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Abstract

A graph G is list vertex k-arborable if for every k-assignment L, one
can choose f(v) ∈ L(v) for each vertex v so that vertices with the same
color induce a forest. In [6], Borodin and Ivanova proved that every planar
graph without 4-cycles adjacent to 3-cycles is list vertex 2-arborable. In fact,
they proved a more general result in terms of variable degeneracy. Inspired
by these results and DP-coloring which is a generalization of list coloring
and has become a widely studied topic, we introduce a generalization on
variable degeneracy including list vertex arboricity. We use this notion to
extend a general result by Borodin and Ivanova. Not only this theorem
implies results about planar graphs without 4-cycles adjacent to 3-cycle by
Borodin and Ivanova, it also implies other results including a result by Kim
and Yu [S.-J. Kim and X. Yu, Planar graphs without 4-cycles adjacent to
triangles are DP-4-colorable, Graphs Combin. 35 (2019) 707–718] that every
planar graph without 4-cycles adjacent to 3-cycles is DP-4-colorable.
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1. Introduction

Every graph in this paper is finite, simple, and undirected. We let V (G) denote
the vertex set and E(G) denote edge set of a graph G. For U ⊆ V (G), we let
G[U ] denote the subgraph of G induced by U. For X,Y ⊆ V (G) where X and Y
are disjoint, we let EG(X,Y ) be the set of all edges in G with one endpoint in X
and the other in Y.
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The vertex-arboricity va(G) of a graph G is the minimum number of subsets
in which V (G) can be partitioned so that each subset induces a forest. This
concept was introduced by Chartrand, Kronk, and Wall [9] as point-arboricity.
They also proved that va(G) ≤ 3 for every planar graph G. Later, Chartrand
and Kronk [10] proved that this bound is sharp by providing an example of a
planar graph G with va(G) = 3. It was shown that determining the vertex-
arboricity of a graph is NP-hard by Garey and Johnson [14] and determining
whether va(G) ≤ 2 is NP-complete for maximal planar graphs G by Hakimi and
Schmeichel [15]. Some results on this topic are as follows.

Raspaud and Wang [20] showed that va(G) ≤
⌈
k+1
2

⌉
for every k-degenerate

graph G. It was proved that every planar graph G has va(G) ≤ 2 when G is
without k-cycles for k ∈ {3, 4, 5, 6} (Raspaud and Wang [20]), without 7-cycles
(Huang, Shiu, and Wang [16]), without intersecting 3-cycles (Chen, Raspaud,
and Wang [11]), without chordal 6-cycles (Huang and Wang [17]), or without
intersecting 5-cycles (Cai, Wu, and Sun [8]).

The concept of list coloring was independently introduced by Vizing [22] and
by Erdős, Rubin, and Taylor [13]. A k-assignment L of a graph G assigns a list
L(v) (a set of colors) with |L(v)| = k to each vertex v of G. A graph G is L-
colorable if there is a proper coloring c where c(v) ∈ L(v). If G is L-colorable for
each k-assignment L, then we say G is k-choosable. The list chromatic number
of G, denoted by χl(G), is the minimum number k such that G is k-choosable.

Borodin, Kostochka, and Toft [7] introduced list vertex arboricity which is a
list version of vertex arboricity. We say that G has an L-forested-coloring f for a
set L = {L(v)|v ∈ V (G)} if one can choose f(v) ∈ L(v) for each vertex v so that
the subgraph induced by vertices with the same color is a forest. We say that G
is list vertex k-arborable if G has an L-forested-coloring for each k-assignment L.
The list vertex arboricity al(G) is defined to be the minimum k such that G is
list vertex k-arborable. Obviously, al(G) ≥ va(G) for every graph G.

It was proved that every planar graph G is list vertex 2-arborable when G
is without k-cycles for k ∈ {3, 4, 5, 6} (Xue and Wu [25]), with no 3-cycles at
distance less than 2 (Borodin and Ivanova [4]), or without 4-cycles adjacent to
3-cycles (Borodin and Ivanova [6]).

Dvořák and Postle [12] introduced a generalization of list coloring in which
they called a correspondence coloring. Following Bernshteyn, Kostochka, and
Pron [2], we call it a DP-coloring.

Definition. Let L be an assignment of a graph G. We call H an L-cover of G if
it satisfies all the followings conditions.

