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Abstract

For any S ⊂ Z we say that a graph G has the S-property if there exists
an S-edge-weighting w : E(G) → S such that for any pair of adjacent
vertices u, v we have

∑
e∈E(v) w(e) 6=

∑
e∈E(u) w(e), where E(v) and E(u)

are the sets of edges incident to v and u, respectively. This work focuses on
{a, a + 2}-edge-weightings where a ∈ Z is odd. We show that a 2-connected
bipartite graph has the {a, a + 2}-property if and only if it is not a so-
called odd multi-cactus. In the case of trees, we show that only one case is
pathological. That is, we show that all trees have the {a, a + 2}-property
for odd a 6= −1, while there is an easy characterization of trees without the
{−1, 1}-property.
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odd weights, 1-2-3 Conjecture.
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1. Introduction

Let G be an undirected graph. For an S-edge-weighting w : E(G) → S of G,
where S ⊂ Z, each vertex v ∈ V (G) has weighted degree equal to the sum of the
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weights of its incident edges. We call w neighbour sum-distinguishing if no two
adjacent vertices of G have the same weighted degree. For a set S of weights,
we say that G has the S-property if it admits neighbour sum-distinguishing S-
edge-weightings. The study of graphs having or not having the S-property for
some sets S is highly related to the well-known 1-2-3 Conjecture raised by
Karoński,  Luczak, and Thomason in 2004 [6]. That conjecture states that every
connected graph different from K2

1 has the {1, 2, 3}-property. A particular case
of a list version of the 1-2-3 Conjecture (introduced by Bartnicki, Grytczuk, and
Niwczyk [2]), even states that every graph should have the {a, b, c}-property for
every distinct a, b, c ∈ N. For more details on the progress towards the 1-2-3
Conjecture (and variants of it), please refer to [11] for a survey on this topic.

For any smaller set S ⊂ Z of weights, i.e., with |S| = 2, one can easily
come up with examples showing that there do exist graphs not having the S-
property (complete graphs are such examples). A natural question that has
been investigated is about the existence of a good characterization of graphs
that have the S-property for such smaller sets S. Here and further on, by a
“good characterization” we mean a description in terms of a graph class whose
members can be recognized in polynomial time. Dudek and Wajc [5] settled the
question in the negative, as they proved that, unless P= NP, there is no good
characterization of graphs with the {1, 2}-property, and similarly for the {0, 1}-
property. Later on, noticing that, for any two distinct sets S, S′ ⊂ Z of weights
with |S| = 2, |S′| = 2, any neighbour sum-distinguishing S-edge-weighting of a
regular graph yields a neighbour sum-distinguishing S′-edge-weighting, Ahadi,
Dehghan, and Sadeghi [1] proved that there is no good characterization of graphs
with the {a, b}-property for any two distinct a, b ∈ Z.

From this point on, it thus made sense investigating, for any two distinct
a, b ∈ Z, sufficient conditions for graphs to have the {a, b}-property. A spe-
cial focus has been dedicated to bipartite graphs, as 1) the aforementioned NP-
completeness results were not known to hold in the bipartite context, and 2)
bipartite graphs form one of the rare graph classes for which the 1-2-3 Conjec-
ture is relatively well understood (see [6]). As a first step, several works [3,4,7–9]
investigated whether there is a good characterization of bipartite graphs with
the {1, 2}-property. Back then, it was believed that such a good characterization
should exist, as, notably, all 3-connected bipartite graphs were proved to have
the {1, 2}-property [9]. It was not until quite recently that Thomassen, Wu, and
Zhang proved that, indeed, bipartite graphs without the {1, 2}-property are easy
to describe [13]. Namely, only so-called odd multi-cacti are bipartite and do not
have the {1, 2}-property. These graphs are defined as follows (the comprehensive

1This requirement is mandatory for any graph to be weightable; throughout this work, it
is thus implicit, unless stated otherwise, that every considered graph does not have K2 as a
connected component.
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definition is from [10]; refer to Figure 2 later on for an illustration).

“Take a collection of cycles of length 2 modulo 4, each of which has edges
coloured alternately red and green. Then form a connected simple graph by past-
ing the cycles together, one by one, in a tree-like fashion along green edges; the
resulting graph is an odd multi-cactus. The graph with one green edge and two
vertices (K2) is also an odd multi-cactus. When replacing a green edge of an odd
multi-cactus by a green edge of any multiplicity, we again obtain an odd multi-
cactus.”

One main ingredient behind Thomassen et al.’s result is the nice observation,
already made back in [3], that, when a and b are integers with distinct parity,
every bipartite graph G with bipartition (X,Y ) such that at least one of X and Y

has even cardinality has the {a, b}-property. This is because, in such a case, one
can easily construct {a, b}-edge-weightings of G where all vertices in X have odd
weighted degree while those in Y have even weighted degree. These observations
also imply that, for a and b with distinct parity, bipartite graphs without the
{a, b}-property have their two partite sets of odd cardinality, and they thus have
even order.

Reusing some of Thomassen et al.’s ideas, Lyngsie later considered the {0, 1}-
property for bipartite graphs [10]. His main result is a good characterization of
2-edge-connected bipartite graphs without the {0, 1}-property, which turns out
to be nothing but the class of odd multi-cacti. This result was established, in
particular, through aforementioned tools and results for cases where a and b

have different parities. However, both Thomassen et al. and Lyngsie observed
that there exist infinitely many separable (i.e., with cut-vertices) bipartite graphs
without the {0, 1}-property.

Although they are far from covering all the cases of a and b, the previous series
of results show two things. First, that, when considering 2-connected bipartite
graphs without the {a, b}-property, one should pay attention to odd multi-cacti.
Second, that separable bipartite graphs without the {a, b}-property and those
without the {a′, b′}-property may differ for different pairs a, b and a′, b′. This
is already well illustrated by the class of trees: while they all have the {1, 2}-
property [3], infinitely many of them do not have the {0, 1}-property [10].

This paper is mainly devoted to studying {a, b}-properties where both a and
b are odd. As a first step, we focus on the cases where b = a + 2. We introduce
mechanisms that are reminiscent of the ones mentioned above (for a and b with
distinct parity), which allow us to study the {a, a + 2}-property for bipartite
graphs and odd a ∈ Z. One of the main results we get from these is that, for any
odd a, 2-connected bipartite graphs without the {a, a+ 2}-property are precisely
odd multi-cacti again.

Theorem 1. Let a, b ∈ Z be odd integers with b = a+ 2. A 2-connected bipartite
graph G does not have the {a, b}-property if and only if G is an odd multi-cactus.
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Similarly as for the {0, 1}-property, the structure of separable bipartite graphs
without the {a, b}-property for odd a and b does not appear obvious. As a first
step, we give a special focus on the case {a, b} = {−1, 1}. In that case, we
can already point out two operations that, given bipartite graphs without the
{−1, 1}-property, clearly provide more separable bipartite graphs without the
{−1, 1}-property (see Figure 1).

G1

v1
G2

v2

G3
v3

G4
v4

(a) Operation 1. Operands

G1

v1 ∼ v2
G2

G3
v3 ∼ v4

G4

(b) Operation 1. Result

G1 v1
G2v2

(c) Operation 2. Operands

G1 v1
G2v2

(d) Operation 2. Result

Figure 1. Constructing graphs without the {−1, 1}-property from graphs without that

property.

• Let G1, G2, G3, G4 be four bipartite graphs without the {−1, 1}-property, and
let v1, v2, v3, v4 be any four degree-1 vertices of G1, G2, G3, G4, respectively. The
operation (see Figure 1(a) and (b)) consists in considering the disjoint union
G1∪G2∪G3∪G4, identifying the vertices v1 and v2, identifying the vertices v3 and
v4, and adding an edge joining the two vertices resulting from these identifications
(i.e., v1 ∼ v2 and v3 ∼ v4).

• Let G1, G2 be two bipartite graphs without the {−1, 1}-property, and let v1, v2
be any two vertices of G1, G2, respectively. The operation (see Figure 1(c) and
(d)) consists in considering the disjoint union G1 + G2, adding the edge v1, v2,
and further joining v1, v2 by a path with odd length at least 3.

In the case of trees, when a and b are any two non-zero integers that are
both positive (or negative), it is easy to see that K2 is the only tree without the
{a, b}-property: consider a vertex v whose all neighbours u1, . . . , ud−1 but one ud
(if any) are leaves, remove u1, . . . , ud−1, apply induction to deduce a neighbour
sum-distinguishing {a, b}-edge-weighting, and extend the weighting to the edges
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vu1, . . . , vud−1 so that the conflict vud is avoided. Thus, when b = a + 2 and a, b

are odd, only the case a = −1, b = 1 is potentially non-trivial. In Section 3, we
show that trees without the {−1, 1}-property can all be constructed through the
first operation above (illustrated in Figure 1(a) and (b)) performed on K2’s.

Theorem 2. A tree does not have the {−1, 1}-property if and only if it can be
constructed from a disjoint union of K2’s through repeated applications of the first
operation above.

In particular, the structure of trees without the {−1, 1}-property is very
different and simpler than that of trees without the {0, 1}-property (for more
on the structure of these trees, see [10]). Recall that all trees have the {1, 2}-
property, as was shown, e.g., in [3].

