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Abstract

The minimum number of total independent partition sets of V ∪ E of
a graph G = (V,E) is called the total chromatic number of G, denoted by
χ′′(G). If the difference between cardinalities of any two total independent
sets is at most one, then the minimum number of total independent partition
sets of V ∪ E is called the equitable total chromatic number, and is denoted
by χ′′

=
(G).

In this paper we consider equitable total coloring of coronas of cubic
graphs, G◦H. It turns out that independently on the values of equitable total
chromatic number of factors G and H, equitable total chromatic number of
corona G ◦H is equal to ∆(G ◦H) + 1. Thereby, we confirm Total Coloring
Conjecture (TCC), posed by Behzad in 1964, and Equitable Total Coloring
Conjecture (ETCC), posed by Wang in 2002, for coronas of cubic graphs. As
a direct consequence we get that all coronas of cubic graphs are of Type 1.
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1. Introduction

Graph coloring is one of the most important problems in graph theory. As an
extension of proper vertex and edge coloring, the concept of total coloring is
developed. In the paper, we consider one of non-classical models of total coloring,
namely equitable total coloring.

A k-total-coloring of G is an assignment of k colors to the edges and vertices
of G, so that the adjacent or incident elements obtain different colors. The total

chromatic number of G, denoted by χ′′(G), is the smallest k for which G has a
k-total-coloring. Clearly, χ′′(G) ≥ ∆(G)+1, where ∆(G) is the maximum degree
of G. The well known Total Coloring Conjecture [1, 16] states that the total
chromatic number of any graph G is at most ∆(G) + 2.

Conjecture 1 (TCC, [1, 16]). For any graph G the following inequalities hold

∆(G) + 1 ≤ χ′′(G) ≤ ∆(G) + 2.

Although the hypothesis has been known since 1964, it has been proven only
for some specific classes of graphs, in particular for cubic graphs [15]. Graphs
with χ′′(G) = ∆(G)+1 are said to be Type 1, and graphs with χ′′(G) = ∆(G)+2
are said to be Type 2. The problem of deciding whether a graph is Type 1 has
been shown to be NP-complete even for cubic bipartite graphs [13].

In this paper one of non-classical models of total coloring is considered. A
k-total-coloring is equitable if the cardinalities of any two color classes differ by
at most one (ref. Figure 1). The smallest k for which G has an equitable k-
total-coloring is the equitable total chromatic number of G, and it is denoted by
χ′′

=(G). The concept of equitable total coloring was first presented in [6]. This
model of graph coloring has many practical applications. Every time when we
have to divide a system with binary conflict relations into equal or almost equal
conflict-free subsystems we can model this situation by means of equitable graph
coloring. In particular, one motivation for equitable coloring suggested by Meyer
[12] concerns scheduling problems. Furmańczyk [8] mentions a specific application
of this type of scheduling problem, namely, assigning university courses to time
slots in a way that avoids scheduling incompatible courses at the same time and
spreads the courses evenly among the available time slots. The topic of equitable
coloring, also its total version, was widely discussed in literature. Similarly to the
situation with proper total coloring, it was conjectured that the equitable total
chromatic number of any graph is at most ∆(G) + 2.

Conjecture 2 (ETCC, [14]). For any graph G the following inequalities hold

∆(G) + 1 ≤ χ′′

=(G) ≤ ∆(G) + 2.
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Figure 1. An exemplary equitable total 5-coloring of K3,3.

This conjecture was proven among others for cubic graphs in [14]. Wang
[14] proved that every cubic graph has an equitable total coloring with 5 colors.
Recently, it has been shown that the problem of deciding whether the equitable
total chromatic number of a bipartite cubic graph is 4 is NP-complete [4].

One can ask whether there exist graphs with equitable total chromatic num-
ber greater than total chromatic number. It turns out the answer to this question
is positive. There are known examples of cubic graphs such that their total chro-
matic number is strictly less than their equitable total chromatic number [4, 6].

