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Abstract

A watchman’s walk for a graph G is a minimum-length closed dominating
walk, and the length of such a walk is denoted (G). We introduce several
lower bounds for such walks, and apply them to determine the length of
watchman’s walks in several grids.
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1. Introduction

The watchman’s walk problem was introduced in [11], and concerned finding a
walk through a museum such that a guard, along this walk, would either visit,
or be able to peer into, every room; would begin and end at the same point,
so that the walk could be easily repeated; and finally, of all such walks, be the
shortest possible. In graph theoretic terms, this is to find a minimum length
closed dominating walk (MCDW) of a graph G. We denote the length of such a
walk as w(G), and call it the watchman number of G.
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Obviously, this parameter is heavily related to the domination number of a
graph, as the vertices of the walk make up a dominating set. However, these
parameters may be quite different. Since we are interested in the length of a
walk, it is possible that we will have to visit “useless” vertices (not required in
any dominating set) many times, which can significantly add to w(G). Also,
it is possible to construct graphs for which no MCDW contains any minimum
dominating set. As noted in [12], one such family of graphs is Cn2K2, for n ≥ 8.
Thus, we get a sense that while related, these parameters are fundamentally quite
different.

Likewise, there are similarities to two domination variants: connected dom-
ination and dominating cycles. Certainly, the vertices of every MCDW form a
connected dominating set, though again, due to the need to revisit vertices, the
difference between these two parameters can be arbitrarily large. (Even in a
path, the length of an MCDW is essentially double that of a minimum connected
dominating set.) And, while a minimum length dominating cycle is similar to an
MCDW, it may be shorter (as an MCDW may take a “short cut” back through
previously visited vertices), and an MCDW will exist in every graph, while a
dominating cycle may not exist even in non-trees.

Previous work with the idea of the watchman’s walk has touched on a variety
of graph families. The parameter w(G) has been studied for trees and cycles [11];
some circulant graphs [3]; planar and outerplanar graphs [7, 13]; and the block
intersection graphs of Steiner Triple systems [8]. (Allowing multiple watchmen
and minimizing the time a vertex is unguarded has also been considered [1, 5, 6].)

In many cases, the intuitively “correct” watchman’s walk is not difficult to
find. However, it is difficult to prove such a closed dominating walk is minimum.
In this paper, we will concentrate on finding lower bounds for the watchman num-
ber. We will particularly consider our results on the Cartesian products of graphs,
and prove a number of results on these families. Such families, particularly grids
(Pn2Pm), have long been a part of the domination literature. Recently, Chang’s
conjecture [2] was verified.

Theorem 1 [10]. If 16 ≤ n ≤ m, then

γ(Pn2Pm) =

⌊
(n+ 2)(m+ 2)

5

⌋
− 4.

A similar result for independent domination followed [4]. The examination
of the eternal domination number on grids is on-going, with results for Pk2Pn

grids when k ≤ 5; see, for example, [9].

There has also been previous work on the watchman’s walk of the Cartesian
product of graphs [12]. In that work, bounds are given for w(T2Kn) which
depend highly on the structure of the tree T . In a tree T , we call every vertex
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adjacent to a leaf a stem. Let T0 be the subtree of T obtained by deleting all the
leaves. An external stem will be a stem that is also a leaf in T0; otherwise, the
stem is internal. Further, given a set Y of stems, let L(Y ) be the set of leaves
adjacent to any vertex in Y .

Theorem 2 [12]. Let T be a tree, S be the set of stems adjacent to at least n
2

leaves, X be the set of external stems adjacent to at least n
2 leaves, and Y be the

remaining external stems of T . Let T ? be the subtree of T induced by V (T )\L(S).
Then

2|E(T0)|+ (n− 1)|X|+ 2|L(Y )| ≤ w(T2Kn) ≤ 2|E(T ?)|+ (n− 1)|S|+ 1.

Further work is done on the particular case when n = 2. The following
bounds are proved, and shown to be sharp.

Theorem 3 [12]. Let T be a tree with γ(T ) ≥ 2. Then

2|E(T0)|+ 2

⌈
|L(T0)|

2

⌉
≤ w(T2K2) ≤ 2|E(T0)|+ 2|L(T0)| − 1.

