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Abstract

Let v(G) and 7.(G) denote the domination number and exponential
domination number of graph G, respectively. Henning et al., in [Hered-
itary equality of domination and exponential domination, Discuss. Math.
Graph Theory 38 (2018) 275-285] gave a conjecture: There is a finite set
Z of graphs such that a graph G satisfies v(H) = v.(H) for every induced
subgraph H of G if and only if G is .%#-free. In this paper, we study the
conjecture for subcubic graphs. We characterize the class .# by minimal for-
bidden induced subgraphs and prove that the conjecture holds for subcubic
graphs.
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1. INTRODUCTION

Graph theory terminology not presented here can be found in [3]. Let G be a
simple and undirected graph. The vertex set and the edge set of G are denoted by
V(G) and E(G), respectively. The degree, neighborhood and closed neighborhood
of a vertex v in the graph G are denoted by dg(v), Ng(v) and Ng[v] = Ng(v) U
{v}, respectively. If the graph G is clear from context, we simply write d(v), N (v)
and N[v], respectively. The minimum degree and maximum degree of the graph G
are denoted by 0(G) and A(G), respectively. Let S C V(G); N(S) = U eg N(v)
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and N[S] = N(S)U S. The graph induced by S C V is denoted by G[S]. The
distance distg(X,Y') between two sets X and Y of vertices in G is the minimum
length of a path in GG between a vertex in X and a vertex in Y. If no such path
exists, then let dist(X,Y) = co. Let P,, C),, and K, denote the path, cycle and
complete graph with order n, respectively. Let [(G) denote the maximum length
of an induced cycle in G. If A(G) < 3, then G is called a subcubic graph.

A set D C V in a graph G is called a dominating set if every vertex outside
D is adjacent to at least one vertex in D. The domination number v(G) equals
the minimum cardinality of a dominating set in G. The literature on the subject
of domination parameters in graphs up to the year 1997 has been surveyed and
detailed in the two books [3] and [4].

Let D be a set of vertices of a graph G. For two vertices v and v of G, let
dist(,py(u,v) be the minimum length of a path P in G between u and v such
that D contains exactly one endvertex of P but no internal vertex of P. If no
such path exists, then let dist(q p(u,v) = co. Note that, if u and v are distinct
vertices in D, then dist p)(u,u) = 0 and dist g p)(u,v) = oo. For a vertex u of

G, let wie py(u) =X ep (%)dlSt(G’D)(u’v)fl, where (3)™ =0.

Dankelmann et al. [2] define a set D to be an exponential dominating set
of G if wg,p) (u) > 1 for every vertex u of G, and the exponential domination
number v.(G) of G as the minimum size of an exponential dominating set of G.
Note that w(g py(u) > 2 for u € D, and that wig p)(u) > 1 for every vertex u
that has a neighbor in D, which implies 7.(G) < ~(G).

Bessy et al. [1] show that computing the exponential domination number is
APX-hard for subcubic graphs. It is not even known how to decide efficiently
for a given tree T' whether its exponential domination number ~.(7") equals its
domination number (7). The difficulty to decide whether 7.(G) = v(G) for a
given graph G motivates the study of the hereditary class ¢4 of graphs that satisfy
this equality, that is, ¢ is the set of those graphs G such that v.(H) = v(H) for
every induced subgraph H of G.

Henning et al. [5] proved the following results.

Proposition 1 [5]. If G is a {B,D, K4, Ky 3, P;0P3}-free graph, then v(H) =
Ye(H) for every induced subgraph H of G if and only if G is {P7,C7, F1, Fy, F3,
Fy, F5}-free.

Proposition 2 [5]. If T is a tree, then y(H) = ~.(H) for every induced subgraph
H of T if and only if T is { Py, F }-free.

Furthermore, they gave the following conjecture.

Conjecture 1 [5]. There is a finite set .F of graphs such that graph G satisfies
Y(H) = ~e(H) for every induced subgraph H of G if and only if G is F -free.
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In this paper, we study the conjecture for subcubic graphs. We characterize
the class .# by minimal forbidden induced subgraphs. Our main result is the

following.
K23 B D

P> P3

Figure 1. The graphs K 3, P,01P3;, B and D.

CEHED

Fs

Figure 2. The graphs Fy, Fy, F3, Fy and Fj.

