
Discussiones Mathematicae
Graph Theory 42 (2022) 123–138
https://doi.org/10.7151/dmgt.2244

GUARDING A SUBGRAPH AS A TOOL IN

PURSUIT-EVASION GAMES

Drago Bokal

Faculty of Natural Sciences and Mathematics

University of Maribor

Maribor, Slovenia

e-mail: drago.bokal@um.si

and

Janja Jerebic

Faculty of Organizational Sciences

University of Maribor

Kranj, Slovenia

e-mail: janja.jerebic@um.si

Abstract

Pursuit-evasion games study the number of cops needed to capture the
robber in a game played on a graph, in which the cops and the robber move
alternatively to neighbouring vertices, and the robber is captured if a cop
steps on the vertex the robber is in. A common tool in analyzing this cop
number of a graph is a cop moving along a shortest path in a graph, thus
preventing the robber to step onto this path. We generalize this approach by
introducing a shadow of the robber, the maximal set of vertices from which
the cop parries the protected subgraph. In this context, the robber becomes
an intruder and the cop becomes the guard. We show that the shadow can
be computed in polynomial time, implying polynomial time algorithms for
computing both a successful guard as well as a successful intruder, whichever
exists. Furthermore, we show that shadow function generalizes the concept
of graph retractions. In some cases, this implies a polynomially computable
certification of the negative answer to the NP-complete problem of existence
of a retraction to a given subgraph.

Keywords: pursuit-evasion game, graph searching, guarding, shadow func-
tion, graph retraction.

2010 Mathematics Subject Classification: 05C57, 05C60.

https://doi.org/10.7151/dmgt.2244

124 D. Bokal and J. Jerebic

1. Introduction

A pursuit-evasion game in a reflexive graph G is in its most general form played
as follows: an intruder is located somewhere in G as well as several searchers.
All of them move along the edges of the graph and the aim of the searchers is to
capture the intruder by stepping on the same vertex.

According to [2], the pursuit-evasion games in graphs were first considered
by Parsons [14] as a model of searching for a lost spelunker in a system of caves.
In his model, both the searchers and the intruder could be located either at the
vertices or at the edges of the graph and the searchers have no information about
the position of the intruder. Nowakowski and Winkler [12] introduced another
model, in which the players may be located at the vertices of the graph only
and the complete information about the position of the players is available. They
characterized the graphs in which a single searcher has a winning strategy, i.e., can
always capture the intruder (cop-win graphs). An algorithmic characterisation
of finite cop-win digraphs is given in [10].

Several other results on the latter model were published in sequel. The
following ones are intimately related to the present paper. Aigner and Fromme
[1] showed that three searchers always capture the intruder in a planar graph.
This result was generalized by Quilliot [13] who showed that 2g + 3 searchers
have a winning strategy in any graph of genus g. This bound was improved by
Schröder [16] to

⌊

3
2g

⌋

+ 3. Additionally, Andreae [3] showed that if a connected
graph G has no connected minor H, then |EH | searchers have a winning strategy
(in fact, the exact presented bound is even better). Some recent variations were
introduced in [9], and a most recent survey of the graph searching and related
problems has been published by Bonato and Yang [4].

The results just mentioned have the following technique of guarding in com-
mon: at every stage of the game, the searchers are able to capture the intruder
instantly after he enters a particular subgraph of the graph, and gradually they
manage to extend this guarded territory over the whole graph and thus capture
the intruder. However, the technique of guarding was restricted to the use of the
following lemma, which initially appeared in [1].

Lemma 1. Let G be a graph with vertices u and v and P a shortest path between

u and v in G. If there are at least two searchers in the game, then after a finite

number of moves one of them can guard P from the intruder.

The idea of this lemma was extended by Chiniforooshan [5], who used the
approach of five cops guarding a minimum distance caterpillar to show that cop-
number of any n-vertex graph is at most O

(

n
lgn

)

, where a minimum distance

caterpillar between u ∈ VG and v ∈ VG is a subgraph H of G such that (1) H is
a tree, (2) the path P between u and v in H is a shortest path between u and v

in G, and (3) every vertex of H has an edge in H to a vertex in P .

Guarding a Subgraph as a Tool in Pursuit-Evasion Games 125

The aim of this paper is to investigate the concept of guarding a subgraph.
Besides helping to search the graph, there is independent interest in applications
where the whole graph is too large to be searched and the authority is satisfied
by fulfilling a weaker goal of preventing the intruders from entering a particular
region of the graph. In addition, we establish that guarding a subgraph leads to
polynomially computable generalizations of the graph retraction problem, which
is not only NP-complete for many specific graphs, but also difficult to classify for
which it is NP-complete [7].

During the research presented in this paper, a different guarding game was
studied by several groups of authors [8, 9, 11, 15]. The complexity of the cop
and robber guarding game was studied by Šámal et al. [18, 17]. Contrary to our
approach, they restrict the cops to move within the guarded graph, which renders
that variant of the game less relevant for the original graph searching game, and
we propose to distinguish the two variants as the regional guarding game, where
the cops are restricted to the region they are guarding, and the territorial guarding
game where the guards can move over all the territory. A natural generalization
of the two games is a generalized guarding game, where edges of the graph are
used by either the intruders, the cops, or both. We emphasize that territorial
guarding game was designed to generalize the guarding a shortest path approach
in graph searching, which we find a relevant association of the two problems.
However, the two guarding games have much in common, and we conjecture that
most of the results about either regional or territorial guarding are valid in the
context of the other game as well although they need to be proven separately.

