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Abstract

Thomassen described all (except finitely many) regular tilings of the torus
S1 and the Klein bottle N2 into (3,6)-tilings, (4,4)-tilings and (6,3)-tilings.
Many researchers made great efforts to investigate the crossing number of
the Cartesian product of an m-cycle and an n-cycle, which is a special kind
of (4,4)-tilings, either in the plane or in the projective plane. In this paper
we study the crossing number of the hexagonal graph H3,n (n ≥ 2), which
is a special kind of (3,6)-tilings, in the projective plane, and prove that

crN1
(H3,n) =

{
0, n = 2,
n− 1, n ≥ 3.
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1. Introduction

The projective plane, N1, is a 2-manifold obtained by identifying every point of
the 2-sphere with its antipodal point.

Let G be a graph with vertex set V and edge set E. The crossing number
of G in a surface Σ, denoted by crΣ(G), is the minimum number of pairwise
intersections of edges in a drawing of G in the surface Σ. In particular, the
crossing number of G in the plane S0 is denoted by cr(G) for simplicity. It is well
known that the crossing number of a graph in the surface Σ is attained only in
good drawings of the graph, which are the drawings where no edge crosses itself,
no adjacent edges cross each other, no two edges intersect more than once, and
no three edges have a common point.

In [16], Thomassen described all (except finitely many) regular tilings of the
torus S1 and the Klein bottle N2 into hexagons, quadrilaterals and triangles in
which the vertices have degree 3, 4 and 6, respectively. To be more specific, let
G be a connected d-regular graph (d ≥ 3) and ϕ a collection of m-cycles in G.
Assume that each edge of G is contained in precisely two cycles in ϕ and that, for
each vertex v in G, the edges incident with v can be labelled e1, e2, . . . , ed such
that for each i = 1, 2, . . . , d, there is a cycle in ϕ containing ei and ei+1 (where
ed+1 = e1). Then a surface Σ can be obtained by letting the cycles in ϕ be disjoint
convex polygons in the Euclidean plane pasted together by the graph G, and G
is said to be a (d,m)-tiling of Σ. Using Euler’s formula, Thomassen observed
that a regular tiling of the torus or the Klein bottle fit into three categories:
(3,6)-tilings, (4,4)-tilings and (6,3)-tilings.

Note that the Cartesian product graph Cm�Cn is a special kind of (4,4)-
tilings, which can be embedded in orientable surface Sk (k ≥ 1) and non-orie-
ntable surface Nk (k ≥ 2), but cannot be embedded in the plane S0 or projective
plane N1. This fact motivates many researchers’ intensive interest to determine
the exact value of cr(Cm�Cn) or crN1(Cm�Cn). However, computing the cross-
ing number of a given graph is an elusive problem [3], therefore, the results
concerning on this topic is quite limited. The crossing number cr(Cm�Cn) has
been obtained for all but finitely many n, for each m [1, 2, 4, 9, 11, 13], while
crN1(Cm�Cn) has been determined only when min {m,n} = 3 [14].

Compared with (4,4)-tilings, the crossing number of other regular tilings,
either in the plane or in the projective plane, have not been extensively studied
in the literature yet. Based on this observation, we began to study this problem.
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Very recently, we have determined the crossing number of the hexagonal graph
H3,n, which is a special kind of (3,6)-tilings, in the plane [17]. To further the
study, this paper is devoted to investigate the crossing number of H3,n in the
projective plane. The main theorem is the following.

Theorem 1. For n ≥ 2, the crossing number of the hexagonal graph H3,n in the
projective plane N1 is

crN1(H3,n) =

{
0, n = 2,
n− 1, n ≥ 3.

Note that there are only few infinite classes of graphs whose crossing numbers
in a surface other than the plane are known exactly, see [5, 6, 7, 8, 12, 14, 15]
and the references therein.

This paper is organized as follows. Section 2 is devoted to introduce some
basic preliminaries. By investigating the upper and lower bound of crN1(H3,n)
separately, we give the sketch of the proof of Theorem 1 in Section 3 by assuming
the correctness of Lemma 6. We postpone the proof of Lemma 6 on the lower
bound of crN1(H3,n) to Section 5. In Section 4, we list some lemmas which are
used in the proof of Lemma 6.

2. Preliminaries

We introduce some basic preliminaries in this section. For F ⊆ E(G), we denote
by G \ F the graph obtained from G by deleting all edges in F .

Let D be a good drawing of graph G in the surface Σ. We denote the number
of crossings in D by vD(G). In a drawing D of graph G, if an edge is not crossed
by any other edge, we say that it is clean in D, otherwise, we say it is crossed.
Let A and B be two (not necessary disjoint) subsets of the edge set E(G). The
number of crossings involving an edge in A and another edge in B is denoted by
vD(A,B). In particular, vD(A,A) is denoted by vD(A). By counting the number
of crossings in D, we have the following result.

Lemma 2. Let A,B,C be mutually disjoint subsets of E(G). Then

vD(A,B ∪ C) = vD(A,B) + vD(A,C),

vD(A ∪B) = vD(A) + vD(A,B) + vD(B).