Terminology and notation. Let G be a connected graph. For a given vertex
v of G we denote by E(v) the set of edges incident to v. A bridge in G is an
edge whose removal results in two components. Let w be an edge-weighting of
G. Abusing the notation, the weighted degree of v in G by w will sometimes be
denoted w(v) for convenience. We say that an edge uv of G is a conflict by w

if w(u) = w(v). In other words, w is neighbour sum-distinguishing if no edge
is a conflict. In what follows, we will instead use the term proper in place of
neighbour sum-distinguishing to lighten the writing. By an x-edge of G (by w),
we mean an edge assigned weight x by w.

2. Proof of Theorem 1

In this section, we prove that for every odd integer a ∈ Z, the class of 2-connected
bipartite graphs without the {a, a+2}-property is exactly that of odd multi-cacti.
Another way to define these graphs is as follows. Start from K2, the simple
connected graph on two vertices, having its only edge coloured green. Then,
repeatedly apply an arbitrary number of the following operation (see Figure 2
for an illustration). Consider any green edge uv of the current graph, and join
u, v by a new path P of length ℓ ≥ 1 congruent to 1 modulo 4 whose edges are
coloured red and green as follows:

• if ℓ = 1, i.e., P has a unique edge, then this edge is green;

• if ℓ ≥ 5, then the edges of P are coloured red and green properly (i.e., no two
subsequent edges have the same colour) so that the two end-edges are red.

Figure 2 notably shows that performing this operation multiple times for a same
green edge is allowed, and that adding paths of length 1 is similar to increasing
the multiplicity of a green edge. Note also that it is not possible to get two
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adjacent green edges with distinct ends at any point of the process. Furthermore,
every obtained graph is bipartite. An odd multi-cactus is any graph that can be
obtained during this process, no matter how many times the operation is applied.
In particular, K2 itself is regarded as an odd multi-cactus.

u

v

(a)

u

v

(b)

u

v

(c)

u

v

(d)

u

v

(e)

Figure 2. Constructing an odd multi-cactus through several steps, from K2 (a). Red-

green paths with length at least 5 congruent to 1 modulo 4 are being attached onto the

green edge uv through steps (b) to (d). In step (e), (green) paths of length 1 are added,

which corresponds to increasing the multiplicity of some green edges.

In this section, we will implicitly use several properties of odd multi-cacti,
such as in the following observation.

Observation 3. Let M be an odd multi-cactus with its edges being coloured red
and green as described above. Then

• M is 2-connected;

• when replacing every (green) edge of M by an edge with multiplicity 1, a 2-
degenerate graph (i.e., a graph in which every subgraph has a vertex of degree
at most 2) is obtained;

• for every green edge uv of M , we have dM (u) = dM (v).

Having the structure of odd multi-cacti in mind, it can be proved that the
following holds true.

Lemma 4. If G is not an odd multi-cactus and was obtained from an odd multi-
cactus M by replacing a red edge with an edge of multiplicity at least 2 or by
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replacing a green edge by a path of length k ≥ 5 with k ≡ 1 (mod 4), then G has
the {a, b}-property for any two distinct integers a, b ∈ Z.

Proof. The proof is by induction on the order of M . So suppose that G is
obtained from an odd multi-cactus M by replacing an edge e with either an edge
of multiplicity at least 2 (if e is red in M) or a path of length k ≥ 5 with k ≡ 1
(mod 4) (if e is green in M). It is easy to check that the statement is true if M
is just a cycle with some multiple green edges. So we can focus on cases where
M was obtained in the general way, i.e., by pasting together cycles with length 2
modulo 4 having possibly green edges of any multiplicity. Furthermore, it is easy
to check that the statement is true if M was constructed by only pasting cycles
together along one single green edge e′ as in Figures 1(c), (d) and (e) where there
have only been pasted cycles together along the edge uv: in this case, since G is
not an odd multi-cactus, G is either obtained from M by replacing a red edge
with an edge of multiplicity at least 2, or e = e′ must be a simple edge and G is
obtained by replacing that edge e with a path of length k ≥ 5 with k ≡ 1 (mod 4)
and k ≥ 5. In both cases it is easy to check that G has the {a, b}-property.

Thus, we can assume that M was obtained by pasting together at least three
cycles and that there are at least two disjoint edges to which other cycles have
been pasted to. This implies that there are at least two disjoint cycles of length
congruent to 2 modulo 4 where all vertices except two which are adjacent have
exactly two neighbours. One of these cycles C = v1v2 · · · vnv1 does not contain e.
By possibly relabelling the vertices we can assume that all vertices of C except
v1 and v2 only have two distinct neighbours. By induction the graph G′ obtained
from G by replacing the path v2v3 · · · vn with an edge e′′ has the {a, b}-property,
but any proper {a, b}-edge-weighting of G′ can be converted to a proper {a, b}-
edge-weighting of G by assigning the same weight to an edge in G as in G′ and
assigning the weight assigned to e′′ in G′ to the edges v2v3 and vn−1vn, and finally
assigning the weights of the remaining edges v2v3, . . . , vn−2vn−1 in a way avoiding
conflicts inside C.

We now introduce or recall results that will be needed during the course of
our main proof below. The following first observation is obvious and implies that
studying the {a, b}-property only makes sense when gcd(a, b) = 1.

Observation 5. Let w be a proper {a, b}-edge-weighting of a graph G. If we
multiply all edge weights of w by a non-zero integer α, then we get a proper
{aα, bα}-edge-weighting of G.

In what follows, given a graph G and a mapping f : V (G) → Zk, by an
f -factor modulo k we mean a spanning subgraph H of G such that, for every
v ∈ V (G), we have dH(v) ≡ f(v) (mod k).
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Lemma 6 (Thomassen [12]). Let G be a connected graph. If f : V (G) → Z2

is a mapping satisfying
∑

v∈V (G) f(v) ≡ 0 (mod 2), then G contains an f-factor
modulo 2.

When dealing with bipartite graphs with a bipartition set of even cardinality,
and when a and b have distinct parity, f -factors modulo 2 can be employed as
a convenient tool to deduce proper {a, b}-edge-weightings in quite an easy way
(see [10,13]). More precisely, let (X,Y ) be the bipartition of a bipartite graph G

where |X| is even. Lemma 6 (when applied onto the function f where f(x) = 1
for x ∈ X and f(y) = 0 for y ∈ Y ) implies that G has a spanning subgraph H

where all of the vertices in X have odd degree, while all of the vertices in Y have
even degree. From this, it is easy to see that, assuming a is odd and b is even,
assigning weight a to all of the edges in E(H) and weight b to all of the edges in
E(G) \ E(H) yields a proper {a, b}-edge-weighting of G.

The upcoming new tools and concepts (in particular that of mod-4 vertex-
colourings) are the key to generalize this approach to odd a, b ∈ Z when |a−b| = 2.

Definition 7. A mod-4 vertex-colouring of a graph G is a vertex-colouring c :
V (G) → {1, 2} of G satisfying the following conditions for any uv ∈ E(G) where
d(u) and d(v) have the same parity:

1. d(u) ≡ d(v) (mod 4) ⇒ c(u) 6= c(v),

2. d(u) 6≡ d(v) (mod 4) ⇒ c(u) = c(v).

In the next result, we prove that every bipartite graph G admits a mod-4
vertex-colouring c. It is important to point out that, in general, c might be far
from fitting with the bipartition of G. Actually, G might have many edges whose
two ends have the same colour by c.

Lemma 8. Every bipartite graph has a mod-4 vertex-colouring.

Proof. It suffices to prove the lemma for connected bipartite graphs where all
vertices have odd degree or where all vertices have even degree (as otherwise we
can consider, still in the whole graph, the vertices with even degree first, and then
those with odd degree). So let G be a connected bipartite graph where all vertex
degrees have the same parity. Let v be a vertex in G and let D0, D1, . . . , Dm

denote the distance classes of G from v ∈ D0. Since G is bipartite, each Di is an
independent set. Now give v colour 1 and colour the distance classes in the given
order starting with D1, then D2 and so on until we reach a vertex v′ ∈ Di′ we
cannot assign a colour without violating conditions 1 or 2 in Definition 7. If this
happens one or both of the following two cases have occurred.

1. There are two neighbours v1, v2 ∈ Di′−1 of v′ with d(v1) ≡ d(v2) (mod 4) and
c(v1) 6= c(v2).
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2. There are two neighbours v1, v2 ∈ Di′−1 of v′ with d(v1) 6≡ d(v2) (mod 4) and
c(v1) = c(v2).

Let us first assume that we are in the first case and let P1, P2 be two internally
disjoint shortest paths towards v starting with v′v1 and v′v2, respectively, and
ending in a common vertex v′′ ∈ Di′′ . That is, v′′ is the first vertex on both
P1 and P2 that is encountered when going from v1 towards v along P1; possibly
v′′ = v. All the vertices of P1 and P2 except v′ are coloured without violating
conditions 1 and 2 in Definition 7, and P1 and P2 have the same length. The
parity of the number of times the degree modulo 4 changes when walking from v′′

to v1 on P1 is the same as the parity of the number of times the degree modulo
4 changes when walking from v′′ to v2 on P2. Thus, the parity of the number of
times the degree modulo 4 does not change when walking from v′′ to v1 on P1

is the same as the parity of the number of times the degree modulo 4 does not
change when walking from v′′ to v2 on P2. Since conditions 1 and 2 in Definition
7 are not violated, this implies that the parity of the number of times the colour
changes when walking from v′′ towards v′ is the same when walking along P1 as
when walking along P2. Thus, c(v1) = c(v2), a contradiction. The second case
above can be dealt with in a similar way.

