HEREDITARY EQUALITY OF DOMINATION AND EXPONENTIAL DOMINATION IN SUBCUBIC GRAPHS

Xue-Gang Chen, Yu-Feng Wang
AND
Xiao-Fei Wu
Department of Mathematics
North China Electric Power University
Beijing 102206, China
e-mail: gxcxdm@163.com

Abstract

Let $\gamma(G)$ and $\gamma_{e}(G)$ denote the domination number and exponential domination number of graph G, respectively. Henning et al., in [Hereditary equality of domination and exponential domination, Discuss. Math. Graph Theory 38 (2018) 275-285] gave a conjecture: There is a finite set \mathscr{F} of graphs such that a graph G satisfies $\gamma(H)=\gamma_{e}(H)$ for every induced subgraph H of G if and only if G is \mathscr{F}-free. In this paper, we study the conjecture for subcubic graphs. We characterize the class \mathscr{F} by minimal forbidden induced subgraphs and prove that the conjecture holds for subcubic graphs.

Keywords: dominating set, exponential dominating set, subcubic graphs.
2010 Mathematics Subject Classification: 05C69, 05C35.

1. Introduction

Graph theory terminology not presented here can be found in [3]. Let G be a simple and undirected graph. The vertex set and the edge set of G are denoted by $V(G)$ and $E(G)$, respectively. The degree, neighborhood and closed neighborhood of a vertex v in the graph G are denoted by $d_{G}(v), N_{G}(v)$ and $N_{G}[v]=N_{G}(v) \cup$ $\{v\}$, respectively. If the graph G is clear from context, we simply write $d(v), N(v)$ and $N[v]$, respectively. The minimum degree and maximum degree of the graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. Let $S \subseteq V(G) ; N(S)=\bigcup_{v \in S} N(v)$
and $N[S]=N(S) \cup S$. The graph induced by $S \subseteq V$ is denoted by $G[S]$. The distance $\operatorname{dist}_{G}(X, Y)$ between two sets X and Y of vertices in G is the minimum length of a path in G between a vertex in X and a vertex in Y. If no such path exists, then let $\operatorname{dist}_{G}(X, Y)=\infty$. Let P_{n}, C_{n} and K_{n} denote the path, cycle and complete graph with order n, respectively. Let $l(G)$ denote the maximum length of an induced cycle in G. If $\Delta(G) \leq 3$, then G is called a subcubic graph.

A set $D \subseteq V$ in a graph G is called a dominating set if every vertex outside D is adjacent to at least one vertex in D. The domination number $\gamma(G)$ equals the minimum cardinality of a dominating set in G. The literature on the subject of domination parameters in graphs up to the year 1997 has been surveyed and detailed in the two books [3] and [4].

Let D be a set of vertices of a graph G. For two vertices u and v of G, let $\operatorname{dist}_{(G, D)}(u, v)$ be the minimum length of a path P in G between u and v such that D contains exactly one endvertex of P but no internal vertex of P. If no such path exists, then let $\operatorname{dist}_{(G, D)}(u, v)=\infty$. Note that, if u and v are distinct vertices in D, then $\operatorname{dist}_{(G, D)}(u, u)=0$ and $\operatorname{dist}_{(G, D)}(u, v)=\infty$. For a vertex u of G, let $\omega_{(G, D)}(u)=\sum_{v \in D}\left(\frac{1}{2}\right)^{\text {dist }}{ }_{(G, D)}(u, v)-1$, where $\left(\frac{1}{2}\right)^{\infty}=0$.

Dankelmann et al. [2] define a set D to be an exponential dominating set of G if $\omega_{(G, D)}(u) \geq 1$ for every vertex u of G, and the exponential domination number $\gamma_{e}(G)$ of G as the minimum size of an exponential dominating set of G. Note that $\omega_{(G, D)}(u) \geq 2$ for $u \in D$, and that $\omega_{(G, D)}(u) \geq 1$ for every vertex u that has a neighbor in D, which implies $\gamma_{e}(G) \leq \gamma(G)$.

Bessy et al. [1] show that computing the exponential domination number is $A P X$-hard for subcubic graphs. It is not even known how to decide efficiently for a given tree T whether its exponential domination number $\gamma_{e}(T)$ equals its domination number $\gamma(T)$. The difficulty to decide whether $\gamma_{e}(G)=\gamma(G)$ for a given graph G motivates the study of the hereditary class \mathscr{G} of graphs that satisfy this equality, that is, \mathscr{G} is the set of those graphs G such that $\gamma_{e}(H)=\gamma(H)$ for every induced subgraph H of G.

