MINIMUM COVERINGS OF CROWNS WITH CYCLES AND STARS

Jenq-Jong Lin
Department of Finance
Ling Tung University, Taichung 40852, Taiwan
e-mail: jjlin@teamail.ltu.edu.tw
AND
Min-Jen Jou ${ }^{1}$
Department of Information Technology
Ling Tung University, Taichung 40852, Taiwan
e-mail: mjjou@teamail.ltu.edu.tw

Abstract

Let F, G and H be graphs. A (G, H)-decomposition of F is a partition of the edge set of F into copies of G and copies of H with at least one copy of G and at least one copy of H. For $R \subseteq F$, a (G, H)-covering of F with padding R is a (G, H)-decomposition of $F+E(R)$. A (G, H)-covering of F with the smallest cardinality is a minimum (G, H)-covering. This paper gives the solution of finding the minimum $\left(C_{k}, S_{k}\right)$-covering of the crown $C_{n, n-1}$.

Keywords: cycle, star, covering, decomposition, crown.
2010 Mathematics Subject Classification: 05C51, 05C70.

1. Introduction

Let F, G and H be graphs. A G-decomposition of F is a partition of the edge set of F into copies of G. If F has a G-decomposition, we say that F is G decomposable. A (G, H)-decomposition of F is a partition of the edge set of F into copies of G and copies of H with at least one copy of G and at least one copy of H. If F has a (G, H)-decomposition, we say that F is (G, H)-decomposable.

[^0]A (G, H)-decomposition of F may not exist, a natural question of interest is to see: What is the minimum number of edges needed to be added to the edge set of F so that the resulting graph is (G, H)-decomposable, and what does the collection of added edges look like? For $R \subseteq F$, a (G, H)-covering of F with padding R is a (G, H)-decomposition of $F+E(R)$. A (G, H)-covering of F with the smallest cardinality is a minimum (G, H)-covering. Moreover, the cardinality of the minimum (G, H)-covering of F is called the (G, H)-covering number of F, denoted by $c(F ; G, H)$.

As usual K_{n} denotes the complete graph with n vertices and $K_{m, n}$ denotes the complete bipartite graph with parts of sizes m and n. A k-star, denoted by S_{k}, is the complete bipartite graph $K_{1, k}$. The vertex of degree k in S_{k} is the center of S_{k} and any vertex of degree 1 is an end-vertex of S_{k}. Let $\left\langle y_{1}, y_{2}, \ldots, y_{k}\right\rangle_{x}$ denote the k-star with center x and end-vertices $y_{1}, y_{2}, \ldots, y_{k}$. A k-cycle (respectively, k-path), denoted by C_{k} (respectively, P_{k}), is a cycle (respectively, path) with k edges. Let $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ and $v_{1} v_{2} \cdots v_{k}$ denote the k-cycle and ($k-1$)-path through vertices v_{1}, \ldots, v_{k} in order, respectively. A spanning subgraph H of a graph G is a subgraph of G with $V(H)=V(G)$. A 1 -factor of G is a spanning subgraph of G with each vertex incident with exactly one edge. For positive integers ℓ and n with $1 \leq \ell \leq n$, the crown $C_{n, \ell}$ is a bipartite graph with bipartition (A, B) where $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ and $B=\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}$, and edge set $\left\{a_{i} b_{j}: i=0,1, \ldots, n-1, j \equiv i+1, i+2, \ldots, i+\ell(\bmod n)\right\}$. In the sequel of the paper, (A, B) always means the bipartition of $C_{n, \ell}$ defined here. Note that $C_{n, n-1}$ is the graph obtained from the complete bipartite graph $K_{n, n}$ with a 1 -factor removed.

The existence problems for $\left(C_{k}, S_{k}\right)$-decomposition of $K_{m, n}$ and $C_{n, n-1}$ have been completely settled by Lee [1] and Lee and Lin [4], respectively. Lee [2] obtained the maximum packing and minimum covering of the balanced complete bipartite multigraph $\lambda K_{n, n}$ with $\left(C_{k}, S_{k}\right)$. Lee and Chen [3] gave the maximum packing and minimum covering of λK_{n} with $\left(P_{k}, S_{k}\right)$. This paper gives the solution of finding the minimum $\left(C_{k}, S_{k}\right)$-covering of the crown $C_{n, n-1}$.