Let a, b ∈ Z be two odd integers with b = a + 2. Let G be a graph and
X,Y be two disjoint subsets of its vertices. By an (X,Y )-a-parity {a, b}-edge-
weighting of G, we mean an {a, b}-edge-weighting where all vertices in X are
incident to an odd number of a-edges and all vertices in Y are incident to an even
number of a-edges. (X,Y )-b-parity {a, b}-edge-weightings are defined similarly,
but with respect to the incident b-edges. In the following result, we establish
a crucial connection between mod-4 vertex-colourings and (X,Y )-parity {a, b}-
edge-weightings, leading to the existence of proper {a, b}-edge-weightings.

Lemma 9. Let G be a connected bipartite graph and let a, b ∈ Z be odd integers
with b = a + 2. If G has a mod-4 vertex-colouring where at least one of the two
colour classes has even size, then G has the {a, b}-property. Consequently, if G
does not have the {a, b}-property, then, in every mod-4 vertex-colouring, the two
colour classes have odd size.

Proof. Let G be a connected bipartite graph, and c a mod-4 vertex-colouring of
G. We denote by X and Y the sets of vertices with colour 1 and 2, respectively.
Assume |X| is even. By Lemma 6 there is an {a, b}-edge-weighting w : E(G) →
{a, b} such that all vertices in X are incident to an odd number of b-edges and all
vertices in Y are incident to an even number of b-edges. This corresponds to our
notion of an (X,Y )-b-parity {a, b}-edge-weighting. The possible weighted degrees
of a vertex v of even degree and colour 1 induced by such an edge-weighting are
{a(d(v)−1)+b, a(d(v)−1)+b+4, a(d(v)−1)+b+8, . . . , a+b(d(v)−1)} and the
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possible weighted degrees of a vertex v′ of even degree and colour 2 induced by
such an edge-weighting are {ad(v′), ad(v′)+4, ad(v′)+8, . . . , bd(v′)}. The possible
weighted degrees of a vertex u of odd degree and colour 1 induced by such an edge-
weighting are {a(d(u)−1)+b, a(d(u)−1)+b+4, a(d(u)−1)+b+8, . . . , bd(u)} and
the possible weighted degrees of a vertex u′ of odd degree and colour 2 induced
by such an edge-weighting are {ad(u′), ad(u′)+4, ad(u′)+8, . . . , a+b(d(u′)−1)}.
Let xy ∈ E(G). We will show that w(x) 6= w(y). To do this we distinguish two
distinct cases (note that we can assume that x and y have the same degree parity,
as otherwise w(x) cannot be equal to w(y)).

1. x and y have the same colour by c.

2. x and y have distinct colours by c.

First assume that x and y have the same colour. Since c is a mod-4 vertex-
colouring we have that d(x) 6≡ d(y) (mod 4). Note that by the above it suffices
to show that ad(x) 6≡ ad(y) (mod 4) and this is trivially true since gcd(a, 4) = 1.
Now assume that x and y have distinct colours. Since c is a mod-4 vertex-
colouring we have that d(x) ≡ d(y) (mod 4). Note that by the above it suffices
to show that ad(x) ≡ ad(y) (mod 4), and as mentioned above this follows since
gcd(a, 4) = 1.

From the previous proof, we can also extract the following.

Observation 10. Let a, b ∈ Z be odd integers with b = a + 2 and let uv be an
edge in a graph G whose edges are weighted with a and b. If either

1. d(u) and d(v) have distinct parity, or

2. d(u) ≡ d(v) (mod 4) and v is incident to an odd number of a-edges while u

is incident to an even number of a-edges, or

3. d(u) 6≡ d(v) (mod 4) and both v and u are incident to an odd or even number
of a-edges,

then u and v have distinct weighted degrees. This is also true if one considers
the parity of the numbers of incident b-edges instead of the parity of the numbers
of incident a-edges.

Let G be a graph and w an {a, b}-edge-weighting of G. By swapping (the
weight of) an edge, we mean changing its weight to a if it is a b-edge, or changing
its weight to b otherwise. By swapping a path or a cycle, we mean swapping all
of its edges. For a vertex v in a cycle C of G, it can be observed that the parity
of the number of a-edges (and similarly b-edges) incident to v is not altered upon
swapping C. In the proof of our main result below, this fact will be used a lot to
get rid of conflicts in the following way.

Let X,Y be the two colour classes of a mod-4 vertex-colouring of G and
assume that, for some vertex v ∈ X, w is an (X \ {v}, Y ∪ {v})-a-parity {a, b}-
edge-weighting, i.e., all vertices in X\{v} are incident to an odd number of a-edges
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and all vertices in Y {v} are incident to an even number of a-edges. According
to Observation 10, all conflicts (if any) involve v. So let uv be a conflict. To get
rid of this conflict while controlling the possible creation of new conflicts, we will
swap particular cycles of G. Let C be a cycle of G going through u using two
edges e, e′ incident to u. If e, e′ are assigned the same weight by w, then C is
called u-changing. C will be called v-avoiding if it does not go through v.

Observation 11. Let G be a graph, X,Y be the two colour classes of a mod-4
vertex-colouring of G, and let w be an (X \ {v}, Y,∪{v})-a-parity {a, b}-edge-
weighting for some vertex v, where a, b ∈ Z are odd integers with b = a + 2. If
uv is a conflict, then, by swapping a u-changing v-avoiding cycle C of G, we get
rid of this conflict. Furthermore, any remaining/arising conflicts involve v.

Proof. According to Observation 10, all original conflicts by w must involve v.
When swapping C, the weighted degree of u is altered since C is u-changing,
while the weighted degree of v is unaltered since C is v-avoiding. So we get rid
of the conflict uv. Furthermore, it can be noticed that, upon swapping any cycle
of G, the parities of the number of a-edges (and similarly b-edges) incident to
the vertices are unaltered. Therefore, we get another (X \ {v}, Y ∪ {v})-a-parity
{a, b}-edge-weighting, and Observation 10 indicates that, after the swapping of
C, all conflicts (if any) in the resulting {a, b}-edge-weighting must involve v.

We finish with a few general lemmas to be used in particular cases of our
upcoming main proof.

Lemma 12. Let G be a 2-connected bipartite graph, X,Y be the two colour
classes of a mod-4 vertex-colouring of G, and let a, b ∈ Z be odd integers with
b = a+ 2. If both X and Y have odd size and v ∈ X is such that G− v−N(v) is
connected, then there is an (X \ {v}, Y ∪{v})-a-parity {a, b}-edge-weighting of G
where all edges incident to v have weight b and every vertex u ∈ N(v) is incident
to at most 1 + M(uv) b-edges, where M(uv) denotes the multiplicity of the edge
uv.

Proof. Suppose G′ = G−v−N(v) is connected. Let G′′ be obtained from G−v

by, for every vertex u ∈ N(v), removing all edges but one incident to u in G− v.
For each u ∈ N(v), let eu be the unique edge incident to u in G′′ and let n(u)
denote the unique neighbour of u in G′′. Note that since G′ is connected, then
so is G′′. Let S denote the set of edges in G not incident to v and not in G′′.
That is, S is the set of edges removed from G− v to obtain G′′. Let G[S] denote
the subgraph of G induced by the edges in S and let Z denote the vertices of
odd degree in G[S]. Clearly |Z| is even, so, since X \ {v} has even size, the set
X ′ = (X \ (Z ∪ {v})) ∪ Z ∩ Y also has even size. Thus, Lemma 6 implies that
there is an (X ′, V (G′′)\X ′)-a-parity {a, b}-edge-weighting of G′′. We now extend
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this weighting to G by assigning weight a to all edges in S and weight b to all
edges in E(v); this results in a desired edge-weighting of G.

Lemma 13. Let G be a 2-connected bipartite graph. If there is a vertex v ∈ V (G)
of degree at least 4 and with |N(v)| ≥ 3 such that G−v−N(v) is connected, then
G has the {−1, 1}-property.

Proof. By Lemma 12, there is an (X \ {v}, Y ∪ {v})-(−1)-parity {−1, 1}-edge-
weighting of G, where all edges incident to v have weight 1 and any vertex
u ∈ N(v) is incident to at most 1 + M(uv) 1-edges, where M(uv) denotes the
multiplicity of the edge uv. Observation 10 implies that the only potential con-
flicts are between v and its neighbours. But the weighted degree of v is d(v) and
since |N(v)| ≥ 3, we have for any u ∈ N(u) that the multiplicity of uv is less
than d(v) − 1. Thus, the weighted degree of any u ∈ N(v) is less than d(v) and
therefore, there can be no conflicts.

Lemma 14 (Thomassen, Wu, Zhang [13]). Let q be a natural number such that
q ≥ 4. Let G be a connected graph and let A be an independent set of at most q
vertices such that each vertex in A has degree at least q− 1, or, each vertex in A,
except possibly one, has degree at least q. Assume that no vertex in A is adjacent
to a bridge in G. Then, for each vertex a of A, there is an edge ea incident
to a such that the deletion of all ea, a ∈ A, results in a connected graph unless
|A| = q = 4, all vertices of A have degree 3, and G−A has six components each
of which is joined to two distinct vertices of A.

