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Abstract

We establish a set of recursion relations for the coefficients in the chro-
matic polynomial of a graph or a hypergraph. As an application we provide
a generalization of Whitney’s broken cycle theorem for hypergraphs, as well
as deriving an explicit formula for the linear coefficient of the chromatic
polynomial of the r-complete hypergraph in terms of roots of the Taylor
polynomials for the exponential function.
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1. Introduction

The chromatic polynomial χG associated to a graph G, introduced by Birkhoff [2],
is determined by defining χG(λ), for λ ∈ N, to be the number of colourings of the
vertices of G with at most λ colours, such that no adjacent vertices are attributed
the same colour [11,18]. The definition extends to hypergraphs [?], by considering
colourings such that each hyperedge contains at least two vertices with different
colours.

https://doi.org/10.7151/dmgt.2248
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In the case of graphs, Whitney’s broken cycle theorem [3, 8, 9, 26] provides
a combinatorial interpretation to the coefficients of the chromatic polynomial
χG(λ): if a graph G has n vertices, then the coefficient of λi is given, up to the
sign (−1)n−i, by the number of spanning subgraphs of G with n−i edges with the
property of not containing as a subset any of a particular list of special subgraphs
of G, known as broken cycles1.

In the present article, we establish a set of recursion relations for the coeffi-
cients of the chromatic polynomial of a graph or hypergraph, which allow us to
express the i-th order coefficient in terms of products of linear coefficients of cer-
tain subgraphs. We similarly show that the combinatorial quantities appearing
in Whitney’s theorem (as well as a natural generalization of them which covers
the case of hypergraphs) also satisfy the same recursion relations (up to a sign
factor).

Since the two sequences are recursively defined by the same relations and
it can be easily verified that they coincide on empty graphs, we obtain as a
consequence a generalization of the broken cycle theorem for hypergraphs. There
are a number of different extensions of Whitney’s theorem to hypergraphs already
present in the literature [7,9,10,21]. The one we present here encompasses those
known to us.

As a second application of the recursion relations, we derive an explicit for-
mula for the linear chromatic coefficient of the r-complete hypergraphs in terms
of the roots of the (r−1)’th Taylor polynomial of the exponential function (where
the r-complete hypergraph is the hypergraph containing all possible hyperedges
of cardinality r).

Whitney’s theorem implies that the coefficients of the chromatic polynomial
of a graph are always integers with alternating signs. Moreover, applying the
deletion-contraction principle for the chromatic polynomial [2,11,26], one can also
show that they are numerically upper bounded by the corresponding coefficient
for the complete graph of the same order. We show that both these facts can be
obtained in a simple way as a consequence of the recursion relations we present,
without using neither Whitney’s theorem nor the deletion-contraction principle.

The paper is organized as follows. In Section 2, we start by presenting the
simpler case of the recursion relations for graphs, together with a new proof of
Whitney’s theorem in its original form. The section will follow the same approach
we will use for the general case, but since it is arguably easier we present it here for
illustration of the method, but it can safely be skipped. In Section 3, we present
the general case of hypergraphs, and the generalization of Whitney’s theorem.
Finally in Section 4, we apply the recursion relations to obtain the formula for
the linear coefficient of the r-complete hypergraph.

1Whitney’s original theorem mentions broken circuits instead, but the distinction between
circuits and cycles is not relevant in this context.
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2. The Recursion Relations for Graphs

In this section G = (V,E) denotes a simple graph, where V is a non-empty finite
set and E is a set of unordered pairs of elements in V . The members in V and
E are called the vertices and edges in G, respectively. The order of G, i.e., the
number of vertices |V |, will be denoted by n. By k(G) we shall denote the number
of connected components of G. If F ⊆ E, the graph Ḡ⟨F ⟩ ≡ (V, F ) is called the
spanning subgraph of G induced by F , and we shall write k(F ) for k(Ḡ⟨F ⟩). If
V ′ ⊂ V , the graph (V ′, E′) where E′ = {{x, y} ∈ E | x, y ∈ V ′} is called the
subgraph of G induced by V ′. It will be denoted by G[V ′].

Definition 1. Let λ ∈ N. A λ-colouring of a graph G = (V,E) is a map π : V →
{1, 2, . . . , λ}. A λ-colouring is called proper if for each edge e = {x, y} ∈ E it
holds that π(x) ̸= π(y). We define χG(λ) to be the number of proper λ-colourings
of G.

It is well kown that the χG(λ) is a polynomial in λ.

Theorem 2. The function χG is a polynomial, called the chromatic polynomial
of G, given by

χG(λ) =
n∑

i=1

ai(G)λ
i,

where

(2.1) ai(G) =
∑
F⊆E
k(F )=i

(−1)|F |.

Proof. Define for any edge e ∈ E the function fe on the set of colourings of G
by

fe(π) =

{
0, if π is constant on e,

1, otherwise.

Then

χG(λ) =
∑
π

∏
e∈E

fe(π) =
∑
π

∏
e∈E

(1− (1− fe(π))

=
∑
π

∑
F⊆E

(−1)|F |
∏
e∈F

(1− fe(π)) =
∑
F⊆E

(−1)|F |λk(F ) .