In this paper we improve on the work of Hartnell and Whitehead on the
watchman’s walks of the Cartesian products of graphs. To that end, in Section
2 we introduce a number of lower bounds on the watchman’s walk based on
classical graph parameters such as diameter and maximum degree. In Section 3,
we consider the special case of graph products, and produce a number of bounds
on these products in the general setting. In Section 4, we consider the special case
of grids (Pn2Pm) and toroidal grids (Cn2Cm), and conclude with some remarks
on strong grids in Section 5.

2. Bounds

Recall that the diameter of a graphG, diam(G), is the maximum distance between
any two vertices of G, and let u and v be a pair of vertices that are this maximum
distance apart. While neither u nor v must be on a watchman’s walk, some
neighbour u′ of u must be visited. Then, any watchman’s walk that begins at
u′ must continue to, at least, a neighbour of v, and then return to u′. That
is, w(G) ≥ 2(diam(G) − 2). We can generalise this result. Let d(u, v) be the
distance between a pair of vertices in a graph G. Then for any set K ⊆ V (G),
define ρ(K) = minu,v∈K,u6=v{d(u, v)}.

Theorem 4. If G is a connected graph and K ⊆ V (G), then

w(G) ≥ max
K⊆V (G)

{|K|(ρ(K)− 2)}.
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Proof. Let K ⊆ V (G) for a connected graph G with d(u, v) ≥ 3 for all distinct
u, v ∈ K. We will prove that w(G) ≥ |K|(ρ(K)−2). (Those cases where ρ(K) ≤ 2
will only be the maximum for graphs with a universal vertex, in which case
w(G) = 0, as required.) Let W be an MCDW of G. Certainly, W dominates each
vertex of K. If K = {v1, v2, . . . , vk}, then let the first vertex of W that dominates
vi be wi. Then W can be considered a walk w1, σ1, w2, σ2, w3, . . . , wk, σk, where
σi is a walk from wi to wi+1, and σk is a walk from wk to w1. If `(σi) is the
length of such a walk, then we know that `(σi) ≥ d(wi, wi+1) ≥ d(vi, vi+1) − 2.
Then w(G) =

∑k
i=1 `(σi) ≥

∑k
i=1(d(vi, vi+1)− 2) ≥ |K|(ρ(K)− 2).

In the case where |K| = 2, we see that Theorem 4 reduces to the diameter
bound previously discussed. This bound is tight for caterpillars. Alternatively,
consider the k-star, K1,k, with each of the edges subdivided m times. Considering
the set K given by the leaves of this subdivided graph, we again see the bound
is tight. (We know that w(T ) of a tree T is twice the number of edges of its leaf
deleted subtree [11].)

Connected graphs with MCDWs of length 0 and 2 are easy to characterize, as
they are those graphs with a dominating vertex and a dominating edge (without
a dominating vertex), respectively. Considering graphs without a dominating
edge, we obtain the following lower bound. Recall that the maximum degree of
a graph is denoted ∆(G).

Theorem 5. If G is a connected graph with n ≥ 3 vertices and no dominating
edge, then w(G) ≥ n

∆(G)−1 .

Proof. Let ∆ = ∆(G). Consider traversing an MCDW of G, keeping tally of
which vertices are dominated as each vertex of the walk is reached. Since G has
no dominating edge, the walk is of length at least 3, and at some point, passes
through three distinct vertices in sequence. Consider the last of these vertices as
the first of the walk.

The first vertex will dominate at most ∆ + 1 vertices. The next w(G) − 3
vertices in the watchman’s walk will subsequently each dominate at most ∆− 1
new vertices, as each vertex (and the vertex previous in the MCDW) would
have been dominated by the previous vertex. This leaves the last two vertices
of the walk. The penultimate vertex dominates at most ∆ − 2 vertices, as it
and its predecessor has been dominated by the predecessor, and the final vertex
of the walk had previously been dominated by the first vertex. Similarly for
the final vertex of the walk. Since every vertex of G must be dominated, n ≤
(∆ + 1) + (∆ − 1)(w(G) − 3) + 2(∆ − 2) = (∆ − 1)w(G), or w(G) ≥ n

∆−1 , as
required.

If we know more about the structure of the graph, we can do a little bit
better. Given a graph G, define N(G) = minuv∈E(G){|N [u] ∩N [v]|}, that is, the
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smallest intersection of the closed neighbourhoods of adjacent vertices.

Theorem 6. If G is a connected graph with n ≥ 3 vertices, no dominating edge,
and maximum degree ∆(G) ≥ N(G), then w(G) ≥ n

∆(G)−N(G)+1 .

