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Abstract

An embedding of a graph H in a graph G is an injection (i.e., a one-
to-one function) σ from the vertices of H to the vertices of G such that
σ(x)σ(y) is an edge of G for all edges xy of H. The image of H in G under
σ is denoted by σ(H). A k-packing of a graph H in a graph G is a sequence
(σ1, σ2, . . . , σk) of embeddings of H in G such that σ1(H), σ2(H), . . . , σk(H)
are edge disjoint. We prove that for any tree T of order n, there is a 4-packing
of T in a complete bipartite graph of order at most n+ 12.
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1. Introduction

Graphs in this article are simple and finite, which have no multiple edges nor
loops. We use [4] for standard terminology and notation in graph theory. For
any graph G, we use V (G) and E(G) to denote the vertex set and the edge set
of G, respectively. If G is a bipartite graph with a given bipartition, then denote
it by G = (X,Y ;E). A tree is a connected graph without cycles. A star of order
n is a tree of order n with a vertex of degree n − 1. We use Bn to represent a
complete bipartite graph Ka,b with n = a + b. Thus Bn is not uniquely defined
for n ≥ 4 because there is more than one positive integer partiton for n = a+ b.

An embedding of a graph H in a graph G is an injection (i.e., a one-to-one
function) σ from the vertices of H to the vertices of G such that σ(x)σ(y) is an
edge of G for all edges xy of H. The image of H in G under σ is denoted by
σ(H). A k-packing of a graph H in a graph G is a sequence (σ1, σ2, . . . , σk) of k
embeddings of H in G such that σ1(H), σ2(H), . . . , σk(H) are edge disjoint.
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There are many research results and theorems about packings of graphs. For
surveys, see [9] and [10]. In the following, we list several results and conjectures
about packing of trees in complete graphs and complete bipartite graphs, which
are the motivation of our current work. The following Theorem 1 was proved by
Burns and Schuster [1] in 1978.

Theorem 1 [1]. If T is a tree of order n that is not a star, then there is a 2-
packing of T in Kn.

For a tree of order n ≥ 2 to have a 3-packing in Kn, Kn must have at least
3(n− 1) edges as a tree of order n has n− 1 edges. Thus n(n− 1)/2 ≥ 3(n− 1)
and so n ≥ 6. In 1993, Wang and Sauer [6] characterized all the trees of order n
that have 3-packings in Kn.

Theorem 2 [6]. If T is a tree of order n ≥ 6, then with three exceptions, there

is a 3-packing of T in Kn.

For a tree of order n ≥ 2 to have a 4-packing in Kn, there must be n ≥ 8 and
its maximum degree must be at most n− 4. In 2014, Haler and Wang [3] further
characterized all the trees of order n that have 4-packings in Kn.

Theorem 3 [3]. If T is a tree of order n ≥ 8 with maximum degree at most

n− 4, then with four exceptions, there is a 4-packing of T in Kn.

We refer readers to [6] and [3] for the exceptions in Theorem 2 and Theorem 3.
The following conjecture proposed by Gyárfás and Lehel [2] is well-known as Tree
Packing Conjecture in 1978. So far the results and theorems that are obtained
by many mathematicians on this conjecture are still far from a complete solution
to the conjecture.

Tree Packing Conjecture. For any sequence T1, T2, . . . , Tn of trees such that

Ti is a tree of order i for each 1 ≤ i ≤ n, there is a packing of T1, T2, . . . , Tn

in Kn.

Since T1, T2, . . . , Tn together have n(n − 1)/2 edges, the above conjecture
implies that Kn can be decomposed into edge disjoint trees T1, T2, . . . , Tn. Wang
[7] proved the following Theorem 4 in 1996.

Theorem 4 [7]. If T is a tree of order n, then there is a 2-packing of T in a

complete bipartite graph Bn+1.

In 2003, Orchel [5] further characterized all the trees of order n that have
2-packings in a complete bipartite graph Bn. In 2009, Wang [8] proposed the
following conjecture.

Conjecture 5 [8]. If T is a tree of order n, then for each positive integer k, there
is a k-packing of T in a complete bipartite graph Bn+k−1.
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In the above conjecture, if k = n, then n copies of T together contain exactly
n(n − 1) edges, and this is the number of edges of Kn,n−1. Thus, Conjecture 5
implies that the complete bipartite graph Kn,n−1 can be decomposed into n edge
disjoint copies of T for any given tree T of order n. So far, the results about
packing trees into complete bipartite graphs are also far from a complete solution
to this conjecture.