In this paper we ask about the value of the equitable total coloring number
of graph products. The problem was considered for some Cartesian products
of graphs [3]. Moreover, graph products are interesting and useful in many sit-
uations. The complexity of many problems, also equitable coloring, that deal
with very large and complicated graphs is reduced greatly if one is able to fully
characterize the properties of less complicated prime factors. We continue the
research on graph products, but this time as a factor we take cubic graphs and
we consider corona product of graphs.

Given two simple graphs G and H, the corona product of G and H is the
graph G ◦H obtained by taking one copy of G, |V (G)| copies of H, and making
the i-th vertex of G adjacent to every vertex of the i-th copy of H, Hi (ref. Figure
2). This graph product was introduced by Frucht and Harary in 1970 [5].

In this paper we focus on coronas of two arbitrary cubic graphs. This kind
of graph product seems to be interesting because corona graphs lie often close
to the boundary between easy and hard problems [9]. Here, we ask whether the
fact of being the cubic graph of Type 1 or 2 has the influence on the value of the
equitable total chromatic number of the corona of such factors. It turns out that
the answer is negative. Let G and H be two cubic graphs with |V (G)| = nG and
|V (H)| = nH vertices, respectively. It is easy to see that the maximum degree of
the corona graph G ◦H is ∆(G ◦H) = nH +3. We prove that the equitable total
chromatic number of the corona graph G ◦H is equal to ∆(G ◦H) + 1 = nH +4,
independently of the type of factors G and H. As a consequence, we get that the
total chromatic number of G ◦H is equal to ∆(G ◦H) + 1 = nH + 4, i.e., they
are all of Type 1.
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Figure 2. Corona K4 ◦K4.

2. Notation and Definitions

Definition 1. A semi-graph is a triple G = (V,E, S), where V (G) is a set of
vertices of G, E(G) is a set of edges having two distinct endpoints in V (G), and
S(G) is a multiset of semi-edges having one endpoint in V (G).

Note that if S(G) = ∅, then a semi-graph G is a simple graph. All definitions
given below for semi-graphs, that do not require the existence of semi-edges, are
also valid for graphs. When it could be confusing we explicitly write graph or
semi-graph. We write edges having endpoints v and w shortly as vw and semi-
edges having endpoint v as v·. When vertex v is an endpoint of e ∈ E ∪ S
we say that v and e are incident. Two elements of E ∪ S incident with the
same vertex, respectively two vertices incident with the same edge, are called
adjacent. N(v) denotes the open neighborhood of a vertex v ∈ V (G), i.e., the
set of adjacent vertices for v. N [v] = N(v) ∪ {v} is the close neighborhood of
v. The degree deg(v) of a vertex v of G is the number of elements of E ∪
S that are incident with v. We say that G is r-regular if the degree of each
vertex is equal to r. An exemplary semi-graph G is given in Figure 3, where
V (G) = {v1, v2, v3, v4}, E(G) = {v1v2, v1v3, v1v4, v2v3, v2v4, v3v4}, and S(G) =
{v1·, v1·, v1·, v2·, v2·, v2·, v3·, v3·, v3·, v4·, v4·, v4·}.

For a given graph G = (V (G), E(G)) with V (G) = {v1, . . . , vnG
}, and graph

H = (V (H), E(H)) with V (H) = {u1, . . . , unH
}, |V (H)| = nH , for any i ∈

{1, . . . , nG} we define the open fan of vi ∈ V (G) as a set of nH semi-edges with
common endvertex vi and we denote it by FH(vi). The close fan FH [vi] is a set
FH(vi) ∪ {vi}. For any j ∈ {1, . . . , nH}, we define the open claw of uj ∈ V (H)
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as a set of edges in H incident with uj , and we denote it by IH(uj). We have
IH(uj) ⊂ E(H). The close claw of uj , IH [uj ], is a set IH(uj) ∪ {uj}.