(i) The vertex set of H is
⋃

u∈V (G)({u} × L(u)) = {(u, c) |u ∈ V (G), c ∈ L(u)};
(ii) H[{u} × L(u)] is a complete graph for each u ∈ V (G);
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(iii) For each uv ∈ E(G), the set EH({u} × L(u), {v} × L(v)) is a matching
(maybe empty);

(iv) If uv /∈ E(G), then no edges of H connect{u} × L(u) and {v} × L(v).

Definition. An (H,L)-coloring of G is an independent set in an L-cover H of
G with size |V (G)|. We say that a graph is DP-k-colorable if G has an (H,L)-
coloring for each k-assignment L and each L-cover H of G. The DP-chromatic
number of G, denoted by χDP (G), is the minimum number k such that G is
DP-k-colorable.

If we define edges on H to match exactly the same colors in L(u) and L(v)
for each uv ∈ E(G), then G has an (H,L)-coloring if and only if G is L-colorable.
Thus DP-coloring is a generalization of list coloring and χDP (G) ≥ χl(G).

Dvořák and Postle [12] observed that χDP (G) ≤ 5 for every planar graph
G. This extends a seminal result by Thomassen [21] on list colorings. Voigt [23]
gave an example of a planar graph which is not 4-choosable (thus not DP-4-
colorable). Kim and Ozeki [18] showed that planar graphs without k-cycles are
DP-4-colorable for each k ∈ {3, 4, 5, 6}. Kim and Yu [19] extended the result on 3-
and 4-cycles by showing that planar graphs without 3-cycles adjacent to 4-cycles
are DP-4-colorable.

Inspired by DP-coloring and list-forested-coloring, we define a generalization
of list-forested-coloring as follows.

Definition. Let H be a an L-cover of a graph G with a list assignment L. A
representative set S of G is a set of vertices in H such that

(1) |S| = |V (G)| and

(2) u 6= v for any two different members (u, c) and (v, c′) in S.

A representative graph GS is defined to be the graph obtained from G and a
representative set S such that vertices u and v are adjacent in GS if and only if
(u, i) and (v, j) are in S and both are adjacent in H.

A DP-forested-coloring of (G,H) is a representative set S such that the
representative graph GS is a forest. We say that a graph is DP-vertex-k-arborable
if G has a DP-forested-coloring of (G,H) for each k-assignment L and each L-
cover H of G.

If we define edges on H to match exactly the same colors in L(u) and L(v)
for each uv ∈ E(G), then G has a DP-forested-coloring for G and H if and only
if G has an L-forested-coloring. Note that G has an (H,L)-coloring if and only
if G has a representative set S such that GS has no edges.

In [6], Borodin and Ivanova proved that every planar graph without 4-cycles
adjacent to 3-cycle is list vertex 2-arborable. In fact, they proved a more general
result which we explain later. Inspired by these results, we prove that every
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planar graph without 4-cycles adjacent to 3-cycles is DP-vertex-2-arborable. We
also prove a theorem that extends a general result by Borodin and Ivanova.
Among many consequences, this theorem implies a result by Kim and Yu [19]
that every planar graph without 4-cycles adjacent to 3-cycle is DP-4-colorable.

We note that results in [6] are proved by means of a partition of the vertex
set into desired sets. But representative sets and representative graphs cannot be
considered as partitions. Thus we need different techniques to prove our results.

2. Main Results

Some definitions are required to understand the main results and the proofs.
Let δ(G) for a graph G denote the minimum degree of G. A graph G is strictly
k-degenerate for a positive integer k if every subgraph G′ has a vertex v with
dG(v) < k. Thus a strictly 1-degenerate graph is an edgeless graph and a strictly
2-degenerate graph is a forest. Note that vertices in a strictly k-degenerate graph
can be removed in an order so that each vertex at the time of removal is adjacent
to less than k remaining vertices. Now, let f be a function from V (G) to the set
of positive integers. A graph G is strictly f -degenerate if every subgraph G′ has
a vertex v with dG(v) < f(v).

Now, let fi, i ∈ {1, . . . , s}, be a function from V (G) to the set of nonneg-
ative integers. An (f1, . . . , fs)-partition of a graph G is a partition of V (G)
into V1, . . . , Vs such that an induced subgraph G[Vi] is strictly fi-degenerate
for each i ∈ {1, . . . , s}. A (k1, . . . , ks)-partition where ki is a constant for each
i ∈ {1, . . . , s} is an (f1, . . . , fs)-partition such that fi(v) = ki for each vertex
v. We say that G is (f1, . . . , fs)-partitionable if G has an (f1, . . . , fs)-partition.
Let c be a function from V (G) to the set of positive integers. Define fc from
fi, i ∈ {1, . . . , s}, and c by fc(v) = fc(v)(v). Define Gc to be a graph obtained
from G and c such that V (Gc) = V (G) while vertices u and v are adjacent in
Gc if and only if u and v are adjacent in G and c(u) = c(v). Thus a graph
G is (f1, . . . , fs)-partitionable if and only if there is a function c such that Gc