To support this conjecture, Wang [8] proved the following theorem.

Theorem 6 [8]. If T is a tree of order n, then there is a 3-packing of T in a

complete bipartite graph Bn+2.

Thus, Conjecture 5 is true for k = 2, 3 by Theorem 4 and Theorem 5. Al-
though this is a hard conjecture, our goal is to make some progress on it in the
case k = 4. In this case, the conjecture says that there is a 4-packing of any
given tree of order n in a complete bipartite graph Bn+3. We have not found any
counterexample to the conjecture in the case k = 4. Based on our experience
working with k = 4, we find that we can prove that there is a 4-packing of any
given tree of order n in a complete bipartite graph Bn+12. As for how to reduce
Bn+12 further to a Bn+l for some 3 ≤ l ≤ 11, it remains open for future. In this
article, we will prove the following theorem.

Main Theorem. If T is a tree of order n, then there is a 4-packing of T in a

complete bipartite graph Bn+12.

In the process of proving the Main Theorem, we often construct a 4-packing
(d, b, g, r) of a subgraph H of T . We then modify this 4-packing (d, b, g, r) and
extend it to a 4-packing of T in a Bn+12. While doing so, we need keep the
order of the bipartition of H to be agreeable with that of T because H may have
more than one bipartitions. Therefore, for the sake of convenience, we regard a
bipartite graph as a bipartite graph with a given ordered bipartition. Thus, if
(X,Y ) is the given bipartition of G, then for any subgraph H of G, it is already
decided that (X ∩ V (H), Y ∩ V (H)) is the given bipartition of H.

Since we are dealing with embeddings of bipartite graphs in Bn, we need to
keep the order of the two partites under embeddings, too. Therefore, we adopt
this convention through out this article from now on. For an embedding σ of a

bipartite graph G (or a tree T ) in Bn, we mean that σ is an injection from V (G)
into V (Bn) such that σ(U) ⊆ X and σ(W ) ⊆ Y where (U,W ) and (X,Y ) are

the given bipartitions of G and Bn, respectively. By doing so, we say that two
vertices of G have the same parity if they belong to the same partite of G and
otherwise we say that they have the opposite parity.

For a 4-packing of G in Bn, we often use (d, b, g, r) to represent the four
embeddings and we say that d(G) is a dark copy of G, b(G) is a blue copy of G,
g(G) is a green copy of G, and r(G) is a red copy of G. For a 4-packing (d, b, g, r)
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of G in Bn, we say that a vertex x is 4-placed if d(x), b(x), g(x) and r(x) are
distinct.

A linear graph is a graph such that each of its components is a path.
Given a bipartite graph G, we say that two or more vertices of G are strongly

independent if no two of them are adjacent and no two of them have any common
neighbor. A leaf of G is a vertex of G that has degree 1. A node of G is a vertex
of G that is adjacent to a leaf of G. A supernode of G is a vertex x of G such
that, with possibly one exception, every neighbor of x is a leaf of G. If G is a
tree but not a star, we readily see that G has at least two distinct supernodes by
observing a longest path of G, that is, the second vertex and the second to the
last vertex on the longest path are two supernodes.

For a tree T , the trunk of T , denoted by T ∗, is the subtree of T obtained
from T by removing all the leaves of T . By this definition, we see that a vertex
of T ∗ is a leaf of T ∗ if and only if it is a supernode of T .

2. Proof of the Main Theorem

We use induction on the order of trees to prove the Main Theorem. The theorem
is obviously true for a tree of order 1. Assume that the Main Theorem holds
for trees of order less than n with n ≥ 2. Let T = (V,E) be a tree of order n.
The idea of the proof is as follows. If T has four strongly independent leaves u,
x, y, and z of the same parity, we apply induction on T − {u, x, y, z} to get a
4-packing of T − {u, x, y, z} in a Bn−4+12 = Bn+8. This 4-packing can be easily
extended to a 4-packing of T in Bn+12 by the following Lemma 1. If T does not
have four strongly independent leaves of the same parity, then T has at most six
supernodes and so T ∗ has at most six leaves. This will allow us to classify the
structure of T into several cases. We then prove that the Main Theorem holds
for each of these cases.