2. Preliminaries

Let $G=(V, E)$ be a graph. For sets $A \subseteq V(G)$ and $B \subseteq E(G)$, we use $G[A]$ to denote the subgraph of G induced by A and $G-B$ (respectively, $G+B$) to denote the subgraph obtained from G by deleting (respectively, adding) the edges in B. When G_{1}, \ldots, G_{t} are graphs, not necessarily disjoint, we write $G_{1} \cup \cdots \cup G_{t}$ or $\bigcup_{i=1}^{t} G_{i}$ for the graph with vertex set $\bigcup_{i=1}^{t} V\left(G_{i}\right)$ and edge set $\bigcup_{i=1}^{t} E\left(G_{i}\right)$. When the edge sets are disjoint, $G=\bigcup_{i=1}^{t} G_{i}$ expresses the decomposition of G into G_{1}, \ldots, G_{t}. For a graph G and a positive integer $\lambda \geq 2$, we use λG to denote
the multigraph obtained from G by replacing each edge e by λ edges, each of which has the same ends as e.

The following results are essential to our proof.
Lemma 1 [7]. For integers m and n with $m \geq n \geq 1$, the graph $K_{m, n}$ is $S_{k^{-}}$ decomposable if and only if $m \geq k$ and

$$
\begin{cases}m \equiv 0(\bmod k) & \text { if } n<k, \\ m n \equiv 0(\bmod k) & \text { if } n \geq k .\end{cases}
$$

Lemma 2 [5]. $\lambda C_{n, \ell}$ is S_{k}-decomposable if and only if $k \leq \ell$ and $\lambda n \ell \equiv 0$ $(\bmod k)$.

Lemma 3 [5]. Let $\left\{a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}\right\}$ be the vertex set of the multicrown $\lambda C_{n, \ell}$. Suppose that p and q are positive integers such that $q<p \leq \ell$. If $\lambda n q \equiv 0$ $(\bmod p)$, then there exists a spanning subgraph G of $\lambda C_{n, \ell}$ such that $\operatorname{deg}_{G} b_{j}=\lambda q$ for $0 \leq j \leq n-1$ and G has an S_{p}-decomposition.

Lemma 4 [6]. For positive integers k and $n, C_{n, n-1}$ is C_{k}-decomposable if and only if n is odd, k is even, $4 \leq k \leq 2 n$, and $n(n-1) \equiv 0(\bmod k)$.

3. Covering Numbers

In this section the covering number of $C_{n, n-1}$ with k-cycles and k-stars is determined.

Lemma 5 [4]. If k is an even integer with $k \geq 4$, then $C_{k+1, k}$ is not $\left(C_{k}, S_{k}\right)$ decomposable.

Lemma 6. If k is an even integer with $k \geq 4$, then $C_{k+1, k}$ has a $\left(C_{k}, S_{k}\right)$-covering with padding S_{k}.

Proof. By Lemma 4, we have that $C_{k+1, k}$ is C_{k}-decomposable. Define a k-star $R=\left\langle b_{1}, b_{2}, \ldots, b_{k}\right\rangle_{a_{0}}$. Clearly, $C_{k+1, k}+E(R)$ is a $\left(C_{k}, S_{k}\right)$-covering with padding R.

We obtain the following result by Lemmas 5 and 6 .
Corollary 7. $c\left(C_{k+1, k} ; C_{k}, S_{k}\right)=k+2$.
Lemma 8 [4]. If k is an even integer with $k \geq 4$, then $C_{2 k, 2 k-1}$ is $\left(C_{k}, S_{k}\right)$ decomposable.

Lemma 9. For integers r and k with $r \geq 3$ and $k>r(r+1), C_{k+r+1, k+r}$ can be decomposed into one copy of $r(r+1)$-cycle and $k+2 r+1$ copies of k-stars.

