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Juan A. Rodŕıguez-Velázquez

Universitat Rovira i Virgili

Departament d’Enginyeria Informàtica i Matemàtiques
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Abstract

In this paper, we study the weak Roman domination number and the
secure domination number of lexicographic product graphs. In particular,
we show that these two parameters coincide for almost all lexicographic
product graphs. Furthermore, we obtain tight bounds and closed formulas
for these parameters.
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1. Introduction

The following approach to protection of a graph was described by Cockayne et

al. [9]. Suppose that one or more guards are stationed at some of the vertices
of a simple graph G and that a guard at a vertex can deal with a problem at
any vertex in its closed neighbourhood. We say that G is protected if there is at
least one guard available to handle a problem at any vertex. Consider a function
f : V (G) −→ {0, 1, 2, . . . } where f(v) is the number of guards stationed at v, and
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let Vi = {v ∈ V (G) : f(v) = i} for every i ∈ {0, 1, 2, . . . }. We will identify f with
the partition of V (G) induced by f and write f(V0, V1, . . . ). The weight of f is
defined to be w(f) =

∑

v∈V (G) f(v) =
∑

i i|Vi|. A vertex v ∈ V (G) is undefended
with respect to f if f(v) = 0 and f(u) = 0 for every vertex u adjacent to v. We
say that G is protected under the function f if G has no undefended vertices with
respect to f . We now define the four particular subclasses of protected graphs
considered in [9]. The functions in each subclass protect the graph according to
a certain strategy.

• We say that f(V0, V1) is a dominating function (DF) if G is protected under f .
Obviously, f(V0, V1) is a DF if and only if V1 is a dominating set. The domination

number is defined by

γ(G) = min{w(f) : f is a DF on G}.

This classical method of protection has been studied extensively [14, 15].

• A Roman dominating function (RDF) is a function f(V0, V1, V2) such that for
every v ∈ V0 there exists a vertex u ∈ V2 which is adjacent to v. The Roman

domination number is defined by

γR(G) = min{w(f) : f is a RDF on G}.

This concept of protection has historical motivation [22] and was formally pro-
posed by Cockayne et al. in [10].

• A weak Roman dominating function (WRDF) is a function f(V0, V1, V2) such
that for every v ∈ V0 there exists a neighbour u of v such that u ∈ V1 ∪ V2 and
G does not have undefended vertices under the function f ′ : V (G) −→ {0, 1, 2}
defined by f ′(v) = 1, f ′(u) = f(u)−1 and f ′(z) = f(z) for every z ∈ V (G)\{u, v}.
The weak Roman domination number is defined by

γr(G) = min{w(f) : f is a WRDF on G}.

A WRDF of weight γr(G) is called a γr(G)-function. For instance, for the graph
shown in Figure 1, on the left, a γr(G)-function can place 2 guards at the vertex
of degree three and one guard at the other white-coloured vertex. This concept of
protection was introduced by Henning and Hedetniemi [16] and studied further
in [6, 8, 25].

• A secure dominating function is a WRDF f(V0, V1, V2) in which V2 = ∅. In this
case, it is convenient to define this concept of protected graph by the properties
of V1. Obviously, f(V0, V1, ∅) is a secure dominating function if and only if V1 is
a dominating set and for every v ∈ V0 there exists u ∈ V1 which is adjacent to v
and (V1 \ {u})∪ {v} is a dominating set. In such a case, V1 is said to be a secure

dominating set (SDS). The secure domination number is defined by

γs(G) = min{|S| : S is a SDS of G}.
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A secure dominating function of weight γs(G) is called a γs(G)-function. Anal-
ogously, a secure dominating set of cardinality γs(G) is called a γs(G)-set. For
instance, for the graph shown in Figure 1, on the right, a γs(G)-function (set) can
place one guard at each white-coloured vertex. This concept of protection was
introduced by Cockayne et al. in [9], and studied further in [3, 4, 6, 8, 19, 26].

2
1

1

1

1
1

Figure 1. Two placements of guards which correspond to two different weak Roman
dominating functions on the same graph. Notice that 2 = γ(G) < γr(G) < γs(G) = 4.

The problem of computing γr(G) is NP-hard, even when restricted to bipar-
tite or chordal graphs [16], and the problem of computing γs(G) is also NP-Hard,
even when restricted to split graphs [3]. This suggests finding the weak Ro-
man domination number and the secure domination number for special classes of
graphs or obtaining good bounds on these invariants. This is precisely the aim
of this work in which we show that these two parameters coincide for almost all
lexicographic product graphs.

Let G and H be two graphs. The lexicographic product of G and H is the
graph G ◦ H whose vertex set is V (G ◦ H) = V (G) × V (H) and (u, v)(x, y) ∈
E(G ◦H) if and only if ux ∈ E(G) or u = x and vy ∈ E(H). Notice that for any
u ∈ V (G) the subgraph of G◦H induced by {u}×V (H) is isomorphic to H. For
simplicity, we will denote this subgraph by Hu, and if a vertex of G is denoted
by ui, then the referred subgraph will be denoted by Hi.

For basic properties of the lexicographic product of two graphs we suggest
the books [13, 18]. A main problem in the study of product of graphs consists
of finding exact values or sharp bounds for specific parameters of the product
of two graphs and express these in terms of invariants of the factor graphs. In
particular, we cite the following works on domination theory of lexicographic
product graphs: standard domination [20, 21], Roman domination [23], weak
Roman domination [25], total weak Roman domination [5], rainbow domination
[24], super domination [11] and doubly connected domination [1].

Throughout the paper, we will use the notation Kn, K1,n−1, Cn, Nn and Pn

for complete graphs, star graphs, cycle graphs, empty graphs and path graphs
of order n, respectively. We use the notation G ∼= H if G and H are isomorphic
graphs. For a vertex v of a graph G, N(v) will denote the set of neighbours or
open neighbourhood of v in G. The closed neighbourhood of v, denoted by N [v],
equals N(v) ∪ {v}. A vertex v ∈ V (G) such that N [v] = V (G) is said to be an
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universal vertex. For the remainder of the paper, definitions will be introduced
whenever a concept is needed.

