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Abstract

A linear hypergraph, also known as a partial Steiner system, is a collec-
tion of subsets of a set such that no two of the subsets have more than one
element in common. Most studies of linear hypergraphs consider only the
uniform case, in which all the subsets have the same size. In this paper we
provide, for the first time, asymptotically precise estimates of the number
of linear hypergraphs in the non-uniform case, as a function of the number
of subsets of each size.

Keywords: Steiner system, linear hypergraph, asymptotic enumeration,
switching method.

2010 Mathematics Subject Classification: 05A16, 05C65.

1. Introduction

A (simple) hypergraph is a pair H = (V,E), where V is a finite nonempty set
of vertices and E is a set of non-empty subsets of V called edges. Hypergraphs,
which are also known as set systems and block designs, are fundamental to the
study of complex discrete systems. They arise naturally in many application
areas such as ecology, chemistry, statistics and computer science.
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If all the edges consist of two elements, a hypergraph is better known as a
graph. In contrast to the vast literature on graphs, the literature on more general
hypergraphs is poor in comparison, especially for enumerative problems.

A Steiner system (for t = 2) is a hypergraph with the property that every
pair of vertices lies in exactly one edge. If also every edge has size r, it is a Steiner
r-tuple system. Wilson proved in 1975 that such systems exist for fixed r and
sufficiently large V provided the obvious divisibility condition is met [5].

If we replace “exactly one edge” by “at most one edge”, we have a partial
Steiner system, which is also known as a linear hypergraph. In other words, a
hypergraph is linear if no pair of edges have more than one vertex in common.
Edges of size 1 can be added arbitrarily to a linear hypergraph without destroying
the linearity, so we will disallow them without further comment.

Our aim is to study the following problem.

Problem 1. Let n ≥ 1 and K ≥ 2 be integers. For 2 ≤ i ≤ K, let mi = mi(n)
be a nonnegative integer. How many linear hypergraphs have n vertices, exactly
mi edges of size i for 2 ≤ i ≤ K, and no edges of size greater than K?

To the best of our knowledge, there is no previous work on this problem
except in the r-uniform case (i.e., when all the edges have the same size r). The
logarithm of the total number of r-uniform linear hypergraphs with n vertices
was determined asymptotically by Grable and Phelps [2]. A recent preprint of
McKay and Tian, completed while this paper was in process, asymptotically
counts r-uniform hypergraphs with o(n3/2) edges [4]. Blinovsky and Greenhill
determined the asymptotic number of r-uniform linear hypergraphs with m edges
and maximum degree k as a function of the vertex degrees, provided r3k4(k+r) =
o(m) [1]. In this article we are not concerned with the vertex degrees but only
with the number of edges of each size.

Since there are only
(
n
2

)
pairs of vertices, a necessary condition for the exis-

tence of a linear hypergraphs satisfying our description is that
∑K

i=2mi

(
i
2

)
≤
(
n
2

)
,

which implies that mi = O(n2) for each i. The total number of hypergraphs, not
required to be linear, is

N = N(n,m2, . . . ,mK) =

K∏
i=2

((n
i

)
mi

)
.

We will prove the following result.

Theorem 2. If K ≥ 2 is fixed, and mi = o(n4/3) as n→∞ for 2 ≤ i ≤ K, then
the number of linear hypergraphs with n vertices, exactly mi edges of size i for
2 ≤ i ≤ K, and no edges of size greater than K is
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N exp

(
−
∑

3≤a≤K

a2(a− 1)2

2n2

(
ma

2

)
−

∑
2≤a<b≤K

a(a− 1)b(b− 1)

2n2
mamb +O(m2/n3 +m3/n4)

)
,

where m =
∑K

i=2mi.

