordal graphs [14]. Let F be a finite
family of nonempty sets. A graph G = (V,E) is called an intersection graph for
F if there exists a one-to-one correspondence between F = {A1, A2, . . . , An} and
V = {v1, v2, . . . , vn} such that vivj ∈ E if and only if Ai ∩ Aj 6= ∅. A graph
G is called an undirected path graph if G is an intersection graph of a family of
undirected paths of a tree.

Given a graph G and a positive integer k, the domination problem is to decide
whether G has a dominating set of cardinality at most k. We describe next a poly-
nomial time reduction from the domination problem to the semitotal domination
problem. Given a graph G = (V,E), we construct another graph G′ = (V ′, E′),
where V ′ = V ∪ {xi, yi, zi, pi, qi | i ∈ [n]} and E′ = E ∪ {vixi, xiyi, yizi, yipi, piqi |
i ∈ [n]}. The construction of the graph G′ from the graph G is illustrated in
Figure 2.

Figure 2. The constructed graph G′ from the graph G.

Lemma 12. The graph G has a dominating set of cardinality at most k if and
only if the graph G′ has a semi-TD-set of cardinality at most k + 2n.

Proof. Let D be a dominating set of cardinality at most k. Consider the set
D′ = D ∪ {yi, pi | i ∈ [n]}. We note that D′ is a dominating set of G′ with
cardinality at most k + 2n. Since dG(yi, pi) = 1 and dG(yi, vi) = 2 for all i ∈ [n],
the set D′ is a semi-TD-set of G′.

To prove the converse, we first show that there is a semi-TD-set D′ of G of
cardinality at most k + 2n such that yi, pi ∈ D′ and xi, zi, qi /∈ D′ for all i ∈ [n].
Assume that D′ is a minimum semi-TD-set of G′ with cardinality at most k+2n.
Since D′ is a semi-TD-set, qi or pi ∈ D′ in order to dominate qi and also zi or
yi ∈ D′ in order to dominate zi. Without loss of generality, we may assume that
yi, pi ∈ D′ for each i ∈ [n]. Also we may assume that qi, zi /∈ D′, for otherwise
we can obtain another smaller semi-TD-set of G′ of cardinality at most k + 2n
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by removing qi and zi. Now suppose that xi ∈ D′. We may assume that vi /∈ D′,
for otherwise we get another semi-TD-set of G′ of cardinality at most k + 2n by
removing xi from D′ as desired. With this assumption, the set (D′ \ {xi})∪ {vi}
is also a semi-TD-set of G with cardinality at most k + 2n. Hence without loss
of generality, we assume that xi, zi, qi /∈ D′ for all i ∈ [n]. Consider the set
D′′ = D′ \ {yi, pi | i ∈ [n]}. The resulting set D′′ is a dominating set of G such
that |D′′| ≤ k. This completes the proof of the lemma.

We now prove that the constructed graph G′ is an undirected path graph.
Suppose that G is an undirected path graph having n vertices. So by definition
of undirected path graphs, there exists a tree T and a family P of paths of T
such that G is the intersection graph of the family of paths P of T . Let T be
a tree and P = {Pvi | i ∈ [n]} be the family of distinct paths of T such that
G is the intersection graph of the family of paths P of T . For each path Pvi

of T , let v∗i be an end vertex of the path Pvi . We construct two sets of paths
by extending each Pvi at v∗i . We extend Pvi at v∗i to qi and zi by attaching
paths v∗i uixiyiaipiqi and v∗i uixiyizi, respectively. Let P1 and P2 be the sets of
paths obtained from each Pvi where i ∈ [n] by extending Pvi at v∗i to qi and
zi, respectively. Suppose T ′ is the tree obtained from T by introducing the
sets of paths P1 and P2. Let P ∗

vi = Pvi ∪ {v∗i ui} for every i ∈ [n] and let
P∗ = {P ∗

vi | i ∈ [n]}. The graph G′ is now the intersection graph of the family
of paths P∗ ∪ {xiyiai | i ∈ [n]} ∪ {uixi, aipi, piqi, yizi | i ∈ [n]} of T ′. Therefore,
G′ is an undirected path graph. We note that the path P ∗

vi in T ′ corresponds to
the vertex vi, the path xiyiai in T ′ corresponds to the vertex yi, and the paths
uixi, aipi, piqi, yizi in T ′ correspond to the vertices xi, pi, qi, zi, respectively.

The domination problem is shown to be NP-complete for undirected path
graphs [2]. Therefore as an immediate consequence of Lemma 12, we have the
following theorem.

Theorem 13. The semitotal domination problem is NP-complete for undirected
path graphs.

5. Conclusion

In this paper, we considered the complexity of finding a minimum semi-TD-set in
block graphs and present a linear time algorithm for this problem. On the other
hand, we proved that the decision version of finding a minimum semi-TD-set is
NP-complete in undirected path graphs, which is a superclass of block graphs.
We note that strongly chordal graphs form a superclass of the block graphs. It
would therefore be interesting to raise the problem to study the complexity of
finding a minimum semitotal dominating set in strongly chordal graphs.
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