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Abstract

A graph G is called Hamilton-connected if for every pair of distinct ver-
tices {u, v} of G there exists a Hamilton path in G that connects u and v.
A graph G is said to be t-tough if t ·ω(G−X) ≤ |X| for all X ⊆ V (G) with
ω(G−X) > 1. The toughness of G, denoted τ(G), is the maximum value of
t such that G is t-tough (taking τ(Kn) = ∞ for all n ≥ 1). It is known that
a Hamilton-connected graph G has toughness τ(G) > 1, but that the reverse
statement does not hold in general. In this paper, we investigate all possible
forbidden subgraphs H such that every H-free graph G with τ(G) > 1 is
Hamilton-connected. We find that the results are completely analogous to
the Hamiltonian case: every graph H such that any 1-tough H-free graph
is Hamiltonian also ensures that every H-free graph with toughness larger
than one is Hamilton-connected. And similarly, there is no other forbidden
subgraph having this property, except possibly for the graph K1 ∪ P4 itself.
We leave this as an open case.
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1. Introduction

We use standard graph terminology and notation adopted from the textbook [4],
and consider simple graphs only. Let G be a graph with vertex set V (G), and
let H be a subgraph of G. For a vertex u ∈ V (G), the neighborhood of u in H
is denoted by NH(u) = {v ∈ V (H) | uv ∈ E(G)} and the degree of u in H is
denoted by dH(u) = |NH(u)|. When it is understood from the context, we use
N(u) and d(u) instead of NG(u) and dG(u), respectively. For two distinct vertices
u, v ∈ V (G), a (u, v)-path is a path with end vertices u and v. We use Kn and
Pn to denote the complete graph and the path with n vertices, respectively. For
a nonempty subset S of V (G), we use ⟨S⟩ to denote the subgraph of G induced
by S, and for a proper subset S of V (G), we use G − S to denote the subgraph
induced by V (G) \ S. For a given graph H, we say G is H-free if G does not
contain an induced copy of H. Let ω(G) denote the number of components of
the graph G. As introduced in [7], a connected graph G is said to be t-tough if
t · ω(G − X) ≤ |X| for all X ⊆ V (G) with ω(G − X) > 1. The toughness of
G, denoted by τ(G), is the maximum value of t such that G is t-tough (taking
τ(Kn) = ∞ for all n ≥ 1).

A cycle in a graph G is called a Hamilton cycle if it contains all vertices of
G, and a graph is said to be Hamiltonian if it contains a Hamilton cycle. A
Hamilton path in a graph G is a path that contains all vertices of G, and a graph
G is Hamilton-connected if every pair of vertices of G occurs as the two end ver-
tices of a Hamilton path of G. It is easy to verify and a well-known fact that a
Hamiltonian graph is 1-tough, and that a Hamilton-connected graph has tough-
ness strictly larger than one. It is also known that the reverse statements do not
hold, i.e., there exist infinitely many non-Hamiltonian 1-tough graphs, and there
exist infinitely many graphs with toughness strictly larger than one that are not
Hamilton-connected. More specifically, to answer Chvátal’s Conjecture [7] which
states that there exists a constant t0 such that every t0-tough graph on n ≥ 3
vertices is Hamiltonian, the authors in [2] proved that t0 ≥ 9/4 by constructing
an infinite family of non-Hamiltonian graphs with toughness arbitrarily close to
9/4 from below. It is natural and interesting to investigate under which addi-
tional conditions the reverse statements do hold. In other words, under which
additional conditions are the properties of being 1-tough and being Hamiltonian
equivalent, and similarly for the stronger properties of having toughness strictly
larger than one and being Hamilton-connected. The type of additional condi-
tions we focus on here are forbidden subgraph conditions. For Hamiltonicity this
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type of problem was addressed by the authors of [10]. More relations between
different Hamiltonian properties and toughness conditions have been studied in
[1], leading to several equivalent conjectures, some seemingly stronger and some
seemingly weaker than Chvátal’s Conjecture. The survey paper [3] deals with a
large number of results that have been established until more than ten years ago.
A more recent survey of results and open problems appeared a few years ago [5].

We recall two results of [10] that motivated the research of this paper. Here
G1 ∪G2 denotes the disjoint union of two vertex-disjoint graphs G1 and G2, and
kG denotes the disjoint union of k copies of the graph G.