Henning et al. [5] proved the following results.
Proposition 1 [5]. If G is a $\left\{B, D, K_{4}, K_{2,3}, P_{2} \square P_{3}\right\}$-free graph, then $\gamma(H)=$ $\gamma_{e}(H)$ for every induced subgraph H of G if and only if G is $\left\{P_{7}, C_{7}, F_{1}, F_{2}, F_{3}\right.$, $\left.F_{4}, F_{5}\right\}$-free.

Proposition 2 [5]. If T is a tree, then $\gamma(H)=\gamma_{e}(H)$ for every induced subgraph H of T if and only if T is $\left\{P_{7}, F_{1}\right\}$-free.

Furthermore, they gave the following conjecture.
Conjecture 1 [5]. There is a finite set \mathscr{F} of graphs such that graph G satisfies $\gamma(H)=\gamma_{e}(H)$ for every induced subgraph H of G if and only if G is \mathscr{F}-free.

In this paper, we study the conjecture for subcubic graphs. We characterize the class \mathscr{F} by minimal forbidden induced subgraphs. Our main result is the following.

$K_{2,3}$

$P_{2} \square P_{3}$

B

D

Figure 1. The graphs $K_{2,3}, P_{2} \square P_{3}, B$ and D.

Figure 2. The graphs $F_{1}, F_{2}, F_{3}, F_{4}$ and F_{5}.
Theorem 1. Let G be a subcubic graph. Then $\gamma(H)=\gamma_{e}(H)$ for every induced subgraph H of G if and only if G is \mathscr{F}-free, where $\mathscr{F}=\left\{P_{7}, C_{7}, F_{1}, F_{2}, F_{3}, F_{6}, F_{7}\right.$, $\left.F_{8}, F_{9}, F_{10}, F_{11}\right\}$.

Figure 3. The graphs F_{6}, \ldots, F_{11}.

2. Proof of Theorem 1

Proof. Since $\gamma(H)>\gamma_{e}(H)$ for every graph H in \mathscr{F}, necessity follows. In order to prove sufficiency, suppose that G is an \mathscr{F}-free graph with $\gamma(G)>\gamma_{e}(G)$ of minimum order. By the choice of G, we have $\gamma(H)=\gamma_{e}(H)$ for every proper induced subgraph H of G. Clearly, G is connected. Since $\gamma_{e}(G)=1$ if and only if $\gamma(G)=1$, we obtain $\gamma_{e}(G) \geq 2$ and $\gamma(G) \geq 3$. Since G is $\left\{P_{7}, C_{7}\right\}$-free, either G is a tree or G is a subcubic graph with $3 \leq l(G) \leq 6$.

By Propostion 2, G is not a tree. Then G is a connected subcubic graph with $3 \leq l(G) \leq 6$. Let $C: x_{1} x_{2} x_{3} \cdots x_{l(G)} x_{1}$ be a longest induced cycle of G. Let $R=V(G) \backslash V(C)$.

Case 1. $l(G)=6$. Assume some vertex z has distance 2 from a vertex on $V(C)$ in G and $x_{1} y z$ is a path in G. If y is adjacent to x_{2}, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{6}, y, z\right\}\right]=$ F_{6}, which is a contradiction. If y is adjacent to x_{3}, then $G\left[\left\{x_{1}, x_{3}, x_{4}, x_{6}, y, z\right\}\right]=$ F_{1}, which is a contradiction. By symmetry, we can assume without loss of generality that y is adjacent to neither x_{5} nor x_{6}. Then $G\left[\left\{x_{1}, x_{2}, x_{5}, x_{6}, y, z\right\}\right]=F_{1}$, which is a contradiction. So every vertex in R has distance one from one vertex on $V(C)$. Since G is F_{1}-free, every vertex in R has at least two neighbors on C. Since G is a subcubic graph and $\gamma(G) \geq 3,2 \leq|R| \leq 3$.

Case 1.1. $|R|=3$. Say $R=\{u, v, w\}$. Then every vertex in R is adjacent to exactly two vertices on C. Suppose that there exists one vertex in R that is adjacent to two vertices on C with distance three. Without loss of generality, we can assume that u is adjacent to x_{1} and x_{4}. Then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, u\right\}\right]=F_{1}$, which is a contradiction. Hence every vertex in R is adjacent to two vertices on C with distance at most two. Since G is subcubic and the three vertices in R can not all be adjacent to two vertices on C, there exists a vertex in R that is adjacent to two adjacent vertices on C. Without loss of generality, we can assume that u is adjacent to x_{1} and x_{2}. Assume that x_{3} is adjacent to v. Then v is adjacent to either x_{4} or x_{5}.

If v is adjacent to x_{4}, then w is adjacent to x_{5} and x_{6}. If $v w \notin E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, v, w\right\}\right]=F_{10}$, which is a contradiction. If $v w \in E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{6}, u, w\right\}\right]=F_{10}$, which is a contradiction.

