Discussiones Mathematicae Graph Theory 42 (2022) 81–88 https://doi.org/10.7151/dmgt.2241

MINIMUM COVERINGS OF CROWNS WITH CYCLES AND STARS

JENQ-JONG LIN

Department of Finance Ling Tung University, Taichung 40852, Taiwan e-mail: jjlin@teamail.ltu.edu.tw

AND

MIN-JEN JOU¹

Department of Information Technology Ling Tung University, Taichung 40852, Taiwan e-mail: mjjou@teamail.ltu.edu.tw

Abstract

Let F, G and H be graphs. A (G, H)-decomposition of F is a partition of the edge set of F into copies of G and copies of H with at least one copy of G and at least one copy of H. For $R \subseteq F$, a (G, H)-covering of F with padding R is a (G, H)-decomposition of F + E(R). A (G, H)-covering of F with the smallest cardinality is a minimum (G, H)-covering. This paper gives the solution of finding the minimum (C_k, S_k) -covering of the crown $C_{n,n-1}$.

Keywords: cycle, star, covering, decomposition, crown.

2010 Mathematics Subject Classification: 05C51, 05C70.

1. INTRODUCTION

Let F, G and H be graphs. A *G*-decomposition of F is a partition of the edge set of F into copies of G. If F has a *G*-decomposition, we say that F is *G*decomposable. A (G, H)-decomposition of F is a partition of the edge set of Finto copies of G and copies of H with at least one copy of G and at least one copy of H. If F has a (G, H)-decomposition, we say that F is (G, H)-decomposable.

¹Corresponding author.

A (G, H)-decomposition of F may not exist, a natural question of interest is to see: What is the minimum number of edges needed to be added to the edge set of F so that the resulting graph is (G, H)-decomposable, and what does the collection of added edges look like? For $R \subseteq F$, a (G, H)-covering of F with padding R is a (G, H)-decomposition of F + E(R). A (G, H)-covering of F with the smallest cardinality is a minimum (G, H)-covering. Moreover, the cardinality of the minimum (G, H)-covering of F is called the (G, H)-covering number of F, denoted by c(F; G, H).

As usual K_n denotes the complete graph with n vertices and $K_{m,n}$ denotes the complete bipartite graph with parts of sizes m and n. A k-star, denoted by S_k , is the complete bipartite graph $K_{1,k}$. The vertex of degree k in S_k is the *center* of S_k and any vertex of degree 1 is an *end-vertex* of S_k . Let $\langle y_1, y_2, \ldots, y_k \rangle_x$ denote the k-star with center x and end-vertices y_1, y_2, \ldots, y_k . A k-cycle (respectively, k-path), denoted by C_k (respectively, P_k), is a cycle (respectively, path) with k edges. Let (v_1, v_2, \ldots, v_k) and $v_1 v_2 \cdots v_k$ denote the k-cycle and (k-1)-path through vertices v_1, \ldots, v_k in order, respectively. A spanning subgraph H of a graph G is a subgraph of G with V(H) = V(G). A 1-factor of G is a spanning subgraph of G with each vertex incident with exactly one edge. For positive integers ℓ and n with $1 \leq \ell \leq n$, the crown $C_{n,\ell}$ is a bipartite graph with bipartition (A, B) where $A = \{a_0, a_1, \dots, a_{n-1}\}$ and $B = \{b_0, b_1, \dots, b_{n-1}\}$, and edge set $\{a_i b_j : i = 0, 1, \dots, n-1, j \equiv i+1, i+2, \dots, i+\ell \pmod{n}\}$. In the sequel of the paper, (A, B) always means the bipartition of $C_{n,\ell}$ defined here. Note that $C_{n,n-1}$ is the graph obtained from the complete bipartite graph $K_{n,n}$ with a 1-factor removed.