2. Outline and Definitions

Considering a hypergraph H = (V,E), let G be the graph whose vertex set is E
and two vertices of G are adjacent if they intersect in at least two vertices of H.
Let t ≥ 2 be an integer. A set S of t edges of H is called a t-cluster of H if S
is the vertex set of a component of G. A 2-cluster is strong if its two edges have
more than two vertices in common; otherwise it is weak. For integers a and b
with 2 ≤ a ≤ b ≤ K, a weak 2-cluster with edges of sizes a and b is called an
ab-pair. (Note that 22-pairs cannot happen for simple hypergraphs.) A set B of
three edges of H is called a 3-bunch if the induced subgraph of G with vertex set
B is connected.

Define J = {{a, b} | 2 ≤ a ≤ b ≤ K, b ≥ 3}, which is a set of 1
2(K−2)(K+ 1)

pairs that we always use in lexicographic order denoted by �. For notational
convenience, we will often write {a, b} as ab or ba and {a, a} as aa. If they
exist, the element preceding ab in lexicographic order is denoted by p(ab) and the
element following ab in lexicographic order is denoted by n(ab). The notations
p(23) and n(KK) are left undefined, but a list like (x23, . . . , xp(23)) can appear as
a special case and represents a list ( ) with no entries.

Define

M = d55K4m2/n2 + log ne

and denote by X the product space {0, 1, . . . ,M}
1
2
(K−2)(K+1) corresponding to

vectors x = (x23, . . . , xKK), where the subscripts are all the elements of J in
lexicographic order.

We approach Problem 1 by generating a random hypergraph H with the
required number of edges of each size and seeking the probability that it is linear.
We achieve this goal in two steps.

1. With probability 1 − O(m2/n3 + m3/n4), H has no t-clusters for t > 2, no
strong 2-clusters, and at most M ab-pairs for each ab ∈ J .

2. For x = (x23, . . . , xKK) ∈ X, let L(x) be the set of hypergraphs on n vertices
with no t-clusters for t > 2, no strong 2-clusters, mi edges of size i for 2 ≤ i ≤ K,
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and xab ab-pairs for ab ∈ J . Define L(x) = |L(x)|, so in particular the number
of linear hypergraphs with the specified edge sizes is L(0, . . . , 0). Let

T = T (n,m2, . . . ,mk) =
∑
x∈X

L(x)

be the quantity we estimated in Step 1. In this step we estimate the value
of T/L(0, . . . , 0) by the switching method. Figure 1 shows an example of an
operation that removes one 35-pair.

Figure 1. Switching operation to remove a 35-pair.

We will carry out Step 1 in Section 3. In Section 4, we will analyse the
switchings that are key to our result. Then in Section 5 we will carry out Step 2.

3. Step One

Lemma 3. Let H be a random hypergraph H with exactly mi edges of size i for
2 ≤ i ≤ K and no larger edges. Then, with probability 1 − O(m2/n3 + m3/n4),
H has no t-clusters for t ≥ 3, no strong 2-clusters, and at most M ab-pairs for
each ab ∈ J . That is,

T =
(
1−O(m2/n3 +m3/n4)

)
N.

Proof. For 2 ≤ i ≤ K, let 0 ≤ bi ≤ mi. Consider a set S of edges consisting of
bi edges of size i for each i. Then the probability that H contains S is

(1)
K∏
i=2

((ni)−bi
mi−bi

)
((ni)
mi

) ≤
K∏
i=2

(
mi(
n
i

))bi

≤
K∏
i=2

(
i!mi

(n− i)i

)bi

.

Since every t-cluster for t ≥ 3 contains a 3-bunch, we can prove the first
part of the lemma by showing that there are no 3-bunches with high probability.
Consider a 3-bunch B with edges of size a, b, c, where 2 ≤ a, b, c ≤ K. Since it
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occupies at most s = a + b + c − 4 vertices and K is bounded, the number of
possible locations for such 3-bunches is O(ns). Moreover, the probability that H
contains B is O(m3/ns+4), by (1). Therefore, the expected number of 3-bunches
with edge sizes a, b, c is O(m3/n4). Since there are only boundedly many choices
of a, b, c, and m3/n4 = o(1) by assumption, the probability that there are no
3-bunches (and therefore no t-clusters for t ≥ 3) is 1−O(m3/n4).