Theorem 1. Let G be a subcubic graph. Then v(H) = ~v.(H) for every induced
subgraph H of G if and only if G is .F -free, where # = {P7,C7, F1, Fy, F3, Fg, Fr,
Fy, Fy, Fio, F11}.

Figure 3. The graphs Fg, ..., Fi;.
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2. PROOF OF THEOREM 1

Proof. Since v(H) > ~.(H) for every graph H in .%, necessity follows. In order
to prove sufficiency, suppose that G is an #-free graph with v(G) > ~.(G) of
minimum order. By the choice of G, we have v(H) = 7.(H) for every proper
induced subgraph H of G. Clearly, G is connected. Since 7.(G) = 1 if and only
if v(G) = 1, we obtain .(G) > 2 and v(G) > 3. Since G is {P;, C7}-free, either
G is a tree or G is a subcubic graph with 3 <I(G) < 6.

By Propostion 2, G is not a tree. Then G is a connected subcubic graph
with 3 < I[(G) < 6. Let C : z1x913 - - Zy)71 be a longest induced cycle of G.
Let R=V(G)\V(C).

Case 1. 1(G) = 6. Assume some vertex z has distance 2 from a vertex on V (C')
in G and z1yz is a path in G. If y is adjacent to z2, then G[{z1, x2, x3,x6,y, 2}] =
Fy, which is a contradiction. If y is adjacent to xs, then G[{x1, x3, x4, x6,y,2}] =
Fy, which is a contradiction. By symmetry, we can assume without loss of gener-
ality that y is adjacent to neither x5 nor xz¢. Then G[{z1,z2, x5, %6, ¥y, 2}] = F1,
which is a contradiction. So every vertex in R has distance one from one vertex
on V(C). Since G is Fi-free, every vertex in R has at least two neighbors on C.
Since G is a subcubic graph and v(G) > 3, 2 < |R| < 3.

Case 1.1. |R| = 3. Say R = {u,v,w}. Then every vertex in R is adjacent
to exactly two vertices on C'. Suppose that there exists one vertex in R that is
adjacent to two vertices on C' with distance three. Without loss of generality, we
can assume that u is adjacent to x1 and x4. Then G[{x1, z2, x3, x5, x6, u}| = F1,
which is a contradiction. Hence every vertex in R is adjacent to two vertices on
C with distance at most two. Since G is subcubic and the three vertices in R can
not all be adjacent to two vertices on C|, there exists a vertex in R that is adjacent
to two adjacent vertices on C. Without loss of generality, we can assume that u
is adjacent to x1 and xo. Assume that x3 is adjacent to v. Then v is adjacent to
either x4 or xs.

If v is adjacent to x4, then w is adjacent to x5 and z¢. If vw ¢ E(G), then
G[{z1,x9, 3,24, 25,v,w}| = Fip, which is a contradiction. If vw € E(G), then
G[{z1,x2, 3, T4, x6,u,w}] = F1p, which is a contradiction.

If v is adjacent to x5, then w is adjacent to z4 and zg. If vw € E(G), then
G[{x1, x4, x5, x6,u,v,w}] = Fg, which is a contradiction. If vw ¢ E(G), then
G[{z1,x2, x5, x¢,v,w}] = F1, which is a contradiction.

Case 1.2. |R| = 2. Say R = {u,v}. Suppose that there exists one vertex
in R such that it is adjacent to exactly two vertices on C with distance three.
Without loss of generality, we can assume that u is adjacent to 1 and x4. Then
G[{z1,x2,x3, 5,6, u}] = F1, which is a contradiction. Hence, we can assume
that every vertex in R is not adjacent to exactly two vertices on C' with distance



HEREDITARY EQUALITY OF DOMINATION AND EXPONENTIAL ... 1071

three. So there exists one vertex, say v € R, such that u is adjacent to two
vertices on C with distance at most two.

Suppose that v is adjacent to x1 and zo. If v is adjacent to x;, where i €
{4,5}, then {x1, x4} or {ze, x5} is a dominating set of G and v(G) < 2, which
is a contradiction. So v is adjacent to exactly two vertices z3 and xg on C with
distance three, which is a contradiction.

Suppose that v is adjacent to x1 and z3. If v is adjacent to x;, where i €
{4,6}, then {z1,z4} or {z3,x6} is a dominating set of G and v(G) < 2, which
is a contradiction. So v is adjacent to exactly two vertices xo and x5 on C' with
distance three, which is a contradiction.