Let a and b be two odd integers with b = a+ 2. In some cases Lemmas 6 and
14 work well together when trying to construct a proper {a, b}-edge-weighting of
a connected bipartite graph G. Suppose c : V (G) → {1, 2} is a mod-4 vertex-
colouring of G and let X and Y denote the sets of vertices in G of colour 1 and
2, respectively, and assume that both X and Y have odd size. Furthermore,
suppose that the degree of a vertex v ∈ X is at least 4 and no vertex in N(v) has
degree strictly larger than 4. Let A be the vertices in N(v) with the same degree
as v and suppose that no vertex in A is incident to a bridge in G− v, the graph
G− v is connected, and we are not in the exceptional case of Lemma 12, that is,
for each u ∈ A there is an edge eu such that G−

⋃
u∈A{eu} is connected. Define

S =
⋃

u∈A{eu} and let Z denote the set of vertices in G which have odd degree
in the subgraph of G induced by S (note that A ⊂ Z). Since X \ {v} and Z have
even size, the set X ′ = (X \ (Z ∪ {v}))∪Z ∩ Y also has even size. Thus, Lemma
6 implies that there is an (X ′, V (G − v) \ X ′)-a-parity {a, b}-edge-weighting of
G−v. We can extend this edge-weighting to G by assigning weight a to all edges
in S and weight b to all edges in E(v) to obtain an (X \ {v}, Y ∪ {v})-a-parity
{a, b}-edge-weighting of G where all edges incident to v have weight b and every
vertex u ∈ N(v) is incident to at least one a-edge. Thus, the weighted degree



On {a, b}-Edge-Weightings of Bipartite Graphs with Odd a, b 171

of v is greater than that of its neighbours and Observation 10 implies that the
edge-weighting is proper.

We are now ready to prove the main result of this section. Let us emphasize
that the main steps in the proof follow the lines of those in the proofs of the main
results in [10] and [13]. In particular, Claims 2, 3, 4, 5, as stated below, can also
be found in [10]. The proofs are rather different, though, as most arguments used
to deal with the {0, 1}-property do not apply immediately for the {a, b}-property
when a, b ∈ Z are odd and b = a + 2. Instead, some of the tools and results we
have introduced earlier are used. Also, the end of the proof in our case is more
straightforward than those for the {1, 2}- and {0, 1}-properties.

Proof of Theorem 1. Suppose the theorem is false and, for some odd a ∈ Z

and b = a + 2, let G be a counterexample which has smallest possible order. By
possibly multiplying the weights by −1 we can assume b > 0. Let c be a mod-4
vertex-colouring of G (such a colouring exists by Lemma 8), and let X denote
the set of vertices with colour 1 and Y denote the set of vertices with colour 2.
By Lemma 9, we can assume that both X and Y have odd size.

Claim 15. G has no multiple edge uv where both u and v have only two distinct
neighbours.

Proof. Suppose uv is a multiple edge and both u and v have only two distinct
neighbours. By the minimality of G, Lemma 4, and the fact that G is not an odd
multi-cactus, the graph obtained from G by replacing uv with one non-multiple
edge has a proper {a, b}-edge-weighting w. But since the multiplicity of uv in G

is at least 2 and since u and v can each be in only one conflict distinct from uv,
we can obtain a proper {a, b}-edge-weighting of G from w by weighting the edges
joining u and v to avoid the conflicts involving u and v (such an edge-weighting
exists because there are at least three possible sums for the weight of edges joining
u and v). �

Since G is 2-connected, it has minimum degree at least 2. In what follows,
by a suspended path of G, we mean a path v1x1 · · ·xkv2 where all internal vertices
x1, . . . , xk have degree 2 and v1 and v2 have degree at least 3.

Claim 16. G has no suspended path of length 2.

Proof. Suppose the claim is false and let v1xv2 be a suspended path in G, where
d(x) = 2 and d(v1), d(v2) ≥ 3. We can assume x ∈ X. Define G′ = G − x.
Recall that G′ is connected since G is 2-connected. Lemma 6 implies that there
is an (X \ {x}, Y ∪ {x})-a-parity {a, b}-edge-weighting w of G, where w(v1x) =
w(v2x) = a. More precisely, w can be obtained as follows (recall that |V (G′)∩X|
is even).
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• If v1, v2 ∈ X, then, according to Lemma 6, there is an (X \ {v1, v2, x}, Y ∪
{v1, v2})-a-parity {a, b}-edge-weighting of G′. Then, assigning weight a to v1x

and v2x gives the desired weighting of G.

• If v1, v2 ∈ Y , then the same conclusion can be reached when applying Lemma 6
so that we start from an (X−{x}∪{v1, v2}, Y \{v1, v2})-a-parity {a, b}-edge-
weighting of G′.

• If v1 ∈ X and v2 ∈ Y (respectively, v2 ∈ X and v1 ∈ Y ), then, again, we
can get the same conclusion after applying Lemma 6 from an (X \ {v1, x} ∪
{v2}, Y ∪{v1}\{v2})-a-parity {a, b}-edge-weighting (respectively, (X \{v2}∪
{v1}, Y ∪ {v2} \ {v1})-a-parity {a, b}-edge-weighting) of G′.

Observation 10 implies that the only conflicts that can arise are xv1 and xv2.
So we can assume that x and v1 are in conflict, i.e., both x and v1 have weighted
degree 2a. This implies that v1 has even degree at least 4 (by the definition
of a suspended path, and only vertices with degree of the same parity can be
in conflict) and a < 0 < b and hence a = −1 and b = 1. Let u1, u2 be two
neighbours of v1 in G′ such that u1v1 and u2v1 have weight −1 and let C be a
cycle in G′ using the edges u1v1 and v1u2. Such a cycle exists as, because G is
2-connected, there is a path from u1 to u2 in G − v1. Because C is v1-changing
and x-avoiding, if we swap all weights on C we do not create new conflicts in G′

and we lose the conflict xv1 (recall Observation 11). In particular, x remains of
weighted degree −2 while v1 becomes of weighted degree 2.

Thus, we can now assume that xv2 is a conflict. This implies that v2 also has
even degree at least 4. We can now get rid of this conflict in the same way as we
got rid of the conflict v1x, unless all v2-changing cycles in G′ (that thus use two
edges in E(v2) having the same weight) all use two edges in E(v1) both having
weight 1 (in this case we only move the conflict from xv2 to xv1). Since xv2 is
a conflict, v2 must be incident to at least two −1-edges in G′ and at least one
1-edge. Furthermore, as mentioned above, we can assume that any v2-changing
cycle in G′ contains two edges incident to v1 having weight 1.

Assume that v1 is incident to a −1-edge e in G′. Since G is 2-connected,
there is, in G − v1, a path from v2 to the end of e different from v1. From the
existence of that path, we get that there is a path P in G′ from v1 to v2 using e.
If the weight on the last edge e′ of P (the one incident to v2) is 1, then swapping
the weights on the cycle P ∪ v1x ∪ xv2 yields a proper edge-weighting; so we
can assume e′ has weight −1. Since xv2 is a conflict and v2 has even degree at
least 4, vertex v2 must be incident to a −1-edge e′′ 6= e′ in G′. Now, because
G is 2-connected, the graph G − v2 has a path P ′ joining the end of e′ different
from v2 and the end of e′′ different from v2. Note that if P ′ does not contain v1,
then we would get a cycle whose weights can be swapped to immediately deduce
a proper edge-weighting of G. The same conclusion holds if P ′ and P intersect
for the first time on a vertex different from v1. So v1 is the first intersection point
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between P and P ′, in which case we deduce a cycle of G containing v2 as well as
all of e, e′, e′′ (first go from v2 to v1 along P ′, before going back to v2 along P );
when swapping the weights along that cycle, we get rid of all conflicts between x

and v1, v2.

We are left with the case where v1 is not incident to a −1-edge e in G′. Thus,
we deduce that v1 has degree 4 and, by symmetry, v2 also has degree 4. Note
that this implies that v1, v2 ∈ X and furthermore, that all four edges incident
to v1 except v1x have weight 1. Also, according to all hypotheses so far, v1 has
weighted degree 2, v2 has weighted degree −2, and so two edges incident to v2
in G′ have weight −1 while the last edge incident to v2 in G′ has weight 1. We
now consider the graph G′′ = G′ − v1 − v2. If G′′ is connected, then we can find
in G′ a cycle including the two −1-edges incident to v2 (thus v2-changing), and
not passing through v1; then, as earlier, we can swap the weights along this cycle
to get rid of the conflict v2x. So we may assume the two −1-edges incident to
v2 in G′ are incident to two distinct components of G′′. This leaves us with the
following three cases to consider.

Case 1. G′′ has two components C1, C2 such that v1 has two neighbours in
C1 and one neighbour in C2, and v2 has two neighbours in C2 and one neighbour
in C1.