Theorem 1 (Li et al. [10]). Let R be an induced subgraph of P4, K1∪P3 or 2K1

∪K2. Then every R-free 1-tough graph on at least three vertices is hamiltonian.

Note that every induced subgraph of P4, K1 ∪ P3 or 2K1 ∪ K2 is also an
induced subgraph of K1 ∪ P4, and that K1 ∪ P4 is the only induced subgraph
of K1 ∪ P4 that is not an induced subgraph of P4, K1 ∪ P3 or 2K1 ∪ K2. The
following complementary result in [10] shows that there is no graph H other than
the induced subgraphs of K1 ∪ P4 that can ensure every 1-tough H-free graph is
Hamiltonian.

Theorem 2 (Li et al. [10]). Let R be a graph on at least three vertices. If every
R-free 1-tough graph on at least three vertices is Hamiltonian, then R is an in-
duced subgraph of K1 ∪ P4.

The two theorems together clearly leave K1 ∪ P4 as the only open case in
characterizing all the graphs H such that every H-free 1-tough graph is Hamil-
tonian, and it seems to be a very hard case. In fact, this was the conjecture of
Nikoghosyan in [12] that motivated the work in [10].

To date it is even unknown whether there exists some constant t such that
every t-tough K1 ∪ P4-free graph is Hamiltonian.

A Hamiltonian graph is 1-tough, and hence 2-connected, so a Hamilton-
connected graph G on at least three vertices is also 2-connected. It is even
clearly 3-connected: if there exists a cut set {u, v} in G, then u and v cannot be
connected by a Hamilton path in G, because only the vertices of one component
of G−{u, v} can be picked up between u and v. It is almost equally easy to show
that a Hamilton-connected graph has toughness strictly larger than one. This
can be seen by considering an arbitrary cut set S in a Hamilton-connected graph
G, and a Hamilton path P between two distinct vertices u and v of S (noting that
|S| ≥ 3 since G is 3-connected). Now, obviously ω(G− S) ≤ ω(P − S) ≤ |S| − 1,
hence τ(G) > 1.

In 1978, Jung [8] obtained the following result, in which he showed that for
P4-free graphs, the necessary condition τ(G) > 1 is also a sufficient condition for
Hamilton-connectivity.
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Theorem 3 (Jung [8]). Let G be a P4-free graph. Then G is Hamilton-connected
if and only if τ(G) > 1.

In a paper of 2000 [6], Chen and Gould concluded that if {S, T} is a pair
of graphs such that every 2-connected {S, T}-free graph is Hamiltonian, then
every 3-connected {S, T}-free graph is Hamilton-connected. Following up on this
idea, we considered the following question. Suppose R is a graph such that
every 1-tough R-free graph is Hamiltonian. Is then every R-free graph G with
τ(G) > 1 Hamilton-connected? For the purpose of answering this question, we
tried to prove each of the forbidden subgraph cases analogous to the statement in
Theorem 1. Of course Theorem 3 has already given us a partial positive answer.
And indeed, we get a positive answer for each of these cases, as indicated in the
following result.

Theorem 4. Let R be an induced subgraph of K1 ∪P3 or 2K1 ∪K2. Then every
R-free graph G with τ(G) > 1 on at least three vertices is Hamilton-connected.

We note here that from the proof of this result, it can be observed that the
toughness condition τ(G) > 1 in the above result cannot be weakened to the
condition that the graph is 3-connected. We also proved the following analogue
of Theorem 2, showing that except for the proper induced subgraphs of K1 ∪P4,
there are no other forbidden induced subgraphs that can ensure every graph with
toughness larger than one is Hamilton-connected.

Theorem 5. Let R be a graph on at least three vertices. If every R-free graph
G with τ(G) > 1 on at least three vertices is Hamilton-connected, then R is an
induced subgraph of K1 ∪ P4.

We conclude this section with the left unknown case as an open problem.

Problem 1. Is every K1 ∪ P4-free graph G with τ(G) > 1 on at least three ver-
tices Hamilton-connected?

As remarked earlier, we do not even know whether such graphs are Hamil-
tonian, even if the condition on the toughness is replaced by τ(G) > t for any
constant t ≥ 1.