The rest of the paper is organized as follows. The territorial guarding game
is introduced formally as an algorithm in Section 2. A characterization when one
guard against several intruders has a winning strategy is provided in Section 3; in
particular, see Theorem 6. The existence of a unique inclusion-maximal shadow
function for every graph G and its subgraph H is established and a polynomial
algorithm to find the shadow function is given in Section 4. We apply the shadow
function to find a successful guard or a successful intruder, whichever exists. In
Section 5, we show that the shadow is a polynomially computable generalization
of a retraction to a subgraph, existence of which is in general an NP complete
problem. This allows for polynomial certifications of negative answers to the
question of existence of a retraction to a given subgraph. The paper closes with
observations how the game with several intruders versus several guards can be
transformed to the game of a single intruder and a single guard. Aligned with the
results of [10], our algorithms can be applied to polynomially solve the problem
of guarding a subgraph H of a graph G with k-guards against i-intruders for any
fixed k and i, implying fixed-parameter-tractability of the problem of guarding a
subgraph with k guards against i intruders.

126 D. Bokal and J. Jerebic

2. Territorial Guarding a Subgraph – a Formalization

There are several possibilities to extract the concept of guarding from Lemma 1.
First we isolate the context in which we want to apply the resulting concept:
guards and intruders are located in a reflexive graph G (all the graphs we consider
are reflexive, i.e., there is a loop at every vertex which in our formalizatioin allows
a player to stay at the occupied vertex), and there is a subgraph H, such that
whenever an intruder locates himself on a vertex v of H, there is a guard that
can step onto v in the next move. With this goal in mind, we analyze the two
possibilities of how the game is started: either the guards or the intruders position
themselves first on the graph.

Let us say the guards have the initiative of stepping onto G first. In the case
of a single intruder, they need to position themselves in such a way that the graph
H is dominated by the vertices of their locations. Having accomplished this, they
never need to move, so the game reduces to finding an H-dominating subset of
vertices of G. In the case of non-simultaneous positioning of several intruders,
the game reduces to variants of protection in graphs, as introduced by Cockayne
et al. [6], an approach that does not address the dynamics of pursuit-evasion
games.

Thus we will focus our attention to the case when the intruders have the
initiative of choosing their location on G first. If the guards can afterwards choose
just any location, then they step on the intruders and the game is again trivial.
But if we constrain the set of vertices, i.e., if the guards can choose to move
just to vertices of S (V , we obtain a nontrivial game that adequately models
our problem: intruders are located at some vertices of G, guards at some other,
and they start to move alternatively with the aim of the first to step unpunished
on a vertex of H and the aim of the others to prevent it. We proceed with a
formalization of this game.

Let a graph G, its subgraph H and a set S ⊆ VG of vertices, denoted by guard

posts, be given. Let I be the set of intruders, i = |I| their number, Γ the set of
guards, and g = |Γ| their number. We will model them as memoryless strategies,
which we will justify in Proposition 2 at the end of this section. The territorial

guarding game is played as follows: initially, each intruder Xj chooses a vertex
vj in G. After all the intruders have located themselves to v = (v1, . . . , vi), each
guard Yj chooses a guard post ϕj(v) ∈ S for ϕY : V i

G → S. Now let v(0) =
(v1, . . . , vi, ϕ1(v), . . . , ϕg(v)) be the thus obtained vector of combined positions of
all i intruders and all g guards. They continue to move alternatively: first each
intruder Xj moves to some neighboring vertex of his position, updating the posi-
tion vector of the game from v(0) to v(1). Formally, for each j ∈ {1, . . . , i} intruder
Xj ∈ I is a pair (vj , ιj), where vj ∈ VG and ιj : VG × (VG ∪ {∞})i−1 × V

g
G → VG,

such that ιj(x, x1, . . . , xj−1, xj+1, . . . , xi, y1, . . . , yg) is a vertex in G adjacent to x.

Guarding a Subgraph as a Tool in Pursuit-Evasion Games 127

First coordinate of the vector (x, x1, . . . , xj−1, xj+1, . . . , xi, y1, . . . , yg) indicates
the position of the intruder Xj , while the other coordinates determine the po-
sitions of all remaining i − 1 intruders and g guards at a given moment of the
game. After all the intruders have moved each guard Yj moves to some neigh-
boring vertex of his position, updating the position vector of the game from v(1)

to v(2). Formally, for each j ∈ {1, . . . , g}, a guard Yj ∈ Γ is a pair Yj = (ϕj , γj),
where ϕj was defined earlier as the initial position of the guard Yj according to

the initial positions of the intruders, and γj : VG × (VG ∪ {∞})i × V
g−1
G → VG,

such that γj(y, x1, . . . , xi, y1, . . . , yj−1, yj+1, . . . , yg) is a vertex in G adjacent to
y. First coordinate of the vector (y, x1, . . . , xi, y1, . . . , yj−1, yj+1, . . . , yg) indicates
the position of the guard Yj , while the other coordinates determine the positions
of all remaining g − 1 guards and i intruders at a given moment of the game. A
guard can capture an intruder by stepping on his vertex, and consequently the
intruder is eliminated from the game. In our notation, this is modelled by set-
ting intruder’s position to ∞. The aim of the intruders is to enter the specified
subgraph H of G without being captured immediately afterwards. Schematically,
the game is played as presented by Algorithm 1.