Let e1,a and e1,b denote the two edges incident to v1 going to C1. Recall that
e1,a, e1,b have weight 1. Since C1 is connected, there is a path from the end of
e1,a different from v1 to the end of e1,b different from v1. We swap all weights
along the cycle formed by this path and e1,a, e1,b to get another edge-weighting
of G where v1 has weighted degree −2; so, now, both xv1 and xv2 are conflicts.

Now let e1,c denote the edge incident to v1 going to C2, and e2,a denote
the 1-edge incident to v2 going to C2. Both these edges are weighted 1. Since
C2 is connected, there is a path P from the end of e1,c different from v1 to the
end of e2,a different from v2. Now consider the cycle of G starting in x, going
through xv2 and e2,a, then going along P , and finally going through e1,c and v1x.
When swapping all weights along this cycle, note that v1, v2 remain of weighted
degree −2, while x becomes of weighted degree 2. So the {−1, 1}-edge-weighting
of G becomes proper according to Observation 11.

Case 2. G′′ has two components C1, C2 such that both v1 and v2 have two
neighbours in C1 and one neighbour in C2.

Let v1,a, v1,b denote the two neighbours of v1 in C1, and let v1,c denote the
neighbour of v1 in C2. Note that for one of v1,a, v1,b, say v1,a, the graph G′′′ =
G − v1 − v1,a − v1,c is connected, if G′ is disconnected, then it must be the case
that v1,a is a cut-vertex in G− v1 and then it is easy to see that G− v1 − v1,b −
v1,c is connected, and we can just rename v1,a and v1,b accordingly. Note that,
by Lemma 13, we can assume that G′′′ − v1,b is disconnected. Let L1, . . . , Ln
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denote the components of G′′′ − v1,b, where v2 ∈ V (L1). Since v1,b is not a cut-
vertex in G, it follows that v1,a has a neighbour in each of the components Li

for i ≥ 2.

Let us now consider the graph obtained from G by removing the vertex v1,
and, for each of v1,a, v1,c, removing all remaining incident edges but one. Note
that, in that graph, x also has degree 1. Lemma 6 implies that this graph has an
(X \ {v1}, Y )-(−1)-parity {−1, 1}-edge-weighting. By then assigning weight −1
to all removed edges incident to v1 and weight 1 to all remaining edges (incident
to one of v1,a, v1,c), we get that G has an (X \ {v1}, Y )-(−1)-parity {−1, 1}-
edge-weighting where all four edges incident to v1 are weighted −1, and each of
v1,a, v1,c is incident to at most two −1-edges. Now the only possible conflict is
v1v1,b, so we can assume this is indeed a conflict, and hence, both v1 and v1,b have
weighted degree −4. We can also assume that we cannot swap the weights in a
cycle in G′′′ containing two edges incident to v1,b having the same weight, and
hence, v1,b has at most two neighbours in each of Li for i = 1, . . . , n. Since the
weighted degree of v1,b is −4, there must be some components in G′′′− v1,b which
are incident to strictly more −1-edges in E(v1,b) than 1-edges in E(v1,b). Again,
since we can assume that there is no cycle in G′′′ containing two edges incident
to v1,b having the same weight, we can also deduce that no two edges incident to
v1,b having the same weight go to the same component in G′′′ − v1,b. Thus, there
are at least three components L′

1, L
′

2, L
′

3 in G′′′−v1,b, each of which is incident to
only one edge in E(v1,b) and each of these edges has weight −1. We can assume
that L′

1 and L′

2 are distinct from L1, and, since v1,b is not a cut-vertex in G, the
vertex v1,a has a neighbour u′i in each L′

i for i = 1, 2. There is now a cycle C in
G′′′ + v1,a containing two edges incident to v1,b having weight −1 and containing
the two edges v1,au

′

1 and v1,au
′

2. If we swap the weights on C, then the only
possible conflict is v1v1,a in the case where v1,a is a vertex of degree 4 and v1v1,a
has weight −1, both v1,au

′

1 and v1,au
′

2 have weight 1, and v1,a is incident to some
fourth −1-edge v1,au

′. We can assume that the component L′ to which u′ belongs
in G′′′− v1,b is not incident to a −1-edge of v1,b, since otherwise, we could modify
C to contain the edge v1,au

′. Note that this also implies that L′

3 = L1. Since v1,b
had weighted degree −4 this implies that there is another component L′

4 distinct
from all of L′

1, L
′

2, L
′

3, which is incident to an edge in E(v1,b) having weight −1.
The vertex v1,a must have a neighbour u′′ in this component L′

4 and, since we
can assume that we cannot modify C to contain v1,au

′, we must have u′′ 6= u′.
This contradicts v1,a having degree 4.

Case 3. G′′ has three components C1, C2, C3 such that v1 and v2 have one
neighbour in each of these three components.

In that case, G has the {−1, 1}-property according to Lemma 13 as v1 has
even degree 4, and it can be checked that G − v1 − NG(v1) remains connected
due to the 2-connectedness of G. In particular, for i = 1, 2, 3, note that the edge
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incident to v1 going to Ci and the edge incident to v2 going to Ci cannot share
an end. A contradiction. �

Claim 17. G has no suspended path of length 4.

Proof. Suppose the claim is false and let v1x1x2x3v2 be a suspended path in G,
where d(x1) = d(x2) = d(x3) = 2 and d(v1), d(v2) ≥ 3. We can assume x2 ∈ X,
which implies that x1, x3 ∈ Y . Define G′ = G − x1 − x2 − x3. Using Lemma 6
similarly as in the proof of Claim 2, we can come up with an (X \ {x1}, Y \
{x2, x3})-a-parity {a, b}-edge-weighting w of G where w(v1x1) = w(x3v2) = a

and w(x1x2) = w(x2x3) = b. One can check that, by slightly modifying the
exact same arguments used in the proof of Claim 2, we can eventually remove all
conflicts from w, or deduce another proper {a, b}-edge-weighting of G. �

Claim 18. G has no suspended path of length at least 5.

Proof. Suppose the claim is false and let v1x1x2x3x4v2 be a path in G, where
x1, x2, x3, x4 all have degree 2, and v1, v2 here might be of degree 2. Let G′ be
obtained from G by replacing v1x1x2x3x4v2 by an edge e = v1v2 even if that
edge is already there. If G′ has the {a, b}-property, then so does G. Indeed,
assume there is a proper {a, b}-edge-weighting of G where the weight of e is, say
a, and consider that weighting back in G. We start the extension to the five
edges by assigning weight a to v1x1 and x4v2, so that v1 and v2 keep the same
weighted degree as in G′. Since v1v2 is an edge in G′, note that v1 and v2 have
different weighted degrees. From this, we deduce that either v1 has weighted
degree different from 2a and v2 has weighted degree different from a + b, or
conversely. Assume the first situation holds. Then, we can achieve the weighting
of G by assigning weight a to x1x2 and weight b to x2x3 and x3x4.

So we can assume that G′ does not have the {a, b}-property and is thus an
odd multi-cactus by the minimality of G. The edge e cannot be red in G′, since
then G would also be an odd multi-cactus. Thus e is green and Lemma 4 implies
that G has the {a, b}-property. �

By Claims 1, 2, 3, 4, all degree-2 vertices in G (if any) lie on suspended paths
of length 3. In G we replace all suspended paths of length 3 by edges (even if
the two ends were already adjacent) to form a bipartite multigraph G∗. Edges
arising from suspended paths of length 3, we call blue edges. Every other edge of
G∗, i.e., which was already present in G, we call a white edge.

Note that G∗ is bipartite, 2-connected, has minimum degree at least 3, and it
may have more multiple edges than G has. Also, note that for every vertex v in
G∗, we have dG∗(v) = dG(v). In general, it is not easy to deduce a proper {a, b}-
edge-weighting of G from one of G∗ (typically because of blue edges); however,
information on the structure of G can be deduced from that of G∗. In particular,
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we will study the existence of paths or cycles in G∗ to deduce that of corresponding
paths or cycles in G (where any traversed blue edge in G∗ is replaced by the
corresponding path of length 3 in G).

If the deletion of some pair of adjacent vertices u, v disconnects G∗, then
let z0y0 ∈ E(G∗) be such that G − z0 − y0 is disconnected and such that some
component H of G∗ − z0 − y0 has smallest possible order. The union of that
component H and z0, y0 together with all edges connecting them is denoted by B.
In case G has no pair of adjacent vertices whose removal disconnects the graph,
we define H = B = G∗, and y0, z0 do not exist.

Claim 19. For every vertex v of H, we have dG∗(v) = 3.

Proof. Suppose the claim is false and let w0 be a vertex in H of maximum degree
d = d(w0) at least 4. Without loss of generality, we can suppose that w0 ∈ X.
Assume first that w0 is adjacent to none of z0, y0 (this is the case if these two
vertices do not exist). By the remark following Lemma 14, we can assume that
we are in the exceptional case when considering G − w0 and defining A to be
the set of vertices in N(v) which have the same degree as w0. Thus, w0 and all
vertices in N(w0) have degree 4 and G−w0−N(w0) has exactly six components.
We can now choose another vertex of degree d as w0 by choosing w0 such that
the order of the component of G − w0 − N(w0) containing z0 is maximum and
avoid the exceptional case in Lemma 14. Again, the remark following Lemma 14
shows how to find a proper {a, b}-edge-weighting of G.