The hexagonal graph H3,n (n ≥ 2) is a special kind of (3,6)-tilings, which
can be embedded in the torus such that the number of 6-cycles in the meridional
(respectively, longitudinal) direction is 3 (respectively, n). To be exact, H3,n is
the graph with vertex set

V (H3,n) = {ai, bi, ci| i = 1, 2, . . . , 2n},
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and edge set

E(H3,n) = {aiai+1, bibi+1, cici+1| i = 1, 2, . . . , 2n}

∪ {a2i−1b2i−1, b2ic2i, a2ic2i−1| i = 1, 2, . . . , n},

where the indices are expressed modulo 2n, see Figure 1. Note that the graph
H3,n is vertex-transitive.

c1 c2 c3 c4 c5 c2n

b1
b2 b3 b4 b5 b2n

a1
a2 a3 a4 a5 a2n

Figure 1. The graph H3,n.

c2i−2 c2i−1 c2i

b2i−2

b2i−1

b2i

a2i−2 a2i−1 a2i

Figure 2. The subgraph Fi.

Let

E′ =

n⋃
i=1

{
a2i−1b2i−1, b2ic2i, a2ic2i−1

}
.

Observe that, for any edge e ∈ E′, H3,n \ e contains a subdivision of H3,n−1.
For 1 ≤ i ≤ n, let

Fi =
{
a2i−2a2i−1, a2i−1a2i, b2i−2b2i−1, b2i−1b2i, c2i−2c2i−1, c2i−1c2i,

a2i−1b2i−1, b2ic2i, a2ic2i−1

}
,

where the indices are read modulo 2n, see Figure 2. Then F1, F2, . . . , Fn is a
partition of E(H3,n), which is to say,

E(H3,n) =
n⋃

i=1

Fi, and, for i 6= j, Fi ∩ Fj = ∅.

Let D be a good drawing of H3,n in the projective plane. We define fD(Fi)
(1 ≤ i ≤ n) to be the function counting the number of crossings related to Fi in
D as follows [8],

fD(Fi) = vD(Fi, Fi) +
1

2

∑
1≤j≤n, j 6=i

vD(Fi, Fj).(1)

By counting the number of crossings in D, we can get the following lemma.

Lemma 3. vD(H3,n) =
∑n

i=1 fD(Fi).
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3. Sketch of the Proof of Theorem 1

Lemma 4. For n ≥ 2, crN1(H3,n) ≤ n− 1.

Proof. Wilson’s Lemma [14] states that, for a non-planar graph, its crossing
number in the projective plane is strictly less than its crossing number in the
plane. Therefore, crN1(H3,n) ≤ cr(H3,n)− 1. Combined this fact with the result
that cr(H3,n) = n for n ≥ 2 [17], Lemma 4 holds.

b3
b2

b4
b1

a3a4

a2
a1

c2

c1

c3

c4

Figure 3. A good drawing of H3,2 in the
projective plane.

c2 c3 c4 c5

b1
b2

a1
a4 a5 a6

Figure 4. The graph H3,3 \ {a2c1, a3b3,
b4b5, b6c6}.

Figure 3 shows that H3,2 is embeddable in the projective plane. That implies
the result.

Lemma 5. crN1(H3,2) = 0.

The following lemma is the key to the proof of Theorem 1.

Lemma 6. For n ≥ 3, crN1(H3,n) ≥ n− 1.

We will prove Lemma 6 by induction on n. Thus, the induction basis is
needed at first.

Lemma 7. crN1(H3,3) = 2.

Proof. We only need to prove that crN1(H3,3) ≥ 2 by Lemma 4. Suppose that
there is a good drawing D of H3,3 in the projective plane such that vD(H3,3) ≤ 1.
By Figure 4 and Figure 5, we have vD(H3,3) = 1 since the graph H3,3 \ {a2c1,
a3b3, b4b5, b6c6} is a subdivision of G1(10, 15), which is one of the minimal for-
bidden subgraphs for the projective plane (see Appendix A in [10]).

Thus, we can get a graph which can be embedded in the projective plane
from D by removing one of the crossed edges. However, Figure 4 and Figure 5
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c3 c5b2

c4c2

a4 a6b1

a5a1

Figure 5. The graph G1(10, 15).

a2i c2i−1a2i−1

b2i c2ib2i−1

b2i−2

c2i−2

f1

f2

Figure 6. A possible subdrawing of Ri.

illustrate that H3,3 \ e contains a subdivision of G1(10, 15) for any e ∈ E(H3,3).
A contradiction.

We postpone the proof of Lemma 6 to Section 5. With its proof, we can
prove the main result of this paper.

The proof of Theorem 1. Combined with Lemma 4, Lemma 5 and Lemma 6,
Theorem 1 follows easily.

4. Some Lemmas

Our aim in this section is to provide a definition and some basic lemmas which
will be used to prove Lemma 6.

Definition 8. An E′-clean drawing of H3,n is a good drawing of H3,n in the
projective plane such that all of the edges in E′ are clean.

We will prove Lemma 6 by induction on n and by contradiction. If there exists
a good drawing D of H3,n in the projective plane such that vD(H3,n) < n − 1,
then we can obtain that all of the edges in E′ are clean in D. Therefore, in this
section, we only consider the E′-clean drawing of H3,n.