If v is adjacent to x_{5}, then w is adjacent to x_{4} and x_{6}. If $v w \in E(G)$, then $G\left[\left\{x_{1}, x_{4}, x_{5}, x_{6}, u, v, w\right\}\right]=F_{8}$, which is a contradiction. If $v w \notin E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{5}, x_{6}, v, w\right\}\right]=F_{1}$, which is a contradiction.

Case 1.2. $|R|=2$. Say $R=\{u, v\}$. Suppose that there exists one vertex in R such that it is adjacent to exactly two vertices on C with distance three. Without loss of generality, we can assume that u is adjacent to x_{1} and x_{4}. Then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, u\right\}\right]=F_{1}$, which is a contradiction. Hence, we can assume that every vertex in R is not adjacent to exactly two vertices on C with distance
three. So there exists one vertex, say $u \in R$, such that u is adjacent to two vertices on C with distance at most two.

Suppose that u is adjacent to x_{1} and x_{2}. If v is adjacent to x_{i}, where $i \in$ $\{4,5\}$, then $\left\{x_{1}, x_{4}\right\}$ or $\left\{x_{2}, x_{5}\right\}$ is a dominating set of G and $\gamma(G) \leq 2$, which is a contradiction. So v is adjacent to exactly two vertices x_{3} and x_{6} on C with distance three, which is a contradiction.

Suppose that u is adjacent to x_{1} and x_{3}. If v is adjacent to x_{i}, where $i \in$ $\{4,6\}$, then $\left\{x_{1}, x_{4}\right\}$ or $\left\{x_{3}, x_{6}\right\}$ is a dominating set of G and $\gamma(G) \leq 2$, which is a contradiction. So v is adjacent to exactly two vertices x_{2} and x_{5} on C with distance three, which is a contradiction.

Case 2. $l(G)=5$. Assume some vertex z has distance 2 from $V(C)$ in G and $x_{1} y z$ is a path in G. If y is adjacent to x_{2}, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}, y, z\right\}\right]=F_{6}$, which is a contradiction. If y is adjacent to x_{3}, then $G\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}, y, z\right\}\right]=F_{1}$, which is a contradiction. By symmetry, y has exactly one neighbor x_{1} on C. Then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}, y, z\right\}\right]=F_{1}$, which is a contradiction. So every vertex in R has distance one from one vertex on $V(C)$. Since G is a subcubic graph and $\gamma(G) \geq 3,2 \leq|R| \leq 5$.

Case 2.1. $|R|=5$. Say $R=\left\{y_{i} \mid x_{i} y_{i} \in E(G), i=1,2, \ldots, 5\right\}$. If $y_{1} y_{2} \notin E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{4}, x_{5}, y_{1}, y_{2}\right\}\right]=F_{1}$, which is a contradiction. Hence, $y_{1} y_{2} \in$ $E(G)$. Similarly, $y_{i} y_{i+1} \in E(G)$ for $i=1,2,3,4$. Then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}\right.\right.$, $\left.\left.y_{4}\right\}\right]=F_{2}$, which is a contradiction.

Case 2.2. $|R|=4$. Say $R=\left\{y_{i} \mid x_{i} y_{i} \in E(G), i=1,2,3,4\right\}$. If $y_{1} y_{2} \notin E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}\right\}\right]=F_{1}$, which is a contradiction. If $y_{3} y_{4} \notin E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{3}, y_{4}\right\}\right]=F_{1}$, which is a contradiction. Hence, $y_{1} y_{2} \in E(G)$ and $y_{3} y_{4} \in E(G)$. Since x_{5} is adjacent to at most one vertex in $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$, either $G\left[V(C) \cup\left\{y_{1}, y_{2}\right\}\right]=F_{3}$ or $G\left[V(C) \cup\left\{y_{3}, y_{4}\right\}\right]=F_{3}$, which is a contradiction.

Case 2.3. $|R|=3$. Let G^{\prime} be a graph with $V\left(G^{\prime}\right)=V(C) \cup\left\{y_{1}, y_{2}, y_{3}\right\}$ and $E\left(G^{\prime}\right)=E(C) \cup\left\{x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}, y_{1} y_{2}\right\}$. Suppose that G^{\prime} is a subgraph of G. If $y_{1} x_{5} \in E(G)$, then $\left\{x_{3}, y_{1}\right\}$ is a dominating set of G, which is a contradiction. Hence, $y_{1} x_{5} \notin E(G)$. It follows that y_{1} is adjacent to at most one vertex in $\left\{x_{4}, y_{3}\right\}$.