Definition 2. A semi-corona G ◦s H of a graph G = (V (G), E(G)) and a graph
H = (V (H), E(H)) is the semi-graph G′ = (V (G′), E(G′), S(G′)), where

V (G′) = V (G),

E(G′) = E(G),

S(G′) =
⋃

v∈V (G)

FH(v).

A semi-corona G ◦s H may be also defined as the semi-graph obtained from
graph G by adding nH semi-edges to each vertex of G. It is easy to see that semi-
corona G◦sH of a cubic graph G and nH -vertex cubic graph H is (nH+3)-regular
semi-graph. An example of semi-corona is given in Figure 3.
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Figure 3. Semi-corona K4 ◦s H, where H is a 3-vertex graph.

Now, we will define the operation +vi . For a given semi-graph G◦sH = G0 =
(V (G0), E(G0), S(G0)) with V (G) = {v1, . . . , vnG

} and graphH = (V (H), E(H)),
we define Gi = (V (Gi), E(Gi), S(Gi)) as a semi-graph Gi−1 +vi H, where

V (Gi) = V (Gi−1) ∪ V (Hi),

E(Gi) = E(Gi−1) ∪ E(Hi) ∪ {viw : w ∈ V (Hi)},

S(Gi) = S(Gi−1)\FHi
(vi).

It is easy to see that GnG
= G ◦ H. Of course, Hi denotes the i-th copy of H.

We will name graphs G1, . . . , GnG
as extended semi-coronas (ref. Figure 4).

For k ∈ N
+ and given semi-graph G = (V,E, S), a proper vertex k-coloring

of G is a map cV : V → {1, . . . , k} such that cV (x) 6= cV (y) for any two adjacent
vertices x and y. The smallest number of colors admitting such a coloring is
named as the chromatic number and it is denoted by χ(G).

Similarly, a proper edge k-coloring of G is a map cE∪S : E ∪ S → {1, . . . , k}
such that cE∪S(e1) 6= cE∪S(e2) for any two adjacent elements e1, e2 of E ∪ S. If
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Figure 4. Extended semi-corona G2 = ((K4 ◦s K4) +v1
K4) +v2

K4.

S = ∅, then we will write cE : E → {1, . . . , k}. The smallest number of colors
admitting such a coloring is named as the chromatic index and it is denoted by
χ′(G).

A total k-coloring of G is a map cT : V ∪ E ∪ S → {1, . . . , k} such that

• cT |V is a proper vertex coloring,

• cT |E∪S is a proper edge coloring,

• cT (e) 6= cT (v) whenever e ∈ E ∪ S, v ∈ V and e is incident with v.

A vertex (edge (total)) k-coloring is equitable if the cardinalities of any two
color classes differ by at most one.

For a given vertex (edge (total)) k-coloring of a graph G, this means for a
partition of the appropriate set into k independent color classes {P1, P2, . . . , Pk},
the vertex (edge (total)) coloring sequence CV (G) (CE(G) (CT (G))) is a sequence
of their cardinalities, i.e., (|P1|, |P2|, . . . , |Pk|). For the total 5-coloring of K3,3

given in Figure 1, CT (K3,3) = (3, 3, 3, 3, 3). For the vertex coloring being restric-
tion of the total coloring to V the sequence CV (K3,3) = (3, 0, 0, 0, 3). Similarly,
we get CE(K3,3) = (0, 3, 3, 3, 0).

3. Equitable Coloring of Cubic Graphs

Let us remind some known results concerning coloring of cubic graphs that will
be useful in the further part of this work. First of all, let us notice that, when
we consider only vertex coloring, the chromatic number is equal to the equitable
chromatic number for all connected cubic graphs [2]. This means that every
proper vertex coloring of connected cubic graph G with χ(G) colors can be made
equitable without adding new colors.
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Theorem 3 [2]. If G is a connected cubic graph, then

χ(G) = χ=(G).

Corollary 4. If G is a connected cubic graph, then

2 ≤ χ=(G) ≤ 4.