For 1 ≤ i ≤ n, let

CFi = {a2i−1a2i, a2ic2i−1, c2i−1c2i, c2ib2i, b2ib2i−1, b2i−1a2i−1},

and

Ri = CFi ∪ {b2i−2b2i−1, b2i−2c2i−2, c2i−2c2i−1},
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where the indices are expressed modulo 2n. Note that CFi is the cycle of length
6 in Fi, and that Ri = Fi ∪ {b2i−2c2i−2} \ a2i−2a2i−1. The following lemma states
that the subdrawing of Ri may be unique under certain restrictions.

Lemma 9. For n ≥ 3, let D be an E′-clean drawing of H3,n such that, for some
1 ≤ i ≤ n, fD(Fi) < 1 and CFi is contractible. Then the subdrawing of Ri in D
is as shown in Figure 8.

Proof. By Equation (1), the edges of Fi do not have internal crossings in D
since fD(Fi) < 1. Furthermore, the vertices b2i−2 and c2i−2 lie in the same region
since the edge b2i−2c2i−2 ∈ E′ is clean. Hence, there are three possibilities of the
subdrawing of Ri in D, see Figures 6, 7, and 8.

a2i c2i−1
a2i−1

b2i
c2i

b2i−1

b2i−2

c2i−2

f2

f1

Figure 7. A possible subdrawing of Ri.

a2i c2i−1
a2i−1

b2i c2ib2i−1

b2i−2

c2i−2f1

Figure 8. A possible subdrawing of Ri.

Suppose that Ri is as drawn in Figure 6. Consider the vertex a2i−2. This
vertex lies either in the region labelled f1 or in the region f2, since the edge
a2i−2a2i−1 ∈ Fi does not have any crossing with Ri. If a2i−2 lies in f1, then each of
the edge-disjoint paths a2i−2c2i−3 · · · c1c2nc2n−1 · · · c2i and a2i−2a2i−3b2i−3b2i−4 · · ·
b1b2nb2n−1 · · · b2i crosses Fi at least once, which implies that fD(Fi) ≥ 1 by Equa-
tion (1), contradicting that fD(Fi) < 1. Finally, if a2i−2 lies in f2, then each of
the edge-disjoint paths a2i−2c2i−3c2i−2 and a2i−2a2i−3b2i−3b2i−2 crosses Fi at least
once, which implies that fD(Fi) ≥ 1, a contradiction.

Almost the same argument can be obtained if Ri is as drawn in Figure 7.
Therefore, the subdrawing of Ri in D is as shown in Figure 8.

In Figure 8, observe that there are two non-contractible cycles C(i) ,
b2i−2b2i−1b2ic2ic2i−1c2i−2b2i−2 and C(i′) , b2i−2b2i−1a2i−1a2ic2i−1c2i−2b2i−2 in
Ri, furthermore, E(C(i)) ∩E(C(i′)) = {b2i−2b2i−1, c2i−2c2i−1, b2i−2c2i−2}. Thus,
the following corollary holds.

Corollary 10. For n ≥ 3, let D be an E′-clean drawing of H3,n. If there exist
different integers i and j such that
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(1) j 6= i± 1 (mod n),

(2) both CFi and CFj are contractible,

(3) fD(Fi) = fD(Fj) = 1
2 ,

(4) vD(Fi, Fj) = 1,

then the crossed edge of Fi (respectively, Fj) in D must be either b2i−2b2i−1 or
c2i−2c2i−1 (respectively, either b2j−2b2j−1 or c2j−2c2j−1).

Proof. Firstly, note that V (Fi) ∩ V (Fj) = ∅ since j 6= i± 1 (mod n). Secondly,
by Lemma 9, the subdrawing of Ri in D is as shown in Figure 8. Similarly, the
subdrawing of Rj is also as shown in Figure 8 by replacing all the indices i by j.

Note that two non-contractible cycles cross each other in the projective plane,
therefore, the crossed edge of Fi (respectively, Fj) in D must belong to E(C(i))∩
E(C(i′))

(
respectively, E(C(j)) ∩ E(C(j′))

)
since fD(Fi) = fD(Fj) = 1

2 and
vD(Fi, Fj) = 1. Hence, the corollary follows because the edge b2i−2c2i−2 ∈ E′

(respectively, b2j−2c2j−2 ∈ E′) is clean.

Lemma 11 and Lemma 13 in the following indicate that fD(F3) ≥ 1 if
fD(F2) = 0 by considering whether the cycle CF2 is contractible or not.

Lemma 11. For n ≥ 3, let D be an E′-clean drawing of H3,n such that fD(F2)
= 0 and the cycle CF2 is contractible. Then fD(F3) ≥ 1.

Proof. By the assumption that fD(F2) = 0 and by Lemma 9, the subdrawing
of R2 in D is as shown in Figure 8 by replacing all the indices i by 2. Moreover,
since b2c2 ∈ E′ is clean, we have the following.

Claim 12. R2 is clean in D. In particular, the non-contractible cycle C(2) =
b2b3b4c4c3c2b2 is clean.

We prove the lemma by contradiction. Suppose that fD(F3) < 1. Then the
edges of F3 cannot have internal crossings in D by Equation (1). The cycle CF3

is contractible, otherwise, two non-contractible cycles CF3 and C(2) cross each
other in the projective plane, contradicting Claim 12. Moreover, all of the vertices
of CF3 lie in the same region labelled f1 in the subdrawing of R2 in Figure 8,
otherwise, without loss of generality, assume that the vertex a5 does not lie in
f1, then the cycle CF2 will be crossed by the path a5b5b6 · · · b2nb1b2 (n ≥ 3),
contradicting Claim 12. Therefore, the subdrawing of R2∪CF3 is as shown either
in Figure 9 or in Figure 10.