So we can assume w0 is adjacent to, say, z0 and that all the neighbours of w0

in H which have the same degree as w0 are adjacent to y0 (due to the bipartiteness
of G∗). Since y0, z0 thus exist, we have G 6= H. We can also assume that all
vertices in H having maximum degree are adjacent to z0 or y0 (as otherwise, the
previous situation would apply). Note that this implies that we can never be in
the exceptional case in Lemma 14 when we delete a vertex v in H of maximum
degree and define A to be the neighbours of v with the same degree as v.

As pointed out earlier, there is an (X\{w0}, Y )-a-parity {a, b}-edge-weighting
of G where all edges incident to w0 are weighted b and every neighbour of w0

with degree d is incident to at least one a-edge. This edge-weighting is proper
unless z0w0 is a conflict, which occurs only if the degree of z0 is strictly greater
than that of w0. Note that we can assume that z0 is incident to exactly one edge
going to each component other than H in G− y0 − z0, since otherwise, we could
deduce an {a, b}-edge-weighting of G as above with the extra condition that two
edges e, e′ incident to z0 going to a component C of G − y0 − z0 other than H

are weighted b. Then, if z0w0 is a conflict, we could get rid of it by swapping the
weights along a cycle going through z0 and C via e, e′ (so that it is z0-changing)
and not going through H (so that it is w0-avoiding). So z0 is incident to exactly
one edge going to each component other than H in G − y0 − z0. We can also
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assume that there is at most one component C other than H in G−y0−z0, since
otherwise, we could reach the exact same conclusion by deducing an {a, b}-edge-
weighting of G as before with the extra condition that two edges e, e′ incident to
z0 going to two different components C,C ′ distinct from H are weighted b. In
case z0w0 is a conflict, we could again get rid of it by swapping the weights along
a cycle going through z0, in C via e, back to y0, in C ′, and back to z0 via e′. This
would be correct since such a cycle would not go through H, and thus, would be
w0-avoiding. Similarly, we can assume that the multiplicity of z0y0 is 1.

Let us denote by z1 the unique neighbour of z0 in C. By swapping the
weights along a cycle through C containing z0, y0 and the edge z0z1, and not
going through H, we can further assume that the edge z0z1 is weighted a. For a
similar reason, we can assume that the edge y0z0 is weighted b. Recall that w0

and all the neighbours of w0 with degree d are all incident to an even number of
a-edges; thus, each of the neighbours of w0 with degree d is incident to at least
two a-edges.

To get rid of the conflict z0w0, we would like to swap the weights along a z0-
changing cycle in G−w0 (thus, w0-avoiding). According to Observation 11, recall
that this would not alter the parity of the number of incident a’s of any vertex
in V (G) \ {w0}. Furthermore, this would get rid of the conflict z0w0. However,
this swapping process can create a conflict between w0 and a neighbour v of w0

with degree d; but such a conflict can only arise when the cycle goes through the
only two a-edges incident to v. For a neighbour v of w0 with degree d that is
incident to only two a-edges, we call this pair of edges a forbidden pair. Our goal
in what follows is to show that G − w0 has a z0-changing cycle not containing
any forbidden pair of edges.

Let us denote by v1, . . . , vm the neighbours of w0 with degree d. As mentioned
earlier, recall that the vi’s are all adjacent to y0. Since z0w0 is a conflict, recall
that d(z0) and d(w0) have the same parity. Furthermore, since d(z0) > d(w0) > 3,
it follows that d(z0) ≥ 6, and, because the only neighbours of z0 outside H are y0
and z1, there is a vertex z2 6= w0 in N(z0)∩V (H). Note that, to find the desired
cycle through z0 in G− w0, it suffices to find a path P from y0 to a vertex z′ in
N(z0) ∩ V (H) in the connected graph G − z0 − w0 (which is connected by the
minimality of H) not using any forbidden pair of edges. Indeed, if the weight on
z0z

′ is b, then we can define our cycle to be P ∪ {z0y0, z
′z0}, while, if the weight

on z0z
′ is a, then we can define our cycle to be P ∪Pc, where Pc is a path from z0

to y0 in G−H−z0y0 (thus, through C). Since the graph G−z0−w0 is connected,
there is a path P1 from z2 to y0. We can assume that P1 uses forbidden pairs
of edges. Without loss of generality, let pv1 and v1q be the first forbidden pair
of edges P1 used when going from z2 to y0. Since v1 is adjacent to y0, it follows
that q = y0, since otherwise, we have found a path from y0 to z2 not using any
forbidden pair of edges. Thus, we can assume that all paths from y0 to a vertex
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in N(z0)∩V (H) use exactly one forbidden pair of edges. Now we look at all such
paths using only one pair of forbidden edges y0vi and vip (for i ∈ {1, . . . ,m}) and
consider one such path P that goes through the most neighbours of w0. Let y0vi
and vip be the pair of forbidden edges that P contains.

First suppose that vi has a neighbour v′i distinct from y0, p, w0. The edge
viv

′

i must have weight b. Since G − w0 − vi is connected, it has a path P ′ from
v′i to a vertex in N(z0)∩ V (H). The path P ′ must use a forbidden pair of edges,
as otherwise, the graph induced by E(P ) ∪ E(P ′) would contain a desired path
from y0 to a vertex in N(z0) ∩ V (H) avoiding forbidden pairs of edges. Let the
first pair of forbidden edges P ′ used when starting from v′i be qv and vr. The
subpath P ′

1 of P ′ from v′i to v must be disjoint from P , since otherwise, the
graph induced by E(P )∪E(P ′

1) contains a desired path from y0 to N(z0)∩V (H)
avoiding forbidden pairs of edges. Furthermore, we must have that r = y0, since
otherwise, the path P ′′ defined to be y0v together with the subpath of P ′ from v

to v′i followed by v′ivi and the subpath of P from vi to N(z0)∩ V (H) is a desired
path from y0 to N(z0) ∩ V (H) avoiding forbidden pairs of edges. Now the path
P ′′ contradicts the maximality of P .

So we can assume that N(vi) = {y0, p, w0}, which means, because vi has
degree d > 3, that some of the edges viy0, vip, viw0 have multiplicity more than 1.
The multiplicity of both y0vi and vip must be 1, since otherwise, we would get a
desired path from z2 to y0 avoiding the forbidden pair of edges y0vi, vip. So the
multiplicity of viw0 is at least 2. If the only neighbours of w0 are vi and z0, then
we can swap the weights on two edges between w0 and vi to avoid the conflict
z0w0 and obtain a proper {a, b}-edge-weighting of G; so we can assume that w0

is incident to a vertex v′ in H distinct from vi. Since d(vi) = d(w0), the edges
w0z0 and w0v

′ are not multiple and since z0 has degree at least 6, there are two
edges z0z

′

2, z0z
′′

2 incident to z0 having the same weight and where z′2, z
′′

2 ∈ H.
Possibly z′2 = z′′2 or z′2 = z2. The graph B−w0− z0 is connected, so it contains a
path P ′

1 from z′2 to y0 and a path P ′

2 from z′′2 to y0. These paths P ′

1 and P ′

2 must
be internally disjoint, since otherwise, there would be a z0-changing cycle in B

not containing any pair of forbidden edges. We can assume that both P ′

1 and P ′

2

contain a pair of forbidden edges, since otherwise, there is a desired path from y0
to (N(z0)−w0)∩V (H). Hence, we can assume that P ′

1 contains y0vi and vip and
P ′

2 contains a pair of forbidden edges qv′, v′r incident to v′. Since this implies
that y0 and v′ are adjacent, we can assume that y0 = q. The vertex v′ must have
a neighbour s distinct from y0, w0, r and since the graph B−w0−v′ is connected,
there is a path P ′′ in B − w0 − v′ from s to y0. If P ′′ contains the forbidden
pair of edges y0vi and vip, then the graph P ′

1 ∪ P ′

2 ∪ P ′′ contains a z0-changing
cycle in B containing no forbidden pair of edges. Thus, we can assume that P ′′

contains no pair of forbidden edges. Now P ′

2 ∪ P ′′ contains a desired path from
w0 to (N(z0) − w0) ∩ V (H). �
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Claim 20. There is no vertex v ∈ V (H) such that G− v −N(v) is connected.

Proof. Suppose v ∈ V (H) and that G′ = G − v − N(v) is connected. We can
assume v ∈ X. By Lemma 12, there is an (X \ {v}, Y ∪ {v})-a-parity {a, b}-
edge-weighting of G, where all edges incident to v have weight b and any vertex
u ∈ N(v) is incident to at most 1 + M(uv) b-edges, where M(uv) denotes the
multiplicity of the edge uv. Note that Claim 1 implies that if vv′ is a multiple
edge, then v′ ∈ {z0, y0}. Thus, the only potential conflict is between v and one
of z0, y0, say y0. This implies that y0 must have odd degree at least 5. But since
G′ is connected there must then be a y0-changing cycle in G− (N(v) \ {y0}) and
swapping the weights on this cycle yields a proper {a, b}-edge-weighting of G. �

Claim 21. There are no multiple edges between two vertices in H.

Proof. Suppose uv is a multiple edge in H. We can assume v ∈ X. Since u and
v have degree 3 in G∗ (by Claim 5), the multiplicity of uv is exactly 2. Let e and
e′ be the two edges between u and v. By Claim 1, e, e′ are not both white. Thus,
at least one of e, e′, say e, is a blue edge in H. Let v′ denote, in G∗, the unique
neighbour of v different from u.