Whitney refined this result in what is known as his broken-cycle theorem [26].
Let ≤ be an arbitrary linear ordering of the edge set E. A broken cycle of G is
then a set of edges F ⊆ E obtained by removing the maximal edge from a cycle
of G.
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Theorem 3 (Whitney 1932). For i = 1, . . . , n we have that

(2.2) ai(G) = (−1)n−ihi(G) ,

where hi(G) is the number of spanning subgraphs of G with n − i edges and
containing no broken cycle.

We will establish, in the next three lemmas, a set of recursion relations for
coefficients ai and for coefficients hi, respectively. Up to a sign factor, both
sets of coefficients will be shown to satisfy the same recursion relations, and by
observing that they coincide on the empty graph we will obtain as a consequence
an inductive proof of Theorem 3.

Recall, that an edge e ∈ E is called a bridge in G = (V,E) if k(E) < k(E \ e)
(i.e., removing e increases the number of connected components of the graph), in
which case we must have k(E \ e) = k(E) + 1. If F ⊆ E we say that e ∈ F is a
bridge in F if it is a bridge in Ḡ⟨F ⟩. We denote by Bi

e the collection of F ⊆ E
such that e is a bridge in F and k(F ) = i.

Lemma 4. Let G = (V,E) be a graph with E ̸= ∅ and fix e ∈ E. We have that

(2.3) ai(G) = bie(G)− bi−1
e (G),

where b0e(G) = 0 and

bie(G) =
∑
F∈Bi

e

(−1)|F | , for every i ≥ 1.

Proof. For each subset F of E exactly one of the following holds.

(1) e /∈ F, (2) e is a bridge in F , (3) e ∈ F, but e is not a bridge in F .

We therefore have a decompositon of the collection {F ⊆ E | k(F ) = i} into the
three disjoint classes:

Ai
e = {F ⊆ E | e ̸∈ F, k(F ) = i},

Bi
e = {F ⊆ E | e ∈ F, k(F ) = i, k(F \ {e}) = k(F ) + 1},(2.4)

Ci
e = {F ⊆ E | e ∈ F, k(F ) = i, k(F \ {e}) = k(F )}.

Hence, for each i = 1, . . . , n− 1 we have

ai =
∑
F∈Ai

e

(−1)|F | +
∑
F∈Bi

e

(−1)|F | +
∑
F∈Ci

e

(−1)|F |.
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Clearly, the mapping ϕ defined by ϕ(F ) = F ∪ {e} is a bijection from Ai
e to

Bi−1
e ∪ Ci

e, which implies that

∑
F∈Ai

e

(−1)|F | = −

 ∑
F∈Bi−1

e

(−1)|F | +
∑
F∈Ci

e

(−1)|F |

 .

Plugging this expression into the previous formula for ai, we get

ai =
∑
F∈Bi

e

(−1)|F | −
∑

F∈Bi−1
e

(−1)|F | = bie − bi−1
e

as desired.

Lemma 5. For i = 1, 2, 3, . . . we have

(2.5) bie(G) = −
∑

V=V1⊔···⊔Vi+1

e̸∈G[Vj ], j=1,...,i+1

i+1∏
j=1

a1(G[Vj ]) ,

where V = V1 ⊔ · · · ⊔Vi+1 denotes any decomposition of V into i+1 (non-empty)
disjoint subsets V1, . . . , Vi+1.

Proof. Let F ∈ Bi
e and let G1 = (V1, F1), . . . , Gi+1 = (Vi+1, Fi+1) be the con-

nected components of Ḡ⟨F \ {e}⟩. In this way, F defines a decomposition of V
into i+1 disjoint sets V1, . . . , Vi+1 such that e ̸∈ G[Vj ] for any j = 1, . . . , i+1. Let
E1, . . . Ei+1 be the edge sets of the vertex induced subgraphs G[V1], . . . , G[Vi+1],
respectively. Note that F decomposes as F1 ∪ · · · ∪ Fi+1 ∪ {e}, where Fj ⊆ Ej

for each j. Conversely, given a decomposition of V into i + 1 subsets as above
such that no G[Vj ] contains e, then F = F1 ∪ · · · ∪ Fi+1 ∪ {e} belongs to Bi

e for
any collection F1, . . . , Fi+1 of edge sets in G[V1], . . . , G[Vi+1], respectively, such
that each (Vj , Fj) is connected. Hence, we can organize the sum over F ∈ Bi

e

by aggregating terms with the same decomposition of V , denoting by k(Fj) the
number of connected components of (Vj , Fj), we have:

bie(G) =
∑
F∈Bi

e

(−1)|F | =
∑

V=V1⊔···⊔Vi+1

e̸∈G[Vj ], j=1,...,i+1

∑
Fj⊆Ej , k(Fj)=1

j=1,...,i+1

(−1)1+
∑i+1

j=1 |Fj |

= −
∑

V=V1⊔···⊔Vi+1

e̸∈G[Vj ], j=1,...,i+1

i+1∏
j=1

∑
Fj⊆Ej

k(Fj)=1

(−1)|Fj | = −
∑

V=V1⊔···⊔Vi+1

e ̸∈G[Vj ], j=1,...,i+1

i+1∏
j=1

a1(G[Vj ]) .
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Note that only decompositions such that G[Vj ] is connected for all j =
1, . . . , i + 1 contribute to the right-hand side of (2.5), since a1 vanishes for dis-
connected graphs.