Proof. Let $s=r(r+1) / 2$. Trivially, $k+r+1>s$. Let $A_{0}=\left\{a_{0}, a_{1}, \ldots, a_{s-1}\right\}$, $B_{0}=\left\{b_{0}, b_{1}, \ldots, b_{s-1}\right\}, H_{0}=C_{n, n-1}\left[A_{0} \cup B_{0}\right], H_{1}=C_{n, n-1}\left[\left(A \backslash A_{0}\right) \cup B_{0}\right]$, and $H_{2}=C_{n, n-1}\left[A \cup\left(B \backslash B_{0}\right)\right]$. Clearly, $C_{k+r+1, k+r}=H_{0} \cup H_{1} \cup H_{2}$. Note that H_{0} is isomorphic to $C_{s, s-1}, H_{1}$ is isomorphic to $K_{k+r+1-s, s}$, and H_{2} is isomorphic to $C_{k+r+1-s, k+r-s} \cup K_{s, k+r+1-s}$. Let

$$
C=\left(b_{1}, a_{0}, b_{2}, a_{1}, b_{3}, a_{2}, \ldots, b_{s-1}, a_{s-2}, b_{0}, a_{s-1}\right)
$$

and $H=H_{0}-E(C)$. Trivially, C is an $r(r+1)$-cycle in H_{0} and $H=C_{s, s-3}$. Note that $r-2<s-r-1$ for $r \geq 3$ and $s(r-2)=r s-r(r+1)=r(s-r-1)$. By Lemma 3, there exists a spanning subgraph X of H such that $\operatorname{deg}_{X} b_{j}=r-2$ for $0 \leq j \leq s-1$ and X has an S_{s-r-1}-decomposition \mathscr{H} with $|\mathscr{H}|=r$. Furthermore, each S_{s-r-1} has its center in A_{0} since $\operatorname{deg}_{X} b_{j}=r-2<s-r-1$. Suppose that the centers of the $(s-r-1)$-stars in \mathscr{H} are $a_{i_{1}}, \ldots, a_{i_{r}}$. Let $S(u)$ be the $(s-r-1)$-star with center $a_{i_{u}}$ in \mathscr{H}, and let $Y=H-E(X) \cup H_{1}$. Note that $\operatorname{deg}_{Y} b_{j}=(s-3-(r-2))+(k+r+1-s)=k$ for $0 \leq j \leq s-1$. Hence Y has an S_{k}-decomposition $\mathscr{H}^{(1)}$ with $\left|\mathscr{H}^{(1)}\right|=s$. For $u \in\{1, \ldots, r\}$, define $S^{\prime}(u)=H_{2}\left[\left\{a_{i_{u}}\right\} \cup\left(B \backslash B_{0}\right)\right]$ and $Z=H_{2}-E\left(\bigcup_{u=1}^{r} S^{\prime}(u)\right)$. Clearly, $S^{\prime}(u)$ is a $(k+r+1-s)$-star with center $a_{i_{u}}$ in H_{2}, and $S(u) \cup S^{\prime}(u)$ is a k-star. There are r copies of such k-stars. Moreover, $\operatorname{deg}_{Z} b_{j}=k+r-r=k$ for $s \leq j \leq k+r$, and it follows that Z has an S_{k}-decomposition $\mathscr{H}^{(2)}$ with $\left|\mathscr{H}^{(2)}\right|=k+r-s+1$. Thus there are $s+r+k+r-s+1=k+2 r+1$ copies of k-stars. This completes the proof.

Lemma 10. Let k be a positive even integer and let n be a positive integer with $4 \leq k<n-1<2 k-1$. If $(n-k)(n-k-1)<k$, then $C_{n, n-1}$ has a $\left(C_{k}, S_{k}\right)$ covering with padding $P_{k-(n-k)(n-k-1)}$.
Proof. Let $n-1=k+r$. From the assumption $k<n-1<2 k-1$, we have $0<r<k-1$. The proof is divided into two parts according to the value of r.