Clearly, K4,n−1 has four edge disjoint copies of K1,n−1. Thus, if T is a star,
there is a 4-packing of T in a Bn+3, and the Main Theorem holds for T . Therefore,
we may assume in the following that T is not a star.

Let n∗ be the order of T ∗. Let ξi be the number of vertices of T ∗ with degree
i in T ∗. Then ξ1 is the number of supernodes of T with

ξ1 ≥ 2 and n∗ = ξ1 + ξ2 + · · ·+ ξn∗
−1.(1)

Since the degree sum of a graph is equal to two times the number of its edges,
we have

ξ1 + 2ξ2 + · · ·+ (n∗ − 1)ξn∗
−1 = 2(n∗ − 1).(2)

Combining (1) and (2), we obtain the number ξ1 of supernodes of T as follows

ξ1 = 2 + ξ3 + 2ξ4 + 3ξ5 + · · ·+ (n∗ − 3)ξn∗
−1.(3)
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Let λ(T ) be the largest number of k such that T has k nodes of the same
parity. We now divide the proof of the Main Theorem into two parts.

Part I. λ(T ) ≥ 4

In this case, we need the following Lemma 1 which was proven in [3].

Lemma 1 (Lemma 2.4 of [3]). Let G be a complete bipartite graph K4,m where

m ≥ 4. Let A and B be the two partite sets of G with |A| = 4 and |B| = m.

Let B1, B2, B3, and B4 be any given four subsets of B with |Bi| = 4 for all

i ∈ {1, 2, 3, 4}. Then G has four disjoint matchings M1, M2, M3, and M4 such

that Mi matches Bi into A for all i ∈ {1, 2, 3, 4}.

We apply Lemma 1 as follows. Let y1, y2, y3, and y4 be four distinct nodes
of T with the same parity. Let x1, x2, x3, and x4 be four strongly indepen-
dent leaves of T such that xi is adjacent with yi for each i ∈ {1, 2, 3, 4}. Let
H = T − {x1, x2, x3, x4}. Then H has order n − 4. By the induction hy-
pothesis, there is a 4-packing (σ1, σ2, σ3, σ4) of H in a Bn−4+12 = Bn+8. We
may choose V (Bn+8) such that xi is not in Bn+8 for i ∈ {1, 2, 3, 4}. Let A =
{x1, x2, x3, x4} and Bi = {σi(y1), σi(y2), σi(y3), σi(y4)} for each i ∈ {1, 2, 3, 4}.
Let B = B1 ∪ B2 ∪ B3 ∪ B4 and say |B| = m. Let G be the complete bi-
partite graph with partites A and B. By Lemma 1, there exist four disjoint
matchings M1, M2, M3 and M4 such that Mi matches Bi into A for all i ∈
{1, 2, 3, 4}. For each i ∈ {1, 2, 3, 4}, let fi be the permutation of A such that
Mi = {fi(x1)σi(y1), fi(x2)σi(y2), fi(x3)σi(y3), fi(x4)σi(y4)}.

We now add A to Bn+8 to form a Bn+12 such that A has the opposite parity
with Bi(1 ≤ i ≤ 4). For each i ∈ {1, 2, 3, 4}, we extend σi to an embedding
of T in Bn+12 such that σi(x1) = fi(x1), σi(x2) = fi(x2), σi(x3) = fi(x3) and
σi(x4) = fi(x4). This means that we extend a copy σi(H) of H to a copy σi(T )
of T by adding four independent edges to σi(H) from Mi which matches Bi into
A. As M1,M2,M3 and M4 are disjoint, we conclude that σ1(T ), σ2(T ), σ3(T ) and
σ4(T ) are edge disjoint, i.e., (σ1, σ2, σ3, σ4) is a 4-packing of T in Bn+12. Thus,
the Main Theorem holds for T .

Part II. λ(T ) ≤ 3

In this case, we will apply the following lemmas to prove the Main Theorem.
We need introduce a notation F ′ for every subgraph F of T . F ′ is obtained from
F by adding to F all those edges of T which are not in F but join two vertices
of F in T . We call F ′ the induced subgraph by F in T .

Lemma 2. Let H be a subgraph of T such that each vertex of T −V (H) is a leaf

of T and is adjacent with some vertex of H. If there is a 4-packing of H ′ in a Bp
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such that each vertex y of H ′ with xy ∈ E for some x ∈ V (T )\V (H) is 4-placed,
then there is a 4-packing of T in a Bp+q where q = |V (T )| − |V (H)| such that

each 4-placed vertex of H remains as 4-placed.