Next, we proceed to verify a similar set of recursion relations for the hi. For
this purpose, assume a linear ordering of the edges of the graph G = (V,E) is
given and let us call a set of edges F ⊆ E an i-forest if Ḡ⟨F ⟩ has i components
each of which is a tree, i.e., Ḡ⟨F ⟩ is an acyclic graph with k(F ) = i. Since for
each tree the number of edges is one less than the number of vertices, we have
that i = k(F ) = n − |F | for any i-forest F . Thus every spanning i-forest is
a subgraph with n − i edges. Conversely, since every cycle trivially contains a
broken cycle as a subset, any subgraph of G which does not contain any broken
cycle is an i-forest, if it has n − i edges. In conclusion, hi(G) is the number of
spanning i-forests of G containing no broken cycle.

Lemma 6. For any graph G = (V,E) with a linear ordering of E ̸= ∅ we have
that

(2.6) hi(G) = ci−1(G) + ci(G),

where the numbers ci(G), i = 1, 2, 3, . . . , are given by

(2.7) ci(G) =
∑

V=V1⊔···⊔Vi+1

emax ̸∈G[Vj ], j=1,...,i+1

i+1∏
j=1

h1(G[Vj ]).

and emax is the maximal edge of G, while c0(G) = 0.

Proof. Let F be an i-forest of G for some i, and fix e ∈ E. Then exactly one of
the following is true:

(1) e /∈ F , and F ∪ {e} is not a forest (i.e., adding e to F creates a cycle),

(2) e /∈ F , and F ∪ {e} is an (i− 1)-forest,

(3) e ∈ F , and F \ {e} is a (i+ 1)-forest.

If we now choose e = emax and F is an i-forest such that case (1) holds, then
F has a broken cycle. If we therefore consider forests which contain no broken
cycle, case (1) does not occur and we can therefore decompose the set

E i = {F ⊆ E |F is a spanning i-forest with no broken cycle}

into two disjoint classes

Ãi
emax

= {F ∈ E i | emax ̸∈ F},
B̃i
emax

= {F ∈ E i | emax ∈ F}
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and, clearly, F 7→ F ∪ {emax} is a bijection from Ãi
emax

onto B̃i−1
emax

. If we now

define ci(G) = |B̃i
emax

| and recall that hi(G) = |E i|, we see that

(2.8) hi(G) = ci−1(G) + ci(G), i = 1, 2, 3, . . . .

Note that c0(G) = 0 since E0 is empty. We have to show that the ci(G) given in
(2.7) coincide with the ones we have just defined.

Let F ∈ B̃i
emax

. Then F \ {emax} is a spanning (i + 1)-forest and it can be
written as the disjoint union of its components

F \ {emax} = T1 ∪ · · · ∪ Ti+1.

Let Vj be the vertex set of Tj and let Gj = G[Vj ] be the corresponding vertex
induced subgraph of G, for each j = 1, . . . , i + 1. Then Tj is a spanning tree of
Gj . Since F contains no broken cycle by assumption, neither does any of the Tj
and, in particular, emax ̸∈ Gj for every j.

Conversely, consider a decomposition V = V1 ⊔ · · · ⊔ Vi+1 such that emax ̸∈
Gj = G[Vj ] for every j = 1, . . . , i + 1. If Tj is a spanning tree for Gj for each j,
then F = T1 ⊔ · · · ⊔ Ti+1 ⊔ {emax} is a spanning i-forest of G. If none of the Tj
contains a broken cycle, then neither will F . This proves the formula.

As in formula (2.5) only decompositions such that all G[Vj ] are connected
contribute to the sum in (2.7).

Proof of Theorem 3. With notation as in Lemmas 4 and 6 we define

ãi(G) = (−1)n−ihi(G) and b̃ie(G) = (−1)n−ici(G)

for i = 1, 2, . . . , n and i = 0, 1, . . . , n, respectively, (where e = emax). It follows
from (2.6) and (2.7) that ãi and b̃

i
e satisfy the same recursion relations (2.3) and

(2.5) as ai and b
i
e. Specialising (2.5) to i = 1 and noting that a1 = b1e we get

(2.9) a1(G) = −
∑

V=V1⊔V2
e̸∈G[Vj ], j=1,2

a1(G[V1]) · a1(G[V2]).

Noting that for the case of the empty graph Ḡ⟨∅⟩ it holds that

a1(Ḡ⟨∅⟩) =

{
1, if n = 1,

0, if n > 1,

this relation determines a1(G) uniquely for all graphs G by induction, since the
graphs G[Vj ] have fewer edges than G. In turn, relations (2.3) and (2.5) determine
ai(G) for i ≥ 2.

