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Abstract

We show that every claw-free cubic graph of order n at least 8 has at

most 2⌊
n

4 ⌋ Hamiltonian cycles, and we also characterize all extremal graphs.

Keywords: Hamiltonian cycle, claw-free graph, cubic graph.

2010 Mathematics Subject Classification: 05C70.

1. Introduction

Chia and Thomassen [2] proved that every cubic multigraph of order n at least 4
has at most 2n/2 Hamiltonian cycles. They asked whether there is a cubic graph of
order n at least 6 that has more than 2n/3 Hamiltonian cycles. As they observed
the unique connected cubic graph of order n, where n is a multiple of 6, that
arises by adding a perfect matching to the disjoint union of n/6 copies of K3,3−e
has exactly 2n/3 Hamiltonian cycles, that is, this bound can be achieved. In the
present note, we show that every claw-free cubic graph of order n at least 8 has

at most 2⌊
n

4
⌋ Hamiltonian cycles, and we also characterize all extremal graphs,

which are structurally similar to the above graphs based on K3,3− e. Recall that
a graph is claw-free if it does not contain K1,3 as an induced subgraph.
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Figure 1. The diamond D and the graph D′.
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Let G be the set of connected cubic graphs G of some order n such that

• if n ≡ 0 (mod 4), then G arises by adding a matching M to the disjoint union
of n/4 copies of the diamond D, and

• if n ≡ 2 (mod 4), then G arises by adding a matching M to the disjoint union
of one copy of D′ and (n− 6)/4 copies of the diamond D.

Note that, for every even order n at least 4, the set G contains exactly one graph
of order n.

Our result is the following.

Theorem 1. If G is a claw-free cubic graph of order n at least 8, then G has at

most 2⌊
n

4
⌋ Hamiltonian cycles with equality if and only if G ∈ G.

We need two preparatory lemmas. For some non-negative integer k, let fk
denote the k-th Fibonacci number, that is, f0 = 0, f1 = 1, and fk = fk−1+fk−2 for
k ≥ 2. The following fact is known [1]; in order to keep the paper self-contained,
we add a simple proof.

Lemma 2. For every integer k at least 3, there are fk+1 + fk−1 sets F of edges

of the cycle Ck of order k such that Ck − F has no isolated vertex.

Proof. Let Ck = u1 · · ·uku1, and let F be the set of all considered sets F ,
that is, we need to show that ak = fk+1 + fk−1 for ak = |F|. Let bk be the
number of sets F ′ of edges of the path Pk+1 : v1 · · · vk+1 of order k + 1 such
that none of the vertices v1, . . . , vk is isolated in Pk+1 − F ′; note that vk+1 is
allowed to be isolated in Pk+1 − F ′. Clearly, b0 = 1, b1 = 1, and b2 = 2.
Furthermore, considering the edge vivi+1 of Pk+1 minimizing i that belongs to
such a set F ′, it follows that bk = bk−2 + bk−3 + · · · + b0 + 1, which implies
bk = bk−1 + bk−2. The initial values and the recursion imply that bk = fk+1.
Now, ak = 2bk−2 + bk−1 = 2fk−1 + fk = fk+1 + fk−1, because there are

• bk−2 sets in F that contain u1u2 (consider the path u2 · · ·uk),

• bk−2 sets in F that contain uku1 (consider the path u1 · · ·uk−1), and

• bk−1 sets in F that contain neither u1u2 nor uku1 (consider the path u1 · · ·uk).

Lemma 3. 2⌊
6ℓ

4
⌋ > f2ℓ+1 + f2ℓ−1 for every ℓ ∈ N \ {1, 3}.

Proof. For small values of ℓ, this is easily verified. For ℓ ≥ 5, this follows easily
by induction using

2⌊
6ℓ

4
⌋ ≥ 2

3ℓ−1

2 > 0.707 · 2.828ℓ

and
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f2ℓ+1 + f2ℓ−1 =
1√
5

(

(

1+
√
5

2
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√
5

2

)2ℓ+1

+
(

1+
√
5

2

)2ℓ−1

−
(

1−
√
5

2

)2ℓ−1
)

=
(

1+
√
5

2

)2ℓ
+
(

1−
√
5

2

)2ℓ
< 2.619ℓ + 0.382.

Proof of Theorem 1. If G lies in G and has order n at least 8, then every
Hamiltonian cycle of G contains each edge of the matching M mentioned in the
definition of G. Since the diamond D and the graph D′ both contain exactly
two paths between their two vertices of degree 2, it follows that G has exactly
2⌊n/4⌋ Hamiltonian cycles. It remains to show that every claw-free cubic graph
G of order n at least 8 has at most 2⌊n/4⌋ Hamiltonian cycles with equality only
if G ∈ G. Suppose, for a contradiction, that G is a counterexample of minimum
order n. Let C : u1u2 · · ·unu1 be some Hamiltonian cycle of G, where we identify
indices modulo n. The edges in E(G) \ E(C) are chords of C, and a chord uiuj
is short if ui and uj have distance 2 on C.