Suppose that $y_{1} x_{4} \in E(G)$. If $y_{2} x_{5} \in E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}, y_{1}, y_{2}, y_{3}\right\}\right]$ $=F_{8}$, which is a contradiction. If $y_{3} x_{5} \in E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}, y_{1}, y_{2}, y_{3}\right\}\right]$ $=F_{3}$ or $G\left[V(C) \cup\left\{y_{1}, y_{2}, y_{3}\right\}\right]=F_{11}$, which is a contradiction. If $d_{G}\left(x_{5}\right)=$ 2, then $G\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}, y_{2}, y_{3}\right\}\right]=F_{1}$ or $G\left[V(C) \cup\left\{y_{2}, y_{3}\right\}\right]=F_{3}$, which is a contradiction. Hence, $y_{1} x_{4} \notin E(G)$.

Suppose that $y_{1} y_{3} \in E(G)$. If $y_{3} x_{4} \in E(G)$, then $G\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}, y_{1}, y_{3}\right\}\right]=$ F_{6}, which is a contradiction. If $y_{3} x_{5} \in E(G)$, then $G\left[V(C) \cup\left\{y_{1}, y_{2}\right\}\right]=F_{3}$ or $G\left[V(C) \cup\left\{y_{1}, y_{2}, y_{3}\right\}\right]=F_{11}$, which is a contradiction. If $y_{3} x_{4} \notin E(G)$ and
$y_{3} x_{5} \notin E(G)$, then $G\left[\left\{x_{1}, x_{3}, x_{4}, x_{5}, y_{1}, y_{3}\right\}\right]=C_{6}$ and $l(G) \geq 6$, which is a contradiction. Hence, $y_{1} y_{3} \notin E(G)$.

So $d_{G}\left(y_{1}\right)=2$. Since G is F_{3}-free, $y_{2} x_{4} \in E(G)$ or $y_{2} x_{5} \in E(G)$. If $y_{2} x_{4} \in$ $E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}, y_{2}, y_{3}\right\}\right]=F_{1}$ or $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}, y_{1}, y_{2}, y_{3}\right\}\right]=F_{3}$, which is a contradiction. If $y_{2} x_{5} \in E(G)$, then $G\left[V(C) \cup\left\{y_{1}, y_{2}\right\}\right]=F_{9}$, which is a contradiction. Hence, we can assume that no subgraph in G is isomorphic to G^{\prime}.

By symmetry, we discuss it in the following cases.
Case 2.3.1. $R=\left\{y_{i} \mid x_{i} y_{i} \in E(G), i=1,2,3\right\}$. If $E\left(G\left[\left\{y_{1}, y_{2}, y_{3}\right\}\right]\right)=\emptyset$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}\right]=F_{1}$, which is a contradiction. Hence, $E\left(G\left[\left\{y_{1}, y_{2}, y_{3}\right\}\right]\right)$ $\neq \emptyset$. Since no subgraph in G is isomorphic to $G^{\prime}, y_{1} y_{2}, y_{2} y_{3} \notin E(G)$ and $y_{1} y_{3} \in$ $E(G)$. Since no subgraph in G is isomorphic to $G^{\prime}, y_{1} x_{4} \notin E(G)$. If $y_{2} x_{4} \notin E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}\right\}\right]=F_{1}$, which is a contradiction. Hence, $y_{2} x_{4} \in$ $E(G)$. Then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}\right\}\right]=F_{3}$, which is a contradiction.

Case 2.3.2. $R=\left\{y_{i} \mid x_{i} y_{i} \in E(G), i=1,2,4\right\}$. If $E\left(G\left[\left\{y_{1}, y_{2}, x_{3}\right\}\right]\right)=\emptyset$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}\right\}\right]=F_{1}$, which is a contradiction. Hence, $E\left(G\left[\left\{y_{1}, y_{2}, x_{3}\right\}\right]\right)$ $\neq \emptyset$. Suppose that $y_{1} x_{3} \in E(G)$. Since G is F_{1}-free and no subgraph in G is isomorphic to $G^{\prime}, y_{1} y_{2}, y_{1} y_{4} \notin E(G)$ and $y_{2} y_{4} \in E(G)$. Then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}\right.\right.$, $\left.\left.y_{2}, y_{4}\right\}\right]=F_{3}$, which is a contradiction. Hence, $y_{1} x_{3} \notin E(G)$.

Suppose that $y_{2} x_{3} \in E(G)$. If $E\left(G\left[\left\{y_{1}, y_{2}, y_{4}\right\}\right]\right)=\emptyset$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right.\right.$, $\left.\left.y_{1}, y_{2}, y_{4}\right\}\right]=F_{10}$, which is a contradiction. Hence, $E\left(G\left[\left\{y_{1}, y_{2}, y_{4}\right\}\right]\right) \neq \emptyset$. If $y_{1} y_{4} \in E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{4}\right\}\right]=C_{6}$, which is a contradiction. If $y_{1} y_{2} \in E(G)$ or $y_{2} y_{4} \in E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{4}\right\}\right]=F_{7}$, which is a contradiction. Hence, $y_{2} x_{3} \notin E(G)$.