Case 1. The subdrawing of R2 ∪ CF3 is as shown in Figure 9. Consider
the subdrawing of R2 ∪ F3. It is as shown in Figure 11 by Claim 12 and by
the assumption that fD(F3) < 1. Note that c2 and c6 (respectively, b2 and b6)
do not lie on the boundary of a same region. Thus each of the edge-disjoint
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a4
c3a3

b4
c4b3

b2

c2

b6 b5 a5

c6 c5 a6

Figure 9. A possible subdrawing of
R2 ∪ CF3 .

a4 c3a3

b4
c4b3

b2

c2

b6 c6 c5

b5 a5 a6

Figure 10. A possible subdrawing of
R2 ∪ CF3 .

a4 c3a3

b4 c4
b3

b2

c2
b6

b5 a5

c6
c5 a6

Figure 11. The subdrawing of R2 ∪ F3.

a4 c3a3

b4 c4
b3

b2

c2
b6

c6 c5

b5 a5
a6

Figure 12. The subdrawing of R2 ∪ CF3
∪

{a4a5, c4c5}.

paths c6 · · · c2nc1c2 and b6 · · · b2nb1b2 will cross F3 at least once, which implies
that fD(F3) ≥ 1, a contradiction.

Case 2. The subdrawing of R2 ∪CF3 is as shown in Figure 10. Consider the
subdrawing of R2 ∪ CF3 ∪ {a4a5, c4c5}. It is as shown in Figure 12 by Claim 12
and by the assumption that fD(F3) < 1. Note that two vertices b4 and b5 do not
lie on the boundary of a same region. Thus the edge b4b5 ∈ F3 will cross some
edge of F3, which implies that fD(F3) ≥ 1 by Equation (1), a contradiction. �

Lemma 13. For n ≥ 3, let D be an E′-clean drawing of H3,n such that fD(F2)
= 0 and the cycle CF2 is non-contractible. Then fD(F3) ≥ 1.

Proof. Since fD(F2) = 0 and b2c2 ∈ E′ is clean, we conclude the following.

Claim 14. The edges of R2 are clean in D.
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There are two possible subdrawing of R2 in D since CF2 is non-contractible,
see Figure 13 and Figure 14.

a4

a3

b3

b4

c4

c3

b2

c2

f1

Figure 13. A possible subdrawing of R2.

a4

a3

b3

b4

c4

c3

b2

c2

f1 f2

Figure 14. A possible subdrawing of R2.

We prove the lemma by contradiction. Suppose that fD(F3) < 1. Then
the edges of F3 do not have internal crossings in D. The cycle CF3 must be
contractible, otherwise, two non-contractible curves CF3 and CF2 cross each other
in the projective plane, contradicting that fD(F2) = 0. All of the vertices of F3

lie in the same region in the subdrawing of R2 by Claim 14, moreover, they locate
in the region labelled f1, on whose boundary lies all the vertices of R2, see Figure
13 and Figure 14.

a4

a3

b3

b4

c4

c3

b2

c2

a5 a6 c5

b5 b6 c6

Figure 15. A possible subdrawing of
R2 ∪ CF3

.

a4

a3

b3

b4

c4

c3

b2

c2

a5 b5 b6

a6 c5 c6

Figure 16. A possible subdrawing of
R2 ∪ CF3

.

Case 1. R2 is as drawn in Figure 13. As we mentioned above, the subdrawing
of R2 ∪ CF3 is as shown either in Figure 15 or in Figure 16.

Subcase 1.1. The subdrawing of R2 ∪ CF3 is as shown in Figure 15. Then
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the subdrawing of R2 ∪ CF3 ∪ {b4b5, c4c5} is as shown in Figure 17. In this case,
a4 and a5 do not lie on the boundary of a same region. By Claim 14, there is
at least one crossing made by the edge a4a5 ∈ F3 with some edge of F3, which
implies that fD(F3) ≥ 1 by Equation (1), a contradiction.

Subcase 1.2. The subdrawing of R2 ∪CF3 is as shown in Figure 16. Then the
subdrawing of R2 ∪ CF3 ∪ {b4b5, c4c5} is as shown in Figure 18. Note that the
vertices b2 and b6 (respectively, c2 and c6) do not lie on the boundary of a same
region, therefore, each of the edge-disjoint paths b6 · · · b2nb1b2 and c6 · · · c2nc1c2

crosses F3 at least once, which enforces that fD(F3) ≥ 1, a contradiction.

a4

a3

b3

b4

c4

c3

b2

c2

a5 a6

c5

b5
b6 c6

Figure 17. The subdrawing of R2 ∪ CF3 ∪
{b4b5, c4c5}.

a4

a3

b3

b4

c4

c3

b2

c2

a5
b5 b6

a6 c5 c6

Figure 18. The subdrawing of R2 ∪ CF3 ∪
{b4b5, c4c5}.

Case 2. R2 is as drawn in Figure 14. Using the former similar arguments,
we assert that the subdrawing of R2 ∪ CF3 ∪ {a4a5} is as shown either in Figure
19 or in Figure 20.