Proof. Let (σ1, σ2, σ3, σ4) be a 4-packing of H ′ in a Bp such that if xy ∈ E(T )
with x ∈ V (T )\V (H), then y is 4-placed. Note that σ1(y), σ2(y), σ3(y) and
σ4(y) have the same parity in Bp for all y ∈ V (H). We obtain Bp+q by adding
each x ∈ V (T )\V (H) to Bp such that if xy ∈ E(T ), then x and σ1(y) have the
opposite parity. Then for each i ∈ {1, 2, 3, 4}, we extend σi to an embedding of T
in Bp+q such that σi(x) = x for each x ∈ V (T )\V (H). That is, if xy ∈ E(T ) with
x ∈ V (T )\V (H), then xσi(y) is an edge of σi(T ). Since y is 4-placed for each
edge xy ∈ E(T ) with x ∈ V (T )\V (H), i.e., xσ1(y), xσ2(y), xσ3(y) and xσ4(y) are
distinct, we conclude that (σ1, σ2, σ3, σ4) is a 4-packing of T in Bp+q.

Lemma 3. Let P = x1x2 · · ·xt be a path with 4 ≤ t ≤ 6 or 9 ≤ t ≤ 10. Then

there is a 4-packing (d, b, g, r) of P in a Bt+4 such that every vertex of P is

4-placed.

Proof. Let V (Bt+4) = {x1, x2, . . . , xt+4} such that {xi|i is odd} and {xj |j is
even} form a bipartition of Bt+4. We exhibit (d, b, g, r) as follows.

If t = 4, we define

d(P ) = x1x2x7x4 with d(x1) = x1,

b(P ) = x3x4x1x6 with b(x1) = x3,

g(P ) = x5x6x3x8 with g(x1) = x5,

r(P ) = x7x8x5x2 with r(x1) = x7.

If t = 5, we define

d(P ) = x1x2x7x4x5 with d(x1) = x1,

b(P ) = x3x4x9x6x7 with b(x1) = x3,

g(P ) = x5x6x3x8x9 with g(x1) = x5,

r(P ) = x7x8x5x2x3 with r(x1) = x7.

If t = 6, we define

d(P ) = x1x2x9x4x7x6 with d(x1) = x1,

b(P ) = x3x4x1x6x9x8 with b(x1) = x3,

g(P ) = x5x6x3x8x1x10 with g(x1) = x5,

r(P ) = x7x8x5x10x3x2 with r(x1) = x7.
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If t = 9, we define

d(P ) = x1x2x13x4x11x6x9x10x5 with d(x1) = x1,

b(P ) = x7x4x1x6x13x8x11x2x9 with b(x1) = x7,

g(P ) = x5x6x3x8x1x10x7x12x13 with g(x1) = x5,

r(P ) = x3x10x11x12x9x4x5x8x7 with r(x1) = x3.

If t = 10, we define

d(P ) = x1x2x13x12x11x6x9x8x7x14 with d(x1) = x1,

b(P ) = x3x4x1x6x13x8x11x10x9x12 with b(x1) = x3,

g(P ) = x5x6x3x8x1x10x13x14x11x4 with g(x1) = x5,

r(P ) = x7x10x5x4x9x14x1x12x3x2 with r(x1) = x7.

Remark. Lemma 3 does not include the case t ∈ {7, 8}. Later in the proof,
when Lemma 3 is needed and t ∈ {7, 8}, we have deleted an endvertex from P or
added some new vertices to P to obtain a linear graph whose order is neither 7
nor 8 and then apply Lemma 3 to this linear graph.

Lemma 4. Let p be an integer with p ≥ 8 and P = x1x2 · · ·x2p be a path of order

2p. Then there is a 4-packing (d, b, g, r) of P in a B2p such that each vertex of P
is 4-placed.

Proof. Let B2p have the bipartition {x1, x3, . . . , x2p−1} and {x2, x4, . . . , x2p}.
Draw B2p in a plane as follows. Label the vertices of a regular 2p-gon as x1, . . . ,
x2p in order clockwise in an xy-plane and draw edges of B2p as stright line sege-
ments. Furthermore, the center of the regular 2p-gon is at the origin (0, 0). The
distance from the center to the vertices is 1 and the vertex x2p is at (0, 1). Thus,
all the vertices are on the circle of radius 1 with its center at (0, 0). Note that
the vertex xp is at (0,−1).