The next two sections are devoted to the proofs of Theorem 4 and Theorem 5,
respectively.

2. Proof of Theorem 4

For a path P in G with a given orientation and a vertex x on P , x+ and x−

denote the immediate successor and the immediate predecessor of x on P (if
they exist), respectively. For any subset I ⊆ V (P ), let I− = {x− | x ∈ I} and
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I+ = {x+ | x ∈ I}. For two vertices x, y ∈ V (P ), xPy denotes the subpath of P
from x to y, and yPx denotes the path from y to x in the opposite direction. For
a subgraph H disjoint from P in G, when N(x)∩V (H) ̸= ∅ and N(y)∩V (H) ̸= ∅,
we use xHy to denote a path in G from x to y with all internal vertices in H.

Now, let P be a longest (u, v)-path in a graph G, and let H be a component
of G − V (P ). Furthermore, let I = NP (H) = {x1, x2, . . . , xs}, and let w be a
vertex of H. Then we start with the following lemma.

Lemma 1. Both {w} ∪ I+ and {w} ∪ I− are independent sets.

Proof. Suppose, to the contrary, that there is an edge in {w} ∪ I+. If the
edge appears between w and a vertex of I+, say wx+i ∈ E(G) with x+i ∈ I+,
then uPxiHx+i Pv is a (u, v)-path longer than P , contradicting the choice of
P . If the edge appears between two vertices of the set I+, say x+i x

+
j ∈ E(G)

with x+i , x
+
j ∈ I+, then uPxiHxjPx+i x

+
j Pv is a (u, v)-path longer than P , a

contradiction. Hence {w} ∪ I+ is an independent set. Similarly, by symmetry
{w} ∪ I− is also an independent set.

Next we complete the proof for the two choices of R in Theorem 4, respec-
tively. Note that we do not have to consider proper induced subgraphs of R,
since a graph is R-free if it is S-free for an induced subgraph S of R.

The case R = K1 ∪ P3.
Assume that G is a K1 ∪ P3-free graph with τ(G) > 1. Suppose to the contrary
that G is not Hamilton-connected, and that u, v is a pair of distinct vertices of
G that is not connected by a Hamilton path in G. Let P be a longest (u, v)-path
in G. Since P is not a Hamilton path, V (G) \ V (P ) ̸= ∅. Assume that H is
a component of G − V (P ). Then |NP (H)| ≥ 3 since τ(G) > 1. Assume that
NP (H) = {v1, v2, . . . , vs} with s ≥ 3, in this order according to the fixed chosen
orientation of P . We denote the segment of P from v+i to v−i+1 by Qi for all i with
1 ≤ i ≤ s− 1. If v1 ̸= u, then let Q0 = uPv−1 . If vs ̸= v, then let Qs = v+s Pv.

Before completing the proof for this case, we first prove the following two
claims.

Claim 1. At least two of the segments of P are connected by a path (possibly an
edge) that is internally-disjoint with P .

Proof. By Lemma 1, the neighbors of H on P are not consecutive vertices on P .
If none of the segments of P is connected to another segment of P by a path (or
edge) internally-disjoint with P , then every segment is in a separate component
after removal of the vertices of NP (H). Then there will be at least s components
after deleting the s vertices of NP (H), contradicting the fact that τ(G) > 1. 2

Using Claim 1, we assume that Qi and Qj (0 ≤ i < j ≤ s) are connected
by a path (edge) that is internally-disjoint with P . In fact, the next claim shows
that we may assume that this path is actually an edge.
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Claim 2. Qi and Qj are connected by an edge.

Proof. Supposing the statement is false, we consider a shortest path that con-
nects Qi and Qj and is internally-disjoint with P , and denote it as Q = q1q2 · · · qr
(with q1 ∈ V (Qi) and qr ∈ V (Qj)). Obviously, Q is an induced path, and
N(Q)∩ V (H) = ∅. If r ≥ 3, then {w, q1, q2, q3} induces a copy of K1 ∪P3, where
w is a vertex of V (H), a contradiction. Hence, the shortest path connecting Qi

and Qj is an edge, and the claim holds. 2

We use Claim 2 and distinguish two cases, depending on the value of the
indices i and j, as follows.