2. Preliminaries and Tools

To begin this section we would emphasize the following inequality chains.

Proposition 1 [9]. The following inequalities hold for any graph G.

(i) γ(G) ≤ γr(G) ≤ γR(G) ≤ 2γ(G).

(ii) γ(G) ≤ γr(G) ≤ γs(G).

The problem of characterizing the graphs with γr(G) = γ(G) was solved
by Henning and Hedetniemi [16]. The inequality chain (ii) has motivated the
authors of [26] to obtain the following result, which shows that the problem of
characterizing the graphs with γs(G) = γ(G) is already solved.

Theorem 1 [26]. Given a graph G,

γr(G) = γ(G) ⇔ γs(G) = γ(G).

In particular, it is readily seen that the following remark follows.

Remark 2 [25]. Given a graph G of order n,

γr(G) = 1 ⇔ γs(G) = 1 ⇔ G ∼= Kn.

The following remark will be useful in the next section.

Remark 3 [25]. Given a noncomplete graph G,

γr(G) = 2 ⇔ γ(G) = 1 or γs(G) = 2.

Given a graph G and an edge e ∈ E(G), the graph obtained from G by
removing e will be denoted by G − e, i.e., V (G − e) = V (G) and E(G − e) =
E(G)\{e}. As observed in [16], any γr(G−e)-function is a WRDF forG. Similarly,
as observed in [26], any γs(G−e)-set is a secure dominating set for G. Therefore,
the following basic result follows.

Proposition 4. The following statement hold for any spanning subgraph H of a

graph G.

(i) [16] γr(G) ≤ γr(H).

(ii) [26] γs(G) ≤ γs(H).
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A set S ⊆ V (G) is a k-dominating set if |N(v)∩S| ≥ k for every v ∈ V (G)\S.
The minimum cardinality among all k-dominating sets is called the k-domination
number of G and it is denoted by γk(G). It is readily seen that any 2-dominating
set is a secure dominating set. Therefore, we can state the following result.

Theorem 2 [6]. For any graph G,

γs(G) ≤ γ2(G).

A double total dominating set of a graph G with minimum degree greater
than or equal to two is a set S of vertices of G such that every vertex of G is
adjacent to at least two vertices in S, [17]. The double total domination number

of G, denoted by γ2,t(G), is the cardinality of a smallest double total dominating
set, and we refer to such a set as a γ2,t(G)-set. Since any γ2,t(G)-set is a secure
dominating set, we deduce the following result.

Theorem 3. For any graph G of minimum degree greater than or equal to two,

γs(G) ≤ γ2,t(G).

After Theorem 9 we show a family of lexicographic product graphs for which
the bound above is achieved.

3. Some Cases Where γs(G ◦H) = γr(G ◦H)

From Proposition 1(ii) we learned that for any lexicographic product graph γs(G◦
H) ≥ γr(G◦H). Furthermore, from Theorem 1 we have that γr(G◦H) = γ(G◦H)
if and only if γs(G ◦ H) = γ(G ◦ H). In this paper we show that γs(G ◦ H) =
γr(G ◦H) for almost all lexicographic product graphs.

Theorem 4. For any graph G without isolated vertices and any graph H with

γs(H) ≤ 2 or γr(H) ≥ 3,

γs(G ◦H) = γr(G ◦H).

Proof. By Proposition 1, we only need to show that if G and H satisfy the
premises, then γs(G ◦ H) ≤ γr(G ◦ H). To this end, let f(W0,W1,W2) be a
γr(G ◦H)-function. If W2 = ∅, then we are done, as W1 is a secure dominating
set, which implies that γs(G ◦H) ≤ |W1| = w(f) = γr(G ◦H). From now on we
suppose that W2 6= ∅.

We first consider the case γs(H) ≤ 2. Let {h, h′} be a secure dominating
set of H and D2 = {u ∈ V (G) : f(u, v) = 2, for some v ∈ V (H)}. The set
W ′ = W1 ∪ (D2 × {h, h′}) is a secure dominating set, as {(u, h), (u, h′)} is a
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secure dominating set of Hu and every vertex outside {u} × V (H), adjacent to
(u, v) ∈ W2, is adjacent to (u, h) and also to (u, h′). Therefore, γs(G ◦ H) ≤
|W ′| ≤ |W1|+ 2|W2| = γr(G ◦H).

We now assume that γr(H) ≥ 3. We differentiate two cases for (u, v) ∈ W2

to show that there exists a WRDF f1

(

W
(1)
0 ,W

(1)
1 ,W

(1)
2

)

of weight ω(f1) = ω(f)

such that W
(1)
2 = W2 \ {(u, v)}.

Case 1. f(x, y) = 0 for every x ∈ N(u) and every y ∈ V (H). In this
case the restriction of f to {u} × V (H) is a WRDF on Hu. Thus, D = {h ∈
V (H) : f(u, h) > 0} is a dominating set of H and, since γr(H) ≥ 3, we can claim
that |D| ≥ 2. Now, we fix x0 ∈ N(u) and y0 ∈ V (H) and define the function

f1

(

W
(1)
0 ,W

(1)
1 ,W

(1)
2

)

by W
(1)
0 = W0 \ {(x0, y0)}, W (1)

1 = W1 ∪ {(u, v), (x0, y0)}
and W

(1)
2 = W2\{(u, v)}. Obviously, w(f1) = w(f). Moreover, since every vertex

in N [u]× V (H) is adjacent to at least two vertices in {(x0, y0)} ∪ ({u} ×D), the
function f1 is a WRDF on G ◦H.