Algorithm 1 The territorial guarding game

Set t := 0, n = |VG|, n̄ = |VG \ VH |+ 1.
Set I the set of all i intruders, Γ the set of all g guards.
For each intruder Xj = (vj , ιj) ∈ I, set xj := vj .
For each guard Yj = (ϕj , γj) ∈ Γ, set yj := ϕj(x1, . . . , xi).
while ¬

(

I = ∅ or ∃j :
(

xj ∈ VH ∧ ∀j′ : xj 6= yj′
)

do

Set C = {Xj | ∃yℓ : xj = yℓ}.
For each intruder Xj ∈ C, set xj := ∞.
Set I := I \ C.
Set t := t+ 1.
For each intruder Xj = (vj , ιj) ∈ I,
set x′j := ιj(xj , x1, . . . , xj−1, xj+1, . . . , xi, y1, . . . , yg).

For each intruder Xj ∈ I, set xj := x′j .
For each guard Yj = (ϕj , γj) ∈ Γ,
set y′j := γj(yj , x1, . . . , xi, y1, . . . , yj−1, yj+1, . . . , yg).

For each guard Yj , set yj := y′j .

If t > n̄ing, then guards have won. The game will be played indefinitely (see
Proposition 2).

end while

If I = ∅, then the guards have won,
otherwise, the intruders have won.

128 D. Bokal and J. Jerebic

If the guards can indefinitely prevent the intruders from enteringH or capture
all the intruders, then the guards guard H, and they win the game. Suppose the
game is finished in finite time, then the final value of t is the length of the game.
A set G of guards is i-successful in H, if they guard H from any set I of less
than i intruders. In this case, |G| guards can guard H. A set I of intruders is
g-successful in H, if at least one intruder enters H for any set G of less than g

guards. We say that |I| intruders can enter H.
We remarked earlier that the guards and intruders are represented by memo-

ryless strategies. One may remark that they are limited as they only react to the
current position of the game. Thus they may not capture all the possible strate-
gies. However, model extensions with memory are not necessary as repeating a
position in the game does not alter the chances of either party to win: the game
is simply started anew and the winning party could apply the winning moves of
the second game already the first time a position occurred (cf. also Proposition
2). Thus the aim of the intruder is to force the guards into a new position by
every move. This idea is essential to the following proposition which provides
a general upper bound to the length of the game. Note that there are many of
those positions in which the intruders may be all captured, hence this general
bound could be improved in specific cases.

Proposition 2. Let G be an arbitrary graph, H its arbitrary subgraph. Let

n = |VG|, n̄ = |VG \ VH |+1, and let i = |I| be the prescribed number of intruders

and g = |Γ| the number of guards. There exists a set of i intruders into H that

win against any g guards, if and only if there exists a winning set of i intruders

against g guards, such that the intruders enter H in at most 2(n̄ing) + 1 moves,

counting also the initial two moves of positioning the intruders and guards.

Proof. Let us augment the graph G with a vertex ∞ outside H, having the
property that each captured intruder moves to this vertex and stays there and
the guards do not move there. Let Pt =

(

xt1, . . . , x
t
i, y

t
1, . . . , y

t
g

)

be the position of
the game after t moves.

Let t0 be the shortest game in which the intruders enter H. As guards
could occupy any vertex of G, and intruders could only occupy vertices of V (G)\
V (H) or ∞, there are n̄ing different positions in the game that do not constitute
intruder’s victory. At each of them, either the intruders or the guards move first.
Thus, if the game lasted for 2(n̄ing) or more moves, some position is repeated.
Hence, if t0 > 2(n̄ing), we have a contradiction to t0 being a shortest game for
the intruders to enter H.

The rest of the paper, except Sections 6 and 7, is devoted to studying the
game in the case of a single intruder and a single guard. We present a polynomial
algorithm that computes either a winning guard or a winning intruder, whichever
exists.

Guarding a Subgraph as a Tool in Pursuit-Evasion Games 129

3. Existence of a Successful Guard

Let G be a connected graph, H its subgraph, and S ⊆ VG a set of guard posts.
All of them are assumed to be fixed throughout the section.

Let W = x0 · · ·xl be a walk in G and Y = (ϕ, γ) be a guard in G. If the
intruder follows the walk W , then the position yi of the guard Y after i moves is
traced with y0(W,Y) := ϕ(x0) and yi(W,Y) := γ(xi, yi−1). All possible positions
of Y when the intruder has arrived to x ∈ VG are captured by the set

ΦY (x) :=
{

yl(W,Y) |W = x1 · · ·xl−1x
}

where W runs over all finite walks in G−H which end in x.