In the case of equitable edge coloring, it is known, as an easy application of
Kempe chains, that the equitable chromatic index for any graph is equal to its
chromatic index

χ′

=(G) = χ′(G).

Theorem 5 [17]. Every graph G has an equitable edge k-coloring for each k ≥
χ′

=(G).

Let us recall also Vizing theorem.

Theorem 6 [16]. Let G be a graph. Then

∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

For more information about equitable vertex and edge colorings we refer
to [7].

As we have already mentioned, cubic graphs are one of graph classes that
the Equitable Total Coloring Conjecture holds for. We have the following result.

Theorem 7 [10, 14]. Every cubic graph G can be equitably total colored with k
colors for every k ≥ 5.

In the further part of our paper we will use an equitable total (n+4)-coloring
of an n-vertex cubic graphs G. Such a coloring exists due to Theorem 7. Now,
we give some properties of such a coloring.

Proposition 8. In any equitable total (n+4)-coloring of n-vertex cubic graph G
the cardinalities of color classes are between 1 and 3.

Proof. By the contrary, let us assume that there is at least one color class of the
cardinality at least 4. Since the coloring is equitable, the remaining color classes
are of cardinality at least 3. This means that the number of elements (vertices
and edges) in G is not less than 4 + 3(n+ 3) = 3n+ 13, while we know that this
number is equal to 5

2n, a contradiction.

On the other hand, since 5
2n > n + 4, the cardinalities of color classes are

obviously greater or equal to 1.
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Let CT (G) be the total coloring sequence of an equitable total (n+4)-coloring
of n-vertex cubic graph G. Let #j(CT (G)) denote the number of terms (color
classes) in CT (G) of cardinality j, j = 1, 2, 3.

Proposition 9. Let G be an n-vertex cubic graph colored in an equitable total

way with n+ 4 colors.

(i) If 4 ≤ n ≤ 14, then

#1(CT (G)) = 8−
n

2
,

#2(CT (G)) =
3

2
n− 4,

#3(CT (G)) = 0.

(ii) If n ≥ 16, then

#1(CT (G)) = 0,

#2(CT (G)) =
n

2
+ 12,

#3(CT (G)) =
n

2
− 8.

Proof. It is easy to observe that the only value of n when all terms in CT (G) are
equal to 2 is n = 16. It is enough to solve equation 2(n + 4) = 5

2n. For smaller
number of vertices, terms in a sequence CT (G) are equal to 1 and 2, for bigger
ones — to 2 and 3. Now, the values of #j(CT (G)), j = 1, 2, 3, are the solutions
of system of equations for j = 1 in Case (i) and for j = 2 in Case (ii),

{

j ·#j(CT (G)) + (j + 1) ·#j+1(CT (G)) = 5
2n,

#j(CT (G)) + #j+1(CT (G)) = n+ 4.

4. Equitable Total Coloring of Semi-Coronas

Lemma 10. Let G ◦s H be a semi-corona of cubic graphs: nG-vertex graph G
and nH-vertex graph H. Then

χ′′

=(G ◦s H) = ∆(G ◦s H) + 1 = nH + 4.

Proof. Since χ′′

=(T ) ≥ ∆(T ) + 1 for any graph T , all we need is to construct an
equitable total (nH + 4)-coloring of G ◦s H. Do as follows.

1. Color equitably edges of cubic graph G with nH + 4 colors. The correspond-
ing edge color sequence CE(G) is equal to a non-increasing sequence of integers
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(le(1), le(2), . . . , le(nH + 4)) such that their sum is the number of edges of G and
the difference of any two entries is at most 1. Of course, le(i) denotes the number
of edges in G colored with i. In cases when nH is extremely larger than nG, some
colors are unused.

Since 3 ≤ χ′

=(G) ≤ 4 for every cubic graph G and we color edges of G with
at least 8 colors, this step is possible due to Theorem 5.