is strictly fc-degenerate. By Four Color Theorem [1], every planar graph is
(1, 1, 1, 1)-partitionable. Chartrand and Kronk [10] constructed planar graphs
which are not (2, 2)-partitionable. Even stronger, Wegner [24] showed that there
exists a planar graph which is not (2, 1, 1)-partitionable. Thus it is of interest to
find sufficient conditions for planar graphs to be (1, 1, 1, 1)-, (2, 1, 1)-, or (2, 2)-
partitionable.

Borodin, Kostochka, and Toft [7] observed that the notion of (f1, . . . , fs)-
partition can be applied to problems in list coloring and list vertex arboricity.
Since v cannot be strictly 0-degenerate, the condition that fi(v) = 0 is equivalent
to v cannot be colored by i. In other words, i is not in the list of v. Thus the case
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of fi ∈ {0, 1} corresponds to list coloring, and the one of fi ∈ {0, 2} corresponds
to L-forested-coloring. Voigt [23] showed that there exists a planar graph that is
not 4-choosable. Naturally, it is also interesting to find sufficient conditions for
planar graphs to be 4-choosable or list vertex 2-arborable. Borodin and Ivanova
[6] obtained a general result which implies planar graphs without 4-cycles adjacent
to 3-cycles are 4-choosable and list vertex 2-arborable.

Theorem 1 (Theorem 6 in [6]). Every planar graph without 4-cycles adjacent
to 3-cycles is (f1, . . . , fs)-partitionable if s ≥ 2, f1(v) + · · · + fs(v) ≥ 4 for each
vertex v, and fi(v) ∈ {0, 1, 2} for each v and i.

We extend the concept of DP-coloring to (f1, . . . , fs)-partition as follows.
Let H be an L-cover of G with the list {1, . . . , s} for every vertex and R be a
representative set. Define fR(v) to equal fi(v) where (v, i) ∈ R. We say that
a graph G is DP-(f1, . . . , fs)-colorable if we can find a representative set R for
every L-cover H of G such that GR is strictly fR-degenerate. Such R is called
a DP-(f1, . . . , fs)-coloring. If we define edges on H to match exactly the same
colors for each uv ∈ E(G), then a (f1, . . . , fs)-partition exists if and only if a
DP-(f1, . . . , fs)-coloring exists. Thus (f1, . . . , fs)-partition is a special case of
DP-(f1, . . . , fs)-coloring.

To prove our results, we use two following lemmas.

Lemma 2 (Theorem 2 in [3]). Every planar graph G without two adjacent 3-
cycles has δ(G) ≤ 4.

Lemma 3 (Theorem 2 in [5]). If a planar graph G without 4-cycles adjacent to
3-cycles has δ(G) = 4, then G contains a configuration, say F , which is a 6-cycle
x1 · · ·x6 with a chord x1x5 such that d(xi) = 4 for each i ∈ {1, . . . , 6}.

Using these two lemmas, we obtain the following corollary.

Corollary 4. If a planar graph G without 4-cycles adjacent to 3-cycles has
δ(G) ≥ 4, then G contains a configuration F as in Lemma 3.

Proof. Since G does not contain 4-cycles adjacent to 3-cycles, we have that G
does not contain two adjacent 3-cycles. By Lemma 2, δ(G) ≤ 4. Combining with
δ(G) ≥ 4, we have δ(G) = 4. The proof is complete by Lemma 3.

Note that a DP-(2, 2)-coloring is equivalent to a DP-forested-coloring.

Theorem 5. Every planar graph without 4-cycles adjacent to 3-cycles is DP-
vertex-2-arborable.

Proof. Suppose that G with an L-cover H is a minimal counterexample. First,
we show that δ(G) ≥ 4. Suppose to the contrary that G contains a vertex v
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with degree at most 3. By minimality, G − v has a DP-(2, 2)-coloring Rv. Since
v has degree at most 3, there is (v, i) in H with at most one neighbor in R′.
Adding (v, i) to Rv completes a DP-(2, 2)-coloring of G, a contradiction. Thus
δ(G) ≥ 4. From Corollary 4, we have a configuration F. Since G does not contain
4-cycles adjacent to 3-cycles, we obtain that F is an induced subgraph of G. By
minimality, there is a DP-(2, 2)-coloring R′ on G − {x1, . . . , x6}. It remains to
show that we can extend a DP-(2, 2)-coloring to G.