Proof. We follow the proof of Theorem 5. Again, consider traversing an MCDW
of G, keeping tally of which vertices are dominated as each vertex in the walk is
reached. Since G has no dominating edge, the walk is of length at least 3, and at
some point, passes through three distinct vertices in sequence. Consider the last
of these vertices as the first of the walk.

The first vertex will dominate at most ∆ + 1 vertices. The next w(G) − 3
vertices in the watchman’s walk will subsequently each dominate at most ∆ +
1−N(G) new vertices, as the vertices that were in the closed neighbourhood of
the previous vertex were counted at the previous step. The penultimate vertex
dominates at most at most ∆−N(G) as the final vertex in the walk was dominated
by the first vertex. The final vertex itself dominates at most ∆ + 1 − N(G) −
(N(G) − 1) = ∆ − 2N(G) + 2 as its neighbourhood intersects that of the first
vertex and the penultimate vertex, and both of their shared neighbourhoods have
at least one vertex in common. Since every vertex is dominated in an MCDW,
n ≤ (∆ + 1) + (∆ − N(G) + 1)(w(G) − 3) + ∆ − N(G) + ∆ − 2N(G) + 2 =
(∆−N(G) + 1)w(G), or w(G) ≥ n

∆−N(G)+1 , as required.

Figure 1. C54C5.

To illustrate the improvement of this bound, consider C54C5 as illustrated
in Figure 1. The bound from Theorem 5 results in w(C54C5) ≥ 4 > 25/7 and
from Theorem 6 results in w(C54C5) ≥ 5 = 25/5. In fact, w(C54C5) = 5 and can
be realised by any diagonal cycle.

There are also some simple bounds that relate directly to the number of edges
or vertices in a graph. To prove the following bounds, we first prove a structural
lemma.
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Lemma 7. If W is a watchman’s walk in a connected graph G, then (i) no edge
of W is traversed more than twice; and (ii) no edge of a cycle contained in W is
ever traversed more than once.

Proof. Let W be a watchman’s walk in G, and assume that some edge of W ,
uv, is traversed at least three times. (If more than three, we need consider only
the first three traversals.) Either the traversals are all in the same direction, or
two are in one direction, and one in the other.

In the first case, we may assume that the structure of the walk is as follows:
beginning at u, then v, then a subwalk W1 from v back to u; then uv again, and
a subwalk W2 from v to u; then finally uv, followed by a walk W3 which returns
to u. We dominate the same vertices with the following walk: begin at u, along
uv, then follow W1 to u; reverse the walk W2 from u to v; then take the walk
W3 back to u. This is a closed walk which visits the same vertices as W , hence
is dominating, but is shorter, a contradiction.

On the other hand, consider if edge uv is traversed twice, and once as vu.
Then the walk W , beginning at uv, must be of the form uv; then a walk, W1

from v to u; then uv; then a walk W2 from v back to v; then vu, followed by
a walk W3 from u to u. (Both W2 and W3 might contain no edges.) Instead,
consider the walk beginning at u that begins uv, then is followed by W2; then by
W1; then by W3. This walk is again dominating, and using fewer edges than W ,
a contradiction.

If W is a watchman’s walk in G whose edges induce a cycle, let uv be an edge
that is traversed twice in that cycle. If uv is traversed twice in the same direction,
then we may consider the walk as beginning with u; then uv; then following W1

until u is next reached; then uv again; then following W2 until u is reached the
final time. Instead, consider the walk starting at u; then following W2 in reverse,
to v; then following W1 to u. Again, this walk uses the same vertices, so a shorter
dominating walk than W .

If uv is traversed in both directions, we can consider the walk W as follows:
first uv, then a walk W1 which returns to v; then vu, followed by a walk W2 that
returns to u. Since W contains a cycle including uv, W1 and W2 must meet at
some vertex w. Then we may consider W1 the union of two walks: W ′1 from v
to w, then W ′′1 from w to v. Similarly, we may define W ′2 and W ′′2 . Then the
walk, beginning at w, given by W ′′1 , then W ′1, then W ′′2 , then W ′2 is a shorter
dominating walk than W .

Lemma 8. If G is a connected graph on n vertices and T is a spanning tree for
G with the maximum possible number of leaves, `, then w(G) ≤ 2(n− 1− `).

Proof. A closed dominating walk of G can be formed by walking the edges of
the leaf deleted subtree of T , with each edge being walked twice. This consists
of the desired number of edges.
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Knowing nothing else about a graph other than the number of edges, we first
consider what bounds may be placed on the length of an MCDW as a result. With
those bounds in mind, we then consider what ratios in that range are actually
achievable.