Assume that the walk W starts in x and ends in x′ ∈ VH . A vertex y ∈ VG is
said to parry x ∈ VG against the walk W , if there exists some walk W ′ of length
|W | from y to x′. If y ∈ VG parries x ∈ VG against any walk W from x to any
x′ ∈ VH , we simply say that y parries x, and write y � x.

Proposition 3. Let G be a connected graph and H its subgraph. The relation �
defined above is a preorder, i.e., it is reflexive and transitive.

Proof. Let x be an arbitrary vertex of G, x′ an arbitrary vertex of H and W

any walk from x to x′. By definition, x parry x against W , if there exists some
walk W ′ of length |W | from x to x′. Such a walk exists, namely W ′ = W . It
follows that x parries x. Hence, � is reflexive.

Let x, y and z be any vertices of G with the property y � x and z � y. Let
W be any walk in G from x to arbitrary chosen vertex x′ of H. y � x implies
that there exists a walk W ′ of length |W | from y to x′. Furtheremore, z � y

implies that there exists a walk W ′′ of length |W ′| = |W | from z to x′. We can
conclude that for any walk W in G from x to x′ there exists a walk W ′′ of length
|W | from z to x′. Hence, � is transitive.

Let Q : VG → 2VG be a function with

Q(x) := {y ∈ VG | ∀z ∈ VH : dG(z, y) ≤ dG−EH
(z, x)}.

This is precisely the set of vertices y which parry x against any shortest path
from x to VH .

For a set A ⊆ VG we define A+ := A ∪ NG(A), where NG(A) is the G-
neighborhood of A. Using the above tools, it is possible to identify the strategies
of guarding H.

Lemma 4. Suppose that Y = (ϕ, γ) is a successful guard. Then, for any x ∈ VG,

we have ΦY (x) ⊆ Q(x) and, for any xx′ ∈ EG \ EH , we have ΦY (x) ⊆ Φ+
Y (x

′).

130 D. Bokal and J. Jerebic

Proof. Assume that y ∈ ΦY (x) \Q(x) and let W = x1 · · ·xl−1x be a walk with
y = yl(W,Y). Let X = (x1, ιW) be an intruder starting at x1 and following the
walk W . After X steps on vertex x, the guard steps on vertex y. As y 6∈ Q(x),
there exists x′ ∈ VH with dG(y, x

′) > dG−EH
(x, x′). If the intruder follows some

shortest xx′ path, he can enter H, a contradiction.
Assume that for xx′ ∈ EG\EH , y ∈ ΦY (x)\Φ

+
Y (x

′) and let W = x1 · · ·xl−1x,
be a walk with y = yl(W,Y). Let W ′ = Wx′ and let X = (x1, ιW ′) be an intruder
starting at x1 and following the walk W ′. Just before he steps on x′, the guard
is in the vertex y. As y 6∈ Φ+

Y (x
′), the successful guard cannot step into ΦY (x

′),
a contradiction.

Lemma 5. Let a function Φ : VG → 2VG \ {∅} be such that both Φ(x) ∩ S 6= ∅,
Φ(x) ⊆ Q(x) for any x ∈ VG, and Φ(x) ⊆ Φ+(x′) for any xx′ ∈ EG \ EH . Then

there exists a successful guard of H in G.

Proof. Choose ϕ(x) ∈ Φ(x) ∩ S and for y, x ∈ VG choose γ(x, y) ∈ {y}+ ∩Φ(x),
if the latter set is nonempty, otherwise choose γ(x, y) arbitrarily. We claim that
the guard Y = (ϕ, γ) is a successful guard of H in G. As Q(x) = {x} for x ∈ VH ,
it is enough to prove that the guard can always step into Φ(x), where x is the
position of the intruder.

This is proved by induction on the number t of moves in the game. If t = 0,
then y = ϕ(x) ∈ Φ(x). Suppose that y ∈ Φ(x) at time t and the intruder moves
from x to x′. Thus xx′ ∈ EG \ EH , implying y ∈ Φ(x′)+ and y has a neighbor
y′ ∈ {y}+ ∩ Φ(x′).

Combining Lemmas 4 and 5 yields.

Theorem 6. Let G be a connected graph, H its subgraph and S a set of guard

posts. Then H can be guarded in G with a single guard against a single intruder

if and only if there exists a function Φ : VG → 2VG such that

(i) Φ(x) ∩ S 6= ∅, Φ(x) ⊆ Q(x) for any x ∈ VG and

(ii) Φ(x) ⊆ Φ+(x′) for any xx′ ∈ EG \ EH .

4. The Shadow of the Intruder

The inclusion-maximal function Φ satisfying conditions (i) and (ii) of Theorem 6
is called the shadow function of H in G, which we assume to be fixed throughout
this section. Intuitively, the guard will be able to protect the subgraph H, if he is
able to step into the shadow of the intruder. Thus, the subgraph can be guarded,
if there is a guard post in the shadow of every vertex of the graph G. On the
other hand, the intruder shall avoid casting his shadow into the neighborhood
of the guard — as soon as he does, the guard will be able to step into it and

Guarding a Subgraph as a Tool in Pursuit-Evasion Games 131

prevent him from entering H. This definition is justified by Theorem 11, which
establishes that there is a unique inclusion-maximal shadow function for every G

and its subgraph H.
A polynomial algorithm to find the shadow function Φ is designed in what

follows. For d ∈ [0, diam(G)] and x ∈ VG we define D(x, d) as the set of all
vertices in G on distance d from x and D̄(x, d) as the set of all verices in G on
distance less or equal d from x. A variable dz contains a distance dG−EH

(z, x)
and a set Vx contains vertices of H connected to x in G− EH .