Let G′ be obtained from G−v by removing all edges but one edge e′′ incident
to v′. Clearly G′ is connected since G − v − v′ is connected by the minimality
of H. Let S = E(v′) \ {vv′, e′′}. Let X ′ denote the set of vertices in G − v

which are incident to an odd number of edges in S. Note that S has even size.
Thus, X ′ = (X \ S ∪ (S ∩ Y ) has even size and Lemma 6 implies that there
is an (X ′, V (G′) \X ′)-a-parity {a, b}-edge-weighting of G′. We now extend this
weighting to G by assigning weight a to all edges in S and weight b to all edges
incident to v. This gives an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of
G where all vertices in N(v) are incident to at most two b-edges (the edge in the
suspended path of length 3 joining u and v incident to u must have weight a).
Observation 10 implies that the only conflict can be between v and its neighbours,
so the only possible conflict is vv′ in the case where v′ ∈ {z0, y0}, say v′ = y0,
and y0 has degree at least 5. But since G− v is connected there must then be a
y0-changing cycle avoiding v and u and swapping the weights on this cycle yields
a proper {a, b}-edge-weighting of G. �

Claim 22. Every vertex of H is incident to at most one blue edge.

Proof. Recall that every vertex v of H has degree 3, by Claim 5. If v is incident
to three blue edges, then G− v −N(v) is connected, which contradicts Claim 6.
So now assume v is incident to two blue edges. Let uv denote the white (third)
edge incident to v. Still by Claim 6, the graph G−v−N(v) cannot be connected,
which means that u, v is a pair contradicting the choice of y0, z0. �
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We now have all the tools in hand for finishing the proof. Two cases must
be considered.

Case 1. There is a vertex v ∈ V (H) not adjacent to any of z0, y0. Recall
that, according to Claim 6, whenever removing from G a vertex of H and its
neighbourhood, we get a disconnected graph. Let v be a vertex not adjacent to
z0, y0 such that the component K of G′ = G− v−N(v) containing z0 and y0 has
maximum order. We can assume that v ∈ X. Note that there must be a vertex
v′ ∈ V (H) distinct from v with N(v′) = N(v) such that the components of G′

are exactly K and the isolated vertex v′. This is because otherwise there would
be a vertex v′′ 6= v in H such that G−v′′−N(v′′) has a bigger K, a contradiction
to our choice of v.

Let e1 = vv1, e2 = vv2, e3 = vv3 denote the three edges incident to v. Since
v, v′, v1, v2, v3 all belong to H, by Claim 7, all these vertices are distinct. Further-
more, since N(v) = N(v′), we can also assume that none of vv1, vv2, vv3 are blue.
Hence, v, v′ ∈ X and v1, v2, v3 ∈ Y . The graph G− v is connected and so is the
graph G′ obtained from it by removing the edges v′v1, v

′v2. Lemma 6 implies that
there is an {a, b}-edge-weighting of G′ where the vertices in X \{v}∪{v2, v3} are
incident to an odd number of a-edges and the vertices in Y \ {v2, v3} are incident
to an even number of a-edges. In particular, in G′ the only a-edge incident to v′ is
v′v1. We extend this weighting to G by assigning weight a to v′v2, v

′v3, and weight
b to all three edges incident to v. That way, we get an (X \{v}, Y ∪{v})-a-parity
{a, b}-edge-weighting of G where all three edges incident to v have weight b and
all three edges incident to v′ have weight a. Observation 10 implies that the only
potential conflicts are between v and its neighbours, but since all vertices in N(v)
are incident to at least one a-edge (the one incident to v′) this edge-weighting is
proper.

Case 2. All vertices in H are adjacent to z0 or y0. By Claim 6, we can
assume that, for every vertex v ∈ V (H), the graph G′ = G− v −N(v) is discon-
nected. First, suppose z0 is joined in G∗ to some vertex v ∈ V (H) by an edge
of multiplicity 2. Let e′ and e′′ be the two edges joining z0 and v in G∗. Claim
6 implies that not both of e′, e′′ are blue; say e′ is white. If e′′ is blue, then by
Claim 8, the third edge e′′′ incident to v in G∗ must be white. If e′′ is white,
then Claim 6 implies that e′′′ is white, so the edge e′′′ = vu must be white. We
can assume v ∈ X and hence u ∈ Y . Let Z denote the set of vertices in G − v

which are incident to exactly one edge incident to u. Note that either Z is empty
or Z has size 2. Note that X ′ = (X \ (Z ∪ {v})) ∪ (Y ∩ Z) has even size, so by
Lemma 6, there is an (X ′, V (G − v − u) \ X ′)-a-parity {a, b}-edge-weighting of
G − v − u. We now extend this edge-weighting to all of G by assigning weight
b to all edges in E(v) and weight a to the two edges incident to u distinct from
uv. Thus, we have obtained an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting
of G where all edges incident to v have weight b and u is incident to exactly one
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b-edge. Observation 10 implies that the only potential conflict is vz0 in the case
where z0 has degree at least 5. We can also assume that there is no z0-changing
cycle in G avoiding v and u. Hence, z0 must have degree 2 in G − H and be
joined by an edge in G∗ to at least one vertex v′ in H distinct from v. We can
now find a desired z0-changing cycle unless the only neighbours of v′ in B are z0
and u. But in this case G− u−N(u) is connected, contradicting Claim 6.

Thus, we can assume that z0, and similarly y0, is not joined to any vertex
in H by a multiple edge in G∗. Claim 7 now implies that any vertex in H has
three distinct neighbours in G∗. Let v ∈ X be any vertex in H incident to z0.
The graph G− v−N(v) is disconnected by Claim 6, so there must be a vertex v′

in H which in G∗ has the same neighbourhood as v. Since all vertices in H have
degree 3 (Claim 5) this implies that H only has four vertices: two joined to z0
and two joined to y0. The graph G− v− (N(v) \ {z0}) is connected, so as above,
there is an (X \ {v}, Y ∪{v})-a-parity {a, b}-edge-weighting of G where all edges
incident to v have weight b, and the neighbours of v distinct from z0 which have
degree 3 are incident to exactly one b-edge. Again, Observation 10 implies that
the only possible conflict is vz0 in the case where z0 has degree at least 5. In this
case, it is easy to see that there is a z0-changing cycle avoiding H, thus, we can
get rid of this conflict and obtain a proper {a, b}-edge-weighting of G.

3. Proof of Theorem 2

Before describing the structure of trees without the {−1, 1}-property, we first
introduce the following two general lemmas which will be used in the proof.
Some of the tools and results used here were introduced in Section 2.

Lemma 23. If G is a simple connected bipartite graph without the {−1, 1}-
property and e is a bridge in G, then the deletion of e results in two components
each containing an odd number of vertices.

Proof. Suppose the lemma is false. Let G be a connected bipartite graph without
the {−1, 1}-property and let e = uv ∈ E(G) be a bridge in G. Let c : V (G) →
{1, 2} be a mod-4 vertex-colouring of G (such a colouring exists by Lemma 8)
and let X,Y denote the sets of vertices coloured 1 and 2 respectively. By Lemma
9, both colour classes of c have odd size. Let C1, C2 denote the two components
of G− e with u ∈ V (C1) and v ∈ V (C2). For a contradiction, assume that both
|V (C1) ∩ X| and |V (C1) ∩ Y | are odd and both |V (C2) ∩ X| and |V (C2) ∩ Y |
are even. Recall that two vertices with degree of distinct parity cannot have the
same weighted degree by a {−1, 1}-edge-weighting (Observation 10). There are
thus four cases to be considered.

Case 1. Both u and v have odd degree and colour 1. By Lemma 6, there is an
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(X ∩V (C1)\{u}, Y ∩V (C1)∪{u})-(−1)-parity {−1, 1}-edge-weighting of C1 and
a (Y ∩ V (C2), X ∩ V (C2))-1-parity {−1, 1}-edge-weighting of C2. It follows from
Observation 10 that these two edge-weightings, together with assigning weight
−1 to e, form a proper edge-weighting of the whole G.

Case 2. Both u and v have even degree and colour 1. By Lemma 6, there is an
(X ∩V (C1)\{u}, Y ∩V (C1)∪{u})-(−1)-parity {−1, 1}-edge-weighting of C1 and
an (X∩V (C2), Y ∩V (C2))-1-parity {−1, 1}-edge-weighting of C2. It follows from
Observation 10 that these two edge-weightings, together with assigning weight
−1 to e, form a proper edge-weighting of the whole G.

Case 3. Both u and v have odd degree, u has colour 1 and v has colour 2. By
Lemma 6, there is an (X∩V (C1)\{u}, Y ∩V (C1)∪{u})-(−1)-parity {−1, 1}-edge-
weighting of C1 and a (Y ∩ V (C2), X ∩ V (C2))-1-parity {−1, 1}-edge-weighting
of C2. It follows from Observation 10 that these two edge-weightings, together
with assigning weight −1 to e, form a proper edge-weighting of the whole G.