Case 2. I(G) = 5. Assume some vertex z has distance 2 from V(C) in G and
x1yz is a path in G. If y is adjacent to x9, then G[{x1,x2,x3,5,y,2}] = Fg,
which is a contradiction. If y is adjacent to x3, then G[{z2, x3, x4, x5,y, 2}] = F1,
which is a contradiction. By symmetry, y has exactly one neighbor x; on C.
Then G[{z1,z2,x3,%5,y, 2}] = F1, which is a contradiction. So every vertex in
R has distance one from one vertex on V(C'). Since G is a subcubic graph and
v(G) >3,2<|R| <5.

Case2.1. |R| =5. Say R ={y; |zy; € E(G),i=1,2,...,5}. fy1y2 ¢ E(G),
then G[{x1,x2,24,25,y1,y2}] = Fi, which is a contradiction. Hence, yijys €
E(G). Similarly, y;y;i+1 € E(G) for i = 1,2,3,4. Then G[{x1, z2, 3,24, Y1, Y2,
ya}] = F», which is a contradiction.

Case 2.2. |R| = 4. Say R = {y; |migs € B(G), i = 1,2,3,4}. I yuyn ¢ E(G),
then G[{z1,z2,x3,24,y1,y2}] = F1, which is a contradiction. If ysys ¢ E(G),
then G[{x1, z2, %3, x4,y3,ys}] = F1, which is a contradiction. Hence, y1y2 € E(G)
and y3ys € F(G). Since x5 is adjacent to at most one vertex in {y1,¥y2,ys3, Y4},
either G[V(C) U {y1,y2}] = F5 or G[V(C) U {ys,ys}] = F3, which is a contradic-
tion.

Case 2.3. |R| = 3. Let G’ be a graph with V(G’") = V(C) U {y1, y2,ys} and
E(G") = E(C) U {z1y1, T2y2, 3y3, y1y2}. Suppose that G’ is a subgraph of G. If
y1rs € E(G), then {z3,y1} is a dominating set of GG, which is a contradiction.
Hence, y125 ¢ E(G). It follows that y; is adjacent to at most one vertex in
{z4,y3}-

Suppose that y124 € E(G). If yoxs € E(G), then G[{x1, 2, x3, 25, Y1, Y2, Y3 }]
= Fg, which is a contradiction. If yszs € E(G), then G[{z1,x2, 3, 5, Y1, Y2, y3}]
= F3 or G[V(C) U {y1,y2,y3}] = F11, which is a contradiction. If dg(xz5) =
2, then G[{z2,x3,24,25,y2,y3}] = F1 or G[V(C) U {y2,y3}] = F3, which is a
contradiction. Hence, y124 ¢ E(G).

Suppose that y1y3 € E(G). If ysx4 € E(G), then G[{x2, x3, x4, z5,y1,y3}] =
Fs, which is a contradiction. If yszs € E(G), then G[V(C) U {y1,12}] = F3
or GIV(C) U {y1,y2,y3}] = Fi1, which is a contradiction. If ysz4 ¢ E(G) and
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ysrs ¢ E(G), then G[{z1,x3,24,25,y1,y3}] = Cs and I[(G) > 6, which is a
contradiction. Hence, y1y3 ¢ E(G).

So dg(y1) = 2. Since G is Fs-free, yoxy € E(G) or yoxs € E(G). If yozy €
E(G), then G[{ZEl, T2,x3,T5,Y2, yg}] = F1 or G[{ﬂfl, T2,T3,T5,Y1,Y2, yg}] = Fg,
which is a contradiction. If yoxs € E(G), then G[V(C) U {y1,y2}] = Fy, which is
a contradiction. Hence, we can assume that no subgraph in G is isomorphic to G.

By symmetry, we discuss it in the following cases.

Case 2.3.1. R={y;|zy; € E(G),i=1,2,3}. If E(G[{y1,y2,y3}]) = 0, then
G[{x1,x2,x3,y1,y2,y3}] = F1, which is a contradiction. Hence, E(G[{y1,v2,y3}])
# (). Since no subgraph in G is isomorphic to G, y1y2,y2y3 ¢ E(G) and y1y3 €
E(G). Since no subgraph in G is isomorphic to G', y124 ¢ E(G). If yoxa ¢ E(G),
then G[{x1,x2,23,24,y1,y2}] = Fi1, which is a contradiction. Hence, yox4 €
E(G). Then G[{z1,z2, 3,24, Y1, Y2,y3}] = F3, which is a contradiction.