The existence problems for (C_k, S_k) -decomposition of $K_{m,n}$ and $C_{n,n-1}$ have been completely settled by Lee [1] and Lee and Lin [4], respectively. Lee [2] obtained the maximum packing and minimum covering of the balanced complete bipartite multigraph $\lambda K_{n,n}$ with (C_k, S_k) . Lee and Chen [3] gave the maximum packing and minimum covering of λK_n with (P_k, S_k) . This paper gives the solution of finding the minimum (C_k, S_k) -covering of the crown $C_{n,n-1}$.

2. Preliminaries

Let G = (V, E) be a graph. For sets $A \subseteq V(G)$ and $B \subseteq E(G)$, we use G[A] to denote the subgraph of G induced by A and G - B (respectively, G + B) to denote the subgraph obtained from G by deleting (respectively, adding) the edges in B. When G_1, \ldots, G_t are graphs, not necessarily disjoint, we write $G_1 \cup \cdots \cup G_t$ or $\bigcup_{i=1}^t G_i$ for the graph with vertex set $\bigcup_{i=1}^t V(G_i)$ and edge set $\bigcup_{i=1}^t E(G_i)$. When the edge sets are disjoint, $G = \bigcup_{i=1}^t G_i$ expresses the decomposition of G into G_1, \ldots, G_t . For a graph G and a positive integer $\lambda \geq 2$, we use λG to denote

the multigraph obtained from G by replacing each edge e by λ edges, each of which has the same ends as e.

The following results are essential to our proof.

Lemma 1 [7]. For integers m and n with $m \ge n \ge 1$, the graph $K_{m,n}$ is S_k -decomposable if and only if $m \ge k$ and

$$\begin{cases} m \equiv 0 \pmod{k} & if \ n < k, \\ mn \equiv 0 \pmod{k} & if \ n \ge k. \end{cases}$$

Lemma 2 [5]. $\lambda C_{n,\ell}$ is S_k -decomposable if and only if $k \leq \ell$ and $\lambda n\ell \equiv 0 \pmod{k}$.

Lemma 3 [5]. Let $\{a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1}\}$ be the vertex set of the multicrown $\lambda C_{n,\ell}$. Suppose that p and q are positive integers such that $q . If <math>\lambda nq \equiv 0 \pmod{p}$, then there exists a spanning subgraph G of $\lambda C_{n,\ell}$ such that $\deg_G b_j = \lambda q$ for $0 \leq j \leq n-1$ and G has an S_p -decomposition.

Lemma 4 [6]. For positive integers k and n, $C_{n,n-1}$ is C_k -decomposable if and only if n is odd, k is even, $4 \le k \le 2n$, and $n(n-1) \equiv 0 \pmod{k}$.

3. Covering Numbers

In this section the covering number of $C_{n,n-1}$ with k-cycles and k-stars is determined.

Lemma 5 [4]. If k is an even integer with $k \ge 4$, then $C_{k+1,k}$ is not (C_k, S_k) -decomposable.

Lemma 6. If k is an even integer with $k \ge 4$, then $C_{k+1,k}$ has a (C_k, S_k) -covering with padding S_k .

Proof. By Lemma 4, we have that $C_{k+1,k}$ is C_k -decomposable. Define a k-star $R = \langle b_1, b_2, \ldots, b_k \rangle_{a_0}$. Clearly, $C_{k+1,k} + E(R)$ is a (C_k, S_k) -covering with padding R.

We obtain the following result by Lemmas 5 and 6.

Corollary 7. $c(C_{k+1,k}; C_k, S_k) = k+2.$

Lemma 8 [4]. If k is an even integer with $k \ge 4$, then $C_{2k,2k-1}$ is (C_k, S_k) -decomposable.

Lemma 9. For integers r and k with $r \ge 3$ and k > r(r+1), $C_{k+r+1,k+r}$ can be decomposed into one copy of r(r+1)-cycle and k + 2r + 1 copies of k-stars.