Case 1. $r \leq 2$. Let $A_{0}^{\prime}=\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}, A_{1}^{\prime}=\left\{a_{k+1}, a_{k+2}, \ldots, a_{k+r}\right\}$, $B_{0}^{\prime}=\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}, B_{1}^{\prime}=\left\{b_{k+1}, b_{k+2}, \ldots, b_{k+r}\right\}$. Let $D_{0}=C_{n, n-1}\left[\left(A_{0}^{\prime} \cup\right.\right.$ $\left.\left.\left\{a_{k}\right\}\right) \cup\left(B_{0}^{\prime} \cup\left\{b_{k}\right\}\right)\right], D_{1}=C_{n, n-1}\left[A_{0}^{\prime} \cup B_{1}^{\prime}\right], D_{2}=C_{n, n-1}\left[A_{1}^{\prime} \cup B_{0}^{\prime}\right]$ and $D_{3}=$ $C_{n, n-1}\left[\left(A_{1}^{\prime} \cup\left\{a_{k}\right\}\right) \cup\left(B_{1}^{\prime} \cup\left\{b_{k}\right\}\right)\right]$. Clearly, $C_{n, n-1}=D_{0} \cup D_{1} \cup D_{2} \cup D_{3}$. Note that D_{0} is isomorphic to $C_{k+1, k}, D_{1}$ is isomorphic to $K_{k, r}, D_{2}$ is isomorphic to $K_{r, k}$ and D_{3} is isomorphic to $C_{r+1, r}$. By Lemma 2, we have that D_{0} has a k star decomposition $\left\langle b_{j+1}, b_{j+2}, \ldots, b_{j+k}\right\rangle_{a_{j}}$ for $0 \leq j \leq k$, where the subscripts of b 's are taken modulo $k+1$ in the set of numbers $\{0,1, \ldots, k\}$. By Lemma 1 , we obtain that D_{1} and D_{2} have k-star decompositions $\left\langle a_{0}, a_{1}, \ldots, a_{k-1}\right\rangle_{b_{j}}$ and $\left\langle b_{0}, b_{1}, \ldots, b_{k-1}\right\rangle_{a_{i}}$ for $k+1 \leq i, j \leq k+r$, respectively.

Subcase 1.1. $r=1$. Define a $(k-2)$-path R_{1} as follows.

$$
R_{1}=a_{k+1} b_{1} a_{0} b_{2} a_{1} b_{3} a_{2} \cdots a_{\frac{k}{2}-3} b_{\frac{k}{2}-1} a_{k},
$$

where the subscripts of a 's and b 's are taken modulo n. Then

$$
\begin{aligned}
& \left\langle b_{0}, b_{1}, \ldots, b_{k-1}\right\rangle_{a_{k}} \cup\left\langle b_{0}, b_{1}, \ldots, b_{k-1}\right\rangle_{a_{k+1}} \cup D_{3} \cup R_{1} \\
& =\left\langle b_{0}, b_{1}, \ldots, b_{k-1}\right\rangle_{a_{k}} \cup\left\langle b_{0}, b_{1}, \ldots, b_{k-1}\right\rangle_{a_{k+1}} \cup\left\{a_{k} b_{k+1}, a_{k+1} b_{k}\right\} \cup R_{1} \\
& =\left\langle b_{0}, b_{1}, \ldots, b_{k-2}, b_{k+1}\right\rangle_{a_{k}} \cup\left\langle b_{0}, b_{1}, b_{2}, \ldots, b_{k-2}, b_{k}\right\rangle_{a_{k+1}} \cup a_{k} b_{k-1} a_{k+1} \cup R_{1} .
\end{aligned}
$$

Note that $a_{k} b_{k-1} a_{k+1} \cup R_{1}$ is a k-cycle. Hence $C_{k+2, k+1}+E\left(R_{1}\right)$ can be decomposed into $k+3$ copies of k-stars and one copy of k-cycle, that is, $C_{k+2, k+1}$ has a $\left(C_{k}, S_{k}\right)$-covering \mathscr{C}_{1} with $\left|\mathscr{C}_{1}\right|=k+4$ and padding R_{1}.

Subcase 1.2. $r=2$. Define a $(k-6)$-path R_{2} as follows.

$$
R_{2}=b_{1} a_{0} b_{2} a_{1} \cdots b_{\frac{k}{2}-3} a_{\frac{k}{2}-4} b_{k+1}
$$

where the subscripts of a 's and b 's are taken modulo n. Then

$$
\begin{aligned}
& \left\langle b_{0}, b_{1}, \ldots, b_{k-1}\right\rangle_{a_{k+2}} \cup D_{3} \cup R_{2} \\
& =\left\langle b_{0}, b_{1}, \ldots, b_{k-1}\right\rangle_{a_{k+2}} \cup\left\{a_{k} b_{k+1}, a_{k} b_{k+2}, a_{k+1} b_{k}, a_{k+1} b_{k+2}, a_{k+2} b_{k}, a_{k+2} b_{k+1}\right\} \cup R_{2} \\
& =\left\langle b_{0}, b_{2}, b_{3}, \ldots, b_{k-1}, b_{k+1}\right\rangle_{a_{k+2}} \cup b_{k+1} a_{k} b_{k+2} a_{k+1} b_{k} a_{k+2} b_{1} \cup R_{2} .
\end{aligned}
$$

Note that $b_{k+1} a_{k} b_{k+2} a_{k+1} b_{k} a_{k+2} b_{1} \cup R_{2}$ is a k-cycle. Hence $C_{k+3, k+2}+E\left(R_{2}\right)$ can decomposed into $k+5$ copies of k-stars and one copy of k-cycle, that is, $C_{k+3, k+2}$ has a $\left(C_{k}, S_{k}\right)$-covering \mathscr{C}_{2} with $\left|\mathscr{C}_{2}\right|=k+6$ and padding R_{2}.