Case A. Qi and Qj are connected by an edge, for some i and j with 1 ≤ i <
j ≤ s−1. Suppose that xy is an edge with x ∈ V (Qi) and y ∈ V (Qj), and chosen
such that |v+i PxyPv+j | is as small as possible. Using Lemma 1, we know that

either x ̸= v+i or y ̸= v+j . Without loss of generality, say x ̸= v+i . By the choice

of xy, we have that x−y /∈ E(G). Then an arbitrary vertex w of V (H) together
with the three vertices of {x−, x, y} induces a copy of K1 ∪ P3, a contradiction.

Case B. All edges connecting two different segments of P have at least one
end vertex in Q0 or Qs. By Claim 2, the assumption of this case implies that any
two of the s−1 segments Qi (i ∈ {1, 2, . . . , s−1}) of P are not connected by a path
internally-disjoint with P . Then there must be a segment Qi (i ∈ {1, 2, . . . , s−1})
that has a neighbor in Q0 or Qs. Otherwise, P has s+1 segments and only Q0 and
Qs among all these segments are connected by such a path. Then, by deleting the
s neighbors of H on P , we obtain s+ 1 components, contradicting the fact that
τ(G) > 1. Without loss of generality, we assume that Qi (i ∈ {1, 2, . . . , s− 1}) is
connected to Q0 by an edge. We use xy to denote an edge between V (Q0) and
V (Qi), chosen in such a way that |v−1 PxyPv−i+1| is as small as possible. Using
Lemma 1, we know that either x ̸= v−1 or y ̸= v−i+1. Without loss of generality,
say x ̸= v−1 . By the choice of xy, we have that x+y /∈ E(G). Then an arbitrary
vertex w of V (H) together with the three vertices of {x+, x, y} induces a copy of
K1 ∪ P3, a contradiction.

This completes the proof for the case R = K1 ∪ P3. We now turn to the
remaining case that R = 2K1 ∪K2.

The case R = 2K1 ∪ K2.
Suppose that G is a 2K1 ∪K2-free graph with τ(G) > 1, and assume that G is
not Hamilton-connected. Let u, v be a pair of distinct vertices of G that is not
connected by a Hamilton path in G, and let P be a longest (u, v)-path in G.
Then V (G) \ V (P ) ̸= ∅. Assume that H is a component of G − V (P ). Since
τ(G) > 1, we have |NP (H)| ≥ 3. Similarly as in the case R = K1 ∪ P3, we use
NP (H) = {v1, v2, . . . , vs} to denote all neighbors of H on P , so with s ≥ 3 and
in this order according to the chosen orientation of P .
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We continue with first proving three useful claims.

Claim 3. H is trivial, i.e., |V (H)| = 1.

Proof. Suppose H contains an edge w1w2. Using Lemma 1, we get that {w1, v
+
1 ,

v+2 } and {w2, v
+
1 , v

+
2 } are independent sets. Then {v+1 , v

+
2 , w1, w2} induces a copy

of 2K1 ∪K2, a contradiction. 2

Let H = {w}. Then NP (w) = {v1, v2, . . . , vs}, with s ≥ 3. Let Qi be the
segment of P from v+i to v−i+1 for 1 ≤ i ≤ s − 1, denoted as Qi = xi1xi2 · · ·xiri ,
with xi1 = v+i and xiri = v−i+1. If v1 ̸= u, then let Q0 = ux01x02 · · ·x0r0 , with
x0r0 = v−1 . If vs ̸= v, then let Qs = xs1xs2 · · ·xsrsv, with xs1 = v+s . Now we
prove the following useful facts.

Claim 4. For all i ∈ {1, 2, . . . , s − 1}, we have v+1 xij /∈ E(G) for every odd j,
v+1 xij ∈ E(G) for every even j, and ri is odd. In addition, if Q0 and Qs exist,
then v+1 is alternately adjacent and nonadjacent to the vertices of the segments
Q0 and Qs with v+1 x0r0 /∈ E(G) and v+1 xs1 /∈ E(G).

Proof. We divide the proof into two cases according to the length of the seg-
ment Q1.