Proof. Let s = r(r+1)/2. Trivially, k+r+1 > s. Let $A_0 = \{a_0, a_1, \ldots, a_{s-1}\}$, $B_0 = \{b_0, b_1, \ldots, b_{s-1}\}$, $H_0 = C_{n,n-1}[A_0 \cup B_0]$, $H_1 = C_{n,n-1}[(A \setminus A_0) \cup B_0]$, and $H_2 = C_{n,n-1}[A \cup (B \setminus B_0)]$. Clearly, $C_{k+r+1,k+r} = H_0 \cup H_1 \cup H_2$. Note that H_0 is isomorphic to $C_{s,s-1}$, H_1 is isomorphic to $K_{k+r+1-s,s}$, and H_2 is isomorphic to $C_{k+r+1-s,k+r-s} \cup K_{s,k+r+1-s}$. Let

$$C = (b_1, a_0, b_2, a_1, b_3, a_2, \dots, b_{s-1}, a_{s-2}, b_0, a_{s-1})$$

and $H = H_0 - E(C)$. Trivially, C is an r(r+1)-cycle in H_0 and $H = C_{s,s-3}$. Note that r-2 < s-r-1 for $r \ge 3$ and s(r-2) = rs - r(r+1) = r(s-r-1). By Lemma 3, there exists a spanning subgraph X of H such that $\deg_X b_j = r - 2$ for $0 \leq j \leq s-1$ and X has an S_{s-r-1} -decomposition \mathscr{H} with $|\mathscr{H}| = r$. Furthermore, each S_{s-r-1} has its center in A_0 since $\deg_X b_i = r-2 < s-r-1$. Suppose that the centers of the (s-r-1)-stars in \mathscr{H} are a_{i_1}, \ldots, a_{i_r} . Let S(u) be the (s-r-1)-star with center a_{i_u} in \mathscr{H} , and let $Y = H - E(X) \cup H_1$. Note that $\deg_Y b_j = (s - 3 - (r - 2)) + (k + r + 1 - s) = k$ for $0 \le j \le s - 1$. Hence Y has an S_k -decomposition $\mathscr{H}^{(1)}$ with $|\mathscr{H}^{(1)}| = s$. For $u \in \{1, \ldots, r\}$, define $S'(u) = H_2[\{a_{i_u}\} \cup (B \setminus B_0)]$ and $Z = H_2 - E(\bigcup_{u=1}^r S'(u))$. Clearly, S'(u) is a (k+r+1-s)-star with center a_{i_u} in H_2 , and $S(u) \cup S'(u)$ is a k-star. There are r copies of such k-stars. Moreover, $\deg_Z b_j = k + r - r = k$ for $s \leq j \leq k + r$, and it follows that Z has an S_k -decomposition $\mathscr{H}^{(2)}$ with $|\mathscr{H}^{(2)}| = k + r - s + 1$. Thus there are s + r + k + r - s + 1 = k + 2r + 1 copies of k-stars. This completes the proof.

Lemma 10. Let k be a positive even integer and let n be a positive integer with $4 \le k < n-1 < 2k-1$. If (n-k)(n-k-1) < k, then $C_{n,n-1}$ has a (C_k, S_k) -covering with padding $P_{k-(n-k)(n-k-1)}$.

Proof. Let n - 1 = k + r. From the assumption k < n - 1 < 2k - 1, we have 0 < r < k - 1. The proof is divided into two parts according to the value of r.