Case 2. f(x, y) > 0 for some x ∈ N(u) and y ∈ V (H). Notice that if f(u, y) >

0 for every y ∈ V (H), then the function f0

(

W
(0)
0 ,W

(0)
1 ,W

(0)
2

)

defined by W
(0)
0 =

W0, W
(0)
1 = W1∪{(u, v)} and W

(0)
2 = W2 \{(u, v)}) is a WRDF on G◦H, which

is a contradiction, as w(f0) < w(f) = γr(G ◦H). Thus, there exists v′ ∈ V (H)

such that (u, v′) ∈ W0 and we can define the function f1

(

W
(1)
0 ,W

(1)
1 ,W

(1)
2

)

by

W
(1)
0 = W0 \ {(u, v′)}, W (1)

1 = W1 ∪ {(u, v), (u, v′)} and W
(1)
2 = W2 \ {(u, v)}.

Under the placement of guard stated by f1, the movement of the guard stationed
at (u, v′) does not produce undefended vertices, as every vertex in {u}×V (H) is
adjacent to (x, y) and, for any u′ ∈ N(u), every vertex in {u′}×V (H) is adjacent
to (u, v). By similar arguments, the movement of the guard stationed at (u, v)
does not produce undefended vertices. Hence, f1 is a WRDF and w(f1) = w(f).

We can repeat the procedure above for any vertex belonging to W2 (t = |W2|
times) until construct a WRDF ft

(

W
(t)
0 ,W

(t)
1 ,W

(t)
2

)

of weight w(ft) = w(f)

such that W
(t)
2 = ∅. Therefore, γs(G ◦H) ≤ w(ft) = γr(G ◦H).

It was shown in [25] that γr(G ◦ Kn′) = γr(G), for every integer n′ ≥ 1.
Therefore, by Theorem 4, the problem of computing γs(G ◦Kn′) is equivalent to
the problem of computing γr(G).

The problem of comparing γs(G ◦ H) and γr(G ◦ H) when γs(H) ≥ 3 and
γr(H) = 2 remains open. Notice that by Remark 3 we have that γs(H) ≥ 3 and
γr(H) = 2 if and only if γs(H) ≥ 3 and γ(H) = 1. Hence, we can state the
following open problem.
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Problem 1. Characterize the graphs G and H where γs(G ◦ H) = γr(G ◦ H)
subject to the restrictions γs(H) ≥ 3 and γ(H) = 1.

Some particular cases of this problem will be solved later. Notice that the
class of graphs H with γs(H) ≥ 3 and γ(H) = 1 contains the family of graphs
having at least three vertices of degree one and exactly one universal vertex.

4. The Case Where γ(G) = 1

In this section we discuss the case in which G has universal vertices. To begin
with, we consider the case G ∼= Kn.

Proposition 5. For any integer n ≥ 2 and any noncomplete graph H,

γs(Kn ◦H) = γr(Kn ◦H) ∈ {2, 3}.

Furthermore, γs(Kn◦H) = γr(Kn◦H) = 2 if and only if γr(H) = 2 or there exists

a vertex a of H such that {a, b} is a dominating set, for every b ∈ V (H) \N [a].

Proof. It was shown in [25] that 2 ≤ γr(Kn ◦H) ≤ 3, and γr(Kn ◦H) = 2 if and
only if γr(H) = 2 or there exists a vertex a of H such that {a, b} is a dominating
set, for every b ∈ V (H) \ N [a]. Hence, by Theorem 4 and Remarks 2 and 3 we
only have to consider the case of noncomplete graphs H with γ(H) = 1. Now,
since 2 ≤ γr(Kn ◦H) ≤ γs(Kn ◦H), we only need to show that γs(Kn ◦H) ≤ 2.
Notice that for any pair u1, u2 of different vertices of Kn and any universal vertex
v of H, the set W = {(u1, v), (u2, v)} is a 2-dominating set of Kn ◦H. Therefore,
Theorem 2 leads to γs(Kn ◦H) ≤ |W | = 2, as required.

We now consider the case G 6∼= Kn.

Proposition 6. The following statements hold for any noncomplete graph G with

γ(G) = 1.

(i) If γs(H) = 2, then γs(G ◦H) = γr(G ◦H) = 2.

(ii) If γs(H) > γr(H) = 2 and G has more than one universal vertex, then

γs(G ◦H) = γr(G ◦H) = 2.

(iii) If γs(H) > γr(H) = 2 and G has exactly one universal vertex, then γs(G ◦
H) = 3 while γr(G ◦H) = 2.

(iv) If γr(H) ≥ 3, then γs(G ◦H) = γr(G ◦H) ∈ {2, 3, 4}.

Proof. First of all, notice that γs(G ◦ H) ≥ γr(G ◦ H) ≥ 2, as G ◦ H is not
a complete graph. Let v1, v2 ∈ V (H) be two different vertices of H, u ∈ V (G)
a universal vertex of G and u′ ∈ V (G) \ {u}. Since D = {u, u′} × {v1, v2} is
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a 2-dominating set of G ◦ H, by Theorem 2 we can conclude that γs(G ◦ H) ≤
γ2(G ◦ H) ≤ |D| = 4. Therefore, by Theorem 4, (iv) follows. We proceed to
study cases (i)–(iii) by separate.

Case (i). γs(H) = 2. Let u ∈ V (G) be a universal vertex and let S = {v1, v2}
be a γs(H)-set. SinceHu

∼= H, W = {u}×S is a secure dominating set ofHu and,
since u is a universal vertex and |W | = 2, the movement of a guard from a vertex
in W to any vertex outside {u} × V (H) does not produce undefended vertices,
which implies that W is a secure dominating set of G ◦ H. Thus, γs(G ◦ H) ≤
|W | ≤ 2, and (i) follows.

Case (ii). γs(H) > γr(H) = 2 and u, u′ ∈ V (G) are two different universal
vertices. By Remark 3, γ(H) = 1. Thus, γ(G ◦ H) = 1, which implies that
γr(G ◦ H) = 2. Now, for any universal vertex v ∈ V (H) we have that W1 =
{(u, v), (u′, v)} is a 2-dominating set of G◦H. Hence, by Theorem 2, γs(G◦H) ≤
γ2(G ◦H) ≤ |W1| ≤ 2. Therefore, (ii) follows.