Theorem 9. If G is a connected graph on m edges, then 0 ≤ w(G) ≤ 2m− 4.

Proof. Certainly, by Lemma 7, no edge is used 3 times. Since G is connected,
it has at most m + 1 vertices. If T is a spanning tree of G, then it will have at
least two leaves. By Lemma 8, we have w(G) ≤ 2((m+ 1)− 1− 2) = 2m− 4.

Corollary 10. If a
b ∈ [0, 2) is a fraction in lowest terms, then there exists a

graph G with m edges such that w(G)
m = a

b .

Proof. We know that w(Kn) = 0, and w(C7) = 7, so the ratios 0 and 1 are
achievable. For a

b ∈ (0, 1) in lowest terms, form G by taking a 7a-cycle and
append 7(b−a) pendent vertices to the cycle. This gives w(G) = 7a and |E(G)| =
7a+ 7(b− a) = 7b, hence w(G)

m = a
b , as desired.

For a
b ∈ (1, 2) in lowest terms, pick c such that 0 < c < b and a + c = 2b.

Then a
b = 2b−c

b = 8b−4c
4b . Form G by taking a path of length 4b− 2c+ 2 and from

one of the non-leaf vertices, append 2c − 2 pendent vertices. The watchman’s
walk is of length 2(4b−2c+2−2) = 8b−4c and there are 4b−2c+2+2c−2 = 4b

edges. Thus, w(G)
m = 8b−4c

4b = 2b−c
b = a

b , as desired.

Having consider the number of edges m as a bound for the watchman’s walk,
it is natural to next consider the number of vertices n.

Theorem 11. If G is a connected graph on n ≥ 3 vertices, then 0 ≤ w(G) ≤
2n− 6, with equality in the upper bound only if G = Pn for n ≥ 7.

Proof. The inequality follows from Lemma 8, as any spanning tree has at least
two leaves. Let T be a spanning tree of G with the maximum number of leaves.
Certainly, if G = T = Pn, then the bound is achieved.

Consider if T 6= Pn. T will have at least 3 leaves and by Lemma 8, w(G) ≤
2n− 8.

If T = Pn, then since T is the spanning tree with the most leaves, every vertex
of G is of degree at most 2. Thus, G is either a cycle, and hence w(G) = n < 2n−6
for n ≥ 7, or G is a path, as required.

Corollary 12. If G is a graph on n ≥ 6 vertices and w(G) is odd, then 3 ≤
w(G) ≤ 2n− 9. Moreover, if w(G) = 2n− 9, then ∆(G) ≤ 3.

Proof. Certainly, there are no watchman’s walks of length 1, so w(G) ≥ 3.
Consider a watchman’s walk. Since w(G) is odd, it must contain an odd cycle of
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length at least 3 as a subgraph. By Lemma 7, no edge in such a cycle is traversed
twice. We know that the upper bound in Theorem 11 is 2n − 6. Assume to the
contrary that there is a graph G on n ≥ 6 vertices with a watchman’s walk W
of length 2n − 7. If there are 3 or more vertices in G not visited by W , then
w(G) ≤ 2((n− 3)− 1) = 2n− 8; a contradiction. If there are exactly 2 vertices in
G not visited by W , then exactly 3 edges are traversed once. These must form
a cycle. Since we have to visit each of the vertices of this cycle, they must have
private neighbours. Since all other edges in W are traversed twice, W must be
a 3-cycle with trees appended to each vertex. This is a contradiction, as there
then must be at least 3 vertices not visited by W . Finally, if there is exactly 1
vertex in G not visited by W , then exactly 5 edges are traversed once. Using a
similar argument to the above, we contradict the number of vertices not visited
by W . Thus w(G) ≤ 2n− 9.

If w(G) = 2n − 9, by Lemma 8, a spanning tree of G with the maximum
number of leaves has at most 3 leaves. It follows that ∆(G) ≤ 3.

Note that for any path P , w(P ) is even, and the only cycle that meets the
upper bound is C9. Thus all other graphs that meet the bound have maximum
degree 3. A collection of these is illustrated in Figure 2, where the dashed lines
represent paths.

Figure 2. A collection of graphs meeting the upper bound in Corollary 12.