Case 1. $r \leq 2$. Let $A'_0 = \{a_0, a_1, \ldots, a_{k-1}\}, A'_1 = \{a_{k+1}, a_{k+2}, \ldots, a_{k+r}\},$ $B'_0 = \{b_0, b_1, \ldots, b_{k-1}\}, B'_1 = \{b_{k+1}, b_{k+2}, \ldots, b_{k+r}\}.$ Let $D_0 = C_{n,n-1}[(A'_0 \cup \{a_k\}) \cup (B'_0 \cup \{b_k\})], D_1 = C_{n,n-1}[A'_0 \cup B'_1], D_2 = C_{n,n-1}[A'_1 \cup B'_0]$ and $D_3 = C_{n,n-1}[(A'_1 \cup \{a_k\}) \cup (B'_1 \cup \{b_k\})].$ Clearly, $C_{n,n-1} = D_0 \cup D_1 \cup D_2 \cup D_3.$ Note that D_0 is isomorphic to $C_{k+1,k}, D_1$ is isomorphic to $K_{k,r}, D_2$ is isomorphic to $K_{r,k}$ and D_3 is isomorphic to $C_{r+1,r}.$ By Lemma 2, we have that D_0 has a k-star decomposition $\langle b_{j+1}, b_{j+2}, \ldots, b_{j+k} \rangle_{a_j}$ for $0 \leq j \leq k$, where the subscripts of b's are taken modulo k + 1 in the set of numbers $\{0, 1, \ldots, k\}$. By Lemma 1, we obtain that D_1 and D_2 have k-star decompositions $\langle a_0, a_1, \ldots, a_{k-1} \rangle_{b_j}$ and $\langle b_0, b_1, \ldots, b_{k-1} \rangle_{a_i}$ for $k+1 \leq i, j \leq k+r$, respectively.

Subcase 1.1. r = 1. Define a (k - 2)-path R_1 as follows.

$$R_1 = a_{k+1}b_1a_0b_2a_1b_3a_2\cdots a_{\frac{k}{2}-3}b_{\frac{k}{2}-1}a_k,$$

where the subscripts of a's and b's are taken modulo n. Then

$$\begin{aligned} \langle b_0, b_1, \dots, b_{k-1} \rangle_{a_k} &\cup \langle b_0, b_1, \dots, b_{k-1} \rangle_{a_{k+1}} \cup D_3 \cup R_1 \\ &= \langle b_0, b_1, \dots, b_{k-1} \rangle_{a_k} \cup \langle b_0, b_1, \dots, b_{k-1} \rangle_{a_{k+1}} \cup \{a_k b_{k+1}, a_{k+1} b_k\} \cup R_1 \\ &= \langle b_0, b_1, \dots, b_{k-2}, b_{k+1} \rangle_{a_k} \cup \langle b_0, b_1, b_2, \dots, b_{k-2}, b_k \rangle_{a_{k+1}} \cup a_k b_{k-1} a_{k+1} \cup R_1. \end{aligned}$$

Note that $a_k b_{k-1} a_{k+1} \cup R_1$ is a k-cycle. Hence $C_{k+2,k+1} + E(R_1)$ can be decomposed into k+3 copies of k-stars and one copy of k-cycle, that is, $C_{k+2,k+1}$ has a (C_k, S_k) -covering \mathscr{C}_1 with $|\mathscr{C}_1| = k+4$ and padding R_1 .

Subcase 1.2. r = 2. Define a (k - 6)-path R_2 as follows.

$$R_2 = b_1 a_0 b_2 a_1 \cdots b_{\frac{k}{2} - 3} a_{\frac{k}{2} - 4} b_{k+1},$$

where the subscripts of a's and b's are taken modulo n. Then

$$\begin{aligned} \langle b_0, b_1, \dots, b_{k-1} \rangle_{a_{k+2}} &\cup D_3 \cup R_2 \\ &= \langle b_0, b_1, \dots, b_{k-1} \rangle_{a_{k+2}} \cup \{ a_k b_{k+1}, a_k b_{k+2}, a_{k+1} b_k, a_{k+1} b_{k+2}, a_{k+2} b_k, a_{k+2} b_{k+1} \} \cup R_2 \\ &= \langle b_0, b_2, b_3, \dots, b_{k-1}, b_{k+1} \rangle_{a_{k+2}} \cup b_{k+1} a_k b_{k+2} a_{k+1} b_k a_{k+2} b_1 \cup R_2. \end{aligned}$$

Note that $b_{k+1}a_kb_{k+2}a_{k+1}b_ka_{k+2}b_1 \cup R_2$ is a k-cycle. Hence $C_{k+3,k+2} + E(R_2)$ can decomposed into k+5 copies of k-stars and one copy of k-cycle, that is, $C_{k+3,k+2}$ has a (C_k, S_k) -covering \mathscr{C}_2 with $|\mathscr{C}_2| = k+6$ and padding R_2 .