Case (iii). γs(H) > γr(H) = 2 and G has exactly one universal vertex de-
noted by u∗. Suppose that {(x, y), (a, b)} is a secure dominating set ofG◦H. Since
γs(H) > 2 and Hx

∼= Ha
∼= H, we can conclude that x and a have to be different,

otherwise {y, b} is a secure dominating set of H, which is a contradiction. We can
assume that a 6= u∗. Let a′ ∈ V (G) \N [a] and v′, v′′ ∈ V (H) be two nonadjacent
vertices. Since {(a′, v′), (a′, v′′)} ∩N(a, b) = ∅ and (a′, v′′) /∈ N(a′, v′), when the
guard stationed at (x, y) goes to manage any problem at (a′, v′) vertex (a′, v′′) is
undefended, which is a contradiction. Hence, γs(G ◦ H) ≥ 3. To conclude that
γs(G ◦H) ≤ 3 we only need to observe that since γs(H) > γr(H) = 2, graph H
has exactly one universal vertex v∗ ∈ V (H) and so for any h ∈ V (H) \ {v∗} and
any g ∈ V (G) \ {u∗} the set W ′ = {(u∗, v∗), (u∗, h), (g, v∗)} is a 2-dominating set
of G ◦ H. Hence, by Theorem 2 we have γs(G ◦ H) ≤ γ2(G ◦ H) ≤ |W ′| ≤ 3.
Therefore, (iii) follows.

By Propositions 5 and 6 (items (ii) and (iii)) we can conclude that Problem 1
is solved for any graph G with γ(G) = 1.

In order to give details for the case K1,n ◦H we need to state the following
result obtained in [25].

Proposition 7 [25]. Let H be a graph and let n ≥ 3 be an integer. Then the

following statements hold.

• If γr(H) ∈ {2, 3}, then γr(K1,n ◦H) = γr(H).

• If γr(H) ≥ 4, then 3 ≤ γr(K1,n ◦H) ≤ 4.

• If γ(H) ≥ 4, then γr(K1,n ◦H) = 4.

From Theorem 4 and Propositions 6 and 7 we derive the next result.
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Proposition 8. Let H be a graph and let n ≥ 3 be an integer. Then the following

statements hold.

• If γs(H) = 2, then γs(K1,n ◦H) = 2.

• If γs(H) > γr(H) = 2, then γs(K1,n ◦H) = 3.

• If γr(H) = 3, then γs(K1,n ◦H) = 3.

• If γr(H) ≥ 4, then 3 ≤ γs(K1,n ◦H) ≤ 4.

• If γ(H) ≥ 4, then γs(K1,n ◦H) = 4.

5. The Case G ∼= Pn

From Theorem 4 and the formula for γr(Pn◦H) obtained in [25], where γ(H) ≥ 4,
we derive the following result.

Proposition 9. Let n ≥ 2 be an integer and let H be a graph. If γ(H) ≥ 4, then

γs(Pn ◦H) = γr(Pn ◦H)
[25]
=







n, n ≡ 0 (mod 4),
n+ 2, n ≡ 2 (mod 4),
n+ 1, otherwise.

Before considering the case Pn ◦ H where γ(H) = 1, we need to fix some
notation. From now on, the vertex set of any path will be denoted by V (Pn) =
{u1, . . . , un}, where ui is adjacent to ui+1 for every i ∈ {1, . . . , n − 1}. For any
graph H and any γs(Pn ◦H)-set S we define Si = S ∩ ({ui} × V (H)) for every
i ∈ {1, . . . , n}. Furthermore, for every i ∈ {2, . . . , n−1} we define S≤j =

⋃j
i=1 Si,

while P≤j ◦H will denote the subgraph of Pn◦H induced by {u1, . . . , uj}×V (H).
Notice that P≤j ◦H ∼= Pj ◦H. Analogously, for every j ∈ {2, . . . , n−1} we define
S≥j =

⋃n
i=j Si, while P≥j ◦ H will denote the subgraph of Pn ◦ H induced by

{uj , . . . , un} × V (H). With this notation in mind we can state the following
results.

Lemma 5. Let H be a noncomplete graph with γ(H) = 1. The following asser-

tions hold for any integer n ≥ 2.

(i) For any γr(Pn ◦H)-function f and i ∈ {1, n− 1}, f({ui, ui+1}×V (H)) ≥ 2.

(ii) If γs(H) ≥ 3, then there exists a γs(Pn ◦H)-set S such that Si 6= ∅ for every

i ∈ {1, 2, n− 1, n}.

Proof. If f is a γr(Pn ◦H)-function such that f({u1, u2} × V (H)) ≤ 1, then for
any non-universal vertex v′ ∈ V (H), either (u1, v

′) is undefended or the movement
of a guard to (u1, v

′) produces undefended vertices, which is a contradiction.
Therefore, (i) follows.
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On the other hand, if γ(H) = 1 and γs(H) ≥ 3, then H has exactly one
universal vertex. Let v be the universal vertex of H and let S be a γs(Pn ◦H)-
set.

Suppose that S2 = ∅. In this case, S1 is a secure dominating set of H1
∼= H,

which implies that |S1| ≥ 3. Hence, S′ = (S \ S1) ∪ {(u1, v), (u2, v)} is a secure
dominating set of Pn ◦ H and |S′| < |S|, which is a contradiction. Therefore,
S2 6= ∅.

Suppose that S1 = ∅. In such a case, |S2| ≥ 2, otherwise the movement of
a guard to (u1, v

′) produce undefended vertices whenever v′ is a non-universal
vertex. Moreover, if S3 = ∅, then |S2| ≥ 3. Hence, if S3 6= ∅, then S′′ =
(S \ S2) ∪ {(u1, v), (u2, v)} is a secure dominating set of Pn ◦ H, and if S3 = ∅,
then S′′ = (S \S2)∪{(u1, v), (u2, v), (u3, v)} is a secure dominating set of Pn ◦H.
In both cases S′′ satisfies S′′

1 6= ∅ and S′′
2 6= ∅. Therefore, (ii) follows.

Proposition 10. Let H be a noncomplete graph with γ(H) = 1 and n ≥ 2 an

integer.