2. Extend this coloring into any proper total (nH + 4)-coloring of G. Let us
assume that all edges and some vertices of G have been already colored. Notice
that for every uncolored vertex v ∈ V (G) at most six colors are forbidden —
the colors assigned to three incident edges and at most three adjacent vertices,
if they have already been colored. Since we have nH + 4 ≥ 8 colors, there are
at least two allowed colors for every vertex v. We can choose one of them.
Let CV (G) = (lv(1), lv(2), . . . , lv(nH + 4)) be the corresponding vertex coloring
sequence. Of course, CE(G) + CV (G) is the total coloring sequence of G.

3. Extend the total coloring of G into an equitable total (nH + 4)-coloring of
semi-corona G ◦s H by coloring properly semi-edges of G ◦s H, i.e., elements of
an open fan F (v) for every v ∈ V (G).

Note that exactly 4 colors are not allowed to color semi-edges from F (v).
Let c(F (v)) denote the set of all allowed colors for semi-edges from F (v). Since
|c(F (v))| = nH , the coloring of F (v) is determined, with an accuracy to any
permutation of c(F (v)).

We claim that the total coloring of G ◦s H obtained in the way described
above is equitable. Indeed, let us notice that a color i used to color the vertex
v ∈ V (G) implies i 6∈ c(F (v)) while a color i used to color the edge e = uv ∈ E(G)
implies i /∈ c(F (u)) and i /∈ c(F (v)). Thus, the fact that a color i is used
to color lv(i) vertices and le(i) edges in G means that the color i will appear in
nG−lv(i)−2le(i) sets of available colors c(F (v)) and this means that it can be used
to color nG− lv(i)−2le(i) semi-edges. Thus, the color i is used lv(i)+ le(i)+nG−
lv(i) − 2le(i) = nG − le(i) times. Since the sequence (le(1), le(2), . . . , le(nH + 4))
from the first step was equitable, then the sequence (nG−le(1), . . . , nG−le(nH+4))
is also equitable. Thus the extended total coloring of G ◦s H is equitable.

5. Main Result

Before we prove the main theorem of this paper, let us recall the Hall’s theorem.

Theorem 11 [11]. Let S be a family of finite subsets of S, S = {S1, S2, . . . , Sk}
and Si ⊂ S. The family S has a transversal if and only if for each subset I of

{1, 2, . . . , k} we have |
⋃

i∈I Si| ≥ |I|.
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Lemma 12. Let H be a cubic graph on nH ≥ 4 vertices, and let c be an equitable

total (nH + 4)-coloring of H with a color sequence CT (H). For every color x ∈
{1, 2, . . . , nH + 4} there is an equitable total coloring (nH + 4)-coloring c′ of H
with the same color sequence CT (H) such that c′(u) 6= x for every u ∈ V (H).

Proof. Let x be any color from {1, 2, . . . , nH+4}. If c(u) 6= x for every u ∈ V (H),
then c′ is equal to c. So, we may assume that there is a vertex u colored with x
in the coloring c, i.e., c(u) = x. Let u1, u2 and u3 be vertices adjacent to u in H,
i.e., N(u) = {u1, u2, u3}. We have c(ui) 6= x and c(uui) 6= x, i = 1, 2, 3.

We denote c(s) ⇔ c(r) if we exchange the color of an element s into the color
of r and vice versa, s, r ∈ V (H) ∪ E(H). After this exchange, we have a new
coloring c′ with c′(s) = c(r) and c′(r) = c(s).

If 4 ≤ nH ≤ 8, we have eight possible cubic graphs and it can be easily
verified that it is always possible to recolor graph H to achieve the desirable
property. For the reader convenience, we have put the Appendix with all cubic
graphs on nH ≤ 8 vertices and their exemplary equitable total (nH + 4)-coloring
to enable the reader easily verification.

If nH ≥ 10, we have |E(H)| ≥ 15 and we consider three cases, dependly on
the cardinality of color class Px.

Case 1. If |Px| = 1, we have the following two subcases.