So $y_{1} x_{3} \notin E(G), y_{2} x_{3} \notin E(G)$ and $y_{1} y_{2} \in E(G)$. Since no subgraph in G is isomorphic to $G^{\prime}, y_{4} x_{3} \notin E(G)$. Then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{4}\right\}\right]=F_{2}$ or $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{4}\right\}\right]=F_{3}$, which is a contradiction.

Case 2.4. $|R|=2$. Say $R=\left\{y_{1}, y_{2}\right\}$ and $y_{1} x_{1} \in E(G)$. If $y_{2} x_{i} \in E(G)$ for $i \in\{3,4\}$, then $\left\{x_{1}, x_{i}\right\}$ is a dominating set of G, which is a contradiction. Hence, $y_{2} x_{3} \notin E(G)$ and $y_{2} x_{4} \notin E(G)$. Without loss of generality, we can assume that $y_{2} x_{2} \in E(G)$. If $y_{1} x_{i} \in E(G)$ for $i \in\{4,5\}$, then $\left\{x_{2}, x_{i}\right\}$ is a dominating set of G, which is a contradiction. Hence, $y_{1} x_{4} \notin E(G)$ and $y_{1} x_{5} \notin E(G)$.

If $y_{1} x_{3} \notin E(G)$ and $y_{1} y_{2} \notin E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}\right\}\right]=F_{1}$, which is a contradiction. Hence, $y_{1} x_{3} \in E(G)$ or $y_{1} y_{2} \in E(G)$.

Suppose that $y_{1} x_{3} \in E(G)$. If $y_{2} x_{5} \in E(G)$, then $\left\{x_{3}, x_{5}\right\}$ is a dominating set of G, which is a contradiction. Hence, $y_{2} x_{5} \notin E(G)$. If $y_{1} y_{2} \notin E(G)$, then $G\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}, y_{1}, y_{2}\right\}\right]=F_{1}$, which is a contradiction. If $y_{1} y_{2} \in E(G)$, then $G\left[V(C) \cup\left\{y_{1}, y_{2}\right\}\right]=F_{9}$, which is a contradiction. Hence, $y_{1} x_{3} \notin E(G)$ and $y_{1} y_{2} \in$ $E(G)$. If $y_{2} x_{5} \notin E(G)$, then $G\left[V(C) \cup\left\{y_{1}, y_{2}\right\}\right]=F_{3}$, which is a contradiction. If $y_{2} x_{5} \in E(G)$, then $G\left[V(C) \cup\left\{y_{1}, y_{2}\right\}\right]=F_{9}$, which is a contradiction.

Case 3. $l(G)=4$. Assume some vertex t has distance 3 from one vertex on $V(C)$ in G and $x_{1} y z t$ is a path in G. If y is adjacent to x_{2}, then $G[V(C) \cup$ $\{y, z, t\}]=F_{7}$, which is a contradiction. If y is adjacent to x_{3}, then $G[V(C) \cup$ $\{y, z, t\}]=F_{8}$, which is a contradiction. If y is not adjacent to x_{i} for $i=2,3,4$, then $G[V(C) \cup\{y, z, t\}]=F_{2}$, which is a contradiction. So every vertex in R has distance at most two from a vertex on $V(C)$. If $|N(V(C)) \cap R|=1$, say $x_{1} y_{1} \in E(G)$, then $\left\{y_{1}, x_{3}\right\}$ is a dominating set of G, which is a contradiction. Hence, $2 \leq|N(V(C)) \cap R| \leq 4$.

Case 3.1. $|N(V(C)) \cap R|=4$. Say $N(V(C)) \cap R=\left\{y_{i} \mid x_{i} y_{i} \in E(G)\right.$, $i=1,2,3,4\}$. If $y_{1} y_{3} \in E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{3}\right\}\right]=C_{5}$, which is a contradiction with $l(G)=4$. By symmetry, $y_{1} y_{3} \notin E(G)$ and $y_{2} y_{4} \notin E(G)$.