• If n ≡ 0 (mod 3), then γr(Pn ◦H) = 2
3n, while γs(Pn ◦H) = 2

3n+1 whenever

γs(H) ≥ 3 and γs(Pn ◦H) = 2
3n whenever γs(H) = 2.

• If n ≡ 1 (mod 3), then γs(Pn ◦H) = γr(Pn ◦H) = 2
3n+ 4

3 .

• If n ≡ 2 (mod 3), then γs(Pn ◦H) = γr(Pn ◦H) = 2
3n+ 2

3 .

Proof. LetH be a noncomplete graph with γ(H) = 1. By Lemma 5(i) we deduce
that γr(P2 ◦H) = 2 and γr(P4 ◦H) = 4. Moreover, since P3 ◦H is a noncomplete
graph and it has a universal vertex, γr(P3 ◦ H) = 2. From now on we assume
that n ≥ 5.

For any γr(Pn−3 ◦H)-function f(U0, U1, U2), we can define a WRDF f ′(U ′
0,

U ′
1, U

′
2) on Pn ◦H by U ′

1 = U1 and U ′
2 = U2 ∪ {(un−1, v)}, where v is a universal

vertex of H. Thus, γr(Pn ◦H) ≤ w(f ′) = 2 + w(f) = 2 + γr(Pn−3 ◦H).

We proceed to show that γr(Pn ◦H) ≥ 2 + γr(Pn−3 ◦H). To this end, let g
be a γr(Pn ◦H)-function and g1 the restriction of g to {u1, . . . , nn−3}×V (H). If
g1 is a WRDF on P≤n−3 ◦H, then Lemma 5(i) leads to

γr(Pn ◦H) = w(g) = w(g1) + g({un−2, un−1, un} × V (H)) ≥ γr(Pn−3 ◦H) + 2.

Notice that if g({un−2} × V (H)) = 0, then g1 is a WRDF on P≤n−3 ◦H, and we
are done. From now on we can assume that g({un−2} × V (H)) = ξ ≥ 1. Notice
that, by the minimality of w(g), ξ ≤ 2. Notice also that if g(un−4 × V (H)) ≥ 2,
then g1 is a WRDF on P≤n−3 ◦H, and we are done. Now, if g(un−4×V (H)) ≤ 1,
then for any v′′ ∈ V (H) such that g(un−4, v

′′) = 0, we can construct a WRDF on
P≤n−3 ◦H, say g2, defined from g1 by g2(un−4, v

′′) = ξ and g2(ui, y) = g1(ui, y)
for every (ui, y) ∈ {u1, . . . , nn−3} × V (H) \ {(un−4, v

′′)}. Thus, γr(P≤n−3 ◦H) ≤
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w(g2) = w(g1) + ξ, which implies that

γr(Pn ◦H) = w(g) = w(g1) + ξ + g({un−1, un} × V (H))

= w(g2) + g({un−1, un} × V (H)) ≥ γr(Pn−3 ◦H) + 2.

We have shown that γr(Pn ◦ H) = 2 + γr(Pn−3 ◦ H) where γr(Pi ◦ H) = i for
i ∈ {2, 4} and γr(P3 ◦H) = 2. By solving this linear recurrence equation we have
that for any n ≥ 2,

(1) γr(Pn ◦H) =
2

3
− 2

3
cos

2nπ

3
+

2

3
√
3
sin

2nπ

3
+

2n

3
.

From (1) we deduce the formulas for γr(Pn ◦ H) and also the formula for
γs(Pn ◦ H) when γs(H) = 2, as in this case Theorem 4 leads to γs(Pn ◦ H) =
γr(Pn ◦H).

We now assume that γs(H) ≥ 3. By Lemma 5(ii) we deduce that γs(Pn◦H) =
n for every n ∈ {2, 3, 4}. From now on we assume that n ≥ 5. By Lemma 5(ii),
there exists a γs(Pn−3 ◦ H)-set S such that Sn−3 6= ∅ and Sn−4 6= ∅. Let v be
the universal vertex of H. It is readily seen that S′ = S ∪{(un−1, v), (un, v)} is a
secure dominating set of Pn ◦H, and so γs(Pn ◦H) ≤ 2+ |S| = 2+ γs(Pn−3 ◦H).

We proceed to show that γs(Pn ◦H) ≥ 2 + γs(Pn−3 ◦H). To this end, let X
be a γs(Pn ◦H)-set such that Xn−1 6= ∅ and Xn 6= ∅. If Xn−2 = ∅, then X≤n−3

is a secure dominating set of P≤n−3 ◦H, which implies that

γs(Pn ◦H) = |X| = |X≤n−3|+ 2 ≥ γs(P≤n−3 ◦H) + 2 = γs(Pn−3 ◦H) + 2.

Assume that Xn−2 6= ∅. Suppose that |X≤n−3| ≤ γs(P≤n−3 ◦H) − 2. In such a
case, there exists l = max{i ≤ n − 3 : Xi = ∅}. Since Xl = ∅, we conclude that
X≤l−1 has to be a secure dominating set of P≤l−1◦H, and so Y = X≤n−3∪{(ul, v)}
is a secure dominating set of P≤n−3 ◦H whose cardinality is |Y | = |X≤n−3|+1 ≤
γs(P≤n−3 ◦H)− 1, which is a contradiction. Thus, |X≤n−3| ≥ γs(P≤n−3 ◦H)− 1,
and so

γs(Pn ◦H) = |X| ≥ |X≤n−3|+ 3 ≥ γs(P≤n−3 ◦H) + 2 = γs(Pn−3 ◦H) + 2.

We have shown that γs(Pn ◦ H) = 2 + γs(Pn−3 ◦ H), where γs(Pi ◦ H) = i
for i ∈ {2, 3, 4}. By solving this linear recurrence equation we have that for any
n ≥ 2,

(2) γs(Pn ◦H) = 1 +
2

3
√
3
sin

2nπ

3
+

2n

3
.