Algorithm 2 Given G and its subgraph H, compute the function Q.

Using a modification of Floyd-Warshall algorithm, compute the sets
D(x, d) := {z ∈ VG | dG(z, x) = d} (for x ∈ VG, d ∈ [0, diam(G)]).
for each x ∈ VG do

For d ∈ [0, diam(G)], set D̄(x, d) :=
⋃

0≤i≤dD(x, i).
Set Q(x) = VG.

end for

for each x ∈ VG do

Clear all marks.
Let q be an empty queue.
Set dx = 0.
Append x to q.
while q not empty do

Get z from queue q.
Mark z.
if z ∈ VH then

Q(x) := Q(x) ∩ D̄(z, dz).
else

for each unmarked y ∈ NG(z) do
dy := dz + 1.
Append y to q.

end for

end if

end while

end for

Proposition 7. Algorithm 2 correctly computes the function Q in running time

O(n2m), where n is the number of vertices and m is the number of edges in G.

Proof. Observe that

Q(x) = {y ∈ VG | ∀z ∈ VH : dG(z, y) ≤ dG−EH
(z, x)}

=
⋂

z∈VH

{y ∈ VG | dG(z, y) ≤ dG−EH
(z, x)} =

⋂

z∈Vx

D̄(z, dz).(1)

132 D. Bokal and J. Jerebic

Here Vx ⊆ VH is the set of vertices in H, visited by the algorithm while processing
vertex x in the for-loop. Note that if a vertex z of H is not visited by Algorithm 2,
then dG−EH

(x, z) = ∞ and {y ∈ VG | dG(z, y) ≤ dG−EH
(z, x)} = VG. Correctness

follows from (1) and the fact that the breadth-first-search in Algorithm 2 does
not continue from the vertices of H.

The running time of Floyd-Warshall algorithm is O(n3). The sets D̄(x, d)
can be computed in time O(n3). The main loop is executed n times. Every
vertex enters the queue at most once, thus the while-loop is executed at most n2

times. Computing the intersections needs at most O(n3) steps and the for-loop
considers each edge of G at most twice, consuming the dominating computational
time O(n2m).

Algorithm 3GivenG and its subgraphH, compute the function Φ of a successful
guard.

Using Algorithm 2, compute the function Q for G and H.
For x ∈ VG, set Φ(x) = Q(x).
Let s be an empty stack.
for every edge xx′ ∈ EG do

Push xx′ to s.
Push x′x to s.

end for

while s not empty do

Pop xx′ from s.
Set T := Φ(x) ∩ Φ(x′)+.
if T 6= Φ(x) then
for every G−H neighbor u of x do

Push ux to s.
end for

Set Φ(x) := T .
end if

end while

Lemma 8. Let Φ : VG → 2VG \ {∅} be such that Φ(x) ⊆ Φ+(x′) for any xx′ ∈
EG. Then, to any walk W = x1 · · ·xt in G and any vertex y1 ∈ Φ(x1), there

corresponds a walk W ′ = y1 · · · yt with yi ∈ Φ(xi) for i = 1, . . . , t.

Proof. By induction on t, case t = 1 is trivial. Let W+ = x1 · · ·xtxt+1. By
induction, there is a walk W ′ = y1 · · · yt with yi ∈ Φ(xi) for i = 1, . . . , t. Now
xtxt+1 ∈ EG and yt ∈ Φ(xt) ⊆ Φ+(xt+1). Thus there is a vertex yt+1 ∈ Φ(xt+1)
adjacent or equal to yt and we can extend the walk W ′ to W ′

+ = W ′yt+1.

Guarding a Subgraph as a Tool in Pursuit-Evasion Games 133

Lemma 9. Let Φ : VG → 2VG be the function, returned by Algorithm 3, and let

y 6∈ Φ(x) for some x, y ∈ VG. Then y does not parry x.

Proof. The claim is proved by induction on the number p of edges popped from
the stack when y was removed from Q(x). If p = 0, then y 6∈ Q(x) and the claim
follows from Lemma 4.

Let y be removed from Q(x) when p edges were popped from the stack and
let Φp(v) denote the set Φ(v) at this stage of the algorithm. Then y 6∈ Φ+

p (x
′) for

some neighbor x′ of x. Thus y′ 6∈ Φp−1(x
′) for any y′ ∈ {y}+. None of y′ parries

x′ by induction and the claim follows.

Lemma 10. Let Φ : VG → 2VG be the function computed by Algorithm 3. Then
Φ(x) ⊆ Q(x) for any x ∈ VG, and Φ(x) ⊆ Φ+(x′) for any xx′ ∈ EG. Moreover, if

Φ′ is any other function with these properties, then Φ′(x) ⊆ Φ(x) for any x ∈ VG.