Take all the edges of B2p which are parallel to x2px1 or x1x2. These edges
form a Hamiltonian cycle C of B2p. If we remove the edge x1x2p from C, we get
a Hamiltonian path from x1 to x2p in B2p. Label this path as L1 = xi1xi2 · · ·xi2p
with x1 = xi1 , which can be viewed as a permutation of {x1, x2, . . . , x2p} as well.
Similarly, for each xi ∈ {x3, x5, x7}, using xi−1xi and xixi+1 in place of x2px1
and x1x2 to repeat the above action, we get a Hamiltonian path Li from xi to
xi−1. Define d(P ) = L1 with d(x1) = x1, b(P ) = L3 with b(x1) = x3, g(P ) = L5

with g(x1) = x5 and r(P ) = L7 with r(x1) = x7.
In fact, we may rotate L1 clockwise by (360/p)◦ three times to get L3, L5,

and L7 as follows

L3 = xi1+2xi2+2 · · ·xi2p+2,

L5 = xi1+4xi2+4 · · ·xi2p+4,

L7 = xi1+6xi2+6 · · ·xi2p+6.
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Note that in the above writing, we define x2p+i = xi for each 1 ≤ i ≤ 6. As
2p ≥ 16, this implies that each vertex of P is 4-placed. To see that L1, L3, L5,
and L7 are edge disjoint, we observe that the edges of the regular 2p-gon incident
with vertices x1, x3, x5, and x7 are the chords of the half unit circle on the right
side of y-axis because p ≥ 8. Therefore, these edges have distinct slopes and so
L1, L3, L5, and L7 are edge disjoint.

Since a linear graph is always a subgraph of a path, the following lemma is
an easy observation.

Lemma 5. Let r, s, p and t be four positive integers such that r ≤ s ≤ 2p ≤ t.
Suppose that there is 4-packing of a path of order s in a B2p such that each vertex

of the path is 4-placed. Then there is a 4-packing of any linear graph of order r
in a Bt such that every vertex of the linear graph is 4-placed.

We are ready to prove the Main Theorem. As λ(T ) ≤ 3, it follows that
ξ1 ≤ 2λ ≤ 6. By (3), we see that ξi = 0 for i ≥ 7. Thus,

2 ≤ ξ1 ≤ 6 and ξ1 = 2 + ξ3 + 2ξ4 + 3ξ5 + 4ξ6.(4)

First, suppose that ξ1 = 2. Then ξi = 0 for all i ≥ 3. Thus, T ∗ is a path.
By Lemmas 3 through 5, there is a 4-packing of T ∗ in a Bn∗+6 such that each
vertex of T ∗ is 4-placed. By Lemma 2, there is a 4-packing of T in Bn+6 where
n is the order of T . Therefore, we may assume that ξ1 ≥ 3, i.e., ξi ≥ 1 for some
3 ≤ i ≤ 6.

We define some terminology. For each supernode u of T , there is a unique
path u1u2 · · ·ukv in T ∗ with u = u1 such that degT ∗(v) ≥ 3 and degT ∗(ui) = 2 for
all 2 ≤ i ≤ k. In this case, we say that the supernode u belongs to v. Moreover,
if k is even, we say that u1u2 · · ·uk is an arm of v. If k is odd, we choose a
fixed vertex u′ of T that is a leaf of T with u′u1 ∈ E, and then we say that
u′u1u2 · · ·uk is an arm of v. Clearly, by this definition, any arm is a path of even
order, and any two arms do not intersect. We now divide the remaining proof
into the following five cases.

Case 1. There is exactly one vertex u of T ∗ with degT ∗(u) ≥ 3. Thus,
all the ξ1 supernodes of T belong to u. Let H be the union of the ξ1 arms of
u. Let (A,B) denote the bipartition of H. As each arm has an even order,
|A| = |B| = h for some h ≥ 3. By Lemmas 3 through 5, there is a 4-packing
(d, b, g, r) of H in a B2h+6 such that each vertex of H is 4-placed. We may
assume that H is a subgraph of B2h+6 and d is the identity embedding. Add
u and three new vertices ω1, ω2 and ω3 to B2h+6 to form a B2h+10 such that
these four vertices have the same parity and H + u is a subgraph of B2h+10.
Then extend (d, b, g, r) to be a 4-packing of H + u in B2h+10 such that d(u) = u,
b(u) = ω1, g(u) = ω2 and r(u) = ω3. Thus, (d, b, g, r) is a 4-packing of H + u
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is B2h+10. By Lemma 2, there is a 4-packing of T in a B2h+10+q = Bn+9 where
q = |V (T )| − |V (H + u)| = n− 2h− 1. This completes Case 1.