Case 2. $r \geq 3$. Let $s=r(r+1) / 2$ and H_{0}, H_{1} and H_{2} be the graphs defined in the proof of Lemma 9. Define a $(k-2 s)$-path R_{3} as follows.

$$
R_{3}=a_{s-1} b_{s+1} a_{s} b_{s+2} \cdots a_{\frac{k}{2}-2} b_{\frac{k}{2}} a_{k+r}
$$

where the subscripts of a 's and b 's are taken modulo n.
Let S be the k-star with center b_{1} and C be the $2 s$-cycle mentioned in Lemma 9. Then

$$
\begin{aligned}
& S \cup C \cup R_{3} \\
& =\left(S-a_{k+r} b_{1}+a_{s-1} b_{1}\right) \cup a_{k+r} b_{1} a_{0} b_{2} a_{1} b_{3} a_{2} \cdots b_{s-1} a_{s-2} b_{0} a_{s-1} \cup R_{3}
\end{aligned}
$$

Note that $a_{k+r} b_{1} a_{0} b_{2} a_{1} b_{3} a_{2} \cdots b_{s-1} a_{s-2} b_{0} a_{s-1} \cup R_{3}$ is a k-cycle. Hence $C_{k+r+1, k+r}$ $+E\left(R_{3}\right)$ can be decomposed into $k+2 r+1$ copies of k-stars and one copy of k-cycle, that is, $C_{k+r+1, k+r}$ has a $\left(C_{k}, S_{k}\right)$-covering \mathscr{C}_{3} with $\left|\mathscr{C}_{3}\right|=k+2 r+2$ and padding R_{3}. This settles Case 2 .

Before plunging into the proof of the case of $(n-k)(n-k-1) \geq k$, a result due to Lee and Lin [4] is needed.

Lemma 11 [4]. If k is an even integer with $k \geq 4$, then there exist $k / 2-1$ edge-disjoint k-cycles in $C_{k / 2, k / 2-1} \cup K_{k / 2, k / 2}$.

Lemma 12. Let k be a positive even integer and let n be a positive integer with $4 \leq k<n-1<2 k-1$. If $(n-k)(n-k-1) \geq k$, then $C_{n, n-1}$ has a $\left(C_{k}, S_{k}\right)$ covering \mathscr{C} with $|\mathscr{C}|=\lceil n(n-1) / k\rceil$.
Proof. Let $n-1=k+r$. From the assumption $k<n-1<2 k-1$, we have $0<r<k-1$. Since $(n-k)(n-k-1) \geq k$, we assume that $r(r+$ $1)=\alpha k+\beta$, where $\alpha \geq 1$ and $0 \leq \beta \leq k-1$. Let $A_{0}^{\prime \prime}=\left\{a_{0}, a_{1}, \ldots, a_{\frac{k}{2}-1}\right\}$, $A_{1}^{\prime \prime}=\left\{a_{\frac{k}{2}}, a_{\frac{k}{2}+1}, \ldots, a_{k-1}\right\}, A_{2}^{\prime \prime}=A \backslash\left(A_{0}^{\prime \prime} \cup A_{1}^{\prime \prime}\right), B_{0}^{\prime \prime}=\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}, B_{1}^{\prime \prime}=$ $B \backslash B_{0}^{\prime \prime}$. Let $G_{i}=C_{n, n-1}\left[A_{i}^{\prime \prime} \cup B_{0}^{\prime \prime}\right]$ for $i \in\{0,1,2\}$ and $G_{3}=C_{n, n-1}\left[A \cup B_{1}^{\prime \prime}\right]$. Clearly, $C_{n, n-1}=G_{0} \cup G_{1} \cup G_{2} \cup G_{3}$. Note that G_{0} and G_{1} are isomorphic to $C_{k / 2, k / 2-1} \cup K_{k / 2, k / 2}, G_{2}$ is isomorphic to $K_{r+1, k}$, which is S_{k}-decomposable by Lemma 1, and G_{3} is isomorphic to $K_{k, r+1} \cup C_{r+1, r}$. Let $p_{0}=\lceil\alpha / 2\rceil$ and $p_{1}=\lfloor\alpha / 2\rfloor$. In the following, we will show that, for each $i \in\{0,1\}, G_{i}$ can be decomposed into p_{i} copies of C_{k} and $k / 2$ copies of $S_{k-2 p_{i}-1}$, and G_{3} can be decomposed into $k / 2$ copies of $S_{2 p_{i}+1}$ and $r+1$ copies of $S_{k^{\prime}}, k^{\prime} \leq k$, such that the $\left(k-2 p_{i}-1\right)$-stars and $\left(2 p_{i}+1\right)$-stars have their centers in $A_{i}^{\prime \prime}$.