If $y_{1} y_{2} \notin E(G)$ and $y_{2} y_{3} \notin E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}\right]=F_{1}$, which is a contradiction. Hence, $y_{1} y_{2} \in E(G)$ or $y_{2} y_{3} \in E(G)$. Without loss of generality, we can assume that $y_{1} y_{2} \in E(G)$. If $y_{2} y_{3} \in E(G)$, then $G\left[\left\{x_{1}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}\right\}\right]=$ C_{6}, which is a contradiction. If $y_{1} y_{4} \in E(G)$, then $G\left[\left\{x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{4}\right\}\right]=C_{6}$, which is a contradiction. Hence, $y_{2} y_{3} \notin E(G)$ and $y_{1} y_{4} \notin E(G)$. If $y_{3} y_{4} \in E(G)$, then $G\left[\left\{x_{1}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right\}\right]=F_{2}$, which is a contradiction. If $y_{3} y_{4} \notin E(G)$, then $G\left[\left\{x_{2}, x_{3}, x_{4}, y_{2}, y_{3}, y_{4}\right\}\right]=F_{1}$, which is a contradiction.

Case 3.2. $|N(V(C)) \cap R|=3$. Say $N(V(C)) \cap R=\left\{y_{i} \mid x_{i} y_{i} \in E(G), i=1\right.$, $2,3\}$. If $y_{1} y_{3} \in E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{3}\right\}\right]=C_{5}$, which is a contradiction. Hence $y_{1} y_{3} \notin E(G)$. If $y_{1} y_{2} \notin E(G)$ and $y_{2} y_{3} \notin E(G)$, then $G\left[\left\{x_{1}, x_{2}, x_{3}, y_{1}\right.\right.$, $\left.\left.y_{2}, y_{3}\right\}\right]=F_{1}$, which is a contradiction. Hence, $y_{1} y_{2} \in E(G)$ or $y_{2} y_{3} \in E(G)$. Without loss of generality, we can assume that $y_{1} y_{2} \in E(G)$. If $y_{1} x_{4} \in E(G)$, then $G\left[\left\{x_{2}, x_{3}, x_{4}, y_{1}, y_{2}\right\}\right]=C_{5}$, which is a contradiction.

Suppose that $y_{2} y_{3} \in E(G)$. If $y_{3} x_{4} \in E(G)$, then $G\left[\left\{x_{1}, x_{4}, y_{1}, y_{2}, y_{3}\right\}\right]=$ C_{5}, which is a contradiction. Hence, $y_{1} x_{4} \notin E(G)$ and $y_{3} x_{4} \notin E(G)$. Then $G\left[\left\{x_{1}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}\right\}\right]=C_{6}$, which is a contradiction. Hence $y_{2} y_{3} \notin E(G)$.

Suppose that $N\left(y_{3}\right) \backslash\left(V(C) \cup\left\{y_{1}, y_{2}, y_{3}\right\}\right) \neq \emptyset$, say $t \in N\left(y_{3}\right) \backslash(V(C) \cup$ $\left.\left\{y_{1}, y_{2}, y_{3}\right\}\right)$. Since $l(G)=4, y_{1} t, y_{2} t \notin E(G)$. Then $G\left[\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t\right\}\right]=$ F_{2}, which is a contradiction. Hence $N\left(y_{3}\right) \backslash\left(V(C) \cup\left\{y_{1}, y_{2}, y_{3}\right\}\right)=\emptyset$.

Suppose that $N\left(y_{2}\right) \backslash\left(V(C) \cup N\left[y_{1}\right]\right) \neq \emptyset$, say $t \in N\left(y_{2}\right) \backslash\left(V(C) \cup N\left[y_{1}\right]\right)$. Since $l(G)=4, y_{3} t \notin E(G)$. Then $G\left[\left\{x_{1}, x_{2}, x_{3}, y_{2}, y_{3}, t\right\}\right]=F_{1}$, which is a contradiction. Hence, $N\left(y_{2}\right) \backslash\left(V(C) \cup N\left[y_{1}\right]\right)=\emptyset$. Then $\left\{y_{1}, x_{3}\right\}$ is a dominating set of G, which is a contradiction.

Case 3.3. $|N(V(C)) \cap R|=2$.
Case 3.3.1. $N(V(C)) \cap R=\left\{y_{i} \mid x_{i} y_{i} \in E(G), i=1,2\right\}$. Since $\left\{x_{1}, x_{2}\right\}$ is not a dominating set of $G, V(G) \backslash\left(V(C) \cup\left\{y_{1}, y_{2}\right\}\right) \neq \emptyset$. Say $t_{1} \in N\left(y_{1}\right) \backslash\left(V(C) \cup\left\{y_{2}\right\}\right)$. Suppose that $y_{1} y_{2} \in E(G)$. If $N\left(y_{2}\right) \backslash\left(V(C) \cup\left\{y_{1}, t_{1}\right\}\right)=\emptyset$, then $\left\{y_{1}, x_{3}\right\}$ is a dominating set of G, which is a contradiction. Hence, we can assume that $t_{2}=N\left(y_{2}\right) \backslash\left\{x_{2}, y_{1}\right\}$. If $t_{1} t_{2} \notin E(G)$, then $G\left[\left\{x_{2}, x_{3}, y_{1}, y_{2}, t_{1}, t_{2}\right\}\right]=F_{1}$, which
is a contradiction. If $t_{1} t_{2} \in E(G)$, then $G\left[\left\{x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, t_{1}, t_{2}\right\}\right]=F_{2}$, which is a contradiction. Hence, we can assume that $y_{1} y_{2} \notin E(G)$.