From (2) we complete the proof.
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Theorem 6 [25]. For any tree T and any noncomplete graph H,

γr(T ◦H) ≥ 2γ(T ).

Proposition 11. If H is a graph with γs(H) = γ(H) = 2, then for any integer

n ≥ 2,

γs(Pn ◦H) = γr(Pn ◦H) = 2

⌊

n+ 2

3

⌋

.

Proof. By Theorem 4, if γs(H) = γ(H) = 2, then γs(Pn ◦ H) = γr(Pn ◦ H).
Thus, by Theorem 6, γs(Pn ◦ H) = γr(Pn ◦ H) ≥ 2γ(Pn) = 2

⌊

n+2
3

⌋

. Now, by
Theorem 8 we conclude that γs(Pn ◦H) = γr(Pn ◦H) ≤ 2γ(Pn) = 2

⌊

n+2
3

⌋

.

We would emphasize that the problem of computing γs(Pn◦H) when γs(H) ≥
3 and γ(H) ∈ {2, 3} remains open.

6. The Case H ∼= Cn

As shown in [25], if γ(H) ≥ 4, then γr(Cn ◦H) = n, so that Theorem 4 leads to
the following result.

Proposition 12. Let n ≥ 3 be an integer and let H be a graph. If γ(H) ≥ 4,
then

γs(Cn ◦H) = γr(Cn ◦H)
[25]
= n.

We now consider the case of noncomplete graphs with γ(H) = 1.

Proposition 13. If H is a noncomplete graph with γ(H) = 1, then for any

integer n ≥ 3,

γs(Cn ◦H) = γr(Cn ◦H) =

⌈

2n

3

⌉

.

Proof. Let f be a γr(Cn ◦ H)-function and V (Cn) = {u1, . . . , un} where ui is
adjacent to ui+1 for every i (the subscripts are taken modulo n). If there exists
ui ∈ V (Cn) such that

∑i+1
j=i−1 f({uj} × V (H)) = 1, then for any non-universal

vertex v′ ∈ V (H), the movement of the corresponding guard to (ui, v
′) produces

undefended vertices. Thus,
∑i+1

j=i−1 f({uj} × V (H)) ≥ 2 for every i ∈ {1, . . . , n},
which implies that

3γr(Cn ◦H) = 3w(f) =
n
∑

i=1

i+1
∑

j=i−1

f({uj} × V (H)) ≥ 2n.

Hence, γr(Cn ◦H) ≥
⌈

2n
3

⌉

.
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We now proceed to construct a secure dominating set of Cn ◦ H of cardi-
nality

⌈

2n
3

⌉

. Let v ∈ V (H) be a universal vertex of H. For n ≡ 0 (mod 3)
we set X = {u1, u2, u4, u5, . . . , un−2, un−1} × {v}, for n ≡ 1 (mod 3) we set
X = {u1, u2, u4, u5, . . . , un−3, un−2, un} × {v}, and for n ≡ 2 (mod 3) we set
X = {u1, u2, u4, u5, . . . , un−1, un}× {v}. Since in every case X is a 2-dominating
set of Cn ◦H, by Theorem 2 we have γs(Cn ◦H) ≤ γ2(Cn ◦H) ≤ |X| =

⌈

2n
3

⌉

, as
required.

Proposition 14. If H is a graph with γs(H) = γ(H) = 2, then for any integer

n ≥ 3,

γs(Cn ◦H) = γr(Cn ◦H) = 2

⌊

n+ 2

3

⌋

.

Proof. By Theorem 4, if γs(H) = 2, then γs(Cn◦H) = γr(Cn◦H). On the other
hand, by Remark 4 and Proposition 11 we have that γs(Cn ◦H) ≤ γs(Pn ◦H) =
2
⌊

n+2
3

⌋

.
We proceed to show that γs(Cn ◦ H) ≥ 2

⌊

n+2
3

⌋

. To this end, let W be
a γs(Cn ◦ H)-set and V (Cn) = {u1, . . . , un} where ui is adjacent to ui+1 for
every i (the subscripts are taken modulo n). As in our previous results, let
Wi = W ∩ ({ui} × V (H)). Since γs(H) = 2, we deduce that

(3)
i+1
∑

j=i−1

|Wj | ≥ 2 for every i ∈ {1, . . . , n}.

Hence,

3γs(Cn ◦H) = 3|W | =
n
∑

i=1

i+1
∑

j=i−1

|Wj | ≥ 2n,

which implies that γs(Cn◦H) ≥
⌈

2n
3

⌉

. Now, if n ≡ 0, 2 (mod 3), then we are done,
as in these cases 2

⌊

n+2
3

⌋

=
⌈

2n
3

⌉

. From now on, suppose that n ≡ 1 (mod 3). By
the minimality of |W | we deduce that |Wi| ≤ 2, for every ui ∈ V (Cn). Notice that,
by (3), if there exists ui ∈ V (Cn) such that

∑i+1
j=i−1 |Wj | ≥ 4, or ui, ul ∈ V (Cn)

such that
∑i+1

j=i−1 |Wj | =
∑l+1

j=l−1 |Wj | = 3, then

(4) 3γr(Cn ◦H) = 3|W | =
n
∑

i=1

i+1
∑

j=i−1

|Wj | ≥ 2n+ 2.

In such a case, γr(Cn ◦H) ≥
⌈

2n+2
3

⌉

= 2
⌊

n+2
3

⌋

, as n ≡ 1 (mod 3).
To conclude the proof, we differentiate the following three cases. Symmetric

cases or cases where it is obvious that (4) holds are omitted.