For each xk ∈ V (F ) and i ∈ {1, 2}, we put f∗i (xk) equal to 2 minus the
number of (v, j) ∈ R′ such that (v, j) and (xk, i) are adjacent in H.

If F has a DP-(f∗1 , f
∗
2 )-coloring R∗, then one can obtain a desired DP-(2, 2)-

coloring on G which can be seen from the removal such that we remove vertices
in {x1, . . . , x6} (in an order according to R∗), and then we remove the vertices in
G− {x1, . . . , x6} (in an order according to R′).

Observe that each of x1 and x5 has at most one neighbor outside F and xj
has at most two neighbors outside F for j ∈ {2, 3, 4, 6}. From (f1(xj), f2(xj)) =
(2, 2) for each j and the definition of f∗i (xj), we have {f∗1 (x1), f

∗
2 (x1)} = {1, 2}

= {f∗1 (x5), f
∗
2 (x5)}. Also, we have f∗1 (xj) + f∗2 (xj) ≥ 2 for j ∈ {2, 3, 4, 6}.

We will consider only the case that f∗1 (xj) + f∗2 (xj) = 2 for j ∈ {2, 3, 4, 6}
by the following reason. For each set of f∗i , we can find a set of f ′i with f ′i(v) ≤
f∗i (v) for each vertex v and each i ∈ {1, . . . , s} such that f ′1(xj) + f ′2(xj) = 2
for j ∈ {2, 3, 4, 6}. If we have a partition of V (G) into V1, . . . , Vs such that an
induced subgraph G[Vi] is strictly f ′i-degenerate, then this partition is also f∗i -
degenerate. It follows thatG is (f ′1, . . . , f

′
s)-partitionable impliesG is (f∗1 , . . . , f

∗
s )-

partitionable. Thus the case that satisfies the equality implies the remaining case
of f∗.

Case 1. f∗i (xk) ≥ 1 for each i ∈ {1, 2} and k ∈ {1, . . . , 6}. From above,
we have (f∗1 (x1), f

∗
2 (x1)) = (1, 2) or (2, 1) and (f∗1 (xi), f

∗
2 (xi)) = (1, 1) for each

i ∈ {2, 3, 4, 6}. By symmetry, we assume (f∗1 (x5), f
∗
2 (x5)) = (1, 2). Since the

names of colors can be interchanged, we assume further that (xk, i) and (xk+1, i)
are adjacent in H∗ for each k ∈ {1, . . . , 4} and i ∈ {1, 2}. However, the matchings
from {(x1, 1), (x1, 2)} to {(x5, 1), (x5, 2)} and to {(x6, 1), (x6, 2)} are arbitrary.
Thus there are four non-isomorphic structures of H∗. To illustrate desired color-
ings for all four structures, we use Figure 1 to demonstrate the representation on a
vertex xk. The single cycle means (xk, 1) and the double cycle means (xk, 2). The
shade at (xk, 1) indicates that we choose (xk, 1) to be in a coloring R∗. Figures
2–5 show all four structures of H∗ with desired colorings.

Case 2. There exists k such that f∗i (xk) = 0 but f∗j (xk+1) ≥ 1 where
(xk, i) and (xk+1, j) are adjacent. Note that all subscripts in this case are taken
modulo 6. We will apply a greedy coloring (in which we described later) to
xk+1, xk+2, . . . , x6, x1, x2, . . . , xk, respectively. If we choose (xp, i) to be in R∗



An Analogue of DP-Coloring for Variable Degeneracy and ... 95

in the process of a coloring, we update f∗1 (xq) and f∗2 (xq) of an uncolored vertex
xq by f∗j (xq) = max{0, f∗j (xq)− 1} if (xp, i) and (xq, j) are adjacent in H∗.

First, we choose (xk+1, j) to be in R∗. By the condition of the case, (f∗1 (xk),
f∗2 (xk)) remains the same after an update. Next apply greedy coloring to xk+2,
. . . , x6, x1, x2, . . . , xk−1 by choosing (xm, i) such that f∗i (xm) > 0 to be in R∗.
Since f∗1 (xj)+f

∗
2 (xj) ≥ dF (xj), one can see that a greedy coloring can be attained.

Now at xk, we have that (f∗1 (xk), f∗2 (xk)) 6= (0, 0) by the choice of (xk+1, j) in
the beginning. Thus we can choose (xk, 1) or (xk, 2) to be in R∗ to complete the
coloring.