We first show the required decomposition of G_{i} for $i \in\{0,1\}$. Since $r<$ $k-1$, we have $r+1<k$, and in turn $\alpha<r$. Thus, $p_{0}=\left\lceil\frac{\alpha}{2}\right\rceil \leq \frac{\alpha+1}{2} \leq$ $\frac{(r-1)+1}{2} \leq \frac{k-2}{2}=\frac{k}{2}-1$, which implies $p_{i} \leq k / 2-1$ for $i \in\{0,1\}$. This assures us that there exist p_{i} edge-disjoint k-cycles in G_{i} by Lemma 11. Suppose that $Q_{i, 0}, \ldots, Q_{i, p_{i}-1}$ are edge-disjoint k-cycles in G_{i}. Let $F_{i}=G_{i}-E\left(\bigcup_{h=0}^{p_{i}-1} Q_{i, h}\right)$ and $X_{i, j}=F_{i}\left[\left\{a_{i k / 2+j}\right\} \cup B_{0}^{\prime \prime}\right]$ where $i \in\{0,1\}, j \in\{0, \ldots, k / 2-1\}$. Since $\operatorname{deg}_{G_{i}} a_{i k / 2+j}=k-1$ and each $Q_{i, h}$ uses two edges incident with $a_{i k / 2+j}$ for each i and j, we have $\operatorname{deg}_{F_{i}} a_{i k / 2+j}=k-2 p_{i}-1$. Hence $X_{i, j}$ is a $\left(k-2 p_{i}-1\right)$-star with center $a_{i k / 2+j}$.

Next we show the required star decomposition of G_{3}. For $j \in\{0, \ldots, k / 2-1\}$, let

$$
X_{i, j}^{\prime}= \begin{cases}\left\langle b_{k+\left(2 p_{0}+1\right) j}, b_{k+\left(2 p_{0}+1\right) j+1}, \ldots, b_{k+\left(2 p_{0}+1\right) j+2 p_{0}}\right\rangle_{a_{j}}, & \text { if } i=0 \\ \left\langle b_{\left(p_{0}+3 / 2\right) k+\left(2 p_{1}+1\right) j}, b_{\left(p_{0}+3 / 2\right) k+\left(2 p_{1}+1\right) j+1},\right. & \text { if } i=1 \\ \cdots, b_{\left.\left(p_{0}+3 / 2\right) k+\left(2 p_{1}+1\right) j+2 p_{1}\right\rangle_{a_{k / 2+j}}},\end{cases}
$$

where the subscripts of b 's are taken modulo $r+1$ in the set of numbers $\{k, k+$ $1, \ldots, k+r\}$. Since $2 p_{1}+1 \leq 2 p_{0}+1 \leq \alpha+2 \leq r+1$, this assures us that there are enough edges for the construction of $X_{0, j}^{\prime}$ and $X_{1, j}^{\prime}$. Note that $X_{i, j}^{\prime}$ is a $\left(2 p_{i}+1\right)$-star and $X_{i, j} \cup X_{i, j}^{\prime}$ is a k-star for $i \in\{0,1\}, j \in\{0, \ldots, k / 2-1\}$.