Since it is clear that a1(Ḡ⟨∅⟩) = ã1(Ḡ⟨∅⟩) and ã1(G) = b̃1e(G), it follows that
ai(G) = ãi(G) for all i and all graphs G.
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It is a well known fact that the coefficients ai(G) alternate in sign, and that
they are numerically upper bounded by the corresponding coefficients for the
complete graph of equal order. We will now briefly show how this follows in a
simple manner from the recursion relations of Lemmas 4 and 5 without using nei-
ther Whitney’s theorem nor the deletion-contraction principle, as a consequence
of the following result.

Lemma 7. For any graph G of order n and any edge e of G it holds that

(2.10) 0 ≤ (−1)n−ibie(G) ≤ (−1)n−ibie(Kn) , i = 1, . . . , n,

where Kn denotes the complete graph on n vertices. Moreover, the first inequality
is sharp if and only if k(G) ≤ i ≤ n, while the second inequality is sharp for
1 ≤ i ≤ n− 1 unless G = Kn.

Proof. We shall prove the statement by induction. Consider first the case i = 1
and note that the recursion relation (2.9) can be rewritten as

(2.11) d(G) =
∑

V=V1⊔V2
e ̸∈G[Vj ], j=1,2

d(G[V1]) · d(G[V2]),

where d(G) = (−1)n−1a1(G). Since

d(V, ∅) =

{
1, if |V | = 1,

0, if |V | > 1,

it follows by induction on the number of edges in G that d(G) ≥ 0 for all G. If G
is connected it is easy to see, by successively deleting edges in paths connecting
the endpoints of e, starting with e, that there exist decompositions V = V1 ⊔ V2
such that G[V1] and G[V2] are both connected and do not contain e. This implies,
again by induction, that d(G) > 0 if G is connected. On the other hand, if G is
disconnected, the sum in (2.11) is empty and so d(G) = 0.

Using (2.5) in the form

(2.12) (−1)n−ibie(G) =
∑

V=V1⊔···⊔Vi+1

e̸∈G[Vj ], j=1,...,i+1

i+1∏
j=1

d(G[Vj ]),

we get that (−1)n−ibie(G) ≥ 0. Moreover, if G has k connected components, the
sum on the right-hand side is empty if i < k whereas positive terms occur for
k ≤ i ≤ n and hence (−1)n−ibie(G) > 0 in this case.

Moreover, considering G as a subgraph of Kn and comparing the formula
(2.12) for G and the corresponding one for Kn, we see that each summand in the
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former by the induction hypothesis can be bounded from above by a correspond-
ing term in the latter, since all Kn[Vj ] are complete graphs. Hence, the rightmost
bound in (2.10) follows.

Finally, if G is not the complete graph, we have n ≥ 2 and there is an edge
f = {x, y} inKn that is not an edge of G. For i ≤ n−1 we choose a decomposition
V = V1 ⊔ · · · ⊔ Vi+1 in (2.12), such that V1 = {x, y} and V2 = {z}, where z is
an endpoint of f that is not in V1, and V3, . . . , Vi+1 are arbitrary. Then G[V1] is
disconnected and therefore this term in (2.12) vanishes, while the corresponding
term for Kn is strictly positive.

This proves the last statement of the proposition.

Corollary 8. For any graph G with n vertices it holds for i = 1, 2, . . . , n that

(2.13)
0 ≤ (−1)n−i(a1(G) + a2(G) + · · ·+ ai(G))

≤ (−1)n−i(a1(Kn) + a2(Kn) + · · ·+ ai(Kn)),

and

(2.14) 0 ≤ (−1)n−iai(G) ≤ (−1)n−iai(Kn).

Moreover, in both cases the first inequality is sharp if and only if k(G) ≤ i ≤ n,
while the second inequality is sharp for 1 ≤ i ≤ n− 1 unless G = Kn.

Proof. Using that

(2.15) ai(G) = bie(G)− bi−1
e (G)

by (2.3) and that b0e(G) = 0 it follows that

bie(G) = a1(G) + · · ·+ ai(G) .

In particular, bie(G) is independent of e and (2.13) is just a rewriting of (2.10).
Writing (2.15) as

(−1)n−iai(G) = (−1)n−ibie(G) + (−1)n−i+1bi−1
e (G)

the inequalities (2.14) follow immediately from (2.10). Moreover, the first in-
equality of (2.14) is an equality if and only if bie(G) = bi−1

e (G) = 0 and hence
if and only if 0 ≤ i < k(G). Similarly, Lemma 2.10 gives that if the second
inequality of (2.14) is an equality, then bie(G) = bie(Kn) and b

i−1
e (G) = bi−1

e (Kn)
and hence G = Kn. This completes the proof of the corollary.