Suppose, for a contradiction, that u2u4 and u3u5 are short chords, that is,
there are two crossing short chords. If u1 and u6 are adjacent, then the claw-
freeness implies that u1 and u6 have a common neighbor, which implies the
contradiction that u7 equals un, that is, n = 7. Hence, the vertices u1 and u6
are not adjacent, and G′ = G − {u2, u3, u4, u5} + u1u6 is a Hamiltonian cubic
claw-free graph of order n′ = n − 4. If n′ = 4, then G′ is K4, and G arises
by adding a matching to the disjoint union of two copies of D, which implies
the contradiction G ∈ G. If n′ = 6, then the claw-freeness of G implies that G′

arises by adding the perfect matching {u1u6, u7u10, u8u9} to the disjoint union
of the two triangles u1u9u10u1 and u6u7u8u6. It follows that G arises by adding
a matching to the disjoint union of one copy of D′ and one copy of D, which
implies the contradiction G ∈ G. Now, if n′ ≥ 8, then the choice of G implies
that G′ is no counterexample. Note that Hamiltonian cycles of G′ that do not
contain the edge u1u6 do not correspond to Hamiltonian cycles of G, and that
Hamiltonian cycles of G′ that contain the edge u1u6 correspond to two distinct
Hamiltonian cycles of G; one using the path u1u2u3u4u5u6 and one using the path
u1u2u4u3u5u6. This implies that G has at most 2 · 2⌊n

′/4⌋ = 2⌊n/4⌋ Hamiltonian
cycles with equality only if every Hamiltonian cycle of G′ contains the edge u1u6
and G′ has 2⌊n

′/4⌋ Hamiltonian cycles, that is, G′ ∈ G. Since G is claw-free, the
edge u1u6 is one of the edges of G′ that belong to some 2-edge-cut of G′, which
implies the contradiction G ∈ G. Altogether, we obtain, that two crossing short
chords do not exist.

Since G is claw-free, it follows that, for every two consecutive vertices on
C, either one vertex is incident with a short chord and one vertex is incident
with a non-short chord, or both vertices are incident with two non-crossing short
chords. This implies that n is a multiple of 3, that is, n = 3k for some positive
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integer k. By symmetry, we may assume that u3i−2u3i is a short chord for every
i ∈ [k], where [k] is the set of positive integers at most k. For every i in [k], every
Hamiltonian cycle of G uses one or both of the edges u3i−3u3i−2 and u3iu3i+1.
More precisely, if some Hamiltonian cycle of G uses both these edges, then it con-
tains the subpath u3i−3u3i−2u3i−1u3iu3i+1, if it uses u3i−3u3i−2 but not u3iu3i+1,
then it contains the subpath u3i−3u3i−2u3iu3i−1, and if it uses u3iu3i+1 but not
u3i−3u3i−2, then it contains the subpath u3i−1u3i−2u3iu3i+1. This implies that
every Hamiltonian cycle C ′ of G is uniquely determined by the intersection of
E(C ′) with the set {u3iu3i+1 : i ∈ [k]}, and that {u3iu3i+1 : i ∈ [k]} \E(C ′) does
not contain two of the edges in {u3iu3i+1 : i ∈ [k]} that appear consecutively
on C. By Lemma 2, it follows that the number of Hamiltonian cycles of G is
at most fn

3
+1 + fn

3
−1. Since G is cubic, the order n of G is even, which implies

that k is even, that is, k = 2ℓ and n = 6ℓ for some integer ℓ ≥ 2. By Lemma
3, 2⌊n/4⌋ = 2⌊6ℓ/4⌋ > f2ℓ+1 + f2ℓ−1 = fn

3
+1 + fn

3
−1 unless ℓ = 3, that is, n = 18.

For n = 18, there are four different possibilites for the structure of G shown in
Figure 2.
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Figure 2. Every Hamiltonian cycle of the top left graph uses the four edges that lie
in 2-edge-cuts of this graph, which easily implies that it has exactly four Hamiltonian
cycles. Every Hamiltonian cycle of the top right graph uses either both the edges u8u14

and u11u17 or none of these two edges, which easily implies that it has exactly four
Hamiltonian cycles. The bottom left graph has one Hamiltonian cycle using no non-short
chord and two using all three non-short chords, which implies that it has exactly three
Hamiltonian cycles. The bottom right graph has one Hamiltonian cycle using no non-
short chord, three Hamiltonian cycles using two non-short chords, and two Hamiltonian
cycles using all three non-short chord, which implies that it has exactly six Hamiltonian
cycles.

Each of these graphs has at most six Hamiltonian cycles. Since this is less
than 2⌊18/4⌋ = 16, the proof is complete.
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