Proof. Clearly, Φ(x) ⊆ Q(x) for any x ∈ VG. Assume that there is an edge
xx′ ∈ EG, such that Φ(x) 6⊆ Φ+(x′). Then, there must have been a neighbor x′′

of x′, such that Φ(x′) has changed into Φ(x′) ∩ Φ+(x′′) after the edge xx′ was
popped from the stack. But then xx′ was pushed on the stack again and Φ(x)
was recomputed, contradicting the assumption.

Let Φ′ be some other function with required properties and y1 ∈ Φ′(x1) \
Φ(x1). Let W = x1 · · ·xt be any walk in G − EH with xt ∈ VH . By Lemma 8,
there exists a walkW ′ = y1 · · · yt with yi ∈ Φ′(xi) ⊆ Q(xi), and yt ∈ Q(xt) = {xt}
due to xt ∈ VH . This implies that y1 parries x1, a contradiction to Lemma 9.

The following theorem captures the essence of the function Φ.

Theorem 11. Let Φ : VG → 2VG be the function, returned by Algorithm 3, and
let x, y ∈ VG. Then y parries x if and only if y ∈ Φ(x).

Proof. Suppose y ∈ Φ(x) and let W = xx1 · · ·xt be any walk starting in x and
ending in xt ∈ VH . By Lemmas 8 and 10, there is a walk W ′ = yy1 · · · yt of length
|W | with yi ∈ Φ(xi). As xt ∈ VH , we have yt ∈ Φ(xt) = {xt} and the intruder is
captured by W ′. Thus y parries x.

The converse follows from Lemma 9.

Combining Theorem 6 with Lemma 10 we obtain the following characteriza-
tion result with regards to the existence of a successful guard.

Theorem 12. Let G be a graph, H its subgraph and S a set of guard posts. Then

H can be guarded in G with a single guard against a single intruder if and only

if Algorithm 3 produces a function Φ with Φ(x) ∩ S 6= ∅ for all x ∈ VG.

The successful guard can be reconstructed by applying the proof of Lemma 5.

134 D. Bokal and J. Jerebic

Corollary 13. Let G be a graph, H its subgraph and S ⊆ VG a set of guard

posts. Existence of a successful guard of H can be verified using Algorithm 3 in

time O(nm2), where n = |VG| and m = |EG|.

Proof. Computing Q takes O(n2m) by Proposition 7. As Q(x) ⊆ VG, the set
Φ(x) can change at most n times, thus any edge is pushed onto the stack at
most 2n+ 2 times and the while loop is executed O(nm) times. Computing the
intersections inside the loop, as well as comparing the sets hence takes altogether
at most O(n2m). The most time consuming part is computing Φ+(x). One such
operation takes O(m), thus altogether they consume O(nm2) computational time.

The rest of the claim follows from Theorem 12.

For a set A ⊆ VG, we define A⊕ := A ∪ NG−EH
(A). Let Φ be the shadow

function of H in G. Define the intruding function Ψ : VG × VG → 2VG with
Ψ(x, y) = {x′ ∈ {x}⊕ |Φ(x′) ∩ {y}+ = ∅}. The name is justified by the following
theorem.

Theorem 14. Let Φ and Ψ be the shadow and intruding functions of a subgraph

H of some graph G. The following statements are equivalent.

(i) y parries x,

(ii) y ∈ Φ(x),

(iii) Ψ(x, y) = ∅.

Proof. Equivalence of (i) and (ii) is proved in Theorem 11.

Assume that y parries x. This implies that arbitrary G−EH neighbor x′ of
x is parried by some y′ ∈ {y}+. By the equivalence of (i) and (ii), this implies
y′ ∈ Φ(x′) and by the definition we have x′ 6∈ Ψ(x, y). As this holds for all
x′ ∈ {x}⊕, we have Ψ(x, y) = ∅.

The converse implication follows by reversing the preceding argument.

Corollary 15. Let Ψ be the intruding function of the subgraph H of the graph

G and let S ⊆ VG be the set of guard posts. There exists a successful intruder of

H if and only if there is a vertex x ∈ VG such that Ψ(x, y) 6= ∅ for every y ∈ S.

A successful intruder X = (v, ι) can be reconstructed using the intruding
function by setting v to be the vertex from the previous corollary, and choosing
ι(x, y) ∈ Ψ(x, y) whenever the latter set is nonempty. If it is empty, then ι(x, y)
can be chosen arbitrarily; a successful intruder never enters into such situation.
Note also that the intruding function may be constructed in parallel with the
shadow function in Algorithms 2 and 3. In order to achieve this, Ψ(x, y) = ∅
must be set initially and whenever a vertex y is removed from either Q(x) or
Φ(x), appropriate vertices must be added into Ψ(x, y).

Guarding a Subgraph as a Tool in Pursuit-Evasion Games 135

5. Shadow and Retractions

Let G be a graph and H its subgraph. A retraction of G onto H is a homomor-
phism f : G → H that is an identity on VH . As f preserves edges of G or maps
their endpoints to a single edge, it is easy to observe the following proposition.
The proposition is not surprising, as it is known [12] that retractions of cop-win
graphs are cop-win.