Suppose that $N\left(y_{2}\right) \backslash V(C)=\emptyset$. Since $G\left[\left\{x_{1}, x_{2}, x_{4}, y_{1}, y_{2}, t_{1}\right\}\right]=F_{1}, x_{4} y_{1} \in$ $E(G)$ or $x_{4} y_{2} \in E(G)$. If $x_{4} y_{1} \in E(G)$, then $\left\{y_{1}, x_{2}\right\}$ is a dominating set of G, which is a contradiction. Hence, $x_{4} y_{2} \in E(G)$. If $x_{3} y_{1} \in E(G)$ or $x_{3} y_{2} \in$ $E(G)$, then $\left\{y_{1}, y_{2}\right\}$ is a dominating set of G, which is a contradiction. Hence, $x_{3} y_{1} \notin E(G)$ and $x_{3} y_{2} \notin E(G)$. Then $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, t_{1}\right\}\right]=F_{8}$, which is a contradiction. Hence, $N\left(y_{2}\right) \backslash V(C) \neq \emptyset$. Say $t_{2} \in N\left(y_{2}\right) \backslash V(C)$. Since G is F_{1}-free, $\left\{x_{3}, x_{4}\right\} \subseteq N\left(\left\{y_{1}, y_{2}\right\}\right)$. Then $\left\{y_{1}, y_{2}\right\}$ is a dominating set of G, which is a contradiction.

Case 3.3.2. $N(C)=\left\{y_{i} \mid x_{i} y_{i} \in E(G), i=1,3\right\}$. Since $l=4, y_{1} y_{3} \notin E(G)$. Since $\left\{x_{1}, x_{3}\right\}$ is not a dominating set of $G, V(G) \backslash\left(V(C) \cup\left\{y_{1}, y_{2}\right\}\right) \neq \emptyset$. Say $t_{1} \in N\left(y_{1}\right) \backslash V(C)$. If $N\left(y_{3}\right) \backslash V(C)=\emptyset$, then $\left\{y_{1}, x_{3}\right\}$ is a dominating set of G, which is a contradiction. Hence, we can assume that $t_{3} \in N\left(y_{3}\right) \backslash V(C)$. Then $G\left[\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{3}, t_{1}, t_{3}\right\}\right]=P_{7}$, which is a contradiction.

Case 4. $l(G)=3$. Since G is P_{7}-free, every vertex in R has distance at most 4 from one vertex on $V(C)$. Assume vertex y_{4} has distance 4 from one vertex on $V(C)$ in G and $x_{1} y_{1} y_{2} y_{3} y_{4}$ is a path in G. Since $\left\{x_{1}, y_{3}\right\}$ is not a dominating set of G, there is a vertex u at distance 2 from $\left\{x_{1}, y_{3}\right\}$ in G. If $u x_{i} \in E(G)$ for $i \in\{2,3\}$, then $G\left[\left\{u, x_{i}, x_{1}, y_{1}, y_{2}, y_{3}, y_{4}\right\}\right]=P_{7}$, which is a contradiction. Suppose that u is adjacent to y_{1}. If $u y_{2} \notin E(G)$, then $G\left[\left\{u, x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right\}\right]=F_{1}$, which is a contradiction. If $u y_{2} \in E(G)$, then $G\left[\left\{u, x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, y_{4}\right\}\right]=F_{10}$, which is a contradiction. Hence, $u y_{1} \notin E(G)$. By a similar way, $u y_{2} \notin E(G)$ and $u y_{4} \notin E(G)$. Suppose that there exists a path $y_{3} v u$. If $v y_{2} \in E(G)$, then $G[\{u, v$, $\left.\left.y_{1}, y_{2}, y_{3}, y_{4}\right\}\right]=F_{6}$, which is a contradiction. Since $l=3,\left\{x_{2}, x_{3}, y_{1}\right\} \cap N(v)=$ \emptyset. So $G\left[\left\{u, v, x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right\}\right]=P_{7}$, which is a contradiction. Hence, we can assume that every vertex in R has distance at most 3 from one vertex on $V(C)$.

Case 4.1. $|N(V(C)) \cap R|=3$. Say $\mid N(V(C)) \cap R=\left\{y_{i} \mid x_{i} y_{i} \in E(G), i=\right.$ $1,2,3\}$. Since $l=3, E\left(G\left[\left\{y_{1}, y_{2}, y_{3}\right\}\right]\right)=\emptyset$. Then $G\left[\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}\right]=F_{6}$, which is a contradiction.