Now it remains to show that every (f∗1 , f
∗
2 ) of F in the beginning is sim-

ilar to one in Case 1 or Case 2. From the observation before Case 1 that
{f∗1 (x1), f

∗
2 (x1)} = {f∗1 (x5), f

∗
2 (x5)} = {1, 2} and f∗1 (xj) + f∗2 (xj) = 2 for j ∈

{2, 3, 4, 6}. Suppose (f∗1 , f
∗
2 ) is not as in Case 2. Considering (f∗1 (x1), f

∗
2 (x1)),

we have f∗1 (x6) = f∗2 (x6) = 1. Similarly, considering (f∗1 (x5), f
∗
2 (x5)), we have

f∗1 (x4) = f∗2 (x4) = 1. Recursively, we obtain that f∗1 (xi) = f∗2 (xi) = 1 for i = 3
and i = 2, respectively. Thus we have the situation as in Case 1.

Figure 1. (xk, 1) with f1
∗(xk) = i, (xk, 2) with f2

∗(xk) = j and we choose (xk, 1) in a
coloring.

Now we are ready to prove a general result.

Theorem 6. Every planar graph without 4-cycles adjacent to 3-cycles is DP-
(f1, . . . , fs)-colorable if s ≥ 2, f1(v) + · · · + fs(v) ≥ 4 for each vertex v, and
fi(v) ∈ {0, 1, 2} for each v and i.

Proof. Suppose that G with an L-cover H is a minimal counterexample. First,
we show that δ(G) ≥ 4. Suppose to the contrary that G contains a vertex v with
degree at most 3. By minimality, G− v has a DP-(f1, . . . , fs)-coloring Rv. Since
v has degree at most 3, there is (v, i) in H with less than fi(v) neighbors in R′.
Adding (v, i) to Rv completes a DP-(2, 2)-coloring of G, a contradiction. Thus
δ(G) ≥ 4. By Corollary 4, we have a configuration F. By minimality, there is a
DP-(f1, . . . , fs)-coloring R′ on G− {x1, . . . , x6}.
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Figure 2. A desired coloring of F with respect to this structure.

Figure 3. A desired coloring of F with respect to this structure.

For each xk ∈ V (F ) and k ∈ {1, . . . , s}, we put f∗i (xk) equal to fi(xk) minus
the number of (v, j) ∈ R′ such that (v, j) and (x, i) are adjacent in H.

Similarly to the proof of Theorem 5, if we have a DP-(f∗1 , . . . , f
∗
s )-coloring of

F, then one can obtain a desired DP-(f1, . . . , fs)-coloring on G.

Note that vertices xi may have different sizes of their list of colors. To make
all xks have comparable (f∗1 (xk), . . . , f∗s (xk)), we fill out illegal color i for xk by
using f∗i (xk) = 0. Observe that each of x1 and x5 has at most one neighbor
outside F and xj has at most two neighbors outside F for j ∈ {2, 3, 4, 6}. Since
f1(xi) + · · · + fs(xi) ≥ 4, we have f∗1 (xi) + · · · + f∗s (xi) ≥ 3 for i ∈ {1, 5} and
f∗1 (xi) + · · · + f∗s (xi) ≥ 2 for i ∈ {2, 3, 4, 6}. We will consider an inequality as
an equality by the reason similar to one in the proof of Theorem 5. Combining
with the fact that fi(v) ∈ {0, 1, 2} for each i and each vertex v, we obtain that
(f∗1 (xk), . . . , f∗s (xk)) has two or three positive coordinates when k ∈ {1, 5} and
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Figure 4. A desired coloring of F with respect to this structure.

Figure 5. A desired coloring of F with respect to this structure.

(f∗1 (xk), . . . , f∗s (xk)) has one or two positive coordinates when k ∈ {2, 3, 4, 6}.
If (f∗1 (xk), . . . , f∗s (xk)) and (f∗1 (xk+1), . . . , f

∗
s (xk+1)) have different numbers of

positive coordinates, then we can complete the coloring by a method similar to
Case 2 in the proof of Theorem 5.

Thus we assume that each (f∗1 (xk), . . . , f∗s (xk)) has exactly two positive co-
ordinates. Since color i in which f∗i (xk) = 0 can be discarded from consideration,
we arrive that each (f∗1 (xk), . . . , f∗s (xk)) can be reduced to (f∗i1(xk), f∗i2(xk)). Thus
the proof can be completed by a method similar to Case 1 in the proof of Theo-
rem 5.
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