Similarly, a strong 2-cluster with edges of size a and b occupies at most
a + b − 3 vertices. So the number of all possible locations of a strong 2-cluster
with edges of sizes a and b is O(na+b−3) and the probability of each being in H
is O(m2/na+b). Since there is a constant number of choices for the values of a
and b, the expected number of strong 2-clusters is O(m2/n3) = o(1). Therefore,
with probability 1−O(m2/n3), H has no strong 2-clusters.

Let a and b be two integers such that 2 ≤ a < b ≤ K, and let S be a set
of M ab-pairs. Recall that by definition ab-pairs cannot have edges in common.
If min{ma,mb} < M , then S cannot exist; so assume this is not the case. The

number of possible locations of S is at most
(Na,b

M

)
≤ NM

a,b/M ! ≤
(
eNa,b/M

)M
,

where

Na,b =

(
n

n− a− b+ 2, a− 2, b− 2, 2

)
≤ na+b−2

2(a− 2)! (b− 2)!
.

Multiplying by the probability that S is in H, as given by (1), we find that the
expected number of sets of M ab-pairs in H is at most(

2a2b2mamb

n2M

)M

≤
(

2

55

)logn

≤ n−3.

Therefore, the probability that there are more than M ab-pairs is O(n−3). The
same argument holds for a = b > 2, and so simultaneously for ab ∈ J . Applying
the union bound completes the proof.

4. Analysis of Switchings

For x ∈ X and 2 ≤ a ≤ K, define

xa(x) = xaa +
∑

b:ab∈J
xab,

using x22 = 0. Note that xa(x) is the total number of edges of size a that appear
in the 2-clusters of H ∈ L(x), if such a hypergraph exists. Indeed, an obvious
necessary condition for L(x) > 0 is that

(2) xa(x) ≤ ma (2 ≤ a ≤ K).



224 M. Hasheminezhad and B.D. McKay

In Lemma 4 below we will show that (2) is also sufficient.
Now let ab ∈ J be such that xab > 0 and let x′ = (x23, . . . , xab− 1, . . . , xKK).

We define a “forward” switching that converts a hypergraph H ∈ L(x) into a
hypergraph in L(x′). Choose an ab-pair {e, e′}. Remove e and e′ from H, then
insert two edges of the same sizes (a and b) into the new hypergraph in such a
way that no t-clusters for any t ≥ 2 are created. The case of a = 3, b = 5 is shown
in Figure 1, where it should be noted that the replacement edges might have one
vertex in common but not more.

Consider the case a 6= b first. We can choose {e, e′} in xab ways. The number
of places to insert the new edge of size a is at most

(
n
a

)
. From this we must

subtract the number of positions that overlap some other edge in two or more
vertices, which is at most m

(
K
2

)(
n

a−2
)

= O(m/n2)
(
n
a

)
. Similarly for the edge of

size b.
In the case a = b, the two new edges can be inserted in either order to achieve

the same hypergraph. Otherwise, the estimates are the same. Consequently, the
number of forward switchings is

(3) WF =


1
2
xab

(
n

a

)2
(1 +O(m/n2)), if a = b,

xab

(
n

a

)(
n

b

)
(1 +O(m/n2)), if a 6= b.

Now consider a hypergraph H ′ ∈ L(x′). We will count the number of reverse
switchings that convert H ′ into a member of L(x). Let xa = xa(x′) and xb =
xb(x

′). A reverse switching consists of removing two edges, one of size a and one
of size b, and then inserting a new ab-pair.

Consider a 6= b first. We can choose edges of size a and b, neither part of a
2-cluster, in (ma−xa)(mb−xb) ways. Then we need to choose a location for the
new ab-pair. Two sets of size a and b that overlap in 2 vertices can be chosen
in
(
n
a

)(
n−a
b−2
)(

a
2

)
ways. This pair of sets might be unsuitable due to one of them

overlapping an edge in 2 or more vertices. We can bound the number of such bad
choices by noting that the number of choices of a+ b− 2 vertices which overlap
an edge by 2 or more vertices is at most m

(
K
2

)(
n

a+b−4
)

= O(m/n2)
(
n
a

)(
n−a
b−2
)
.