3. Bounding Graph Products

We begin this section by giving a very general upper bound on the watchman’s
walk of the Cartesian product of two graphs, then consider some cases in which
the bound can be simplified or minimized. Recall that, for a graph G, γ(G) is
the order of a minimum dominating set, and we call such a set a γ-set of G. Let
DG be the set of all γ-sets of G.

We will be interested in walks, open and closed, through the vertices of a
graph. If a walk W is the shortest walk in G that visits all the vertices in
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S ⊆ V (G), we call W a minimum covering walk of S in G, and denote its length
by TG(S). We similarly define a minimum closed covering walk of S in G, and
denote its length by TG(S). When S = V (G), we write T (G) = TG(V (G)).

Finally, let par(k) be defined as being 1 if k is an odd integer, and 0 if k is
an even integer.

Theorem 13. If G and H are connected graphs, then

w(G2H) ≤ γ(G) · T (H) + min
S∈DG

{TG(S)}+ par(γ(G)) · diam(H).

Proof. Let W ′ be a minimum covering walk of H and W ′′ be a minimum closed
covering walk of a γ-set of G that is of length minS∈DG

{TG(S)}. (Certainly, such
a walk also dominates G.) Using these walks as a base, we will form a walk W
in G2H that is closed and dominating.

Let G1 and G2 be the subgraphs of G2H isomorphic to G that correspond
to the endpoints of the walk W ′. Consider the walks W ′′ in each copy of Gi.
These walks cover a γ-set of G, by construction. Pick a vertex in the γ-set of G1,
and call it v1,1, and the analogous vertex in G2, v2,1. Label all of the vertices in
the γ-sets of G1 and G2 as vi,j , in the order they occur in the walk W ′′.

Starting at v1,1, walk through the copy of H containing it along the walk W ′

to v2,1. Then, in G2, begin following the walk W ′′ until v2,2 is reached. Then,
walk along W ′ in the copy of H containing v2,2 until v1,2 is reached. Then, in
G1, continue the walk W ′′ until v1,3 is reached, at which point use W ′ to return
to G2, and so on. This walk will continue to use copies of W ′ at each vertex of
the γ-set, and the walks between vertices of the γ-set will be derived from W ′′

— in the end, using an edge that corresponds to each edge in W ′′.
At this point, the walk will terminate at either v1,1, if γ(G) is even, or v2,1, if

γ(G) is odd. In the former case, the walk is closed. In the latter, we traverse the
copy of H that contains both v1,1 and v2,1, and this distance is at most diam(H).

Finally, we consider if the closed walk we have constructed is dominating. Let
(u, v) ∈ V (G2H). By construction, vertex u is dominated by the γ-set covered
by W ′. Since every vertex in this γ-set is visited in every copy of G, the vertex
(u, v) is also dominated.

We can replace some of the terms of Theorem 13 with more commonly used
expressions.

Corollary 14. If G and H are connected graphs, then

w(G2H) ≤ γ(G) · (2|V (H)|+ 2) + |V (H)| − 7.

Proof. Let n = |V (H)|. For any connected H, every vertex of H could be visited
by forming a spanning tree of H, then walking each edge of it twice. However,
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there would be no need to close this walk — that is, the farthest vertices in the
spanning tree need only be visited once each. Thus, T (H) ≤ 2(n− 1)− 2, in the
case that the spanning tree has diameter 2.

A similar scheme may be employed to estimate the length of a closed walk
through a γ-set, S, of G. Consider the subgraph of G formed by S and the
shortest paths between the vertices of the γ-set. Again, forming a spanning
tree in this subgraph, we see that we can form a closed walk that contains S
by doubling all the edges of the spanning tree. As vertices in S may each be
distance 3, this means that we may traverse (γ(G) − 1) · 2 · 3 edges, and hence
that TG(S) ≤ 6γ(G)− 6.

Finally, it is possible that if the parity of γ(G) is odd, following the method
of Theorem 13 will land us in a different copy of G, then the one we started in.
Thus, a traversal in H could be between two vertices with distance at most n−1.

Then w(G2H) ≤ γ(G)(2n− 4) + 6γ(G)− 6 + n− 1 = γ(G)(2n+ 2) + n− 7,
as required.

In the case that γ(G) is odd, we may improve the result slightly. (If the graph
H is Hamiltonian, we may even replace the values T (H) and T (H) by |V (H)|−1
and |V (H)|, respectively.)

Corollary 15. If G and H are connected graphs and γ(G) is odd, then

w(G2H) ≤ (γ(G)− 1) · T (H) + min
S∈DG

{T (S)}+ T (H).