Case A. |Q1| = 1, i.e., v2 = v++
1 . In this case, the claim holds for the segment

Q1 itself. For the segments Qi (i = 0, 2, 3, . . . , s), we first prove that if v+1 xij ∈
E(G), then v+1 xij+1 /∈ E(G), and if v+1 xij /∈ E(G), then v+1 xij+1 ∈ E(G) for all
j ∈ {1, 2, . . . , iri − 1}. Suppose that there is a segment Qi with i = 0, 2, 3, . . . , s
such that v+1 xij ∈ E(G) and v+1 xij+1 ∈ E(G) for some j ∈ {1, 2, . . . , iri − 1}.
Then there exists a longer (u, v)-path P ′ = uPv1wv2Pxijv

+
1 xij+1Pv (if i ̸= 0),

or P ′ = uPxijv
+
1 xij+1Pv1wv2Pv (if i = 0), a contradiction. Suppose that Qi

(i = 0, 2, 3, . . . , s) is a segment with v+1 xij /∈ E(G) and v+1 xij+1 /∈ E(G) for some
j ∈ {1, 2, . . . , iri − 1}. Then {w, v+1 , xij , xij+1} induces a copy of 2K1 ∪ K2, a
contradiction. Thus the neighbors of v+1 occur on every segment Qi alternately
along the path. By Lemma 1 we have v+1 xi1 /∈ E(G) for i = 2, 3, . . . , s and
v+1 xiri /∈ E(G) for i = 0, 2, 3, . . . , s − 1. Hence ri is odd for i ∈ {1, 2, . . . , s − 1},
and the claim holds.

Case B. |Q1| ≥ 2, i.e., v++
1 /∈ NP (w). Firstly, we consider the case that

i ∈ {0, 2, 3, . . . , s}. By Lemma 1, v+1 xi1 /∈ E(G) for i ∈ {2, 3, . . . , s}. To avoid
that {w, xi1 , v+1 , v

++
1 } induces a copy of 2K1 ∪ K2, we have v++

1 xi1 ∈ E(G). If
there exists an index j ∈ {1, 2, . . . , iri −1} such that v+1 xij ∈ E(G) and v+1 xij+1 ∈
E(G), then we have a longer (u, v)-path P ′ = uPv1wviPv++

1 xi1Pxijv
+
1 xij+1Pv (if

i ̸= 0), or a longer (u, v)-path P ′ = uPxijv
+
1 xij+1Pv1wv2Pv++

1 x21Pv (if i = 0), a
contradiction. If v+1 xij /∈ E(G) and v+1 xij+1 /∈ E(G) for some j ∈ {1, 2, . . . , iri −
1}, then {w, v+1 , xij , xij+1} induces a copy of 2K1∪K2, a contradiction. Thus the
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neighbors of v+1 occur on every segment Qi (i = 0, 2, 3, . . . , s) alternately along
the path. We know v+1 xi1 /∈ E(G) for i = 2, 3, . . . , s, by Lemma 1. Now v+1 xiri /∈
E(G) for i = 0, 2, 3, . . . , s − 1; otherwise P ′ = uPv+1 xiriPxi1v

++
1 Pviwvi+1Pv is

a longer (u, v)-path (if i ̸= 0), or P ′ = uPxiriv
+
1 v1wv2Pv++

1 x21Pv is a longer
(u, v)-path (if i = 0). Hence ri is odd for i ∈ {2, . . . , s− 1}.

Secondly, we consider the remaining case that i = 1. If v+1 x1j ∈ E(G) and
v+1 x1j+1 ∈ E(G) for some j ∈ {2, 3, . . . , iri−1}, then we obtain a contradiction by

the longer (u, v)-path P ′ = uPv1wv2Px1j+1v
+
1 x1jPv++

1 x21Pv (if x1j ̸= v++
1 ), or

P ′ = uPv1wv2Px1j+1v
+
1 x1jx21Pv (if x1j = v++

1 ). If v+1 x1j /∈ E(G) and v+1 x1j+1 /∈
E(G) for some j ∈ {2, 3, . . . , iri − 1}, then {w, v+1 , x1j , x1j+1} induces a copy of
2K1∪K2, a contradiction. Thus the neighbors of v+1 occur on the segment Q1 al-
ternately along the path. Suppose that v+1 x1r1 ∈ E(G). If wx22 ∈ E(G), i.e., x22
= v3, then uPv+1 x1r1Pv++

1 x21v2wv3Pv is a longer (u, v)-path. If wx22 /∈ E(G),

then v+1 x22 ∈ E(G) and uPv1wv2x21v
++
1 Px1r1v

+
1 x22Pv is a longer (u, v)-path.