In the case a = b, we can choose two edges of size a, not part of a 2-cluster,
in
(
ma−xa

2

)
ways. When we form an aa-pair within a set of 2a − 2 vertices, the

number of ways is (2a−2)!
4(a−2)!2 . Otherwise, the argument is the same.

In summary, the number of reverse switchings is

(4) WR =


(
ma − xa

2

)(
n

2a− 2

)
(2a− 2)!

4(a− 2)!2
(1 +O(m/n2)), if a = b,

(ma − xa)(mb − xb)
(
n

a

)(
n− a
b− 2

)(
a

2

)
(1 +O(m/n2)), if a 6= b.
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Lemma 4. Assume the conditions of Theorem 2. For x ∈ X, L(x) > 0 if and
only if condition (2) is satisfied. In particular, L(0, . . . , 0) > 0.

Proof. By Lemma 3, there is some x̂ ∈ X such that L(x̂) > 0. We can move from
x̂ to x by a sequence of forward and reverse switchings while staying within X.
Since the values given in (3) or (4) at each step of this path are positive, we must
have L(x) > 0.

5. Step Two

In the second step, we calculate T/L(0, 0, . . . , 0). Recall that the denominator is
nonzero by Lemma 4. By the definition of T , we have

T

L(0, . . . , 0)
=
∑
x∈X

L(x)

L(0, . . . , 0)
.

Define

Rab(x23, . . . , xab) =


0, if L(x23, . . . , xab, 0, . . . , 0) = 0,

L(x23, . . . , xab, 0, . . . , 0)

L(x23, . . . , xab−1, 0, . . . , 0)
, otherwise.

Note that Lemma 4 ensures that we cannot have a nonzero numerator and a zero
denominator in the second case. Then

(5)
T

L(0, . . . , 0)
=
∑
x∈X

∏
ab∈J

xab∏
j=1

Rab(x23, . . . , xp(ab), j).

We will evaluate (5) using a recursion. For ab ∈ J , define

Sab(x23, . . . , xp(ab)) =



M∑
xKK=0

xKK∏
j=1

RKK(x23, . . . , xp(KK), j),

if a = b = K,(6a)
M∑

xab=0

Sn(ab)(x23, . . . , xab)

xab∏
j=1

Rab(x23, . . . , xp(ab), j),

otherwise.(6b)

Then T/L(0, . . . , 0) = S23( ).

Lemma 5. Assume the conditions of Theorem 2 and define

xa = xa(x23, . . . , xp(ab), 0, . . . , 0) and xb = xb(x23, . . . , xp(ab), 0, . . . , 0).
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If j ≥ 1 and L(x23, . . . , xp(ab), j − 1, 0, . . . , 0) > 0, then

Rab(x23, . . . , xp(ab), j)

=



(
ma − xa − 2j + 2

2

)
(a− 1)2a2

2jn2
(1 +O(1/n+m/n2)), if a = b,

(ma − xa − j + 1)(mb − xb − j + 1)

· (a− 1)a(b− 1)b

2jn2
(1 +O(1/n+m/n2)), if a 6= b.

Proof. Note that xa(x23, . . . , xp(ab), j−1, 0, . . . , 0) is equal to xa +2j−2 if a = b
and xa+j−1 if a 6= b, and similarly for xb. The lemma now follows on dividing (4)
by (3).

We will need the following summation lemma from [3, Corollary 4.5].