Subcase 1.1. {c(u1), c(u2), c(u3)} 6= {c(uu1), c(uu2), c(uu3)}. Then there ex-
ists an edge among uu1, uu2, uu3, say e, such that c(e) /∈ {c(u1), c(u2), c(u3)} and
we may do the exchange c(u) ⇔ c(e).

Subcase 1.2. {c(u1), c(u2), c(u3)} = {c(uu1), c(uu2), c(uu3)}. Since the col-
oring c is equitable and |Px| = 1, each color is used at most twice. This
imply that colors c(uu1), c(uu2), and c(uu3) are not used more to color other
edges. This means that we can do an exchange c(u) ⇔ c(e) for any edge
e ∈ E(H)\{uu1, uu2, uu3}.

Case 2. If |Px| = 2, suppose there exists an edge e /∈ {uu1, uu2, uu3} such
that c(e) = x and e is incident to four edges e1, e2, e3, e4. Consider the set of edges
A = E(H)\{uu1, uu2, uu3, e, e1, e2, e3, e4}. Since nH ≥ 10, we have |A| ≥ 7.

• If 10 ≤ nH ≤ 16, then |Pi| ≤ 2, for all colors i. So there exists an edge e′ in A,
colored with y /∈ {c(u1), c(u2), c(u3), c(uu1), c(uu2), c(uu3)}, we do the exchange
c(u) ⇔ c(e′).

• If nH ≥ 18, then 2 ≤ |Pi| ≤ 3, for all colors i, and |E(H)| ≥ 27, and hence |A| ≥
19. There are at most 12 edges in A colored with color in {c(u1), c(u2), c(u3),
c(uu1), c(uu2), c(uu3)}, so there are at least 7 edges in A whose colors can be
exchanged with the color of u.
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If the second element colored with x is a vertex, we have to exclude, in
addition, only three edges incident to them. Then |A| ≥ 9 and we may easily
choose an edge whose color will be exchanged with the color of u. We repeat the
process to exclude all vertices colored with x.

Case 3. If |Px| = 3, then nH ≥ 18 and 2 ≤ |Pi| ≤ 3 for all colors i,
|E(H)| ≥ 27. Suppose, in the worst case, there are two edges e1, e2 colored
with x adjacent to the edges {e11, e12, e13, e14, e21, e22, e23, e24}. Consider A =
E(H)\{uu1, uu2, uu3, e1, e2, e11, e12, e13, e14, e21, e22, e23, e24}, |A| ≥ 14. There
are at most 12 edges in A colored with colors from {c(u1), c(u2), c(u3), c(uu1),
c(uu2), c(uu3)}. So, there are at least 2 edges in A whose colors can be exchanged
with the color of u.

Thus, in all the cases we have obtained a new coloring c′ of H with the same
cardinalities of color classes as it was in the coloring c and none of vertices in H
is colored with x.

Theorem 13. Let G and H be cubic graphs on nG and nH vertices, respectively.

Then

χ′′

=(G ◦H) = ∆(G ◦H) + 1 = nH + 4.

Proof. Let nH ≥ 6. For such cases the main idea of the proof is the following.

1. To color semi-corona G ◦s H in an equitable total way with nH + 4 colors; we
get the total equitable coloring sequence CT (G ◦s H).

2. To color graph H1 in an equitable total way with nH + 4 colors such that

(a) none of colors assigned to vertices in H1 is equal to c(v1),

(b) the coloring of H1 together with the coloring of G ◦s H form an equitable
total (nH+4)-coloring of H1∪(G◦sH), i.e., CT (G◦sH)+CT (H1) will be an
equitable total coloring sequence CT (G1) of the extended semi-corona G1.

3. To show that the coloring of H1 may be ”joined” with the coloring of semi-
corona to obtain a proper total coloring of G1.

Given the equitable total coloring of the extended semi-corona Gi, i = 1, . . . ,
nG − 1 with the corresponding total coloring sequence CT (Gi).