By Case 1, we may assume that T ∗ has at least two vertices of degree at least
3 in T ∗. As ξ1 ≤ 6, we see that ξ6 = 0 by (4). Let L be a longest path of T ∗

from a vertex of degree at least 3 to another vertex of degree at least 3 in T ∗.
Say L = uy1y2 · · · ytv. Say degT ∗(u) = i and degT ∗(v) = j. Then there are i− 1
supernodes of T belonging to u and j − 1 supernodes of T belonging to v.

Let L1 = x1x2 · · ·xa be a path of T passing through u such that x2 and
xa−1 are two supernodes of T belonging to u and x1 and xa are two leaves of T .
Similarly, let L2 = z1z2 · · · zb be a path of T passing through v such that z2 and
zb−1 are two supernodes belonging to v. Since each arm has an even order and
L1 contains two arms and the vertex u, L1 has order at least 5. Similarly, L2 has
order at least 5.

Let A and B denote the two partites of L1∪L2 with |A| ≥ |B|. As λ(T ) ≤ 3,
we see that if L1 has an odd order, then x1 and xa have the same parity and
so one of z1 and zb must have the opposite parity with x1. This implies that
|A| − |B| ≤ 1. If |A| = |B|, Let H1 be L1 ∪ L2, and if |A| − |B| = 1, let
H1 = L1∪L2−w where w is a leaf of L1∪L2 which belongs to A. Thus, the two
partites of H1 has the same size. Say H1 has order 2h. Then h ≥ 5. Let H2 be
the union of all the arms of u or v that are not on any of L1 and L2. Let (C,D)
denote the bipartition of H2. Then the two partites of H2 have the same size.
Say H2 has order 2k.

Case 2. There are exactly two distinct vertices of T ∗ with degree at least 3
in T ∗. If t is even, let H = H1 ∪H2 ∪ (y1y2 · · · yt). If t is odd and T has a leaf
y′ adjacent to yt, let H = H1 ∪ H2 ∪ (y1y2 · · · yty

′), and if t is odd and T does
not has a leaf y′ adjacent to yt, let H = H1 ∪H2 ∪ (y1y2 · · · yt−1). Then, H is a
linear subgraph of T and its two partites have the same size. Say |V (H)| = m.
As m ≥ 10 and by Lemmas 3 through 5, there is a 4-packing (d, b, g, r) of H in
a Bm+4 such that all vertices of H are 4-placed. We may assume that H is a
subgraph of Bm+4 and d is the identity embedding. This 4-packing of H does
not consider the edges of T ∗ that join a component of H to another component
of H. If these edges are added back to H to form H ′, this 4-packing of H cannot
be guaranteed to be a 4-packing of H ′. These edges are incident with at least
one u, v, and yt. Therefore, we need to modify (d, b, g, r) in the following. First,
if yt is not in H, add yt to H and define d(yt) = b(yt) = g(yt) = r(yt) = yt.

Let m′ be the order of H + yt. Note that if yt is already in H, then m′ = m.
Then add six new vertices ω1, . . . , ω6 to Bm′+4 to form a Bm′+10 such that ω1,
ω2 and ω3 have the same parity with u and ω4, ω5 and ω6 has the same parity
with v. Change the images of u and v under b, g and r as follows. Let

b(u) = ω1, g(u) = ω2, and r(u) = ω3,



272 J. Wang

b(v) = ω4, g(v) = ω5, and r(v) = ω6.

The images of all the other vertices of (H+yt)
′ are not changed under (d, b, g, r).

Clearly, if yt is not in H, then yt has only two neighbors yt−1 and v in T , and

{d(yt−1), b(yt−1), g(yt−1), r(yt−1)} ∩ {d(v), b(v), g(v), r(v)} = ∅.

Thus, (d, b, g, r) becomes a 4-packing of (H + yt)
′ in Bm′+10 such that all the

vertices of H are 4-placed. By Lemma 2, T has a 4-packing in a Bn+10. This
completes Case 2.