Lemma 6. Let Z ≥ 2 be an integer and, for 1 ≤ i ≤ Z, let real numbers A(i),
B(i) be given such that A(i) ≥ 0 and 1−(i−1)B(i) ≥ 0. Define A1 = minZ

i=1A(i),
A2 = maxZ

i=1A(i), C1 = minZ
i=1A(i)B(i) and C2 = maxZ

i=1A(i)B(i). Suppose
that there exists ĉ with 0 < ĉ < 1

3 such that max{A/Z, |C|} ≤ ĉ for all A ∈
[A1, A2], C ∈ [C1, C2]. Define n0, . . . , nZ by n0 = 1 and

ni/ni−1 = 1
i
A(i)(1− (i− 1)B(i))

for 1 ≤ i ≤ Z, with the following interpretation: if A(i) = 0 or 1−(i−1)B(i) = 0,
then nj = 0 for i ≤ j ≤ Z. Then

Σ1 ≤
Z∑
i=0

ni ≤ Σ2,

where
Σ1 = exp

(
A1 − 1

2
A1C2)− (2eĉ

)Z
and

Σ2 = exp
(
A2 − 1

2
A2C1 + 1

2
A2C

2
1

)
+ (2eĉ)Z .

For ab, rs ∈ J , define

grs(x23, . . . , xp(ab)) =



0, if L(x23, . . . , xp(ab), 0, . . . , 0) = 0,

otherwise,(
mr − xr

2

)
r2(r − 1)2

2n2
, if r = s,

(mr − xr)(ms − xs)
r(r − 1)s(s− 1)

2n2
, if r 6= s,

where xr = xr(x23, . . . , xp(ab), 0, . . . , 0) and xs = xs(x23, . . . , xp(ab), 0, . . . , 0).
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Lemma 7. Assume the conditions of Theorem 2. Then, for ab ∈ J ,

(7) Sab(x23, . . . , xp(ab)) =
(
1 +O(m2/n3 +m3/n4)

)
S′ab(x23, . . . , xp(ab)),

where

S′ab(x23, . . . , xp(ab)) = exp

( ∑
rs∈J :rs�ab

grs(x23, . . . , xp(ab))

)
.

In particular,

T

L(0, . . . , 0)
=
(
1 +O(m2/n3 +m3/n4)

)
exp

( ∑
rs∈J

grs( )

)
.

Proof. For convenience we will also define an artificial value

S′n(KK)(x23, . . . , xKK) = 1.

We will prove the lemma by reverse induction on ab.
Suppose (7) holds for Sn(ab). Applying recurrence (6b), and noting that we

are dealing with summations of nonnegative terms, we have

Sab
(
x23, . . . , xp(ab)

)
=

M∑
xab=0

Sn(ab)
(
x23, . . . , xab

) xab∏
j=1

Rab

(
x23, . . . , xp(ab), j

)
=
(
1 +O(m2/n3 +m3/n4)

)
·

M∑
xab=0

S′n(ab)
(
x23, . . . , xab

) xab∏
j=1

Rab

(
x23, . . . , xp(ab), j

)
(8)

=
(
1 +O(m2/n3 +m3/n4)

)
· S′n(ab)

(
x23, . . . , xp(ab), 0

) M∑
i=0

i∏
j=1

Qab

(
x23, . . . , xp(ab), j

)
,

where

Qab

(
x23, . . . , xp(ab), j

)
=

S′n(ab)
(
x23, . . . , xp(ab), j

)
S′n(ab)

(
x23, . . . , xp(ab), j − 1

) Rab

(
x23, . . . , xp(ab), j

)
.

Note that (8) holds for ab = KK, by (6a) and our adopted meaning of S′n(KK),
which gets the induction started.

We can also calculate that, if Rab(x23, . . . , xp(ab), j) > 0,

S′n(ab)
(
x23, . . . , xp(ab), j

)
S′n(ab)

(
x23, . . . , xp(ab), j − 1

) = 1 +O
(
m/n2

)
.
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Therefore, Qab(x23, . . . , xp(ab), j) =
(
1 +O(m/n2)

)
Rab(x23, . . . , xp(ab), j).