Proof. We follow the construction of W as in Theorem 13. However, when the
final vertex of the γ-set is reached in G1, rather than doing a walk through a
copy of H to G2, instead do a closed walk through H, ending back in G1. Then
follow the remaining portion of W ′ through G1 to complete the walk.

In the special case when w(G) = 2, we know that γ(G) = 2, and hence the
final term in Theorem 13 will vanish. In these cases, we may consider for what
graphs this bound is tight; that is, when is this the “right” way to watch these
graphs?

Theorem 16. If G is a multipartite graph, each part having at least |V (H)|
vertices, where w(G) = 2 and H is connected, then w(G2H) ≥ 2|V (H)|.

Proof. Let G be as described. Consider G2H, and an MCDW, W , through its
vertices. If two parts of every copy of G is visited, then we are considering a walk
with at least 2|V (H)| vertices, as required.

If, in some copy of G only a single part is visited, we may consider how the
vertices of this part of this copy of G are dominated. Namely, some version of
each these vertices must be visited in an adjacent copy of G. Since each part is
of order |V (H)| and to move between any two vertices that dominate vertices of
the unvisited part takes at least two steps, this gives the desired result.
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Corollary 17. If G is a multipartite graph, each part having at least |V (H)| ver-
tices, where w(G) = 2 and H has a Hamiltonian path, then w(G2H) = 2|V (H)|.

Proof. By Theorem 16, we need only exhibit an MCDW of length 2|V (H)|.
Let va,b be the vertices of G2H, where a ∈ V (G) and b ∈ V (H). Since
w(G) = 2, there exists an edge xy ∈ E(G), where {x, y} dominates G. Let
|V (H)| = m and P = z1, z2, . . . , zm be a Hamiltonian path in H. The walk
(vx,z1 , vx,z2 , . . . , vx,zm , vy,zm , vy,zm−1 , . . . , vy,z1) is a watchman’s walk of the desired

length as it is clearly closed and {vx,zi , vy,zi} dominates the ith copy of G, for
each 1 ≤ i ≤ m.

v0,0

v0,1

v1,0

v1,1

v2,0

v2,1

v3,0

v3,1

Figure 3. K4,42P4.

To illustrate this equality, consider K4,42P4, as given in Figure 3. A watch-
man’s walk of length 8 is given by (v0,0, v1,0, v2,0, v3,0, v3,1, v2,1, v1,1, v0,1).

Define I to be the set of graphs created by taking any two graphs G and H,
adding a dominating vertex u to G and v to H, then joining u and v by a path
of length p ∈ {0, 1, 2, 3}. For example, the graph in Figure 4 is in I.

Figure 4. A graph in I.

It is interesting to note that for any G = H2Pn, where H ∈ I, the bound
from Theorem 4, with |K| = 2 and ρ(K) = diam(G), equals the bound from
Theorem 13. Thus, in this case we can find w(G). If H is the graph in Figure 4,
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then w(G) = 2n+ 2. We obtain the following theorem for grids in the flavour of
much of the early work on domination numbers.

Theorem 18. If 1 ≤ k ≤ 6, k ≤ n and 3 ≤ n, then w(Pk2Pn) = 2n+ 2k − 8.

Proof. Following the previous argument, the lower bound in Theorem 4 is equal
to the upper bound in Theorem 13 for k ≥ 3; the cases when k = 1 and k = 2
are straightforward.

4. Watching Grids

First let us consider how Theorem 13 can be improved when considering the
product of cycles. In the nicest case, one of these cycles will have length that is
a multiple of six.

Lemma 19. Let m ≥ n ≥ 6 and n ∈ Z;

w(Cm2Cn) ≤ n(m+ 1)

3
.

Proof. The proof consists of exhibiting a closed dominating walk of the given
length. Label the grid with vertices from Zm×Zn in the typical way, with (0, 0) in
the bottom left corner. Consider the subgraph consisting of the vertices induced
by the vertices labelled Zm × {r, r + 1, r + 2, r + 3, r + 4, r + 5}. Let Fr denote
the walk of length 2m+ 1 as follows

(0, r), (0, r + 1), (1, r + 1), (2, r + 1),
. . . , (m− 2, r + 1), (m− 2, r + 2), (m− 2, r + 3), (m− 2, r + 4), (m− 3, r + 4),
. . . , (0, r + 4), (0, r + 5).

. . .