On the other hand, let $k-\beta=\tau(r+1)+\rho$ where $\tau \geq 0$ and $0 \leq \rho \leq r$. We have that

$$
\begin{aligned}
& \left|E\left(G_{3}\right)\right|-\left|E\left(\bigcup_{i \in\{0,1\}} \bigcup_{j \in\{0, \ldots, k / 2-1\}} X_{i, j}^{\prime}\right)\right| \\
& =(k+r)(r+1)-\left(2 p_{0}+2 p_{1}+2\right)(k / 2) \\
& =(k+r)(r+1)-(\alpha+1) k \\
& =(k+r)(r+1)-r(r+1)-(k-\beta) \\
& =k(r+1)-\tau(r+1)-\rho=(k-\tau)(r+1)-\rho \\
& =(k-\tau-1) \rho+(k-\tau)(r+1-\rho) .
\end{aligned}
$$

Hence there exists a decomposition \mathscr{G} of $G_{3}-E\left(\bigcup_{i \in\{0,1\}} \bigcup_{j \in\{0, \ldots, k / 2-1\}} X_{i, j}^{\prime}\right)$ into ρ copies of $(k-\tau-1)$-star with center b_{w} for $w=k, k+1, \ldots, k+\rho-1$ and $r+1-\rho$ copies of $(k-\tau)$-star with center b_{w} for $w=k+\rho, k+\rho+1, \ldots, k+r$, that is,

$$
Y_{w}= \begin{cases}S_{k-\tau-1}, & \text { if } w \in\{k, k+1, \ldots, k+\rho-1\}, \\ S_{k-\tau}, & \text { if } w \in\{k+\rho, k+\rho+1, \ldots, k+r\} .\end{cases}
$$

Define a star Y_{w}^{\prime} as follows.

$$
Y_{w}^{\prime}= \begin{cases}\left\langle a_{w_{1}}, a_{w_{2}}, \ldots, a_{w_{\tau}}, a_{w_{\tau+1}}\right\rangle_{b_{w}}, & \text { if } w \in\{k, k+1, \ldots, k+\rho-1\}, \\ \left\langle a_{w_{1}}, a_{w_{2}}, \ldots, a_{w_{\tau}}\right\rangle_{b_{w}}, & \text { if } w \in\{k+\rho, k+\rho+1, \ldots, k+r\},\end{cases}
$$

where $b_{w} a_{w_{t}} \in E\left(X_{i, j}^{\prime}\right)$ for $1 \leq t \leq \tau+1$. Since $\left|E\left(\bigcup_{i \in\{0,1\}} \bigcup_{j \in\{0, \ldots, k / 2-1\}} X_{i, j}^{\prime}\right)\right|$ $=(\alpha+1) k,\left|B_{1}^{\prime \prime}\right|=r+1$ and $(\tau+1)(r+1)=\tau(r+1)+(r+1)=(k-\beta-\rho)+(r+1)<$ $2 k \leq(\alpha+1) k$, it follows that $\tau+1<(\alpha+1) k /(r+1)$. This assures us that there are enough edges for the construction of Y_{w}^{\prime}. Note that $Y_{w}+E\left(Y_{w}^{\prime}\right)$ is a k-star. Hence $C_{n, n-1}$ has a (C_{k}, S_{k})-covering \mathscr{C}_{4} with padding $\bigcup_{w \in\{k, k+1, \ldots, k+r\}} Y_{w}^{\prime}$ and $\left|\mathscr{C}_{4}\right|=(k+r+1)+(r+1)+\alpha=k+2 r+2+\alpha=\lceil n(n-1) / k\rceil$. This completes the proof.

Now, we are ready for the main result of this section.
Theorem 13. Let k be a positive even integer and let n be a positive integer with $4 \leq k \leq n-1$. Then

$$
c\left(C_{n, n-1} ; C_{k}, S_{k}\right)= \begin{cases}\lceil n(n-1) / k\rceil, & \text { if } k<n-1, \\ k+2, & \text { if } k=n-1 .\end{cases}
$$

Proof. Since $\left|E\left(C_{n, n-1}\right)\right|=n(n-1)$, we have that $c\left(C_{n, n-1} ; C_{k}, S_{k}\right) \geq\lceil n(n-$ $1) / k\rceil$. Let $n-1=q k+r$, where q and r are integers with $q \geq 1,0 \leq r \leq k-1$. We consider the following two cases.

Case 1. $q=1$. For $r=0$, the result follows from Corollary 7. If $r \neq 0$, by Lemmas 8,10 and $12, C_{k+r+1, k+r}$ has a $\left(C_{k}, S_{k}\right)$-covering \mathscr{C} with $|\mathscr{C}|=\lceil(k+r+$ 1) $(k+r) / k\rceil$.