Case 2.3.2. R ={y;|zy; € E(G),i=1,2,4}. If E(G[{y1,y2,z3}]) = 0, then
G[{x1,x2, 3, x4,y1,y2}] = F1, which is a contradiction. Hence, E(G[{y1, y2, z3}])
# (. Suppose that y1z3 € E(G). Since G is Fi-free and no subgraph in G is
isomorphic to G/, y1y2, 11y4 ¢ E(G) and yoys € E(G). Then G[{z1,x2, x3, 24, Y1,
y2,Y4}] = F3, which is a contradiction. Hence, y1z3 ¢ E(G).

Suppose that yoz3 € E(G). If E(G[{y1,y2,ya}]) = 0, then G[{z1, 22, x3, 24,
y1,Y2,y4}] = Fio, which is a contradiction. Hence, E(G[{y1,y2,ys}]) # 0. If
y1ys € E(G), then G[{z1,x2,x3,24,y1,y4}] = Cg, which is a contradiction. If
yiye € E(G) or yoys € E(G), then G[{x1,x2, 73,24, y1,Y2,y4}] = Fr, which is a
contradiction. Hence, yoz3 ¢ E(G).

So y1zg ¢ E(G), ya2xs ¢ E(G) and y1y2 € E(G). Since no subgraph in G
is isomorphic to G’, ysxs ¢ E(G). Then G[{x1,x2,x3,T4,Y1,Y2,Ys}] = Fa or
G{x1,x2,x3,24,Y1,Y2,y4}] = F3, which is a contradiction.

Case 2.4. |R| = 2. Say R = {y1,y2} and y121 € E(G). If yox; € E(G) for
i € {3,4}, then {x1,x;} is a dominating set of G, which is a contradiction. Hence,
yox3 ¢ E(G) and yaxy ¢ E(G). Without loss of generality, we can assume that
Yoo € E(G). If y1x; € E(G) for i € {4,5}, then {x2, x;} is a dominating set of
G, which is a contradiction. Hence, y124 ¢ E(G) and y125 ¢ E(G).

If yizs ¢ E(G) and y1y2 ¢ E(G), then G[{z1,z2, 23, x4,y1,y2}] = F1, which
is a contradiction. Hence, y1x3 € E(G) or y1y2 € E(G).

Suppose that y1z3 € E(G). If yoxs € E(G), then {z3,25} is a dominating
set of G, which is a contradiction. Hence, yoxs ¢ E(G). If y1y2 ¢ E(G), then
G[{z2,x3, x4, 25,y1,y2}] = F1, which is a contradiction. If y1y2 € E(G), then
G[V(C)U{y1,y2}] = Fy, which is a contradiction. Hence, y1z3 ¢ E(G) and y1y2 €
E(G). If yoxs ¢ E(G), then G[V(C) U {y1,y2}] = F3, which is a contradiction.
If yoxs € E(G), then G[V(C) U {y1,y2}] = Fy, which is a contradiction.
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Case 3. [(G) = 4. Assume some vertex t has distance 3 from one vertex
on V(C) in G and x1yzt is a path in G. If y is adjacent to x2, then G[V(C) U
{y, z,t}] = Fy, which is a contradiction. If y is adjacent to x3, then G[V(C) U
{y, z,t}] = F3, which is a contradiction. If y is not adjacent to xz; for i = 2,3, 4,
then G[V(C) U {y, z,t}] = F>, which is a contradiction. So every vertex in R
has distance at most two from a vertex on V(C). If |[IN(V(C)) N R| = 1, say
z1y1 € E(G), then {y1,23} is a dominating set of G, which is a contradiction.
Hence, 2 < |[N(V(C)) N R| < 4.

Case 3.1. IN(V(C)) N R| = 4. Say N(V(C)) N R = {yi|ziyi € E(G),
i = 1,2,3,4}. If yyys € E(G), then G[{z1,x2,23,y1,y3}] = Cs, which is a
contradiction with I(G) = 4. By symmetry, y1ys ¢ E(G) and yoys ¢ E(G).

