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Abstract

Let F, G and H be graphs. A (G, H)-decomposition of F is a partition
of the edge set of F' into copies of G and copies of H with at least one copy
of G and at least one copy of H. For R C F, a (G, H)-covering of F with
padding R is a (G, H)-decomposition of F' + E(R). A (G, H)-covering of
F with the smallest cardinality is a minimum (G, H)-covering. This paper
gives the solution of finding the minimum (CYy, Si)-covering of the crown
Cn,n—l-

Keywords: cycle, star, covering, decomposition, crown.
2010 Mathematics Subject Classification: 05C51, 05C70.

1. INTRODUCTION

Let F, G and H be graphs. A G-decomposition of F' is a partition of the edge
set of I’ into copies of GG. If F' has a G-decomposition, we say that F' is G-
decomposable. A (G, H)-decomposition of F is a partition of the edge set of F’
into copies of G and copies of H with at least one copy of GG and at least one copy
of H. If F has a (G, H)-decomposition, we say that F' is (G, H)-decomposable.
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A (G, H)-decomposition of F' may not exist, a natural question of interest is to
see: What is the minimum number of edges needed to be added to the edge
set of F' so that the resulting graph is (G, H)-decomposable, and what does the
collection of added edges look like? For R C F, a (G, H)-covering of F with
padding R is a (G, H)-decomposition of F'+ E(R). A (G, H)-covering of F' with
the smallest cardinality is a minimum (G, H)-covering. Moreover, the cardinality
of the minimum (G, H)-covering of F' is called the (G, H)-covering number of F,
denoted by ¢(F; G, H).

As usual K,, denotes the complete graph with n vertices and K, , denotes
the complete bipartite graph with parts of sizes m and n. A k-star, denoted by Sk,
is the complete bipartite graph K . The vertex of degree k in S}, is the center of
Sk and any vertex of degree 1 is an end-vertex of Si. Let (y1, 2, ..., yk) denote
the k-star with center x and end-vertices y1,y2,...,yk. A k-cycle (respectively,
k-path), denoted by Cy (respectively, Py), is a cycle (respectively, path) with k
edges. Let (v1,v2,...,vx) and vivg - -- vy denote the k-cycle and (kK — 1)-path
through vertices vy, ..., v, in order, respectively. A spanning subgraph H of a
graph G is a subgraph of G with V(H) = V(G). A 1-factor of G is a spanning
subgraph of G with each vertex incident with exactly one edge. For positive
integers ¢ and n with 1 < ¢ < n, the crown C,, is a bipartite graph with
bipartition (A, B) where A = {ag,a1,...,an,—1} and B = {bg,b1,...,b,—1}, and
edge set {a;b; : 1 =0,1,...,n—1, j=i+1,i+2,...,i4+ ¢ (mod n)}. In the
sequel of the paper, (A, B) always means the bipartition of C, ¢ defined here.
Note that (), ,,—1 is the graph obtained from the complete bipartite graph K, ;
with a 1-factor removed.

The existence problems for (Cy, Si)-decomposition of K, ,, and Cy, ,,—; have
been completely settled by Lee [1] and Lee and Lin [4], respectively. Lee [2] ob-
tained the maximum packing and minimum covering of the balanced complete
bipartite multigraph AK, , with (C, Sk). Lee and Chen [3] gave the maximum
packing and minimum covering of AK,, with (P, Sk). This paper gives the solu-
tion of finding the minimum (CY, Si)-covering of the crown C), ;1.

2. PRELIMINARIES

Let G = (V,E) be a graph. For sets A C V(G) and B C E(G), we use G[A]
to denote the subgraph of G induced by A and G — B (respectively, G + B) to
denote the subgraph obtained from G by deleting (respectively, adding) the edges
in B. When Gy, ..., G; are graphs, not necessarily disjoint, we write G1U- - - UG}
or [J'_, G; for the graph with vertex set |J'_, V(G;) and edge set |J!_, B(G;).
When the edge sets are disjoint, G = Ule G; expresses the decomposition of G
into G1,...,G;. For a graph G and a positive integer A > 2, we use A\G to denote
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the multigraph obtained from G by replacing each edge e by A edges, each of
which has the same ends as e.
The following results are essential to our proof.