Case 2. $r \ge 3$. Let s = r(r+1)/2 and H_0 , H_1 and H_2 be the graphs defined in the proof of Lemma 9. Define a (k-2s)-path R_3 as follows.

$$R_3 = a_{s-1}b_{s+1}a_sb_{s+2}\cdots a_{\frac{k}{2}-2}b_{\frac{k}{2}}a_{k+r},$$

where the subscripts of a's and b's are taken modulo n.

Let S be the k-star with center b_1 and C be the 2s-cycle mentioned in Lemma 9. Then

$$S \cup C \cup R_3$$

= $(S - a_{k+r}b_1 + a_{s-1}b_1) \cup a_{k+r}b_1a_0b_2a_1b_3a_2 \cdots b_{s-1}a_{s-2}b_0a_{s-1} \cup R_3.$

Note that $a_{k+r}b_1a_0b_2a_1b_3a_2\cdots b_{s-1}a_{s-2}b_0a_{s-1}\cup R_3$ is a k-cycle. Hence $C_{k+r+1,k+r} + E(R_3)$ can be decomposed into k + 2r + 1 copies of k-stars and one copy of k-cycle, that is, $C_{k+r+1,k+r}$ has a (C_k, S_k) -covering \mathscr{C}_3 with $|\mathscr{C}_3| = k + 2r + 2$ and padding R_3 . This settles Case 2.

Before plunging into the proof of the case of $(n-k)(n-k-1) \ge k$, a result due to Lee and Lin [4] is needed.

Lemma 11 [4]. If k is an even integer with $k \ge 4$, then there exist k/2 - 1 edge-disjoint k-cycles in $C_{k/2,k/2-1} \cup K_{k/2,k/2}$.

Lemma 12. Let k be a positive even integer and let n be a positive integer with $4 \le k < n-1 < 2k-1$. If $(n-k)(n-k-1) \ge k$, then $C_{n,n-1}$ has a (C_k, S_k) -covering \mathscr{C} with $|\mathscr{C}| = \lceil n(n-1)/k \rceil$.

Proof. Let n-1 = k+r. From the assumption k < n-1 < 2k-1, we have 0 < r < k-1. Since $(n-k)(n-k-1) \ge k$, we assume that $r(r+1) = \alpha k + \beta$, where $\alpha \ge 1$ and $0 \le \beta \le k-1$. Let $A''_0 = \left\{a_0, a_1, \ldots, a_{\frac{k}{2}-1}\right\}$, $A''_1 = \left\{a_{\frac{k}{2}}, a_{\frac{k}{2}+1}, \ldots, a_{k-1}\right\}$, $A''_2 = A \setminus (A''_0 \cup A''_1)$, $B''_0 = \{b_0, b_1, \ldots, b_{k-1}\}$, $B''_1 = B \setminus B''_0$. Let $G_i = C_{n,n-1}[A''_i \cup B''_0]$ for $i \in \{0, 1, 2\}$ and $G_3 = C_{n,n-1}[A \cup B''_1]$. Clearly, $C_{n,n-1} = G_0 \cup G_1 \cup G_2 \cup G_3$. Note that G_0 and G_1 are isomorphic to $C_{k/2,k/2-1} \cup K_{k/2,k/2}$, G_2 is isomorphic to $K_{r+1,k}$, which is S_k -decomposable by Lemma 1, and G_3 is isomorphic to $K_{k,r+1} \cup C_{r+1,r}$. Let $p_0 = \lceil \alpha/2 \rceil$ and $p_1 = \lfloor \alpha/2 \rfloor$. In the following, we will show that, for each $i \in \{0,1\}$, G_i can be decomposed into p_i copies of C_k and k/2 copies of S_{k-2p_i-1} , and G_3 can be decomposed into k/2 copies of S_{2p_i+1} and r+1 copies of $S_{k'}$, $k' \le k$, such that the $(k-2p_i-1)$ -stars and $(2p_i+1)$ -stars have their centers in A''_i .