Subcase 2.1. The subdrawing of R2 ∪CF3 ∪ {a4a5} is as shown in Figure 19.
Consider the edge b4b5.

Subcase 2.1.1. The edge b4b5 is as drawn in Figure 21. By Claim 14, we have
fD(F3) ≥ 1 by the observation that c4 and c5 do not lie on the boundary of a
same region, a contradiction.

Subcase 2.1.2. The edge b4b5 is as drawn in Figure 22. By Claim 14, the edge
c4c5 cannot cross the edges of R2 ∪ F3 since c4c5 ∈ F3. Then the subdrawig of
R2 ∪ F3 is as drawn in Figure 22.

Now consider the vertex a2. It lies either in the region labelled f2 or in the
region f11, since the edge a2a3 ∈ F2 is clean, see Figure 22.

Subcase 2.1.2.1. If a2 lies in f2. Notice that the vertices a2 and c6 do not
lie on the boundary of a same region in the subdrawing of R2. Then the path
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a4

a3

b3

b4

c4

c3

b2

c2

a5
a6 c5

b5 b6 c6

Figure 19. A possible subdrawing of R2 ∪
CF3
∪ {a4a5}.

a4

a3

b3

b4

c4

c3

b2

c2

a5
b5 b6

a6
c5 c6

Figure 20. A possible subdrawing of R2 ∪
CF3
∪ {a4a5}.

a4

a3

b3

b4

c4

c3

b2

c2

a5
a6 c5

b5 b6 c6

Figure 21. The subdrawing of R2 ∪ CF3
∪

{a4a5, b4b5}.

a4

a3

b3

b4

c4

c3

b2

c2

a5 a6
c5

b5 b6 c6

f11 f2

Figure 22. The subdrawing of R2 ∪ F3.

c6 · · · c2nc1a2 will cross R2 at least once, contradicting Claim 14.

Subcase 2.1.2.2. If a2 lies in f11. Notice that the vertices a2 and c2 (respec-
tively, a2 and b2) do not lie on the boundary of a same region. Then each of the
edge-disjoint paths a2c1c2 and a2a1b1b2 will cross F3 at least once, contradicting
that fD(F3) < 1.

Subcase 2.2. The subdrawing of R2 ∪ CF3 ∪ {a4a5} is as shown in Figure
20. Now consider the edge c4c5. There are two possibilities of the subdrawing of
R2 ∪ CF3 ∪ {a4a5, c4c5}, see Figure 23 and Figure 24.

Subcase 2.2.1. The subdrawing of R2∪CF3∪{a4a5, c4c5} is as shown in Figure
23. By Claim 14, we have fD(F3) ≥ 1 since the vertices b2 and b6 (respectively,
c2 and c6) do not lie on the boundary of a same region, a contradiction.
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a4

a3

b3

b4

c4

c3

b2

c2

a5
b5 b6

a6
c5 c6

Figure 23. A possible subdrawing of
R2 ∪ CF3

∪ {a4a5, c4c5}.

a4

a3

b3

b4

c4

c3

b2

c2

a5
b5 b6

a6
c5 c6

Figure 24. A possible subdrawing of
R2 ∪ CF3

∪ {a4a5, c4c5}.

Subcase 2.2.2. The subdrawing of R2∪CF3∪{a4a5, c4c5} is as shown in Figure
24. Then there are two possibilities of R2 ∪ F3, see Figure 25 and Figure 26.

a4

a3

b3

b4

c4

c3

b2

c2

a5
b5

b6
a6 c5 c6

Figure 25. A possible subdrawing of
R2 ∪ F3.

a4

a3

b3

b4

c4

c3

b2

c2

a5
b5

b6
a6

c5 c6

f2f11

Figure 26. A possible subdrawing of
R2 ∪ F3.

Subcase 2.2.2.1. The subdrawing of R2 ∪ F3 is as shown in Figure 25. By
Claim 14, we have fD(F3) ≥ 1 since the vertices b2 and b6 (respectively, c2 and
c6) do not lie on the boundary of a same region, a contradiction.

Subcase 2.2.2.2. The subdrawing of R2∪F3 is as shown in Figure 26. Consider
the vertex a2, contradictions can be made by discussions similar to Subcase 2.1.2.

All these contradictions enforce that fD(F3) ≥ 1. �

Lemma 15 and Lemma 16 in the following imply that fD(F1) > 0 if fD(F2)
= 0, by considering whether the cycle CF2 is contractible or not.
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Lemma 15. For n ≥ 3, let D be an E′-clean drawing of H3,n such that fD(F2)
= 0 and the cycle CF2 is contractible. Then fD(F1) > 0.

Proof. By Lemma 9, the subdrawing of R2 is as drawn in Figure 8 by replacing
all the indices i by 2. Moreover, the vertex a2 lies in the region labelled f1 in the
subdrawing of R2 in Figure 8, otherwise, the path a2c1c2 will cross CF2 at least
once, contradicting that fD(F2) = 0.

We prove the lemma by contradiction. Suppose that fD(F1) = 0, then all
of the vertices of F1 lie in the same region. There are three possibilities of the
subdrawing of CF1 ∪ F2, see Figures 27, 28 and 29.

a4
c3a3

b4
c4b3

b2

c2
a2 c1a1

b1

Figure 27. A possible subdrawing of
CF1
∪ F2.

a4
c3

a3

b4
c4b3

b2

c2
a2 c1a1

b1

Figure 28. A possible subdrawing of
CF1
∪ F2.