Lemma 1 [7]. For integers m and n with m > n > 1, the graph Ky, is Sk-
decomposable if and only if m > k and

m=0 (modk) ifn<k,
mn=0 (mod k) ifn>k.

Lemma 2 [5]. A\C, is Si-decomposable if and only if k < ¢ and Anl = 0
(mod k).

Lemma 3 [5]. Let {ao,...,an—1,bo,...,bp—1} be the vertex set of the multicrown
ACy 0. Suppose that p and q are positive integers such that q <p < £. If A\ng =0
(mod p), then there exists a spanning subgraph G of AC,, ¢ such that degg bj = g
for0 < j <n—1 and G has an Sy-decomposition.

Lemma 4 [6]. For positive integers k and n, Cy, n—1 is Ci-decomposable if and
only if n is odd, k is even, 4 <k <2n, and n(n —1) =0 (mod k).

3. COVERING NUMBERS

In this section the covering number of C, ,—1 with k-cycles and k-stars is deter-
mined.

Lemma 5 [4]. If k is an even integer with k > 4, then Ciy1 i is not (Cy, S)-
decomposable.

Lemma 6. Ifk is an even integer with k > 4, then Cy41 i has a (Cy, Sk)-covering
with padding Sk.

Proof. By Lemma 4, we have that Cj4q 1 is Cp-decomposable. Define a k-star
R = (b1,ba,...,by)ay. Clearly, Cpi1 1 + E(R) is a (Cj, Sk)-covering with pad-
ding R. ]

We obtain the following result by Lemmas 5 and 6.
Corollary 7. ¢(Cyy1k;Ck, Sk) =k + 2.

Lemma 8 [4]. If k is an even integer with k > 4, then Cagox—1 is (C, Sk)-
decomposable.

Lemma 9. For integers v and k with r > 3 and k > r(r + 1), Cryri1 k4r can be
decomposed into one copy of r(r + 1)-cycle and k + 2r + 1 copies of k-stars.
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Proof. Let s =r(r+1)/2. Trivially, k +7+1 > s. Let Ag = {ag,a1,...,as-1},
By = {bo, b1,...,bs_1}, Hy = Cpn_1[Ao U Bo], H = Cpn_1[(A\ Ag) U By, and
Hy = Cn,n—l[A U (B \ Bo)] Clearly, Ck+r+1,k+r = Hy U Hy U Hy. Note that Hy
is isomorphic to C; s_1, Hj is isomorphic to Kj,41—ss, and Hs is isomorphic to
Ck+r+1fs,k+rfs U Ks,k+r+1fs- Let

C = (b1,a0,b2,a1,b3,a2,...,bs_1,a5-2,bp, a5_1)

and H = Hy — E(C). Trivially, C' is an r(r + 1)-cycle in Hy and H = C, 4_3.
Note that r—2 < s—r—1forr >3 and s(r—2) =rs—r(r+1) =r(s—r—1). By
Lemma 3, there exists a spanning subgraph X of H such that degy b; = r —2 for
0 <j<s—1land X hasan Ss_,_j-decomposition 5 with |#| = r. Furthermore,
each Ss_,_1 has its center in Ay since degy b; = 7 —2 < s —r — 1. Suppose
that the centers of the (s — r — 1)-stars in J# are a;,,...,a;.. Let S(u) be the
(s —r — 1)-star with center a;, in ¢, and let Y = H — E(X)U H;. Note that
degy b = (s—=3—-(r—2))+(k+r+1—-5)=kfor0<j<s—1. Hence
Y has an Si-decomposition #(1) with ‘%(1)‘ = s. For u € {1,...,r}, define
S'(u) = Ha[{a;,} U(B\ By)] and Z = Hy — E(U,_; S'(u)). Clearly, S’(u) is a
(k4174 1— s)-star with center a;, in Hy, and S(u)US’(u) is a k-star. There are
r copies of such k-stars. Moreover, deg,b; =k +7r—r =k for s <j <k +r,
and it follows that Z has an Si-decomposition #(?) with ‘%(2)‘ =k+r—s+1.
Thus there are s+7r+k+7r—s+1= k4 2r+1 copies of k-stars. This completes
the proof. [

Lemma 10. Let k be a positive even integer and let n be a positive integer with
4<k<n—-1<2k—1 If(n—k)(n—k—1) <k, then Cpn_1 has a (Ck, Sk)-
covering with padding Py_(n_k)(n—k—1)-

Proof. Let n — 1 = k + r. From the assumption k < n —1 < 2k — 1, we have
0 < r <k —1. The proof is divided into two parts according to the value of r.