Case 4.2. $||N(V(C)) \cap R|=2$. Say $| N(V(C)) \cap R=\left\{y_{i} \mid x_{i} y_{i} \in E(G)\right.$, $i=1,2\}$. Since $l=3, y_{1} y_{2} \notin E(G)$. Suppose that there exists an induced path $x_{1} y_{1} u_{1} v_{1}$. Since G is P_{7}-free, $N\left(y_{2}\right) \backslash V(C)=\emptyset$.

Suppose that there exists a vertex u such that $u \in N\left(y_{1}\right) \backslash\left\{x_{1}, u_{1}\right\}$. If $u_{1} u \notin E(G)$, then $G\left[\left\{u, x_{1}, x_{2}, y_{1}, u_{1}, v_{1}\right\}\right]=F_{1}$, which is a contradiction. If $u_{1} u \in$ $E(G)$, then $\left\{u_{1}, x_{2}\right\}$ is a dominating set of G, which is a contradiction. If $N\left(y_{1}\right) \backslash$ $\left\{x_{1}, u_{1}\right\}=\emptyset$, then $\left\{u_{1}, x_{2}\right\}$ is a dominating set of G, which is a contradiction. Hence, we can assume that every vertex in $V(G) \backslash\left(V(C) \cup\left\{y_{1}, y_{2}\right\}\right)$ is adjacent to exactly one vertex in $\left\{y_{1}, y_{2}\right\}$.

If $N\left(y_{i}\right) \cap\left(V(G) \backslash\left(V(C) \cup\left\{y_{1}, y_{2}\right\}\right)\right)=\emptyset$, then $\left\{x_{i}, y_{j}\right\}$ is a dominating set of G, where $i, j \in\{1,2\}$ and $j \neq i$, which is a contradiction. Suppose that $N\left(y_{i}\right) \cap\left(V(G) \backslash\left(V(C) \cup\left\{y_{1}, y_{2}\right\}\right)\right) \neq \emptyset$ for $i \in\{1,2\}$. If x_{3} is not adjacent to y_{1} and y_{2}, then $G\left[\left\{x_{1}, x_{2}, x_{3}, y_{1}, s_{1}, y_{2}, s_{2}\right\}\right]=F_{10}$, where $s_{i} \in N\left(y_{i}\right)$, which is a contradiction. If x_{3} is adjacent to y_{1} or y_{2}, then $\left\{y_{1}, y_{2}\right\}$ is a dominating set of G, which is a contradiction.

Case 4.3. $\| N(V(C)) \cap R \mid=1$. Say $y_{1} x_{1} \in E(G)$. Since $\left\{x_{1}, y_{1}\right\}$ is not a dominating set of G, there is a vertex u at distance 2 from y_{1} in G. Without loss of generality, we can assume that $y_{1} v u$ be a induced path. If there exists a vertex t such that $y_{1} t \in E(G)$. If $t v \notin E(G)$, then $G\left[\left\{u, v, x_{1}, x_{2}, y_{1}, t\right\}\right]=F_{1}$, which is a contradiction. Suppose that $t v \in E(G)$. If $N(t) \backslash\left\{y_{1}, v\right\} \neq \emptyset$, say $s \in N(t) \backslash\left\{y_{1}, v\right\}$, then $G\left[\left\{t, s, u, v, u, x_{1}, y_{1}\right\}\right]=F_{6}$, which is a contradiction. If $N(t) \backslash\left\{y_{1}, v\right\}=\emptyset$ or $d_{G}\left(y_{1}\right)=2$, then $\left\{v, x_{1}\right\}$ is a dominating set of G, which is a contradiction.

3. Remark

Henning et al. also gave the following conjecture.
Conjecture 2 [5]. The set \mathscr{F} in Conjecture 1 can be chosen such that $\gamma(F)=3$ and $\gamma_{e}(F)=2$ for every graph F in \mathscr{F}.

It is obvious that the conjecture holds for subcubic graphs.

References

[1] S. Bessy, P. Ochem and D. Rautenbach, Exponential domination in subcubic graphs, Electron. J. Combin. 23 (2016) \#P4.42. https://doi.org/10.37236/5711
[2] P. Dankelmann, D. Day, D. Erwin, S. Mukwembi and H. Swart, Domination with exponential decay, Discrete Math. 309 (2009) 5877-5883.
https://doi.org/10.1016/j.disc.2008.06.040
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[5] M.A. Henning, S. Jäger and D. Rautenbach, Hereditary equality of domination and exponential domination, Discuss. Math. Graph Theory 38 (2018) 275-285. https://doi.org/10.7151/dmgt. 2006