Hence, v+1 x1r1 /∈ E(G) and r1 is odd. Therefore the claim holds for all cases. 2

We need one more claim which is easy to prove.

Claim 5. N(v+1 ) ⊆ V (P ).

Proof. If there is a vertex z ∈ V (G) \ V (P ) such that v+1 z ∈ E(G), then the
vertex set {w, x21 , v+1 , z} induces a copy of 2K1 ∪K2, a contradiction. Therefore,
N(v+1 ) ⊆ V (P ). 2

Let S = N(v+1 ) ∪NP (H) and |S| = s′. By Claim 4, the vertices of S occur

on the path P alternately. If |V (P )| is odd, then s′ =
⌈
|V (P )|

2

⌉
; if |V (P )| is even,

then s′ = |V (P )|
2 . Moreover, S is a cut set whose deletion yields at least three

components, including the two trivial ones with vertices w and v+1 . If one of the
other components contains an edge z1z2, then {w, v+1 , z1, z2} induces a copy of
2K1 ∪ K2, a contradiction. Thus all components of G − S are trivial, meaning
that every vertex of V (P )\S is a component. Hence, ω(G−S) ≥ s′−1+1 = |S|,
contradicting the fact that τ(G) > 1.

This completes the proof of Theorem 4.

3. Proof of Theorem 5

For our proof that there is no graph H, apart from the induced subgraphs of
K1 ∪ P4, that can ensure every H-free graph with toughness larger than one is
Hamilton-connected, we make use of the following lemma.

Lemma 2 (Li et al. [10]). Let R be a graph on at least three vertices. If R is
not an induced subgraph of K1 ∪ P4, then R contains one of the graphs in H =
{C3, C4, C5,K1,3, 2K2, 4K1} as an induced subgraph.
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Using Lemma 2, we can complete our proof of Theorem 5 by showing that
not every R-free graph with toughness larger than one is Hamilton-connected,
for each of the graphs R ∈ H. To show this, we continue by giving suitable
counterexamples; some of these graphs are even not Hamiltonian. The only class
for which we cannot refer to known results, is the class of 4K1-free graphs. It
is not difficult to check that the graphs sketched in Figure 1 are examples of
4K1-free graphs that are not Hamilton-connected but have toughness larger than
one. In this sketch, the middle three vertices in the figure are supposed to be
joined to all the vertices of the complete graph on the left, and u and v are also
joined to all vertices of the complete graphs on the right; the other middle vertex
is only joined to the two indicated vertices on the right; these indicated vertices
are not joined to u or v.

Note that between u and v there is no Hamilton path (even if m = s = t = 1),
since the deletion of {u, v} leaves a graph with a cut vertex z (the other vertex
in the middle), and one cannot pick up all the vertices in both components that
result from deleting z.

m
K

s
K

t
K

u

v

Figure 1. 4K1-free non-Hamilton-connected graphs.

For R = C3, the well-known non- Hamiltonian Petersen graph is a suitable
counterexample, since it is C3-free and has toughness 4/3.

For R ∈ {C4, C5, 2K2}, we can find suitable split graphs as counterexamples.
Split graphs consist of a clique C and an independent set I with some (or possibly
all or none) of the edges joining a vertex of C and a vertex of I (but no edges
joining pairs of vertices of I). Split graphs are known to be {C4, C5, 2K2}-free. It
was proved in [9] that every 3

2 -tough split graph is Hamiltonian, and that there is a
sequence {Gn}∞n=1 of split graphs with no 2-factor (a 2-regular spanning subgraph,
not necessarily connected) and τ(Gn) → 3/2. The latter graphs clearly serve as
suitable examples for our purposes.

For R = K1,3, we use the known fact that for a claw-free noncomplete graph
G, 2τ(G) = κ(G), where κ(G) denotes the (vertex) connectivity of G. In [11], the
authors conjectured that every 4-connected claw-free graph is Hamiltonian, and
they showed examples of 3-connected claw-free graphs that are not Hamiltonian.
These examples have toughness 3/2 and clearly serve our purposes.
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This completes our proof of Theorem 5.
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