Case 1. r < 2. Let A = {ao,a1,...,a5-1}, A} = {ar+1, apt2, ..., akir },
Bé = {bo,b1,...,bp_1}, Bi = {bks1,bk12,- -, bpsr}. Let Dy = Cn,nfl[(Ab U
{ak}) U (36 U {bk})], Dy = Cn,n—l[A6 U Bﬂ, Dy = Cn,n—l[A/l U Bé] and D3 =
Crn—1[(4] U{ar}) U (B U{by})]. Clearly, Cy 1 = Do U D; U Dy U D3. Note
that Dy is isomorphic to Cyy1, D1 is isomorphic to Ky, Ds is isomorphic to
K, and D3 is isomorphic to C;y1,. By Lemma 2, we have that Dy has a k-
star decomposition (bjy1,0j42,...,bj1k)e; for 0 < j < k, where the subscripts
of b’s are taken modulo k + 1 in the set of numbers {0,1,...,k}. By Lemma 1,
we obtain that D; and Dy have k-star decompositions (ag,ay,. .. ,ak_1>bj and
(bo,b1,...,bg—1)q, for k+1 <1i,j < k4 r, respectively.

Subcase 1.1. r = 1. Define a (k — 2)-path R; as follows.

R1 — ak+1b1a0b2a1b3a2 cee a§_3b§_1ak,
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where the subscripts of a’s and b’s are taken modulo n. Then

<b0, bi,..., bk71>ak U <b0, bi,... ;bk71>ak+1 UD3UR;

= (bo, b1, bp—1)a;, U (b0, b1, -, 0k—1)ayy U {arbryt, apy1br} U Ry

= (bo, b1, -+ br—2,bk11)a, U (bo, b1, b2, ..., be—2,b)ay,y Uarbp_1ax41 U Ry.
Note that apby_1ar4+1 U Ry is a k-cycle. Hence Cj42 k+1 + E(R1) can be decom-

posed into k + 3 copies of k-stars and one copy of k-cycle, that is, Cy40 41 has
a (Cf, Si)-covering ¢ with |¢1| = k + 4 and padding R;.

Subcase 1.2. r = 2. Define a (k — 6)-path Ry as follows.
Ry = bragbsay -+ -br _qar _,bgi1,
2 2
where the subscripts of a’s and b’s are taken modulo n. Then

<b0, by, ... ,bk_1>ak,+2 U D3 U Ry

=(bo, b1, -, bk—1)ap s U {@kbr+1, kbRy2, Ap 10k, gy 10kt 2, gy 2Dy, apy2bpi1 JURY
=(bo, b2, b3, -, Ok—1, bpy1)ayys U Dk 10rbr 20k 1bpag 1201 U R,

Note that by1arbr+2ak4+1brar+2b1 URy is a k-cycle. Hence Cii3 42+ E(R2) can

decomposed into k 45 copies of k-stars and one copy of k-cycle, that is, Ciy3 42
has a (Cy, Si)-covering ¢» with |¢2| = k + 6 and padding Rs.

Case2. r > 3. Let s =r(r+1)/2 and Hy, H; and Hy be the graphs defined
in the proof of Lemma 9. Define a (k — 2s)-path Rj3 as follows.

R3 = as_1bsy1asbsya--- a%_ngak—H‘v

where the subscripts of a’s and b’s are taken modulo n.
Let S be the k-star with center b; and C' be the 2s-cycle mentioned in
Lemma 9. Then

SUCUR3

= (8 = apyrb1 + as—1b1) U apyrbragboaibsas - - - bs_1as—2bpas—1 U R3.