Ify1y2 ¢ E(G) and yoys3 ¢ E(G), then G[{z1, 2, 23, Y1, y2,y3}] = F1, which is
a contradiction. Hence, y1y2 € E(G) or yoy3 € E(G). Without loss of generality,
we can assume that y1y2 € E(G). lf yays € E(G), then G[{x1, x3,x4,Y1,Y2,Yy3}] =
C§, which is a contradiction. If y1y4 € E(G), then G[{x2, x3, x4,y1,Y2,y4}] = Cs,
which is a contradiction. Hence, yoys ¢ E(G) and y1ys ¢ E(G). If yzys € E(G),
then G[{z1,z3,z4,y1,Y2,y3,y4}| = Fo, which is a contradiction. If ysys ¢ E(G),
then G[{z2, z3,x4,Y2,y3,ys}] = F1, which is a contradiction.

Case 3.2. IN(V(C))NR| =3. Say N(V(C))NR = {y;|ziy; € E(G), i =1,
2,3}. If y1ys € E(G), then G[{x1,x2,x3,y1,y3}] = Cs, which is a contradiction.
Hence yiy3 ¢ E(G). If y1y2 ¢ E(G) and yoys ¢ E(G), then G[{z1, 2, 23,41,
y2,y3}] = Fi, which is a contradiction. Hence, y1y2 € E(G) or yoys € E(G).
Without loss of generality, we can assume that y1y2 € E(G). If yizq4 € E(G),
then G[{z2, z3,24,y1,y2}] = C5, which is a contradiction.

Suppose that yoys € E(G). If ysxq € E(G), then G[{x1,z4,y1,y2,y3}] =
C5, which is a contradiction. Hence, y1z4 ¢ E(G) and ysxs ¢ E(G). Then
G[{z1,x3,%4,Y1,Y2,y3}] = Cs, which is a contradiction. Hence y2y3 ¢ E(G).

Suppose that N(y3) \ (V(C) U{y1,y2,uy3}) # 0, say t € N(y3) \ (V(C) U
{y1,y2,y3}). Since I(G) = 4, y1t,yot ¢ E(G). Then G[{x1, x2,x3,y1,Y2,ys3, t}] =
F5, which is a contradiction. Hence N(y3) \ (V(C) U {y1,y2,y3}) = 0.

Suppose that N(y2) \ (V(C) U N[y1]) # 0, say t € N(y2) \ (V(C) U Ny]).
Since I(G) = 4, yst ¢ E(G). Then G[{x1,x2,23,y2,y3,t}] = Fi, which is a
contradiction. Hence, N(y2)\ (V(C)UN]Jyi]) = 0. Then {y;, 23} is a dominating
set of G, which is a contradiction.

Case 3.3. IN(V(C)) N R| = 2.

Case3.3.1. N(V(C))NR = {y; | xiyi € E(G),i=1,2}. Since {z1,z2} isnot a
dominating set of G, V(G)\ (V(C)U{y1,y2}) # 0. Say t1 € N(y1)\ (V(C)U{y2}).
Suppose that y1y2 € E(G). If N(y2) \ (V(C) U {y1,t1}) = 0, then {y1,z3} is

a dominating set of G, which is a contradiction. Hence, we can assume that
tg = N(yg) \ {:L’g,yl}. If tltg ¢ E(G), then G[{:L’g,:L’g,,yl,yQ,tl,tz}] = F1, which
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is a contradiction. If t1to € E(G), then G[{x2,x3,x4,y1,Y2,t1,t2}] = Fb, which
is a contradiction. Hence, we can assume that y1y2 ¢ E(G).

Suppose that N(yz) \ V(C) = 0. Since G[{z1,x2,x4,y1,Yy2,t1}] = F1, T4y1 €
E(G) or zyy2 € E(G). If x4y1 € E(G), then {y1,z2} is a dominating set of
G, which is a contradiction. Hence, z4y2 € E(G). If x3y1 € E(G) or z3ys €
E(G), then {y1,y2} is a dominating set of G, which is a contradiction. Hence,
xz3y1 ¢ E(G) and x3ys ¢ E(G). Then G[{x1,x2,x3, T4,y1,y2,t1}] = Fg, which is
a contradiction. Hence, N(y2) \ V(C) # 0. Say t2 € N(y2) \ V(C). Since G is
Fi-free, {x3,24} € N({y1,y2}). Then {y1,y2} is a dominating set of G, which is
a contradiction.