By Case 2, we may assume that T ∗ has at least three vertices of degree at
least 3 in T ∗. As T ∗ is connected, any vertex of degree 3 in T ∗ is connected by a
path to a vertex on y1 · · · yt in T ∗. Thus, yr has degree at least 3 in T ∗ for some
1 ≤ r ≤ t. As ξ1 ≤ 6 and by (4), we see that ξ5 = 0 and if degT ∗(yr) = 4, then
degT ∗(x) < 3 for all x ∈ V (T ∗)\{u, v, yr}. In the following cases, the arguments
are very much similar to the argument in Case 2.

Case 3. Either degT ∗(yr) = 4 or degT ∗(ys) = 3 for some 1 ≤ s ≤ t and
s 6= r. We define a new number a such that a = r if degT ∗(yr) = 4 and a = s
if degT ∗(yr) = 3 and degT ∗(ys) = 3 for some 1 ≤ s ≤ t and s 6= r. Thus, T has
two paths Q1 = u1u2 · · ·ulyr and Q2 = v1v2 · · · vcya such that u1u2 · · ·ulyr and
v1v2 · · · vc are vertex disjoint and u2 and v2 are two supernodes of T belonging
yr and ya, respectively. We may assume that r ≤ a. Let

L3 = u1 · · ·ulyryr+1 · · · yavcvc−1 · · · v1.

As λ(T ) ≤ 3, it is easy to see that if two of L1, L2 and L3 have odd orders, then
the leaves of one of them have the opposite parity with the leaves of the other
and so the third path must have an even order. This implies that the two partites
of L1 ∪L2 ∪L3 have the same size or their sizes differ by 1. If the two partites of
L1 ∪L2 ∪L3 have the same size, we define J1 = L1 ∪L2 ∪L3. If the two partites
of L1 ∪ L2 ∪ L3 differ by 1 in size, we delete one leaf of L1 ∪ L2 ∪ L3 from the
larger partite and denote the resulting linear subgraph by J1. Thus, J1 has an
even order 2q for some q ≥ 8.

For each of yr−1yr−2 · · · y1 and ya+1ya+2 · · · yt, we delete its last vertex if it
has an odd order and otherwise, we keep it. Thus, we obtain two paths of even
orders and let J2 be the union of these two paths. Let H = J1∪J2. By Lemma 4
and Lemma 5, there is a 4-packing (d, b, g, r) of H in a Bm such that all vertices of
H are 4-placed, where m is the order of H. We may assume that H is a subgraph
of Bm and d is the identity embedding.

Add y1, yt and 12 new vertices ω1, . . . , ω12 to Bm to obtain a Bp+12 such that
ω1, ω2 and ω3 have the same parity with u; ω4, ω5 and ω6 has the same parity
with yr−1; ω7, ω8 and ω9 have the same parity with ya+1; and ω10, ω11 and ω12
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have the same parity with v, where p is the order of H + y1 + yt. Note that for
i ∈ {1, t}, if yi is already in H, adding yi to H does not increase the order of the
resulting graph.

For each yi ∈ {y1, yt}, if yi 6∈ V (H), we define d(yi) = b(yi) = g(yi) = r(yi).
Change the images of u, yr−1, ya+1 and v under b, g, and r as follows. Let

b(u) = ω1, g(u) = ω2, r(u) = ω3,

b(yr−1) = ω4, g(yr−1) = ω5, r(yr−1) = ω6,

b(ya+1) = ω7, g(ya+1) = ω8, r(ya+1) = ω9,

b(v) = ω10, g(v) = ω11, r(v) = ω12.

The images of all the other vertices ofH+y1+yt are not changed. Thus, (d, b, g, r)
is a 4-packing of (H + y1 + yt)

′ in a Bp+12 such that all the vertices of H are
4-placed. As λ(T ) ≤ 3, every leaf of T is adjacent to one of the six supernodes
of T . By Lemma 2, there is a 4-packing of T in a Bn+12. This completes Case 3.