Note that ap4,.biagbaaibzas - - - bs_1as_2bpas—1UR3 is a k-cycle. Hence Ci i1 ptr
+ E(R3) can be decomposed into k + 2r + 1 copies of k-stars and one copy of
k-cycle, that is, Cyyr41 k4r has a (C, Si)-covering €3 with |¢3| = k+2r+2 and
padding Rj3. This settles Case 2. [

Before plunging into the proof of the case of (n — k)(n —k —1) > k, a result
due to Lee and Lin [4] is needed.
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Lemma 11 [4]. If k is an even integer with k > 4, then there exist k/2 — 1
edge-disjoint k-cycles in Cy o o1 U Ky ja g2

Lemma 12. Let k be a positive even integer and let n be a positive integer with
4<k<n—-1<2k—-1. If(n—k)(n—k—1) >k, then Cy, pn—1 has a (Ck, Sg)-
covering € with |¢| = [n(n —1)/k].

Proof. Let n — 1 = k + r. From the assumption £ < n —1 < 2k — 1, we
have 0 < r < k —1. Since (n — k)(n — k — 1) > k, we assume that r(r +

1) = ak+ (8, where « > 1 and 0 < 3 < k — 1. Let A = {ao,al,...,aﬁ_l},
2

Ay = {ak @x oy | Af = AN (AGUAY), B = {bo,bi,....bx 1}, BY =
B\ B{. Let G; = Cpn—1]A7 U B{] for i € {0,1,2} and G3 = C,, ,,—1[A U BY].
Clearly, Cnn-1 = GoUG1 UGy UG3. Note that Gy and G are isomorphic
to Crjak/2—1 U Kija k2, Gz is isomorphic to K11k, which is Si-decomposable
by Lemma 1, and G3 is isomorphic to Kj,+1 U Cry1,. Let po = [o/2] and

= |a/2]. In the following, we will show that, for each i € {0,1}, G; can
be decomposed into p; copies of C, and k/2 copies of S,_gp,—1, and G5 can be
decomposed into k/2 copies of Sgp,+1 and r + 1 copies of Sy, k' < k, such that
the (k — 2p; — 1)-stars and (2p; + 1)-stars have their centers in A

We first show the required decomposition of G; for i € {0,1}. Since r <

k-1, Wehaver—l—l < k, and in turn o < r. Thus, pp = [2] < ¢ <

(r= 1)+1 < #2 = % _ 1 which implies p; < k/2 — 1 for i € {0,1}. This assures

us that there exmt p; edge-disjoint k-cycles in G; by Lemma 11. Suppose that
Qi0;---,Qip,—1 are edge-disjoint k-cycles in G;. Let F; = G; — E ( pz_l QZ h)

and X;; = Fj [{aj/21;} UB{] where i € {0,1}, j € {0,...,k/2 — 1}. Since
degg, ai /245 = k — 1 and each Q;j, uses two edges incident with a9, ; for each
i and j, we have degp, a;,/2+; = k — 2p; — 1. Hence X;; is a (k — 2p; — 1)-star
with center a /o4 ;-

Next we show the required star decomposition of Gi3. For j € {0,...,k/2—1},
let

(bt (2po+1)5> Okt (2po-+1)j4+15 - - - 7bk+(2p0+1)j+2p0>aj , if i =0,
Xi; =19 Coots/2k+p+1): dpots/2ht@m 1541, -
 Dpo+3/2)k+ 21414201 )y 5, 0 if i =1,

Where the subscripts of b’s are taken modulo r + 1 in the set of numbers {k, k +
k+r} Since 2p1 +1 < 2pg+1 < a+2 < r+ 1, this assures us that
there are enough edges for the construction of Xj ; and X7 ;. Note that Xj ; is a
(2pi + 1)-star and X;; U X] ; is a k-star for i € {0,1}, j € {0,...,k/2 - 1}
On the other hand, let k: B=71(r+1)+p where 7 >0 and 0<p<r. We
have that
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|E(G3)| — ‘E< ie{0,1} Uje{o,-.-,k/2—1}X1{J)’
=(k+7r)(r+1)—(2po + 2p1 + 2)(k/2)
=(k+r)(r+1)—(a+1)k
=(k+r)(r+1)—r(r+1)—(k—p)
=k(r+1)—7(r+1) —p=(k—7)(r+1) -
=(k—7—1)p+(k—7)(r+1-p).