Proposition 16. Let G be a connected graph, H its subgraph, Φ the shadow

function of H in G and f : G → H a retraction. Then f(x) ∈ Φ(x) for every

x ∈ VG.

Proof. By Theorem 14, it suffices to show that f(x) parries x. LetW be any walk
from x to arbitrary chosen vertex x′ of H. Consider now the walk W ′ = f(W).
W ′ starts in f(x) and ends in f(x′) = x′. Since f preserves the edges of G or
maps their endpoints to a single edge, the length of W ′ is equal to |W |.

The decision problem of whether there exists a retraction of a given graph
G to its subgraph H is NP-complete in general [7]. Feder and Hell prove that
for any constraint satisfaction problem P, there exists a fixed reflexive graph H

such that the complexity of the existence problem of retraction to H is polyno-
mially equivalent to the complexity of P, which establishes that classification of
complexity of retraction problems is difficult. In this light, the shadow function
is a polynomially computable generalization of retractions, which can confirm a
negative answer to the retraction problem: if there is a vertex x ∈ VG such that
Φ(x) ∩ VH = ∅, then there is no retraction of VG to H.

6. A Single Intruder Versus Several Guards

Motivated by questions of the referees, we sketch an approach of applying the
presented algorithms to the setting of several guards and (in next section), also
several intruders. Again let G be a connected graph, H its subgraph, S ⊆ VG

a set of guard posts, and g the number of guards, all of them fixed throughout
this section. It will be shown that the game of g guards against a single intruder
can be represented as the game of a single guard against a single intruder in
a different graph Gg under modified conditions: the metrics in Gg needs to be
altered and additional restrictions have to be put on the motion of the intruder.

The strong product ⊠
k
i=1Gi of graphs G1, . . . , Gk is the graph defined on

the Cartesian product of the vertex sets of the factors, two distinct vertices
(u1, u2, . . . , uk) and (v1, v2, . . . , vk) are adjacent if and only if ui is equal or adja-
cent to vi in Gi for i = 1, 2, . . . , k. The strong product of g copies of G is called
the g-th strong power of G and will be denoted by Gg.

136 D. Bokal and J. Jerebic

A position of g guards in G corresponds to a position of a single guard in Gg

and vice versa. Similarly, any move of g guards corresponds to some move of the
single guard in Gg.

Let G′ be the subgraph of Gg that is spanned by the vertices that have all
coordinates equal. Then G′ is isomorphic to G and any position of the intruder
in G corresponds to a unique position of the intruder in G′. The fact of capturing
an intruder in G in this setting corresponds to moving the single guard in Gg to
a vertex that has at least one coordinate equal to the position of the intruder.
Thus the act of capturing in Gg corresponds to the distance 0 according to the
following metrics in Gg: d∗(x, y) = min0≤i≤g dG(xi, yi) for x = (x1, . . . , xg) and
y = (y1, . . . , yg). Clearly enough, the set of guard posts S ⊆ VG in the game of g
guards corresponds to the set SG ⊆ VGg of vertices with at least one coordinate
equal to some vertex in S.

7. Several Intruders Versus Several Guards

Also the game of several intruders versus several guards can be transformed to
the game of a single intruder and a single guard. The major difference to the
case of a single intruder and several guards is that the guard and the intruder
may have limited subgraph of valid positions, and capturing of the guard does
not neccessarily mean that the game is finished, but it puts additional restriction
on the set of valid moves for the intruder. The set of vertices which get invalid
for the intruder depends on the position of the intruder and the guard at the
moment of capture.

As in the previous sections, let us fix a graph G, its subgraph H, the set
of guard posts S, the number of intruders i, and the number of guards g. Let
m = max{i, g} and let Gm := G × · · · ×G be the strong product of m copies of
G, and let the subgraph Gg ⊆ Gm be spanned by the vertices which have last
m − g + 1 coordinates equal, and the subgraph Gi be spanned by the vertices
which have the last m− i+1 coordinates equal. A position of g guards in G and
their moves correspond to a position of a single guard and his moves in Gg and
vice versa, and similarly for positions and moves of i intruders.

The act of capturing one of the intruders happens whenever there is some
guard positioned at the same position as some intruder. For the single guard
and single intruder in Gm, this happens when one of any coordinates of the
intruder X = (x1, . . . , xi−1, xi, . . . , xi) is equal to some coordinate of the guard
Y = (x1, . . . , xg−1, xg, . . . , xg), or, in other words, d∗G(X,Y) = 0 and X ∩ Y 6= ∅
for the sets X = {x1, . . . , xi} and Y = {y1, . . . , yg}.

The intruders which are captured can no longer move. Thus after y captures
x, the coordinates in X ∩ Y get fixed and the intruder can only move in the

Guarding a Subgraph as a Tool in Pursuit-Evasion Games 137

coordinates X \ Y . Formally, the graph of allowed moves Gi is limited to Gi \
Λ(x, y), where Λ(x, y) is (vaguely) the set of vertices with coordinates X∩Y fixed
to these values.

Acknowledgement

The authors thank the anonymous referees for detailed and constructive com-
ments, which significantly contributed to the quality of the paper. This work was
in part supported by the Ministry of Science of Slovenia under the grant P1-0297
and research projects J1-8130, L7-5459, N1-0057 of ARRS (Slovenia).