Case 4. Both u and v have even degree, u has colour 1 and v has colour 2. By
Lemma 6, there is an (X∩V (C1)\{u}, Y ∩V (C1)∪{u})-(−1)-parity {−1, 1}-edge-
weighting of C1 and an (X ∩ V (C2), Y ∩ V (C2))-1-parity {−1, 1}-edge-weighting
of C2. It follows from Observation 10 that these two edge-weightings, together
with assigning weight −1 to e, form a proper edge-weighting of the whole G.

Lemma 24. If G is a connected bipartite graph without the {−1, 1}-property and
e is a bridge in G, then there is a {−1, 1}-edge-weighting of G such that e is the
only conflict.

Proof. Let G be a connected bipartite graph without the {−1, 1}-property, e be
a bridge in G, and C1, C2 be the two components of G − e. Let c be a mod-4
vertex-colouring of G (such a colouring exists by Lemma 8), and let X denote
the set of vertices with colour 1 and Y denote the set of vertices with colour 2.
By Lemma 9, both X and Y have odd size and by Lemma 23, we can assume
that |X ∩ V (C1)| and |Y ∩ V (C2)| are even and |Y ∩ V (C1)| and |X ∩ V (C2)|
are odd. Now Lemma 6 implies that there is an (X ∩V (C1), Y ∩V (C1))-1-parity
{−1, 1}-edge-weighting of C1 and an (X ∩ V (C2), Y ∩ V (C2))-1-parity {−1, 1}-
edge-weighting of C2. Observation 10 implies that these two edge-weightings,
together with assigning weight −1 to the edge e, is a {−1, 1}-edge-weighting of
G where e is the only potential conflict.

We can now prove Theorem 2. When referring to Operation 1, we mean the
first operation described at the end of Section 1 (illustrated in Figure 1(a) and
(b)).

Proof of Theorem 2. As mentioned in the introduction, it is straightforward
to check that any graph constructed with Operation 1 from four graphs without
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the {−1, 1}-property does not have the {−1, 1}-property itself. An easy argument
is that all five edges incident to the vertices v1 ∼ v2 and v3 ∼ v4 should have the
same weight (in which case a conflict arises), as otherwise, the proper {−1, 1}-
edge-weighting would yield one of at least one of the four graphs used in the
construction, a contradiction. Thus, it suffices to prove that any tree without the
{−1, 1}-property is constructed from a disjoint union of K2’s through repeated
(possibly none) applications of Operation 1. Suppose this is false and let T be
a minimum counterexample. Note that Lemma 23 implies that, for any vertex
v ∈ V (T ) and any edge e ∈ E(v), the component Ce not containing v in T − e

has an odd number of vertices. Since we can write |V (T )| = 1 +
∑

e∈E(v) |V (Ce)|
for any vertex v ∈ V (T ) and since |V (T )| is even, this implies that all vertices in
T have odd degree. A consequence of this is that if S ⊂ T is a subtree of T , then
T − S has no components isomorphic to K2 as otherwise T would have vertices
with degree 2.

Let P = v1 · · · vm be a longest path in T . Clearly, vm is a leaf and, since all
vertices have odd degree, vm−1 is incident to an even number of leaves. Suppose
vm−1 is incident to an even number n ≥ 4 of leaves u1, . . . , un, with u1 = vm. Re-
call that Lemma 9 implies that |V (T )| is even; now, since T ′ = T−{u1, . . . , un−1}
has an odd number of vertices, Lemma 9 implies that T ′ has a proper {−1, 1}-
edge-weighting. We can now extend this edge-weighting to a proper {−1, 1}-edge-
weighting of T by assigning the same weight to all the edges vm−1u1, . . . , vm−1un
(we choose whether it is 1 or −1 so that we avoid the conflict vm−2vm−1). Thus,
vm−1 has degree exactly 3 and, from these arguments and the maximality of P ,
any neighbour of vm−2 distinct from vm−3 and vm−1 is either a leaf or a vertex
of degree 3 adjacent to two leaves. Let U ′ = {u′1, . . . , u

′

p} be the set of leaves
adjacent to vm−2 and let U ′′ = {u′′1, . . . , u

′′

q} be the set of neighbours of vm−2

distinct from vm−1 and vm−3 which have degree 3. Possibly p = 0 or q = 0, but
p + q > 0 since vm−2 has odd degree and hence p + q is odd. Let T1 and T2 be
the two components of T − vm−3vm−2 such that vm−2 ∈ V (T2). By Lemma 24,
there is a {−1, 1}-edge-weighting w of T such that the only potential conflict is
vm−3vm−2. By possibly multiplying all edge weights by −1, we can assume that
the weight of vm−3vm−2 is 1. We look at three separate cases:

Case 1. p + q ≥ 5. By possibly modifying the weights of the edges in E(T2)
such that they all have weight 1 or −1, the vertex vm−2 can obtain weighted
degree 2 + p + q and −p − q. Now we simply pick the one of these two options
such that vm−3vm−2 is not a conflict. Since all vertices in T2 except vm−2 have
degree at most 3, this gives a proper {−1, 1}-edge-weighting of T .

Case 2. p+q = 3. As in Case 1, we can modify the edge weights such that the
vertex vm−2 can obtain weighted degree 2 +p+ q and −p− q. Furthermore, since
2 + p+ q = 5 and all vertices in T2 except vm−2 have degree at most 3, we can in
this way find a proper {−1, 1}-edge-weighting of T , unless vm−3 has weight 5. So
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we can assume that vm−3 has weight 5. If p ≥ 1 and p is odd (respectively, even),
then we modify the weights in T2 such that all edges incident to u′1, . . . , u

′

p have
weight 1 (respectively, −1) and all other edges in T2 have weight −1 (respectively,
1). This yields a proper {−1, 1}-edge-weighting of T , so we can assume p = 0
and q = 3. In this case, we modify the weights in T2 such that all edges incident
to vm−1 and u′′1 have weight 1 and all other edges in T2 have weight −1. This
yields a proper {−1, 1}-edge-weighting of T .

Case 3. p + q = 1. First suppose q = 1 and p = 0. If we modify the
edge weights in T2 such that they all have weight −1, then we obtain a proper
{−1, 1}-edge-weighting of T , unless vm−3 has weight −1. In this case, we change
the weights of the three edges incident to vm−1 to 1 to obtain a proper {−1, 1}-
edge-weighting of T . Thus, we can assume p = 1 and q = 0. We can assume
that T ′′′ = T − vm− vm−1−u2−u′1 has a proper {−1, 1}-edge-weighting w, since
otherwise, the minimality of T implies that T ′′′ is constructed from a disjoint
union of K2’s through repeated (possibly none) applications of Operation 1, and
then so is T . By possibly multiplying all edge weights of w by −1, we can assume
that vm−3vm−2 has weight 1. Now assigning weight 1 to all edges incident to
vm−1 and weight −1 to vm−2u

′

1 yields a proper {−1, 1}-edge-weighting of T .
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[6] M. Karoński, T.  Luczak and A. Thomason, Edge weights and vertex colours , J.
Combin. Theory Ser. B 91 (2004) 151–157.
https://doi.org/10.1016/j.jctb.2003.12.001

https://doi.org/10.1016/j.tcs.2013.05.027
https://doi.org/10.1002/jgt.20354
https://doi.org/10.11650/twjm/1500406380
https://doi.org/10.1016/j.jctb.2003.12.001


On {a, b}-Edge-Weightings of Bipartite Graphs with Odd a, b 185

[7] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone and B. Stevens, Vertex-
colouring edge-weightings with two edge weights , Discrete Math. Theor. Comput.
Sci. 14 (2012) 1–20.
https://doi.org/10.46298/dmtcs.570

[8] H. Lu, Vertex-coloring edge-weighting of bipartite graphs with two edge weights ,
Discrete Math. Theor. Comput. Sci. 17 (2016) 1–12.
https://doi.org/10.46298/dmtcs.2162

[9] H. Lu, Q. Yu and C.-Q. Zhang, Vertex-coloring 2-edge-weighting of graphs , European
J. Combin. 32 (2011) 21–27.
https://doi.org/10.1016/j.ejc.2010.08.002

[10] K. Szabo Lyngsie, On neighbour sum-distinguishing {0, 1}-weightings of bipartite
graphs , Discrete Math. Theor. Comput. Sci. 20 (2018) #21.
https://doi.org/10.23638/DMTCS-20-1-21

[11] B. Seamone, The 1-2-3 conjecture and related problems: A survey, Technical report
(2012).
arXiv:1211.5122

[12] C. Thomassen, Graph factors modulo k, J. Combin. Theory Ser. B 106 (2014) 174–
177.
https://doi.org/10.1016/j.jctb.2014.01.002

[13] C. Thomassen, Y. Wu and C.-Q. Zhang, The 3-flow conjecture, factors modulo k,
and the 1-2-3-conjecture, J. Combin. Theory Ser. B 121 (2016) 308–325.
https://doi.org/10.1016/j.jctb.2016.06.010

Received 20 March 2019
Revised 28 August 2019

Accepted 29 August 2019

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.46298/dmtcs.570
https://doi.org/10.46298/dmtcs.2162
https://doi.org/10.1016/j.ejc.2010.08.002
https://doi.org/10.23638/DMTCS-20-1-21
https://arxiv.org/abs/1211.5122
https://doi.org/10.1016/j.jctb.2014.01.002
https://doi.org/10.1016/j.jctb.2016.06.010
http://www.tcpdf.org