Case 2. $q \geq 2$. Note that

$$
\begin{aligned}
C_{n, n-1} & =C_{q k+r+1, q k+r} \\
& =C_{(q-1) k+1,(q-1) k} \cup C_{k+r+1, k+r} \cup K_{(q-1) k, k+r} \cup K_{k+r,(q-1) k} .
\end{aligned}
$$

Trivially, $\left|E\left(C_{(q-1) k+1,(q-1) k}\right)\right|,\left|E\left(K_{(q-1) k, k+r}\right)\right|$ and $\left|E\left(K_{k+r,(q-1) k}\right)\right|$ are multiples of k, by Lemmas 1 and 2, we have that $C_{(q-1) k+1,(q-1) k}, K_{(q-1) k, k+r}$ and $K_{k+r,(q-1) k}$ have S_{k}-decompositions $\mathscr{A}^{(1)}, \mathscr{A}^{(2)}$ and $\mathscr{A}^{(3)}$ with $\left|\mathscr{A}^{(1)}\right|=$ $(q-1)((q-1) k+1),\left|\mathscr{A}^{(2)}\right|=\left|\mathscr{A}^{(3)}\right|=(k+r)(q-1)$. For the case of $r=0$, by Lemma $4, C_{k+1, k}$ has a C_{k}-decomposition \mathscr{C} with $|\mathscr{C}|=k+1$. Hence $C_{n, n-1}$ is $\left(C_{k}, S_{k}\right)$-decomposable, that is, $C_{n, n-1}$ has a $\left(C_{k}, S_{k}\right)$-covering $\bigcup_{i=1}^{3} \mathscr{A}^{(i)} \cup \mathscr{C}$ with cardinality $(q-1)((q-1) k+1)+k(q-1)+k(q-1)+k+1=q(q k+1)=n(n-1) / k$. For the other case of $r \neq 0$, by Lemmas 10 and $12, C_{k+r+1, k+r}$ has a $\left(C_{k}, S_{k}\right)$ covering \mathscr{C}^{\prime} with $\left|\mathscr{C}^{\prime}\right|=\lceil(k+r+1)(k+r) / k\rceil$. Hence $\bigcup_{i=1}^{3} \mathscr{A}^{(i)} \cup \mathscr{C}^{\prime}$ is a $\left(C_{k}, S_{k}\right)$ covering of $C_{n, n-1}$ with cardinality $(q-1)((q-1) k+1)+(k+r)(q-1)+(k+$ $r)(q-1)+\lceil(k+r+1)(k+r) / k\rceil=\lceil(q k+r+1)(q k+r) / k\rceil=\lceil n(n-1) / k\rceil$. This completes the proof.

References

[1] H.C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin. 108 (2013) 355-364.
[2] H.C. Lee, Packing and covering the balanced complete bipartite multigraph with cycles and stars, Discrete Math. Theor. Comput. Sci. 16 (2014) 189-202. https://doi.org/10.46298/DMTCS. 2091
[3] H.C. Lee and Z.C. Chen, Maximum packings and minimum coverings of multigraphs with paths and stars, Taiwanese J. Math. 19 (2015) 1341-1357. https://doi.org/10.11650/tjm.19.2015.4456
[4] H.C. Lee and J.J. Lin, Decomposition of the complete bipartite graph with a 1 -factor removed into cycles and stars, Discrete Math. 313 (2013) 2354-2358. https://doi.org/10.1016/j.disc.2013.06.014
[5] C. Lin, J.J. Lin and T.W. Shyu, Isomorphic star decomposition of multicrowns and the power of cycles, Ars Combin. 53 (1999) 249-256.
[6] J. Ma, L. Pu and H. Shen, Cycle decompositions of $K_{n, n}-I$, SIAM J. Discrete Math. 20 (2006) 603-609. https://doi.org/10.1137/050626363
[7] S. Yamamoto, H. Ikeda, S. Shige-eda, K. Ushio and N. Hamada, On claw decomposition of complete graphs and complete bipartie graphs, Hiroshima Math. J. 5 (1975) 33-42.
https://doi.org/10.32917/hmj/1206136782

[^0]: ${ }^{1}$ Corresponding author.