Case 1. There exists ui ∈ V (Cn) such that |Wi−1| ≤ 1, |Wi| = 0 and
|Wi+1| ≤ 1. By (3), the case |Wi−1| = 0 and |Wi+1| = 1 is not possible. Hence,
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we can assume that |Wi−1| = 1 and |Wi+1| = 1. Again by (3), we deduce that
|Wi−2| ≥ 1 and |Wi+2| ≥ 1. If |Wi−2| ≥ 2 or |Wi+2| ≥ 2, then (4) holds and we
are done. Suppose that |Wi−2| = 1 and |Wi+2| = 1. If |Wi−3| = 0 and |Wi+3| = 0,
then the movement of a guard from Hi+1 (or Hi−1) to Hi produces undefended
vertices, which is a contradiction. Hence, without loss of generality, we assume
that |Wi+3| ≥ 1. Now, if |Wi+3| = 1 and |Wi+4| = 0, then the movement of
a guard from Hi+2 to Hi+3 produces undefended vertices in Hi+1, which is a
contradiction. Thus, |Wi+3| ≥ 2 or |Wi+4| ≥ 1 and, in both cases we deduce that
(4) holds and so γr(Cn ◦H) ≥

⌈

2n+2
3

⌉

= 2
⌊

n+2
3

⌋

.

Case 2. There exists ui ∈ V (Cn) such that |Wi−1| = 1, |Wi| = 0 and
|Wi+1| = 2. By (3), |Wi−2| ≥ 1. Now, if |Wi−2| = 2, then (4) holds and we are
done. Suppose that |Wi−2| = 1. If |Wi−3| ≥ 1 or |Wi−4| ≥ 2, then (4) holds and
we are done. Finally, if |Wi−3| = 0 and |Wi−4| = 1, then we apply Case 1 to
|Wi−4| = 1, |Wi−3| = 0 and |Wi−2| = 1, and we are done.

Case 3. |Wi| ∈ {0, 2} for every ui ∈ V (Cn). In this case, D = {ui : |Wi| 6= 0}
has to be a dominating set of Cn, and so

γs(Cn ◦H) = |W | =
n
∑

i=1

|Wi| = 2|D| ≥ 2γ(Cn) = 2

⌊

n+ 2

3

⌋

.

According to the three cases above, the proof is complete.

We would emphasize that the problem of computing γs(Cn◦H) when γs(H) ≥
3 and γ(H) ∈ {2, 3} remains open.

7. General Bounds

To continue our analysis we would point out the following two results, which are
direct consequence of Proposition 4(ii).

Remark 15. Let G be a connected graph of order n and let H be a nonempty
graph. For any spanning subgraph G1 of G,

γs(Kn ◦H) ≤ γs(G ◦H) ≤ γs(G1 ◦H).

In particular, if G is a Hamiltonian graph, then

γs(G ◦H) ≤ γs(Cn ◦H).

Remark 16. Let G be a graph and let H be a graph of order n′ ≥ 2. For any
spanning subgraph H1 of H,

γs(G ◦Kn′) ≤ γs(G ◦H) ≤ γs(G ◦H1).
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In particular, if H is a Hamiltonian graph, then

γs(G ◦H) ≤ γs(G ◦ Cn′).

A total dominating set of a graph G with no isolated vertex is a set S ⊆ V (G)
such that every vertex of G is adjacent to at least one vertex in S. The total

domination number of G, denoted by γt(G), is the cardinality of a smallest total
dominating set, and we refer to such a set as a γt(G)-set. Notice that for any
graph G with no isolated vertex,

(5) γr(G) ≤ 2γ(G) ≤ 2γt(G).

The reader is referred to the book [17] for details on total domination in graphs.
This book provides and explores the fundamentals of total domination in graphs.

As shown in [25] if G is a graph with no isolated vertex, then for any graph
H we have γr(G ◦H) ≤ 2γt(G). Thus, by Theorem 4 we have that if γ(H) ≥ 2,
then γs(G ◦ H) = γr(G ◦ H) ≤ 2γt(G). Our next result shows that this bound
holds for every graph without isolated vertices.

Theorem 7. If G is a graph with no isolated vertex, then for any nontrivial

graph H,

γs(G ◦H) ≤ 2γt(G).

Proof. Let G be a graph with no isolated vertex and H a nontrivial graph.
Let S be a γt(G)-set and let h′, h′′ ∈ V (H) be two different vertices of H. We
claim that W = S × {h′, h′′} is a 2-dominating set of G ◦ H. Let (g, h) ∈
W . Since S is a total dominating set of G, there exists g′ ∈ S ∩ N(g). Thus,
{(g′, h′), (g′, h′′)} ⊆ W ∩ N(g, h), which implies that W is a 2-dominating set
of G ◦ H. Hence, γ2(G ◦ H) ≤ |W | = 2γt(G). Finally, by Theorem 2 we have
γs(G ◦H) ≤ γ2(G ◦H) ≤ 2γt(G)

As shown in [25], there are several families of graphs with γr(G◦H) = 2γt(G),
which implies that the bound above is tight.

We have learned from [7] that γt(G) ≤ 2
3n for any connected graph of order

n ≥ 3. Hence, Theorem 7 leads to the following result.

Corollary 17. For any connected graph G of order n ≥ 3 and any nontrivial

graph H,

γs(G ◦H) ≤ 2

⌊

2n

3

⌋

.

To see that the bound above is tight we can take the family Tn of trees defined
in [25] where γr(Tn ◦H) = 2

⌊

2n
3

⌋

for any graph H with γ(H) > 4.
As stated by Goddard and Henning [12], if G is a planar graph with diameter

two, then γt(G) ≤ 3. Hence, as an immediate consequence of Theorem 7, we have
the following result.
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Figure 2. A planar graph of diameter two.

Corollary 18. If G is a planar graph of diameter two, then for any nonempty

graph H,

γs(G ◦H) ≤ 6.

The bound above is achieved, for instance, for the planar graph G shown in
Figure 2 and any graph H with γ(H) ≥ 4. An optimum placement of guards in
G ◦H can be done by assigning two guards to the copies of H corresponding to
the gray-coloured vertices of G.

Theorem 8. For any graph without isolated vertices G and any noncomplete

graph H,

γs(G ◦H) ≤ γ(G)min{4, γs(H)}.

Proof. We first show that γs(G ◦ H) ≤ 4γ(G). It is well known that for every
graph G with no isolated vertex, γt(G) ≤ 2γ(G) (see, for instance, [2]). Hence,
by Theorem 7 we have γs(G ◦H) ≤ 4γ(G), as required.