References

[1] M. Aigner and M. Fromme, A game of cops and robbers , Discrete Appl. Math. 8
(1984) 1–12.
https://doi.org/10.1016/0166-218X(84)90073-8

[2] B. Alspach, Searching and sweeping graphs: A brief survey , Matematiche (Catania)
59 (2004) 5–37.

[3] T. Andreae, On a pursuit game played on graphs for which a minor is excluded ,
J. Combin. Theory Ser. B 41 (1986) 37–47.
https://doi.org/10.1016/0095-8956(86)90026-2

[4] A. Bonato and B. Yang, Graph searching and related problems , in: Handbook of
Combinatorial Optimization, (Springer, New York, 2013) 1511–1558.
https://doi.org/10.1007/978-1-4419-7997-1 76

[5] E. Chiniforooshan, A better bound for the cop number of general graphs , J. Graph
Theory 58 (2008) 45–48.
https://doi.org/10.1002/jgt.20291

[6] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren,
Protection of a graph, Util. Math. 67 (2005) 19–32.

[7] T. Feder and P. Hell, List homomorphisms to reflexive graphs , J. Combin. Theory
Ser. B 72 (1998) 236–250.
https://doi.org/10.1006/jctb.1997.1812

[8] F.V. Fomin, P.A. Golovach, A. Hall, M. Mihalák, E. Vicari and P. Widmayer, How
to guard a graph? , Algorithmica 61 (2011) 839–856.
https://doi.org/10.1007/s00453-009-9382-4

[9] F.V. Fomin, P.A. Golovach and D. Lokshtanov, Guard games on graphs: Keep the

intruder out , Theoret. Comput. Sci. 412 (2011) 6484–6497.
https://doi.org/10.1016/j.tcs.2011.08.024

[10] G. Hahn and G. MacGillivray, A note on k-cop, l-robber games on graphs , Discrete
Math. 306 (2006) 2492–2497.
https://doi.org/10.1016/j.disc.2005.12.038

https://doi.org/10.1016/0166-218X\(84\)90073-8
https://doi.org/10.1016/0095-8956\(86\)90026-2
https://doi.org/10.1007/978-1-4419-7997-1_76
https://doi.org/10.1002/jgt.20291
https://doi.org/10.1006/jctb.1997.1812
https://doi.org/10.1007/s00453-009-9382-4
https://doi.org/10.1016/j.tcs.2011.08.024
https://doi.org/10.1016/j.disc.2005.12.038

138 D. Bokal and J. Jerebic

[11] H. Nagamochi, Cop-robber guarding game with cycle robber region, in: 3rd Interna-
tional Workshop on Frontiers in Algorithmics, Lecture Notes in Comput. Sci. 5598,
(Springer-Verlag, Berlin, 2009) 74–84.

[12] R. Nowakowski and P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math.
43 (1983) 235–239.
https://doi.org/10.1016/0012-365X(83)90160-7

[13] A. Quilliot, A short note about pursuit games played on a graph with a given genus ,
J. Combin. Theory Ser. B 38 (1985) 89–92.
https://doi.org/10.1016/0095-8956(85)90093-0

[14] T.D. Parsons, Pursuit-evasion in a graph, in: Theory and Applications of Graphs,
Y. Alavi and D.R. Lick (Ed(s)), (Lecture Notes in Math. 642, Springer-Verlag,
Berlin) 1978. 426–441
https://doi.org/10.1007/BFb0070400

[15] T. Reddy, S. Krishna and P. Rangan, The guarding problem—complexity and ap-

proximation, in: Proceedings of IWOCA, 2009, J. Fiala, J. Kratochv́ıl and M. Miller
(Ed(s)), (Lecture Notes in Comput. Sci. 5874, 2009) 460–470.
https://doi.org/10.1007/978-3-642-102217-2 −45

[16] B. Schröder, The cop number of a graph is bounded by
⌊

3

2
genus(G)

⌋

+ 3, in: Cate-
gorical Perspectives, Trends Math., (Birkhäuser, Boston, 2001) 243–263.
https://doi.org/10.1007/978-1-4612-1370-3 14

[17] R. Šámal, R. Stolař and T. Valla, Complexity of the cop and robber guarding game,
in: Proceedings of IWOCA 2011, (Lecture Notes in Comput. Sci. 7056, 2011) 361–
373.
https://doi.org/10.1007/978-3-642-25011-8 29

[18] R. Šámal and T. Valla, The guarding game is E-complete, Theoret. Comput. Sci.
521 (2014) 92–106.
https://doi.org/10.1016/j.tcs.2013.11.034

Received 20 October 2016
Revised 5 August 2019

Accepted 5 August 2019

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1016/0012-365X\(83\)90160-7
https://doi.org/10.1016/0095-8956\(85\)90093-0
https://doi.org/10.1007/BFb0070400
https://doi.org/10.1007/978-3-642-102217-2$_-$45
https://doi.org/10.1007/978-1-4612-1370-3_14
https://doi.org/10.1007/978-3-642-25011-8_29
https://doi.org/10.1016/j.tcs.2013.11.034
http://www.tcpdf.org