We first show the required decomposition of G_i for $i \in \{0,1\}$. Since r < k-1, we have r+1 < k, and in turn $\alpha < r$. Thus, $p_0 = \left\lceil \frac{\alpha}{2} \right\rceil \leq \frac{\alpha+1}{2} \leq \frac{(r-1)+1}{2} \leq \frac{k-2}{2} = \frac{k}{2} - 1$, which implies $p_i \leq k/2 - 1$ for $i \in \{0,1\}$. This assures us that there exist p_i edge-disjoint k-cycles in G_i by Lemma 11. Suppose that $Q_{i,0}, \ldots, Q_{i,p_i-1}$ are edge-disjoint k-cycles in G_i . Let $F_i = G_i - E\left(\bigcup_{h=0}^{p_i-1} Q_{i,h}\right)$ and $X_{i,j} = F_i\left[\left\{a_{ik/2+j}\right\} \cup B''_0\right]$ where $i \in \{0,1\}, j \in \{0,\ldots,k/2-1\}$. Since $\deg_{G_i} a_{ik/2+j} = k - 1$ and each $Q_{i,h}$ uses two edges incident with $a_{ik/2+j}$ for each i and j, we have $\deg_{F_i} a_{ik/2+j} = k - 2p_i - 1$. Hence $X_{i,j}$ is a $(k - 2p_i - 1)$ -star with center $a_{ik/2+j}$.

Next we show the required star decomposition of G_3 . For $j \in \{0, \ldots, k/2-1\}$, let

$$X'_{i,j} = \begin{cases} \left\langle b_{k+(2p_0+1)j}, b_{k+(2p_0+1)j+1}, \dots, b_{k+(2p_0+1)j+2p_0} \right\rangle_{a_j}, & \text{if } i = 0, \\ \left\langle b_{(p_0+3/2)k+(2p_1+1)j}, b_{(p_0+3/2)k+(2p_1+1)j+1}, \\ \dots, b_{(p_0+3/2)k+(2p_1+1)j+2p_1} \right\rangle_{a_{k/2+i}}, & \text{if } i = 1, \end{cases}$$

where the subscripts of b's are taken modulo r + 1 in the set of numbers $\{k, k + 1, \ldots, k + r\}$. Since $2p_1 + 1 \leq 2p_0 + 1 \leq \alpha + 2 \leq r + 1$, this assures us that there are enough edges for the construction of $X'_{0,j}$ and $X'_{1,j}$. Note that $X'_{i,j}$ is a $(2p_i + 1)$ -star and $X_{i,j} \cup X'_{i,j}$ is a k-star for $i \in \{0, 1\}, j \in \{0, \ldots, k/2 - 1\}$.

On the other hand, let $\tilde{k} - \beta = \tau(r+1) + \rho$ where $\tau \ge 0$ and $0 \le \rho \le r$. We have that

$$\begin{aligned} |E(G_3)| &- \left| E\left(\bigcup_{i \in \{0,1\}} \bigcup_{j \in \{0,\dots,k/2-1\}} X'_{i,j}\right) \right| \\ &= (k+r)(r+1) - (2p_0 + 2p_1 + 2)(k/2) \\ &= (k+r)(r+1) - (\alpha+1)k \\ &= (k+r)(r+1) - r(r+1) - (k-\beta) \\ &= k(r+1) - \tau(r+1) - \rho = (k-\tau)(r+1) - \rho \\ &= (k-\tau-1)\rho + (k-\tau)(r+1-\rho). \end{aligned}$$