It should be noted that the inequality (2.13) can also easily be deduced from
the (highly non-trivial) unimodularity of the coefficients of χG [13, 18] and the
fact that a1 + a2 + · · ·+ an = 0.
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Remark 9. The alternating sign property of the ai plays a role, for the special
case i = 1, in the Mayer expansion for the hard-core lattice gas in statistical
mechanics (also known as the cluster expansion of the polymer partition function)
[12, 19, 22]. Briefly, the model is defined by a finite set Γ which plays the role of
the “single-particle” state space, a list of complex weights w = (wγ)γ∈Γ, and an
interaction W : Γ× Γ → {0, 1}, which is symmetric and satisfies W (γ, γ) = 0 for
all γ ∈ Γ. Given a multiset X = {γ1, . . . , γn} of elements of Γ (where each γi can
appear more than once), we define the simple graph G[X] ⊆ Kn as the graph on
n vertices such that i is adjacent to j if i ̸= j and W (γi, γj) = 0.

A subset X of Γ is said to be independent if G[X] has no edges. The partition
function is then given by

(2.16) ZΓ(w) =
∑
X⊆Γ

( ∏
γ∈X

wγ

) ∏
{γ,γ′}⊆X

W (γ, γ′) =
∑
X⊆Γ

X independent

∏
γ∈X

wγ ,

which is the (generalized) independent-set polynomial of G[Γ] (the standard
independent-set polynomial is given when w is taken to be constant) [19]. The
Mayer expansion gives a formal series expansion for logZΓ [12, Proposition 5.3],

(2.17) logZΓ(w) =
∑
n≥1

1

n!

∑
γ1,...,γn∈Γ

a1(G[γ1, . . . , γn])
n∏

i=1

wγi .

The alternating sign property of a1 implies in particular that the coefficient of
order n of logZG(w), seen as a polynomial in the variables (wγ)γ∈Γ, has sign
(−1)n−1. This holds in greater generality [19, Proposition 2.8], and has important
implications for proving the convergence of the formal series (2.17) [16].

3. The Recursion Relations for Hypergraphs

Let H be a hypergraph, that is H = (V,E) where V is a finite non-empty set of
vertices and E is a set of subsets of V , called edges. We assume all edges have
cardinality at least 2 (i.e., H has no loops) and will denote |V | by n.

A hypergraph H ′ = (V ′, E′) is a subgraph of H if V ′ ⊆ V and E′ ⊆ E. If

E′ =
{
e ∈ E | e ⊆ V ′} ,

we call H ′ the subgraph spanned by V ′ and denote it by H[V ′]. If

V ′ =
⋃
e∈E′

e,

we call H ′ the subgraph spanned by E′ and denote it by H⟨E′⟩. Finally, in case
V = V ′ we call H ′ a spanning subgraph of H and denote it by H̄⟨E′⟩.
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Two different vertices x, y ∈ V are called neighbours in H if x, y ∈ e for some
e ∈ E. A vertex x is connected to a vertex y if either x = y or there exists a
finite sequence x1, x2, . . . , xk of vertices such that xi and xi+1 are neighbours for
i = 1, . . . , k− 1 and x1 = x and xk = y. Clearly, connectedness is an equivalence
relation on V . Calling the equivalence classes V1, . . . , VN and letting Ei be the set
of edges containing only vertices of Vi, we have that Hi = (Vi, Ei) is a hypergraph
and

V =
N⋃
i=1

Vi , E =
N⋃
i=1

Ei .

If N = 1, we call H connected. Evidently, H1, . . . ,HN are connected. They
are called the connected components of H and their number is denoted by k(H).
Again, we shall use the notation k(F ) for k(H̄⟨F ⟩).

Definition 10. Let λ ∈ N. A λ-colouring of a hypergraph H = (V,E) is a map
π : V → {1, 2, . . . , λ}. A λ-colouring is called proper if for each edge e ∈ E there
exist vertices x, y ∈ e such that π(x) ̸= π(y). We define χH(λ) to be the number
of proper λ-colourings of H.

Repeating the proof of Theorem 2 we obtain:

Theorem 11. The function χH is a polynomial, called the chromatic polynomial
of H, given by

χH(λ) =
∑
F⊆E

(−1)|F |λk(F ) .

Thus, the coefficients ai(H), i = 1, 2, 3, . . . , n, of χH are given by the same
formula (2.1) as for graphs.

Now, fix e ∈ E and let

Ai
e = {F ⊆ E | e /∈ F, k(F ) = i},

Bi,j
e = {F ⊆ E | e ∈ F, k(F ) = i, k(F \ {e}) = j}.

Note that Bi,j
e = ∅ if i > j and, if F ∈ Ai

e, then F ∪ {e} ∈ Bj,i
e for some j ≤ i

yielding a bijective correspondence between Ai
e and

⋃
j≤i B

j,i
e . Hence, we have

(3.1)
∑
F∈Ai

e

(−1)|F | = −
i∑

j=1

∑
F∈Bj,i

e

(−1)|F |.

Using

(3.2) ai =
∑
F∈Ai

e

(−1)|F | +

n∑
j=i

∑
F∈Bi,j

e

(−1)|F |
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it follows that

(3.3) ai =
∑
j>i

bi,je −
∑
j<i

bj,ie ,

where

(3.4) bi,je =
∑

F∈Bi,j
e

(−1)|F |.