4. Color graph Hi+1 in an equitable total way with nH + 4 colors such that

(a) none of colors assigned to vertices in Hi+1 is equal to c(vi+1),

(b) the coloring of Hi+1 together with the coloring of Gi form an equitable
total (nH + 4)-coloring of Hi+1 ∪ Gi, i.e., CT (Gi) + CT (Hi+1) will be an
equitable total coloring sequence CT (Gi+1) of the extended semi-corona
Gi+1.

5. ”Join” the coloring of Hi+1 with the coloring of Gi to obtain a proper total
coloring of Gi+1.
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Since GnG
= G ◦ H, finally we get an equitable total coloring of the whole

corona G ◦ H. Now, all we need is to clarify the above steps and to show that
they are possible to do.

Ad Step 1. We color semi-corona G ◦sH with nH +4 colors due to the way given
in the proof of Lemma 10.

Ad Steps 2 and 4. An equitable total (nH + 4)-coloring of H fulfilling the as-
sumptions is possible to achieve due to Lemma 12.

Ad Steps 3 and 5. Let V (G) = {v1, . . . , vnG
} and V (H) = {u1, . . . , unH

}. To
show that the equitable total coloring of a copy of H may be ’joined” with the
coloring of the appropriate semi-graph we will prove that for every close claw
IH [uj ], 1 ≤ j ≤ nH there exists a semi-edge vi· in FH(vi) colored with c(vi·)
such that if we assign the same color c(vi·) to the edge viuj , then we get proper
(partial) total coloring of G ◦H, 1 ≤ i ≤ nG.

The procedure described below should be repeated for all copies ofH. For our
convenience, let us consider one copy of H whose vertices {u1, . . . , unH

} should
be joined with a vertex v ∈ V (G).

Let c(FH(v)) = (x1, . . . , xnH
) with |xj | ≥ |xj+1|, 1 ≤ j ≤ nH − 1. We define

w1 ∈ V (H) such that c(IH [w1]) ∩ {x1} = ∅, and for 2 ≤ j ≤ nH − 6, define
wj ∈ V (H)\{w1, w2, . . . , wj−1} such that c(IH [wj ]) ∩ {xj} = ∅. That is possible
because in the set V (H)\{w1, w2, . . . , wj−1} there are at most 6 vertices u such
that c(IH [u])∩{xj} 6= ∅. Finally, we change the one semi-edge v· with xj = c(v·)
into an edge vwj with c(vwj) = xj in E(G ◦H), for 1 ≤ j ≤ nH − 6.

Therefore, we have six ”unjoined” vertices, let us denote them as wnH−5, . . . ,
wnH

in H and six unassigned semi-edges e1, . . . , e6 in the appropriate open
fan FH(v), such that C = {c(e1), . . . , c(e6)} = {xnH−5, xnH−4, . . . , xnH

}, and
the cardinalty of any element in C is at most two. In addition, if IH [uj ] =
{uj , ej1, ej2, ej3}, then c(IH [uj ]) = {c(uj), c(ej1), c(ej2), c(ej3)}. Let Yα = C ∩
c(IH [uα]) and Xα = C \ Yα, for nH − 5 ≤ α ≤ nH . Observe some facts.

Fact (i): |Xα| ≥ 2, for each α.

Fact (ii): Since each color from C is used at most twice in H, each such a color
is included in at least two sets Xα’s.

Claim 14. For each set of indices K ⊆ {nH − 5, . . . , nH} it holds

∣

∣

∣

∣

∣

⋃

α∈K

Xα

∣

∣

∣

∣

∣

≥ |K|.



Equitable Total Coloring of Corona of Cubic Graphs 1159

Proof. • If |K| ∈ {1, 2}, then
∣

∣

⋃

α∈K Xα

∣

∣ ≥ 2 ≥ |K| by Fact (i).

• If |K| ∈ {5, 6}, then
∣

∣

⋃

α∈K Xα

∣

∣ = 6 ≥ |K| by Fact (ii).