Hence there exists a decomposition \mathscr{G} of $G_3 - E\left(\bigcup_{i \in \{0,1\}} \bigcup_{j \in \{0,\dots,k/2-1\}} X'_{i,j}\right)$ into ρ copies of $(k - \tau - 1)$ -star with center b_w for $w = k, k + 1, \dots, k + \rho - 1$ and $r + 1 - \rho$ copies of $(k - \tau)$ -star with center b_w for $w = k + \rho, k + \rho + 1, \dots, k + r$, that is,

$$Y_w = \begin{cases} S_{k-\tau-1}, & \text{if } w \in \{k, k+1, \dots, k+\rho-1\}, \\ S_{k-\tau}, & \text{if } w \in \{k+\rho, k+\rho+1, \dots, k+r\} \end{cases}$$

Define a star Y'_w as follows.

$$Y'_{w} = \begin{cases} \langle a_{w_{1}}, a_{w_{2}}, \dots, a_{w_{\tau}}, a_{w_{\tau+1}} \rangle_{b_{w}}, & \text{if } w \in \{k, k+1, \dots, k+\rho-1\}, \\ \langle a_{w_{1}}, a_{w_{2}}, \dots, a_{w_{\tau}} \rangle_{b_{w}}, & \text{if } w \in \{k+\rho, k+\rho+1, \dots, k+r\}, \end{cases}$$

where $b_w a_{wt} \in E(X'_{i,j})$ for $1 \le t \le \tau + 1$. Since $\left| E\left(\bigcup_{i \in \{0,1\}} \bigcup_{j \in \{0,\dots,k/2-1\}} X'_{i,j}\right) \right|$ = $(\alpha+1)k$, $|B''_1| = r+1$ and $(\tau+1)(r+1) = \tau(r+1) + (r+1) = (k-\beta-\rho) + (r+1) < 2k \le (\alpha+1)k$, it follows that $\tau + 1 < (\alpha+1)k/(r+1)$. This assures us that there are enough edges for the construction of Y'_w . Note that $Y_w + E(Y'_w)$ is a k-star. Hence $C_{n,n-1}$ has a (C_k, S_k) -covering \mathscr{C}_4 with padding $\bigcup_{w \in \{k,k+1,\dots,k+r\}} Y'_w$ and $|\mathscr{C}_4| = (k+r+1) + (r+1) + \alpha = k + 2r + 2 + \alpha = \lceil n(n-1)/k \rceil$. This completes the proof.

Now, we are ready for the main result of this section.

Theorem 13. Let k be a positive even integer and let n be a positive integer with $4 \le k \le n-1$. Then

$$c(C_{n,n-1}; C_k, S_k) = \begin{cases} \lceil n(n-1)/k \rceil, & \text{if } k < n-1, \\ k+2, & \text{if } k = n-1. \end{cases}$$

Proof. Since $|E(C_{n,n-1})| = n(n-1)$, we have that $c(C_{n,n-1}; C_k, S_k) \ge \lceil n(n-1)/k \rceil$. Let n-1 = qk+r, where q and r are integers with $q \ge 1, 0 \le r \le k-1$. We consider the following two cases.

Case 1. q = 1. For r = 0, the result follows from Corollary 7. If $r \neq 0$, by Lemmas 8, 10 and 12, $C_{k+r+1,k+r}$ has a (C_k, S_k) -covering \mathscr{C} with $|\mathscr{C}| = \lceil (k+r+1)(k+r)/k \rceil$.