In particular, we have

(3.5) a1 =
n∑

j=2

b1,je .

Proposition 12. For i < j it holds that

(3.6) bi,je = −
∑(i)

V1⊔···⊔Vj=V

j∏
k=1

a1(H[Vk]),

where the sum is over all decompositions of V into j (non-empty) disjoint subsets
such that e intersects exactly j − i+ 1 of them.

Proof. Let F ∈ Bi,j
e . Then H̄⟨F ⟩ has i components C1, . . . , Ci, whereas H̄⟨F \

{e}⟩ has j components H1 = (V1, F1), . . . ,Hj = (Vj , Fj) which are connected
spanning subgraphs of H[V1], . . . ,H[Vj ], respectively. Indeed, we have e ∈ Cm ≡
(V ′, F ′) for some m = 1, . . . , i, and (V ′, F ′ \ {e}) then has j − i+ 1 components
which together with {C1, . . . , Cm−1, Cm+1, . . . , Ci} make up {H1, . . . ,Hj}, and e
intersects exactly those Vk which originate from Cm by deleting e.

On the other hand, given a decomposition V1 ⊔ · · · ⊔ Vj of V and connected
spanning subgraphs H1 = (V1, F1), . . . ,Hj = (Vj , Fj) of H[V1], . . . ,H[Vj ], re-
spectively, such that e intersects exactly j − i + 1 of V1, . . . , Vj , we get that

F1 ∪ · · · ∪ Fj ∪ {e} ∈ Bi,j
e and the mapping ψ defined by

ψ({H1, . . . ,Hj}) = F1 ∪ · · · ∪ Fj ∪ {e}

is a bijection onto Bi,j
e .

Since

(−1)|F1∪···∪Fj∪{e}| = −
j∏

k=1

(−1)|Fk| ,

the claim follows upon noting that a1(H[V ′]) = 0 if H[V ′] is not connected.
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Setting i = 1 and summing over j in (3.6) we get

(3.7) a1(H) = −
n∑

j=2

∑(1)

V1⊔···⊔Vj=V

j∏
k=1

a1(H[Vk])

which determines a1(H) inductively for any hypergraphH, sinceH[V1], . . . ,H[Vj ]
all have fewer edges than H and we obviously have

(3.8) a1(H̄⟨∅⟩) =

{
1, if |V | = 1,

0, if |V | > 1.

Once a1 is known we obtain bi,je (H) for any H from (3.5) and consequently
ai(H) from (3.3). Hence, equations (3.3), (3.6) and (3.8) determine all ai (as well
as all bi,je ).

We will now present a generalization of Whitney’s broken cycle theorem for
hypergraphs.

Definition 13. Let H = (V,E) be a hypergraph and fix some linear ordering ≤
of E. A non-empty set F ⊆ E is called broken-cyclic in H with respect to ≤ if it
fulfils the following property:

(⋆) H⟨F ⟩ is connected and there exists an edge e0 ⊆
⋃

f∈F f such that e0 >
maxF .

Lemma 14. Assume H = (V,E) is a hypergraph with connected components
H1(V1, E1), . . . ,HN = (VN , EN ). Then F ⊆ E is broken-cyclic in H if and only
if F ⊆ Ei and F is broken-cyclic in Hi for some i = 1, . . . , N , with ordering of
edges inherited from that of H.

Proof. If F is broken-cyclic in H, then H⟨F ⟩ is connected and hence is a sub-
graph of some Hi. Consequently, if e0 ⊆

⋃
f∈F f , it is an edge of Hi and it follows

that F is broken-cyclic in Hi.
The converse, that a set of edges F which is broken-cyclic in Hi is also

broken-cyclic in H, is obvious.

From now on H = (V,E) is a fixed hypergraph with some linear ordering ≤
on E and D is some subset of 2E consisting of broken-cyclic subsets in H with
respect to ≤. Moreover, if H ′ = (V ′, E′) is a subgraph of H, it will be assumed
that E′ is ordered with respect to the restriction of ≤ to E′.

We define

ED = {F ⊆ E | A ⊈ F for all A ∈ D},(3.9)

E i
D = {F ⊆ E | k(H⟨F ⟩) = i} ∩ ED,(3.10)
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and set

(3.11) ai,D =
∑
F∈Ei

D

(−1)|F |,

for i = 1, 2, 3, . . . , n. Note that ai = ai,∅.
We may now formulate the following version of the broken-cycle theorem.

Theorem 15. For any set D of broken-cyclic subsets of edges in a hypergraph H
it holds that

(3.12) ai = ai,D

for all i.