• If |K| ∈ {3, 4} and
∣

∣

⋃

α∈K Xα

∣

∣ = 2, then |Xα| = 2, for each α ∈ K and Xα =
Xβ . Moreover, c(IH [uα]) = c(IH [uβ]) = C \Xα α, β ∈ K. Since

∣

∣

⋃

α∈K IH [uα]
∣

∣ ≥
9, we have that at least one color in C \Xα has been used more than twice in H,
a contradiction. Therefore,

∣

∣

⋃

α∈K Xα

∣

∣ ≥ 3 for |K| ∈ {3, 4}. So, the only case
that remains to be considered is |K| = 4 with

∣

∣

⋃

α∈K Xα

∣

∣ = 3.

• If |K| = 4 and
∣

∣

⋃

α∈K Xα

∣

∣ = 3, then |c(IH [uα])∩C| = |Yα| ≥ 3 for every α ∈ K
and we have three colors from C that are not in

⋃

α∈K Xα. These three colors
must be used at every close claw IH [uα], α ∈ K. Thus, the number of elements
of

⋃

α∈K IH [uα] that must be colored with colors from
⋃

α∈K Yα is at least seven
(for example seven edges from Figure 5). Thus, at least one color must be used
at least three times, a contradiction.

s

s

s

s

s

@
@

s@
@

�
�
�

�

Figure 5. An example of subgraph of cubic graph H.

Claim 14 means that we can apply Theorem 11 and get a transversal for X .
Thus we are able to select one representative for each set in X in such a way that
no two sets from X get the same representative. Therefore, the equitable total
coloring of a copy of H might be ’joined” with the coloring of the appropriate
semi-graph, if only nH ≥ 6.

Now, we need to prove only the correctness of the theorem for nH = 4. The
algorithm of the equitable total coloring of G ◦H where nH = 4 is as follows.

1. Color semi-corona G ◦s K4 in an equitable total way with 8 colors due to the
algorithm given in the proof of Lemma 10; we get the total equitable coloring
sequence CT (G ◦s K4).

2. Determine an equitable total coloring sequence of a length 8 for H1: CT (H1),
such that CT (G ◦s K4) + CT (H1) results in an equitable total coloring sequence
of the extended semi-corona G1.

3. Transform colored G ◦sK4 into the partially colored extended semi-corona G1

in such a way that colors of vertices and edges of G are not changed, while the
colors of FH(v1) are assigned arbitrarily to the edges joining H1 with G in G1.
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4. Color H1 due to CT (H1). Since only two its terms (colors) are of value 2, we
color H1 = K4 in such a way that color of cardinality 2 are assigned to one vertex
and one edge in H1. The rest of colors are used only once in the coloring of H1.
Certainly, we may get proper coloring of H1. Since we color H1 to the guidelines
of point 1, we end up with an equitable total coloring of G1.

We generalize Steps 2–4 for next copies of K4 and execute them until we get
an equitable total 8-coloring of the whole corona G ◦K4.

6. Final Remarks

Since in the proof of Lemma 10 we did not use the fact that G is cubic, we may
generalize the lemma to the following one.

Corollary 15. Let G be an r-regular graph and let H be a cubic graph on nH

vertices where nH ≥ r − 3. Then

χ′′

=(G ◦s H) = ∆(G ◦s H) + 1 = nH + 4.

Finally we get the result.

Corollary 16. Let G be an r-regular graph and let H be a cubic graph on nH

vertices where nH ≥ r − 3. Then

χ′′

=(G ◦H) = ∆(G ◦H) + 1 = nH + 4.

Many interesting questions remain still open, for instance the equitable total
colorability of coronas of r-regular graphs with r > 3. We hope that our paper
will be a source of inspiration to answer this question.
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7. Appendix

In this section we show an example of equitable total (nH + 4)−coloring for all
cubic graphs with 4 ≤ nH ≤ 8 vertices.
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Figure 6. An exemplary equitable total 8-coloring of K4.
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Figure 7. An exemplary equitable total 10-colorings of all 6-vertex cubic graphs.
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