Case 4. There are exactly three distinct vertices of T ∗ with degree at least 3
in T ∗. By Case 3, we may assume that degT ∗(yr) = 3. Let Q1 = u1 · · ·ulyr be a
path of T such that u2 is supernode of T belonging to yr. Consider three paths
yr−1yr−2 · · · y1, yr+1yr+2 · · · yt and u1 · · ·ulyr. Let I1 = u1u2 · · ·ulyryr−1 · · · y1.
Then I1 has order at least 3. Let I2 = yr+1yr+2 · · · yt if this path has an even
order. If yr+1yr+2 · · · yt has an odd order and there is a leaf of T adjacent to yt, let
I2 = yr+1 · · · yty

′. Otherwise, let I2 = yr+1yr+2 · · · yt−1. Let H = H1∪H2∪I1∪I2.
Then H has an order at least 13. By Lemma 4 and Lemma 5, there is a 4-packing
(d, b, g, r) of H in a Bm+3 such that all vertices of H are 4-placed, where m is the
order of H. We may assume that H is a subgraph of Bm+3 and d is the identity
embedding. Add yt and nine new vertices ω1, . . . , w9 to Bm and obtain a Bp+12,
where p is the order of H + yt, such that H + yt is a subgraph of Bp+12, ω1, ω2

and ω3 have the same parity with u; ω4, ω5 and ω6 have the same parity with v;
ω7, ω8 and ω9 have the same parity with yr.

If yt is not in H, we define d(yt) = b(yt) = g(yt) = r(yt) = yt. Change the
images of u, v and yr under b, g, and r as follows.

b(u) = ω1, g(u) = ω2, r(u) = ω3,

b(v) = ω4, g(v) = ω5, r(v) = ω6,

b(yr) = ω7, g(yr) = ω8, r(yr) = ω9.

The images of all the other vertices of H + yt are not changed. Thus, (d, b, g, r)
is a 4-packing of (H+ yt)

′ in a Bp+12 such that all the vertices of H are 4-placed.
By Lemma 2, there is a 4-packing of T in a Bn+12. This completes Case 4.

Case 5. There are at least four distinct vertices of T ∗ with degree at least 3
in T ∗. By (4), we see that ξ3 = 4 and ξ4 = ξ5 = 0. Let w be the fourth vertex
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of degree 3. By Case 3, we may assume that w is not on y1y2 · · · yt. As T ∗ is
connected, there is a path Q = yru1 · · ·ulw from yr to w such that yi is not on
this path for all i ∈ {1, 2, . . . , t}\{r}.

Let L3 = v1v2 · · · vc be a path of T passing through w such that v2 and vc−1

are two supsernodes of T . Clearly, c ≥ 5. Let J1 = L1∪L2∪L3 if the two partites
have the same size. If their sizes differ by 1, we delete a leaf of L1 ∪ L2 ∪ L3 to
obtain a subgraph with its two partites having the same size and denote this
resulting graph by J1. As in Case 3, we see that J1 has order 2q for some q ≥ 8.

Consider three paths yr−1yr−2 · · · y1, yr+1yr+2 · · · yt and yru1u2 · · ·ul. For
each of these three paths, we delete its last vertex if it has an odd order and
otherwise, we keep it. Thus, we obtain three paths of even orders and let J2 be
the union of these three paths of even order. Let H = J1 ∪ J2. By Lemma 4 and
Lemma 5, there is a 4-packing (d, b, g, r) of H in a Bm such that all vertices of H
are 4-placed, where m is the order of H. We may assume that H is a subgraph
of Bm and d is the identity embedding.

Let the order of H + y1 + yt + ul be p. Add y1, yt, ul and 12 new vertices
ω1, . . . , ω12 to Bm to obtain a Bp+12 such that ω1, ω2 and ω3 have the same parity
with u; ω4, ω5 and ω6 have the same parity with v; ω7, ω8 and ω9 have the same
parity with w; and ω10, ω11 and ω12 have the same parity with yr. Furthermore,
H + y1 + yt + ul is a subgraph of Bp+12.

For each x ∈ {y1, yt, ul}, if x is not inH, we define d(x) = b(x) = g(x) = r(x).
Change or define the images of u, v, w, and yr under d, b, g, and r as follows.
Let d(yr) = yr and

b(u) = ω1, g(u) = ω2, r(u) = ω3,

b(v) = ω4, g(v) = ω5, r(v) = ω6,

b(w) = ω7, g(w) = ω8, r(w) = ω9,

b(yr) = ω10, g(yr) = ω11, r(yr) = ω12.

The images of all the other vertices of H are not changed. Thus, (d, b, g, r) is a
4-packing of (H + y1 + yt + ul)

′ in Bp+12 such that all the vertices of H + yr are
4-placed. As λ(T ) ≤ 3 and ξ1 = 6, each leaf of T is adjacent to one of the six
supernodes of T . By Lemma 2, there is a 4-packing of T in a Bn+12.

This proves the Main Theorem.
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