Proof. Let e = maxE. Defining the sets

(3.13) Ai
e,D = Ai

e ∩ ED , Bi,j
e,D = Bi,j

e ∩ ED,

we have the decomposition

(3.14) E i
D = Ai

e,D ∪

⋃
j≥i

Bi,j
e,D


into disjoint subsets. Moreover, since e is maximal in E it does not belong to any
broken-cyclic subset in H and therefore the mapping φ defined by φ(F ) = F ∪{e}
is a bijection from Ai

e,D onto
⋃

j≤i B
j,i
e,D. Thus, defining

(3.15) bi,je,D =
∑

F∈Bi,j
e,D

(−1)|F |,

the same arguments as those leading to relation (3.3) imply

(3.16) ai,D =
∑
j>i

bi,je,D −
∑
j<i

bj,ie,D.

We next argue that the analogue of (3.6) also holds. Let F ∈ Bi,j
e,D and con-

sider the corresponding connected components H1 = (V1, F1), . . . ,HN = (Vj , Fj)
of the subgraph H̄⟨F \{e}⟩ (see the proof of Proposition 12). For A ∈ D we have
by Lemma 14 that A ⊆ F if and only if A ⊆ Fk for some k = 1, . . . , j. Defining

(3.17) Dk = D ∩ 2Ek ,

where Ek denotes the edgeset of H[Vk], this means that A ⊈ F for all A ∈ D if
and only if A ⊈ Fk for all A ∈ Dk and all k = 1, . . . , j. Observe that any A ∈ Dk
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is broken-cyclic in H[Vk] since the vertices of edges in A belong to Vk and hence
H⟨A⟩ = H[Vk]⟨A⟩. We conclude that F ∈ Bi,j

e,D if and only if Fk ∈ A1
e,Dk

(H[Vk])
for all k = 1, . . . , j.

As in the proof of Proposition 12 we obtain, conversely, from any decomposi-
tion V1⊔· · ·⊔Vj = V and connected, spanning subgraphs H1 = (V1, F1), . . . ,Hj =
(Vj , Fj) of H1 = H[V1], . . . ,Hj = H[Vj ] such that A ⊈ Fk for all A ∈ Dk and all
k = 1, . . . , j, and such that e intersects exactly j − i + 1 of the sets V1, . . . , Vj ,

that F = F1 ∪ · · ·Fj ∪ {e} belongs to Bi,j
e,D. Hence we obtain the desired relation

(3.18) bi,je,D(H) = −
∑(i)

V1⊔···⊔Vj=V

j∏
k=1

a1,Dk
(H[Vk]),

where one should note that Dk depends solely on Vk and D for a given H.
Having established equations (3.16) and (3.18) the claimed equality of ai and

ai,D follows by induction on the number of edges since, if E = ∅, we must have
D = ∅ and so

(3.19) ai,D(H̄⟨∅⟩) = ai(H̄⟨∅⟩) , i = 1, 2, 3, . . . .

The following Propositions 16 and 17 show that Theorem 15 contains the
broken cycle theorems of [7, 9, 21] and those quoted for hypergraphs in [10].

Proposition 16. Assume H ′ = (V ′, F ) is a δ-cycle in H = (V,E) in the sense of
[21], i.e., H ′ is a minimal subgraph of H such that F ̸= ∅ and k(H ′) = k(H ′ − e)
for all e ∈ F . Then F \{maxF} is broken-cyclic in H according to Definition 13.

Proof. SinceH ′ is minimal, it follows that k(H ′) = k(H ′−e) = 1 for all e ∈ F . In
particular, H ′−maxF is connected and equalsH⟨F \{maxF}⟩ with vertex set V ′.
Hence, maxF ⊆

⋃
f∈F\{maxF} f and, of course, maxF > max(F \ {maxF}).

Proposition 17. Let C = x1e1x2e2 · · ·xnenx1 be a cycle in H in the sense of [1],
i.e., x1, . . . , xn, respectively, e1, . . . , en, are pairwise distinct vertices, respectively,
edges, in H such that xi ∈ ei−1 ∩ ei for i = 1, . . . , n (with e0 ≡ en). Setting
F = {e1, . . . , en} we have that F \ {maxF} is broken-cyclic in H provided

(3.20) maxF ⊆
⋃

f∈F\{maxF}

f,

which in particular holds if maxF has cardinaliy 2.

Proof. It is clear that H⟨F \{maxF}⟩ is connected and that (3.20) ensures that
we may use e0 = maxF in Definition 13.

If maxF = ek has cardinality 2, then ek = {xk, xk+1} ⊆ ek−1 ∪ ek+1 ⊆⋃
f∈F\{ek} f .
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Alternating sign properties of the ai for hypergraphs such as the ones de-
scribed in Section 2 for graphs have been demonstrated in some specific cases,
see e.g. [7]. To what extent analogues of (2.14) can be obtained in the general case
of hypergraphs is not clear. We should mention on this topic that the deletion-
contraction principle has been extended to hypergraphs [28] as well as to mixed
hypergraphs [24].

4. An Application: the First Chromatic Coefficient for Complete
Hypergraphs

As a last topic we show that the recursion relations of Section 3 can be used
to derive the value of a1 for complete hypergraphs. Let Kr

n be the r-complete
hypergraph of order n, i.e., the edge set of Kr

n consists of all r-subsets of its vertex
set V = {1, 2, . . . , n}. Note that if r = 2, then K2

n is the complete graph Kn and
the result is well known (see e.g. [11]).