Figure 5. F -walk.
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Let ex denote the edge from (0, x) to (0, x+1) with the operation in Zn. The
following gives a closed dominating walk: F0, e5, F6, e11, F12, e17, . . . , Fn−6, en−1.
Each Fr has 2m+ 1 edges; there are n/6 of these. As well, there are n/6 edges ex.
Thus the total length of the walk is n(m+1)/3, as required.

Applying Theorem 5 to this case gives w(Cm2Cn) ≥ mn/3. Thus the upper
and lower bounds differ by only n/3. We conjecture that the upper bound is the
correct value. Considering vertices that are dominated more than once by non-
sequential vertices, we see that our construction has exactly n/3 such vertices,
which occur at the “corners” of our F -walks. We suspect that these are required,
but have been unable to prove their necessity.

If n is not a multiple of six, we can still find a closed dominating walk that
we believe to be minimum. Define

f(m, 6q + r) = 2q(m+ 1) +



0 if r = 0,
m+ 1 if r = 1,
m+ 2 if r = 2,
m+ 3 if r = 3,
2m if r = 4,
2m+ 1 if r = 5.

Theorem 20. If m ≥ n ≥ 6, then w(Cm2Cn) ≤ f(m,n).

Proof. The proof follows in the same way as that of Lemma 19. If n is divisible
by 6, it is exactly the same. Consider the case when n = 6q + 5. We follow
the same collection of F -walks q times, joined by an edge sequentially. For the
remaining 5 rows, we instead follow a modified F -walk (again joined to the first
and last F -walk), as depicted in Figure 1. Thus, we have constructed a closed
dominating walk using q walks of length 2(m+ 1) (including the joining edges),
and one walk of length 2m + 1 (also including the joining edge), as required. A
similar argument holds for n = 6q + 4.

. . .

Figure 6. Modified F -walk.
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When n = 6q + 1, we follow the same collection of q F -walks, joined by an
edge sequentially. This leaves one row, which we will dominate by walking all the
vertices in that row, returning to the same vertex (i.e., an m-cycle), followed by
an edge to join to the first F -walk. This is a closed dominating walk using q walks
of length 2(m + 1) (including the joining edges), and one walk of length m + 1
(including the joining edge), as required. Noting that the m-cycle also dominates
the rows above and below it, a similar construction will work for n = 6q + 2 and
n = 6q + 3.

Next let us consider the Cartesian product of paths. Define

g(m, 6q + r) = 2q(m+ 2) +



2 if r = 0,
2m− 4 if r = 1,
2m− 2 if r = 2,
2m if r = 3,
2m+ 2 if r = 4,
2m+ 4 if r = 5.

Theorem 21. If m ≥ n ≥ 6, then w(Pm2Pn) ≤ g(m,n).

Proof. Consider first the case when n = 6q. We exhibit a closed dominating walk
of length 2qm+ 4q+ 2. Label the grid with vertices from Zm ×Zn in the typical
way with (0, 0) in the bottom left corner. Consider the subgraph consisting of the
vertices induced by the vertices labelled Zm × {r, r + 1, r + 2, r + 3, r + 4, r + 5}.
Let Tr denote the edges of a walk as follows

(3, r), (3, r + 1), (4, r + 1), (5, r + 1),
. . . , (m− 1, r + 1), (m− 1, r + 2), (m− 1, r + 3), (m− 1, r + 4), (m− 2, r + 4),
. . . , (3, r + 4), (3, r + 5).

Let T ′r denote the edges of a walk as follows

(1, r + 5), (1, r + 4), . . . , (1, r).

Let ei,y denote the edge from (i, y) to (i, y + 1), with the operation in Zn,
and e′x,j denote the edge from (x, j) to (x + 1, j). The following gives a closed
dominating walk

T0, e3,5, T6, e3,11, T12, e3,17, . . . , Tn−6, e
′
2,n−1, e

′
1,n−1, T

′
n−6, e1,n−7, . . . , T

′
0, e
′
1,0, e

′
2,0.

Each Tr has 2m− 3 edges and each T ′r has 5 edges; there are q of each of these.
There are 2(q − 1) e-edges and 4 e′-edges. Thus the total length of the walk is
2qm+ 4q + 2, as required.

Note that in each subsequent case, we need only add 2r vertical edges and
2(m − 4) horizontal edges to the walk to remain closed and dominating. The
result follows.
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. . .

Figure 7. T -walks.