Case 3.3.2. N(C) = {yi |ziyi € E(G), i = 1,3}. Since | = 4, y1ys ¢ E(G).
Since {x1,z3} is not a dominating set of G, V(G) \ (V(C) U {y1,42}) # 0. Say
t1 € N(y1) \V(C). If N(y3) \ V(C) =0, then {y1,z3} is a dominating set of G,
which is a contradiction. Hence, we can assume that t3 € N(y3) \ V(C). Then
G[{x1,x2,x3,91,y3,t1,t3}] = Py, which is a contradiction.

Case 4. I[(G) = 3. Since G is Pr-free, every vertex in R has distance at most
4 from one vertex on V(C'). Assume vertex y4 has distance 4 from one vertex on
V(C) in G and z1y1y2y3Yy4 is a path in G. Since {1, y3} is not a dominating set of
G, there is a vertex u at distance 2 from {x1,y3} in G. Ifux; € E(G) fori € {2,3},
then G[{u,z;,x1,y1,Y2,y3,y4}] = P, which is a contradiction. Suppose that u
is adjacent to y1. If uys ¢ E(G), then G[{u,z1,x2,y1,y2,y3}] = F1, which is
a contradiction. If uys € E(G), then G[{u,x1,x2,y1,Y2,y3,ys}] = Fio, which
is a contradiction. Hence, uy; ¢ E(G). By a similar way, uys ¢ E(G) and
uys ¢ E(G). Suppose that there exists a path ysvu. If vys € E(G), then G[{u, v,
Y1,Y2,Y3,ya}] = Fg, which is a contradiction. Since | = 3, {z2,z3,y1} N N(v) =
0. So G[{u,v,z1,22,y1,y2,y3}] = Pr, which is a contradiction. Hence, we can
assume that every vertex in R has distance at most 3 from one vertex on V(C).

Case 4.1. IN(V(C)) N R| = 3. Say IN(V(C))NR = {y; | ziy; € E(G), i =
1,2,3}. Since I = 3, E(G[{y1,y2,y3}]) = 0. Then G[{z1,z2,23,y1,Y2,y3}] = Fé,
which is a contradiction.

Case 4.2. |[IN(V(C)) N R| = 2. Say [N(V(C)) N R = {yi|ziyi € E(G),
i =1,2}. Since | = 3, y1y2 ¢ E(G). Suppose that there exists an induced path
x1y1uivy. Since G is Pr-free, N(y2) \ V(C) = 0.

Suppose that there exists a vertex w such that u € N(y1) \ {x1,u1}. If
uiu ¢ E(Q), then G[{u, z1, z2,y1,u1,v1}] = F1, which is a contradiction. If uju €
E(G), then {u1,z2} is a dominating set of G, which is a contradiction. If N(y;)\
{z1,u1} = 0, then {u;,x2} is a dominating set of G, which is a contradiction.
Hence, we can assume that every vertex in V/(G) \ (V(C) U {y1,y2}) is adjacent
to exactly one vertex in {y1,y2}.
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If N(y;) NV (V(G)\ (V(C)U{y1,y2})) = 0, then {x;,y,} is a dominating set
of G, where i,j € {1,2} and j # ¢, which is a contradiction. Suppose that
N(yi) N (V(G)\ (V(C)U{y1,y2})) # 0 for i € {1,2}. If x3 is not adjacent to
y1 and yo, then G[{x1,x2,x3,y1, 51, Y2, s2}| = Fio, where s; € N(y;), which is a
contradiction. If x3 is adjacent to y; or yo, then {yi,y2} is a dominating set of
G, which is a contradiction.

Case 4.3. ||[IN(V(C)) N R| = 1. Say y1x1 € E(G). Since {z1,y1} is not a
dominating set of GG, there is a vertex u at distance 2 from y; in G. Without
loss of generality, we can assume that y;vu be a induced path. If there exists a
vertex t such that yit € E(G). If tv ¢ E(G), then G[{u,v,x1,x2,y1,t}] = Fi,
which is a contradiction. Suppose that tv € E(G). If N(t) \ {y1,v} # 0, say
s € N(t) \ {y1,v}, then G[{t, s, u,v,u,x1,y1}] = Fg, which is a contradiction. If
N(@&)\ {y1,v} =0 or dg(y1) = 2, then {v,x1} is a dominating set of G, which is
a contradiction. ]

3. REMARK

Henning et al. also gave the following conjecture.

Conjecture 2 [5]. The set . in Conjecture 1 can be chosen such that v(F) =3
and Y. (F) = 2 for every graph F in 7.

It is obvious that the conjecture holds for subcubic graphs.
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