We shall calculate a1(K
r
n) for r ≥ 2 and n ≥ 1 making use of (3.7), which in

this case takes the form

(4.1)

a1(K
r
n) = −

r∑
j=2

∑
1≤k1≤···≤kj
k1+···+kj=r

N r
k1,...,kj

∑
s1,...,sj≥0

s1+···+sj=n−r

(
n− r

s1 . . . sj

)

· a1
(
Kr

k1+s1

)
· · · · · a1

(
Kr

kj+sj

)
,

where N r
k1,...,kj

denotes the number of partitions of {1, . . . , r} into j sets of size

k1, . . . , kj and
(

n−r
s1···sj

)
is the standard multinomial coefficient.

Note also that we obviously have

(4.2) χKr
n
(λ) =

{
λn, if 0 ≤ n < r,

λn − λ, if n = r,

so that, in particular,

(4.3) a1(K
r
n) =

{
1, if n = 1,

0, if n = 2, 3, . . . , r − 1,

(while a1(K
n
n ) = −1).

Theorem 18. For r ≥ 2 and n ≥ 1 it holds that

(4.4) a1(K
r
n) = −(n− 1)!µr−1(n),
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where

(4.5) µr(n) =
r∑

i=1

R−n
i

and R1, . . . , Rr denote the roots of the r’th Taylor polynomial Er of exp.

Proof. Fix r ≥ 2. We introduce the generating function g(x) given by

(4.6) g(x) =

∞∑
n=0

a1(K
r
n+1)

n!
xn

and rewrite equations (4.1)–(4.3) as

(4.7) g(r−1)(x) = −
r∑

j=2

∑
1≤k1≤···≤kj
k1+···+kj=r

N r
k1,...,kj

g(k1−1)(x) · · · · · g(kj−1)(x)

with initial condition

g(0) = 1 , g′(0) = g′′(0) = · · · = g(r−2)(0) = 0.

Given two C∞-functions ψ and φ of a real variable we recall the formula

(4.8) (ψ ◦ φ)(r)(x) =
r∑

j=1

∑
1≤k1≤···≤kj
k1+···+kj=r

N r
k1,...,kj

ψ(j)(φ(x))φ(k1)(x) · · · · · φ(kj)(x),

which is easy to verify by induction. For ψ = exp this gives

exp(−φ(x)) (exp ◦φ)(r) (x) =
r∑

j=1

∑
1≤k1≤···≤kj
k1+···+kj=r

N r
k1,...,kj

φ(k1)(x) · · · · · φ(kj)(x).

Setting g = φ′ in (4.7) and using N
(r)
1,1,...,1 = 1 it follows that φ satisfies

(exp ◦φ)(r)(x) = 0,

and hence that exp ◦φ equals a polynomial P of degree at most r − 1. Thus

g(x) =
P ′(x)

P (x)
.

The initial conditions are easily seen to imply that P = Er−1 and consequently

g(x) =
E′

r−1(x)

Er−1(x)
=

r−1∑
i=1

1

x−Ri
,

which gives the claimed result.
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Remark 19. For r = 2 we have R1 = −1 and we get from Theorem 18 the
known result

(4.9) a1(Kn) = a1(K
2
n) = (−1)n−1(n− 1)!.

By inserting this value into (2.5), we obtain an expression for ai(Kn) for all i. It
should be noted though that the value of ai(Kn) is equal to s(n, i), where s(n, i)
denotes the signed Stirling numbers of the first kind.

Remark 20. For r = 3 the roots of E2 are R± = −1± i which gives

(4.10) a1(K
3
n) = (−1)n−1(n− 1)! 21−

n
2 cos

nπ

4
.

For the calculation of a1(K
r
n) for larger values of r one may use the results

available in the literature for the moment function µr(n). In particular, the value
of µr(n) was computed for n ≤ 2(r+1) [27, Theorem 7], which gives the following
expression for a1(K

r
n), expanding the one given in (4.3),

(4.11) a1(K
r
n) =


1, if n = 1,

0, if 2 ≤ n ≤ r − 1,

(−1)n−r+1
(
n−1
r−1

)
, if r ≤ n ≤ 2r − 1,

−[1 + (−1)r]
(
2r−1
r

)
, if n = 2r.

In [27] it was also shown that, once µr(n) is known for r consecutive values of n,
then it is possible to recursively determine the value of µr(n) for every n. This
recursive formula for µr(n), when expressed in terms of a1(K

r
n), reads as

(4.12)

r−1∑
j=0

(
r − 2 +m

r − 1− j

)
a1(K

r
j+m) = 0, for every m ∈ N.

On a more general note, the properties of the zeros of the Taylor polynomials
of exp have been intensively investigated, starting from the work of Szegö [20] and
Dieudonné [6], who showed that the points Ri

r accumulate, as r goes to infinity,
on a closed curve contained in the unit circle, now known as the Szegö curve. See
also [4, 5, 14,15,17,23,25,27] for further developements.
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