If CF1 ∪F2 is as drawn in Figure 27, then either CF1 or F2 will be crossed by
the path a4a5 · · · a2na1 since the vertices a4 and a1 do not lie on the boundary
of a same region, contradicting that fD(F1) = fD(F2) = 0. Similar argument can
be made if CF1 ∪ F2 is as drawn in Figure 28. Finally, if CF1 ∪ F2 is as drawn in
Figure 29, then either CF1 or F2 will be crossed by the path a4a5 · · · a2nc2n−1c2nc1

(note that n ≥ 3 is crucial here for c2n being not equal to c4), a contradiction.

All these contradictions enforce that fD(F1) > 0.

Lemma 16. For n ≥ 3, let D be an E′-clean drawing of H3,n such that fD(F2)
= 0 and the cycle CF2 is non-contractible. Then fD(F1) > 0.

Proof. We prove the lemma by contradiction. Suppose that fD(F1) = 0. Then
the cycle CF1 is contractible, otherwise, two non-contractible cycles CF2 and
CF1 cross each other at least once in the projective plane, contradicting that
fD(F2) = 0.

The subdrawings of R2 is as drawn either in Figure 13 or in Figure 14 by
similar arguments in Lemma 13. Moreover, the vertices of CF1 lie in the region
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a4
c3

a3

b4
c4

b3

b2

c2
a2

c1

a1

b1

Figure 29. A possible subdrawing of
CF1 ∪ F2.

a4

a3

b3

b4

c4

c3

b2

c2

a2 a1

b1

c1

Figure 30. A possible subdrawing of
CF1 ∪ F2.

labelled f1 if R2 is as drawn in Figure 13. Therefore, there are four possibilities
of the subdrawing of CF1 ∪ F2, see Figures 30, 31, 32 and 33.

a4

a3

b3

b4

c4

c3

b2

c2

a2 a1

b1

c1

Figure 31. A possible subdrawing of
CF1
∪ F2.

a4

a3

b3

b4

c4

c3

b2

c2

b1

a1
a2

c1

Figure 32. A possible subdrawing of
CF1
∪ F2.

Case 1. The subdrawing of CF1 ∪F2 is as drawn in Figure 30. Since the ver-
tices a4 and a1 do not lie on the boundary of a same region, the path a4a5 · · · a2na1

will cross either CF1 or F2, contradicting that fD(F1) = fD(F2) = 0.

Case 2. The subdrawing of CF1 ∪F2 is as drawn in Figure 31. Then the path
c4c5 · · · c2nc1 will cross either CF1 or F2, a contradiction.

Case 3. The subdrawing of CF1 ∪F2 is as drawn in Figure 32. Then the path
c1c2nc2n−1a2na2n−1 · · · a4 will cross either CF1 or F2 (note that n ≥ 3 is crucial
here for c2n being not equal to c4), a contradiction.
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Case 4. The subdrawing of CF1 ∪F2 is as drawn in Figure 33. Then the path
b4b5 · · · b2nb1 will cross either CF1 or F2, a contradiction.

All these contradictions enforce that fD(F1) > 0.

a4

a3

b3

b4

c4

c3

b2

c2

c1

b1

a1

a2

Figure 33. A possible subdrawing of
CF1
∪ F2.

a4 c3
a3

b4 c4
b3

b2

c2
a2j−1 a2j c2j−1

b2j−1

b2j
c2j

b2j−2

c2j−2

Figure 34. A possible subdrawing of
R2 ∪Rj .

We end this section with the following lemma which indicates that Fi do not
cross Fj under certain restrictions.

Lemma 17. For n ≥ 4, let D be an E′-clean drawing of H3,n. If there exist
different integers i and j such that

(1) j 6= i± 1 (mod n),

(2) fD(Fi) = fD(Fj) = 1
2 ,

(3) at least one of the cycles CFi and CFj is contractible,

then vD(Fi, Fj) = 0.

Proof. Suppose to the contrary that vD(Fi, Fj) > 0. Without loss of generality,
assume that i = 2 and that 4 ≤ j ≤ n, moreover, assume that CF2 is contractible.
Then, by Equation (1), vD(F2, Fj) = 1 since fD(F2) = fD(Fj) = 1

2 .
The edges of F2 (respectively, Fj) do not have internal crossings since fD(F2) =

1
2 (respectively, fD(Fj) = 1

2). By Lemma 9, the subdrawing of R2 is as drawn
in Figure 8 by replacing all the indices i by 2. Note that the cycle C(2) =
b2b3b4c4c3c2b2 is non-contractible, furthermore, V (F2) ∩ V (Fj) = ∅.

We consider the following two cases.

Case 1. The cycle CFj is contractible. The subdrawing of Rj is also as shown
in Figure 8 by replacing all the indices i by j. Observe that the crossed edge of F2

(respectively, Fj) is either c2c3 or b2b3 (respectively, c2j−2c2j−1 or b2j−2b2j−1) by
Corollary 10. We may assume that the crossed edge of F2 is c2c3 (if the crossed
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edge of F2 is b2b3, the proof is analogous). Moreover, all of the vertices of CFj lie
in the region labelled f1 in the subdrawing of R2 in Figure 8.