Hence there exists a decomposition ¥ of G — E (Uie{o,l} Ujego,..k/2-13 X;j)
into p copies of (k — 7 — 1)-star with center b,, for w =k, k+1,...,k+p—1 and
r + 1 — p copies of (k — 7)-star with center b, for w =k+p,k+p+1,...,k+r,
that is,
v Sp—r—1, fweflkk+1,....k+p—1},
R I ifwe{k+pk+p+1,....k+1}

Define a star Y, as follows.

v (A s Qs - - s Gy s Gy g Vb, fw E{k,k+1,... k+p—1},
v (Quwy s Qugs -+ - 5 Qo Vb » ifwel{k+pk+p+1,....;k+r},

where by,a,, € E(Xz’j) for 1 <t <7+1. Since ’E <Ui€{0,1} Uje{o,...,k/2—1} X{j>‘

= (a+1)k, |B| = r+1land (7+1)(r+1) = 7(r+1)+(r+1) = (k—p—p)+(r+1) <
2k < (a+1)k, it follows that 7+ 1 < (aw+1)k/(r+1). This assures us that there
are enough edges for the construction of Y. Note that Y, + E(Y,,) is a k-star.
Hence C,, ,—1 has a (Cy, S)-covering ¢4 with padding Uwe{k,k+1,...,k+r} Y, and
|Ca| =(k+r+1)+(r+1)+a=k+2r+2+a=|n(n—1)/k]. This completes
the proof. [

Now, we are ready for the main result of this section.

Theorem 13. Let k be a positive even integer and let n be a positive integer with
4<k<n-—1. Then

[n(n—1)/k], if k<n-—1,

C(C”’"‘“C’“’S’“):{ k42 if k=n—1

Proof. Since |E(Cypp—1)| = n(n — 1), we have that ¢(Cy, p—1;Ck, Si) > [n(n —
1)/k|. Let n — 1 = gk + r, where ¢ and r are integers with ¢ > 1, 0 <r < k — 1.
We consider the following two cases.

Case 1. ¢ = 1. For r = 0, the result follows from Corollary 7. If r £ 0, by
Lemmas 8, 10 and 12, Cy4r41 k+r has a (Cy, Si)-covering ¢ with |€| = [(k+r +

)k +7)/k].



88 J.J. LIN AND M.J. Jou

Case 2. ¢ > 2. Note that

Cn,nfl = qu+r+1,qk+7"
= Clg=1)k+1,(-1)k Y Ckrt1pr U K1)k htr U K, (g—-1)k-

Trivially, ’E(C(q—l)k—i—l,(q—l)k)’v ’E(K(q—l)k,k—i-r)’ and |E(Kk+r,(q—1)k)| are mul-
tiples of k, by Lemmas 1 and 2, we have that Cy_1)ri1,(g—1)ks K(g—1)kktr
and Kj, (q—1)r have Si-decompositions V) 7@ and #®) with ‘42%(1)‘ =
(¢g—1)((¢g—1)k+1), ’42%(2)‘ = ’d(g)‘ = (k+1r)(q —1). For the case of r =0, by
Lemma 4, Cy41 has a Cp-decomposition ¢ with |¢| = k + 1. Hence Cp, ,,—1 is
(Ck, Sk)-decomposable, that is, Cy, ,—1 has a (C, Si)-covering U‘?Zl oMU with
cardinality (¢—1)((¢—1)k+1)+k(qg—1)+k(qg—1)+k+1 = q(¢gk+1) =n(n—1)/k.
For the other case of r # 0, by Lemmas 10 and 12, Cjy4y41 5+, has a (Cy, Sk)-
covering ¢’ with |¢”| = [(k+7+1)(k+7)/k]. Hence | J7_, # D U%" is a (Cy, Sk)-
covering of Cy, ,,—1 with cardinality (¢ —1)((¢ — 1)k + 1)+ (k+7r)(¢—1) + (k +
g—1)+[(k+r+1)(k+r)/k] =[(¢gk+7r+1)(gk+7)/k] = [n(n—1)/k].
This completes the proof. [
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