Case 2. $q \geq 2$. Note that

$$C_{n,n-1} = C_{qk+r+1,qk+r}$$

= $C_{(q-1)k+1,(q-1)k} \cup C_{k+r+1,k+r} \cup K_{(q-1)k,k+r} \cup K_{k+r,(q-1)k}.$

Trivially, $|E(C_{(q-1)k+1,(q-1)k})|$, $|E(K_{(q-1)k,k+r})|$ and $|E(K_{k+r,(q-1)k})|$ are multiples of k, by Lemmas 1 and 2, we have that $C_{(q-1)k+1,(q-1)k}$, $K_{(q-1)k,k+r}$ and $K_{k+r,(q-1)k}$ have S_k -decompositions $\mathscr{A}^{(1)}$, $\mathscr{A}^{(2)}$ and $\mathscr{A}^{(3)}$ with $|\mathscr{A}^{(1)}| = (q-1)((q-1)k+1)$, $|\mathscr{A}^{(2)}| = |\mathscr{A}^{(3)}| = (k+r)(q-1)$. For the case of r = 0, by Lemma 4, $C_{k+1,k}$ has a C_k -decomposition \mathscr{C} with $|\mathscr{C}| = k+1$. Hence $C_{n,n-1}$ is (C_k, S_k) -decomposable, that is, $C_{n,n-1}$ has a (C_k, S_k) -covering $\bigcup_{i=1}^3 \mathscr{A}^{(i)} \cup \mathscr{C}$ with cardinality (q-1)((q-1)k+1)+k(q-1)+k(q-1)+k+1=q(qk+1)=n(n-1)/k. For the other case of $r \neq 0$, by Lemmas 10 and 12, $C_{k+r+1,k+r}$ has a (C_k, S_k) -covering \mathscr{C}' with $|\mathscr{C}'| = \lceil (k+r+1)(k+r)/k \rceil$. Hence $\bigcup_{i=1}^3 \mathscr{A}^{(i)} \cup \mathscr{C}'$ is a (C_k, S_k) -covering of $C_{n,n-1}$ with cardinality $(q-1)((q-1)k+1)+(k+r)/k \rceil$. Hence $\bigcup_{i=1}^3 \mathscr{A}^{(i)} \cup \mathscr{C}'$ is a (C_k, S_k) -covering of $C_{n,n-1}$ with cardinality $(q-1)((q-1)k+1)+(k+r)/k \rceil$. Hence $\bigcup_{i=1}^3 \mathscr{A}^{(i)} \cup \mathscr{C}'$ is a (C_k, S_k) -covering of $C_{n,n-1}$ with cardinality $(q-1)((q-1)k+1)+(k+r)(q-1)+(k+r)/k \rceil$. This completes the proof.

References

- H.C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin. 108 (2013) 355–364.
- H.C. Lee, Packing and covering the balanced complete bipartite multigraph with cycles and stars, Discrete Math. Theor. Comput. Sci. 16 (2014) 189–202. https://doi.org/10.46298/DMTCS.2091
- H.C. Lee and Z.C. Chen, Maximum packings and minimum coverings of multigraphs with paths and stars, Taiwanese J. Math. 19 (2015) 1341–1357. https://doi.org/10.11650/tjm.19.2015.4456
- [4] H.C. Lee and J.J. Lin, Decomposition of the complete bipartite graph with a 1-factor removed into cycles and stars, Discrete Math. **313** (2013) 2354–2358. https://doi.org/10.1016/j.disc.2013.06.014
- [5] C. Lin, J.J. Lin and T.W. Shyu, Isomorphic star decomposition of multicrowns and the power of cycles, Ars Combin. 53 (1999) 249–256.
- [6] J. Ma, L. Pu and H. Shen, Cycle decompositions of $K_{n,n} I$, SIAM J. Discrete Math. **20** (2006) 603–609. https://doi.org/10.1137/050626363
- S. Yamamoto, H. Ikeda, S. Shige-eda, K. Ushio and N. Hamada, On claw decomposition of complete graphs and complete bipartie graphs, Hiroshima Math. J. 5 (1975) 33-42. https://doi.org/10.32917/hmj/1206136782

Received 22 October 2018 Revised 7 July 2019 Accepted 7 July 2019