Subcase 1.1. The crossed edge of Fj is c2j−2c2j−1. Then the subdrawing of
R2 ∪ Rj is as drawn in Figure 34, either F2 or Fj will be crossed by the path
a2ja2j+1 · · · a2na1a2a3, which enforces that either fD(F2) ≥ 1 or fD(Fj) ≥ 1, a
contradiction.

Subcase 1.2. The crossed edge of Fj is b2j−2b2j−1. Then the subdrawing of
R2 ∪Rj is as drawn in Figure 35. Observe that the vertices b4 and a2j−1 do not
lie on the boundary of a same region. Thus the path b4b5a5a6 · · · a2j−1 will have
a crossing either with F2 or Fj , a contradiction.

a4 c3
a3

b4
c4b3

b2

c2
a2j−1 a2j c2j−1

b2j−1

b2j c2j
b2j−2

c2j−2

Figure 35. A possible subdrawing of
R2 ∪Rj .

a4
c3

a3

b4
c4

b3

b2

c2

a2j−1

b2j−1

b2j

c2j

c2j−1

a2j

Figure 36. A possible subdrawing of
R2 ∪ CFj

.

Case 2. The cycle CFj is non-contractible. Two non-contractible cycles CFj

and C(2) (respectively, CFj and C(2′)) should cross each other at least once
in the projective plane. Then the crossed edge of F2 must belong to E(C(2))
∩E(C(2′)) since vD(F2, Fj) = 1. Remember that the edges of E′ are clean, the-
refore, either c2c3 or b2b3 will have a crossing with an edge e of CFj , where e ∈
{a2j−1a2j , b2j−1b2j , c2j−1c2j}.

We discuss first that c2c3 crosses with a2j−1a2j . For other cases, similar con-
tradictions can be obtained. Note that neither F2 nor Fj could be crossed any
more.

The subdrawing of R2 ∪ CFj is as shown in Figure 36. Consider the vertices
b2j−2 and c2j−2. They must lie in the same region since the edge b2j−2c2j−2 ∈ E′

is clean. There are two possibilities of the subdrawing of R2 ∪Rj according to in
which region b2j−2 and c2j−2 lie, see Figure 37 and Figure 38.

Subcase 2.1. R2 ∪Rj is as drawn in Figure 37. Note that the vertices a4 and
b2j−2 do not lie on the boundary of a same region. Then either F2 or Fj will be
crossed by the path a4a5b5b6 · · · b2j−2, a contradiction.
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Subcase 2.2. R2∪Rj is as drawn in Figure 38, similar argument can be made
since either F2 or Fj will be crossed by the path a3a2c1c2n · · · c2j .

5. The Proof of Lemma 6

Now, we are in a position to prove Lemma 6.

a4 c3
a3

b4 c4
b3

b2

c2

a2j−1

b2j−1

b2j

c2j

c2j−1

a2j

b2j−2

c2j−2

Figure 37. A possible subdrawing of
R2 ∪Rj .

a4 c3
a3

b4 c4

b3

b2

c2

a2j−1

b2j−1

b2j

c2j

c2j−1

a2j

c2j−2

b2j−2

Figure 38. A possible subdrawing of
R2 ∪Rj .

The Proof of Lemma 6. We prove the lemma by induction on n. Lemma 7
enforces the inequality holds for n = 3. Suppose that

crN1(H3,l) ≥ l − 1 for l < n,(2)

and that there exists a good drawing D of H3,n satisfying vD(H3,n) < n − 1.
Combined Equation (2) with the fact that H3,n contains a subdivision of H3,n−1,
we have

vD(H3,n) = n− 2.(3)

Remember that

E′ =
n⋃

i=1

{a2i−1b2i−1, b2ic2i, a2ic2i−1},

we have the following claim.

Claim 18. For any edge e ∈ E′, it is clean in D. That means D is an E′−clean
drawing of H3,n.
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Proof. Otherwise, a good drawing of H3,n−1 with less than n−2 crossings can be
constructed from D by removing the crossed edge e, contradicting Equation (2).�

Together with Lemma 3, the following two cases are considered.

Case 1. There exists an integer i (1 ≤ i ≤ n) such that fD(Fi) = 0. Without
loss of generality, let fD(F2) = 0. By Equation (1), we obtain that the edges of
F2 are clean in D.

Claim 19. There exists an integer j (1 ≤ j ≤ n, j 6= 2) such that fD(Fj) < 1.

Proof. Otherwise, by Lemma 3, we have

vD(H3,n) =

n∑
i=1

fD(Fi) ≥ n− 1,

a contradiction to Equation (3). �

By Lemma 11 and Lemma 13, it is inferred that j 6= 3. The following two
subcases are studied according to whether j = 1 or not.

Subcase 1.1. j 6= 1.

Subcase 1.1.1. The cycle CF2 is contractible. By Lemma 9, the subdrawing
of R2 is as shown in Figure 8 by replacing all the indices i by 2. Combined with
Claim 18, the non-contractible cycle C(2) = b2b3b4c4c3c2b2 is clean in D.

Now consider the subgraph Fj . First of all, the cycle CFj is contractible, oth-
erwise, two non-contractible cycles CFj and C(2) cross each other in the projective
plane, a contradiction. Again, by Lemma 9, the subdrawing of Rj is as shown in
Figure 8 by replacing all the indices i by j. Thus another non-contractible cycle
C(j) occurs, which should cross the non-contractible cycle C(2) in the projective
plane, a contradiction.