Again, using the result of Theorem 5, we see that mn
3 ≤ w(Pm2Pn) ≤

n(m+2)
3 + 2 when n is divisible by 6. We conjecture that the upper bound is

the correct one.

5. Conclusions and Future Directions

Obviously, while the bounds produced for the grid and the toroidal grid are close,
work remains to be done to close the gaps between them. As the authors believe
they have found the “right” way to walk the grids, this means that new theoretical
lower bounds are needed to tackle the problem of the watchman’s walk.

While products are a natural extension to the current literature on the watch-
man’s walk, early discussions of the problem were considered by the authors in
relation to the popular app game Pokémon Go. Pokémon Go is a game in which
players attempt to catch fantastic creatures called Pokémon. Unlike previous ver-
sions of the Pokémon franchise, this augmented reality version is location-based
— to catch certain Pokémon or interact with other aspects of the game, play-
ers must move in the real world to different locations. If a player was playing
in a large, grid-based city, such as Manhattan, to guarantee capture of all the
Pokémon in an area, the player would follow a watchman’s walk on a grid such
as those described in this paper.

Playing in the flat country-side, however, with many fields, would present a
different option. Rather than a grid of the form Pn2Pm, players would be able
to conceive of their environment as Pn4Pm, where 4 denotes the strong product
of two graphs.

Theorem 22. If G and H are connected graphs on n and m vertices, respectively,
with T (G) ≤ T (H) and T (G) divisible by 5, then

w(G4H) ≤ T (G)

5

(
T (H) + diam(G)

)
+ w(G).
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Proof. Consider minimum closed covering walks WG and WH in G and H, re-
spectively. In G4H, there are m copies of G and n copies of H. We will construct
a walk in G4H based on the idea of walking along WG and WH simultaneously.

Let the vertices of WG = u0, u1, u2, . . . , uk(= u0) and WH = v0, v1, v2, . . . , v`.
Certainly k ≥ n and ` ≥ n, as these walks may revisit vertices. Let Wj be the
walk (uj , v0), (uj+1, v1), (uj+2, v2), . . . , (uj+`, v`) = (uj+`, v0), where the indices
of the ui are considered modulo k. Thus, the first and last vertices of this walk
are in the same copy of G; call this copy G0.

Let W ′ =
⋃ k

5
j=0 V (W5j). Consider a vertex (ua, vb) ∈ W ′, with a 6= 0. Then

the vertex (ua+5, vb) is in W ′, by construction. These vertices dominate (ua+1, vb)
and (ua+4, vb), respectively. Finally, if (ua, vb) ∈ W ′, then (ua+1, vb+1), (ua+4,
vb−1) ∈W ′. These dominate vertices (ua+2, vb) and (ua+3, vb), respectively. Thus,
every vertex in G2H is dominated except possibly those of the form (u0, vb).

Form a walk W as follows. First walk W0. This will end at a vertex in G0.
Walk through G0 to (u5, v0); this walk will have length at most diam(G). Then
walk W5, and repeat this process, walking to (u10, v0), then walking W10, and so
on. Repeat until returning to (u0, v0). As it is possible that some vertex in G0

has not been dominated, walk a watchman’s walk in G0. This walk will be closed
and dominating, and be of length k

5 · `+ k
5 diam(G) + w(G), as required.

Finally, we look at the strong product of cycles. (This could be considered as
playing Pokémon on the inside of a toroidal space station.) The following result
is an improvement upon Theorem 22 in this case.

Theorem 23. If m and n are relatively prime, then

w(C5m4C5n) = 5mn.

Proof. First note that w(C5m4C5n) ≥ 5mn by Theorem 6. Label the grid with
vertices from Z5m × Z5n in the typical way. Consider the closed diagonal walk
((0, 0), (1, 1), (2, 2), . . .). Since m and n are relatively prime, this walk contains
the vertex (x, y) if and only if x − y ≡ 0 (mod 5). This means the walk is
of length 5mn. Now consider any vertex (x, y) not on the walk. If x − y ≡ 1
(mod 5), then (x − 1, y) dominates (x, y) and is on the walk. If x − y ≡ 2
(mod 5), then (x − 1, y + 1) dominates (x, y) and is on the walk. If x − y ≡ 3
(mod 5), then (x + 1, y − 1) dominates (x, y) and is on the walk. If x − y ≡ 4
(mod 5), then (x + 1, y) dominates (x, y) and is on the walk. Since this closed
walk is dominating, it is a watchman’s walk and hence the result holds.
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