We now show that γs(G ◦H) ≤ γ(G)γs(H). Let S1 be a γ(G)-set and S2 a
γs(H)-set. Notice that γs(H) ≥ 2, as H is not complete. It is readily seen that
W = S1 × S2 is a dominating set of G ◦H. To see that it is a secure dominating
set we only need to observe that for any u ∈ V (G) the restriction Wu of W to Hu

is a secure domination set and, since |Wu| ≥ 2, the movement of a guard from Hu

to Hu′ , where u ∈ S1 and u′ ∈ S1 ∩N(u), does not produce undefended vertices.
Hence, γs(G ◦H) ≤ |W | = γ(G)γs(H). Therefore, the result follows.

Theorem 9. For any graph G of minimum degree greater than or equal to two

and any graph H,

γs(G ◦H) ≤ γ2,t(G).

Proof. As shown in [25], γ2,t(G ◦H) ≤ γ2,t(G). Therefore, from Theorem 3 we
deduce the result γs(G ◦H) ≤ γ2,t(G ◦H) ≤ γ2,t(G).

In order to show an example of graphs where γs(G◦H) = γ2,t(G), we consider
the family G defined in [25] as follows. A graph Gk,l = (V,E) belongs to G if
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and only if there exit two positive integers k, l such that V = {x1, x2, x3, y1,
y2, . . . , yk, z1, z2, . . . , zl} and E = {x1yi : 1 ≤ i ≤ k}∪{x1zi : 1 ≤ i ≤ l}∪{x2yi :
1 ≤ i ≤ k} ∪ {x3zi : 1 ≤ i ≤ l} ∪ {x2x3}. Figure 3 shows the graph G4,4.

x1

x3x2

Figure 3. The set of gray-coloured vertices is a double total dominating set of G4,4.

It is not difficult to check that for any graph Gk,l ∈ G and any graph H with
γ(H) ≥ 3 we have γr(Gk,l ◦H) = γs(Gk,l ◦H) = γ2,t(Gk,l ◦H) = 5 = γ2,t(Gk,l).

Corollary 19. For any graph H and any graph G of order n and minimum

degree greater than or equal to two,

γs(G ◦H) ≤ n.

By Proposition 12, the bound above is tight.
A set X ⊆ V (G) is called a 2-packing if N [u] ∩ N [v] = ∅ for every pair of

different vertices u, v ∈ X. The 2-packing number ρ(G) is the cardinality of any
largest 2-packing of G. A 2-packing of cardinality ρ(G) is called a ρ(G)-set.

Theorem 10 [25]. For any graph G without isolated vertices and any noncom-

plete graph H,

γr(G ◦H) ≥ max{γr(G), γt(G), 2ρ(G)}.
Theorem 10 suggests to ask if γs(G ◦H) ≥ γs(G) for any graph G and any

noncomplete graph H. In general, this inequality does not hold. For instance, if
we take any graph G with γs(G) > 2γt(G), then Theorem 7 leads to γs(G ◦H) ≤
2γt(G) < γs(G).

From Proposition 1(ii) and Theorems 9 and 10 we deduce the following result.

Theorem 11. If γ2,t(G) = max{γr(G), 2ρ(G)}, then

γs(G ◦H) = γr(G ◦H)
[25]
= 2γ2,t(G).

From Proposition 1(ii) and Theorems 7 and 10 we deduce the following result.

Theorem 12. Let G be a graph without isolated vertices and let H be a noncom-

plete graph. If γt(G) = max{1
2γr(G), ρ(G)}, then

γs(G ◦H) = γr(G ◦H)
[25]
= 2γt(G).
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Theorem 13. If G is a graph without isolated vertices, then for any graph H
with γ(H) = 1,

γs(G ◦H) ≤ 3γ(G).

Proof. Let S ⊆ V (G) be a γ(G)-set and let v1, v2 ∈ V (H), where v1 is a universal
vertex. Let S′ ⊆ V (G) such that |S′[≤ |S| and for each u ∈ S there exists
u′ ∈ N(u) ∩ S′. Notice that W = (S × {v1, v2}) ∪ (S′ × {v1}) is a 2-dominating
set and |W | ≤ 3γ(G). Hence, by Theorem 2 we have γs(G ◦H) ≤ γ2(G ◦H) ≤
|W | ≤ 3γ(G). Therefore, the result follows.

As we have shown in Proposition 8, if γs(H) > γr(H) = 2, then γs(K1,n◦H) =
3 = 3γ(K1,n). Hence, the bound above is tight. In addition, in Figure 4 we show
a graph G such that γs(G ◦K1,l) = 3γ(G) for every l ≥ 3.

Figure 4. It is not difficult to check that if G is the graph above, then γr(G ◦H) = 4 <
6 = γs(G ◦K1,l) for any l ≥ 3.
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[13] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs (CRC Press,
2011).
https://doi.org/10.1201/b10959

[14] T. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs: Volume 2: Ad-
vanced Topics (CRC Press, New York, 1998).

[15] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in
Graphs (CRC Press, New York, 1998).

[16] M.A. Henning and S.T. Hedetniemi, Defending the Roman Empire—A new strategy ,
Discrete Math. 266 (2003) 239–251.
https://doi.org/10.1016/S0012-365X(02)00811-7

[17] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer, New York, 2013).
https://doi.org/10.1007/978-1-4614-6525-6
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[21] R.J. Nowakowski and D.F. Rall, Associative graph products and their independence,

domination and coloring numbers , Discuss. Math. Graph Theory 16 (1996) 53–79.
https://doi.org/10.7151/dmgt.1023

[22] I. Stewart, Defend the Roman Empire! , Sci. Amer. 281 (1999) 136–138.
https://doi.org/10.1038/scientificamerican1299-136

[23] T.K. Šumenjak, P. Pavlič and A. Tepeh, On the Roman domination in the lexico-

graphic product of graphs , Discrete Appl. Math. 160 (2012) 2030–2036.
https://doi.org/10.1016/j.dam.2012.04.008
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