Subcase 1.1.2. The cycle CF2 is non-contractible. The cycle CFj is con-
tractible, otherwise, two non-contractible curves CFj and CF2 cross each other in
the projective plane, contradicting that fD(F2) = 0. According to Lemma 9, the
subdrawing of Rj is as shown in Figure 8 by replacing all the indices i by j.

Note that a non-contractible cycle C(j) occurs, which should cross CF2 in
the projective plane, contradicting that fD(F2) = 0.

Subcase 1.2. j = 1. By Lemma 15 and Lemma 16, we have fD(F1) > 0.
Furthermore, Claim 19 enforces that fD(F1) = 1

2 .
There exists another integer m (m /∈ {1, 2}) such that fD(Fm) < 1, otherwise

vD(H3,n) =

n∑
i=1

fD(Fi) ≥
1

2
+ 0 + (n− 2) > n− 2,
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contradicting Equation (3). Moreover, we have m 6= 3 by Lemma 11 and Lemma
13. When considering the subgraphs F2 and Fm, contradictions can be obtained
using the same discussions in Subcase 1.1.

Case 2. fD(Fi) > 0 for all 1 ≤ i ≤ n. By Lemma 3, there exists an integer i
(1 ≤ i ≤ n) such that fD(Fi) = 1

2 , otherwise

vD(H3,n) =
n∑

i=1

fD(Fi) ≥ n,

contradicting Equation (3).
Without loss of generality, let fD(F2) = 1

2 . We can get that there exists
another integer j (4 ≤ j ≤ n) such that fD(Fj) = 1

2 , otherwise,

vD(H3,n) =
n∑

i=1

fD(Fi) ≥ 3× 1

2
+ (n− 3) > n− 2,

contradicting Equation (3).
Using Equation (1), the edges of F2 (respectively, Fj) cannot have internal

crossings.

Subcase 2.1. The cycle CF2 is contractible. By Lemma 9, the subdrawing of
R2 is as shown in Figure 8 by replacing all the indices i by 2. Note that the cycle
C(2) = b2b3b4c4c3c2b2 is non-contractible.

Lemma 17 enforces that vD(F2, Fj) = 0. Thus, all of the vertices of Fj lie in
the same region in the subdrawing of R2 in Figure 8, moreover, they lie in the
region labelled f1, otherwise, each of the edge-disjoint paths b2jb2j+1 · · · b2nb1b2

and c2jc2j+1 · · · c2nc1c2 crosses CF2 at least once, which implies that fD(F2) ≥ 1
by Equation (1), a contradiction. Finally, the cycle CFj is contractible, otherwise
it will cross the non-contractible cycle C(2) at least once in the projective plane,
contradicting that vD(F2, Fj) = 0.

Lemma 9 tells us that the subdrawing of Rj is as shown in Figure 8 by
replacing all the indices i by j. Thus a non-contractible cycle C(j) occurs, which
will cross C(2) at least once in the projective plane. Therefore, vD(F2, Fj) ≥ 1
by Claim 18, a contradiction to Lemma 17.

Subcase 2.2. The cycle CF2 is non-contractible. If the cycle CFj is con-
tractible, then arguments similar to Subcase 2.1 will lead to a contradiction.

Thus we only need to consider that CFj is non-contractible. Since fD(F2) =
fD(Fj) = 1

2 , we have vD(CF2 , CFj ) = 1. Moreover, there must exist another
integer k (k 6= 2, j) such that fD(Fk) = 1

2 , otherwise,

vD(H3,n) =

n∑
i=1

fD(Fi) ≥ 2× 1

2
+ (n− 2) > n− 2,
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contradicting Equation (3). Consider the cycle CFk
, it must be contractible,

otherwise, there will be another crossing made by the non-contractible cycles
CF2 and CFk

, contradicting that fD(F2) = 1
2 .

Subcase 2.2.1. n = 4. Then j = 4. By Equation (3), we know that fD(F1) =
fD(F3) = 1

2 . Furthermore, the cycle CF1 (respectively, CF3) is contractible in
D, otherwise, it will cross the non-contractible cycle CF2 in the projective plane,
contradicting that fD(F2) = 1

2 . On the other hand, a non-contractible cycle C(1)
occurs, which should cross CF2 , a contradiction.

Subcase 2.2.2. n ≥ 5. Moreover, either k = 3 when j = 4, or k = 1 when
j = n. Then by Equation (3), there exists another integer s (s /∈ {2, k, j}) such
that fD(Fs) = 1

2 . Therefore, using arguments similar to those in Subcase 2.1,
contradictions can be obtained by considering Fk and Fs.

Subcase 2.2.3. n ≥ 5. Moreover, k 6= 3 when j = 4. Using arguments similar
to those in Subcase 2.1, contradictions can be obtained either by considering Fk

and Fj when k 6= 5, or by considering Fk and F2 when k = 5.

Subcase 2.2.4. n ≥ 5. Moreover, k 6= 1 when j = n. Analogously, contra-
dictions can be obtained either by considering Fk and Fj when k 6= n− 1, or by
considering Fk and F2 when k = n− 1.

The proof is complete.
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