For simplicity, define Q(j) = Qab(x23, . . . , xp(ab), j), xa = xa(x23, . . . , xp(ab),
0, . . . , 0) and xb = xb(x23, . . . , xp(ab), 0, . . . , 0). By Lemma 5, there are functions
δab(j) = δab(x23, . . . , xp(ab), j) which are O(1/n+m/n2) uniformly over all x, ab, j,
such that, if Q(j) > 0, then

Q(j) =



(
ma − xa − 2j + 2

2

)
(a− 1)2a2

2jn2
(1 + δaa(j)), if a = b,

(ma − xa − j + 1)(mb − xb − j + 1)
(a− 1)a(b− 1)b

2jn2
(1 + δab(j)),

if a 6= b.

Note that ma − xa − 2j + 2 ≥ 2 in the first case, or ma − xa − j + 1 ≥ 1 and
mb − xb − j + 1 ≥ 1 in the second case, or else Q(j) = 0 by Lemma 4.

If Q(1) = 0, the sum in (8) equals 1. If not, we will use Lemma 6 to complete
the induction proof by evaluating the sum. The value ni in the lemma corresponds
to
∏i

j=1Q(j). Then, for 1 ≤ i ≤M define

A(i) = Q(1) (1 + δab(i)) (1 + δab(1))−1

B(i) =



2(2ma − 2xa − 2i+ 1)

(ma − xa)(ma − xa − 1)
, if a = b and Q(i) > 0,

ma +mb − xa − xb − i+ 1

(ma − xa)(mb − xb)
, if a 6= b and Q(i) > 0,

(i− 1)−1, otherwise.

It can now be verified that Q(i) = 1
iA(i)(1− (i− 1)B(i)) for 1 ≤ i ≤ M . In the

case that Q(i) > 0, we have

A(i)B(i) =


a2(a− 1)2(2ma − 2xa − 2i+ 1)

2n2
(1 + δaa(i)), if a = b,

a(a− 1)b(b− 1)(ma +mb − xa − xb − i+ 1)

2n2
(1 + δab(i)), if a 6= b.

So, for Q(i) > 0 we have A(i)B(i) = O(m/n2).

In the case that Q(i) = 0, consider a = b for example. We only define
B(i) when Q(1) > 0. If Q(1) > 0 but Q(i) = 0, then we must have L(x23, . . . ,
xp(aa), 0) > 0 but L(x23, . . . , xp(aa), i) = 0. By Lemma 4 this can only happen if
xa + 2i > ma, which again implies that A(i)B(i) = O(m/n2).
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We can now apply Lemma 6 using

A1, A2 = Q(1)
(
1 +O

(
1/n+m/n2

))
= gab

(
x23, . . . , xp(ab)

)
+O

(
m2/n3 +m3/n4

)
,

C1, C2 = O(m/n2),

ĉ = 1
110
.

Since M ≥ log n by definition, we have (2eĉ)M ≤ (e/55)logn < n−3. In all cases,
we conclude that

M∑
i=0

i∏
j=1

Q(j) = exp
(
gab
(
x23, . . . , xp(ab)

)
+O

(
m2/n3 +m3/n4

))
.

Now insert this value into (8) using

S′n(ab)
(
x23, . . . , xp(ab), 0

)
exp

(
gab
(
x23, . . . , xp(ab)

))
= S′ab

(
x23, . . . , xp(ab)

)
and the fact that grs(x23, . . . , xp(ab), 0) = grs(x23, . . . , xp(ab)) for ab, rs ∈ J . This
completes the induction step and the proof.

Proof of Theorem 2. In Lemma 3, we estimated T , and in Lemma 7, we esti-
mated T/L(0, . . . , 0). Dividing the first quantity by the second proves the theo-
rem.

6. Concluding Remarks

We have determined the asymptotic number of partial Steiner systems with a
given number of edges of each size, provided there are not too many edges. If the
number of edges is increased further, it will be necessary to deal with clusters of
more than two edges. This is plausible but challenging. Another open problem
is to explore the properties of a random member of this class of hypergraphs, for
example its subgraph counts and connectivity.

We thank the referees for their very useful suggestions.
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