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Abstract

Let γ(G) and γe(G) denote the domination number and exponential
domination number of graph G, respectively. Henning et al., in [Hered-
itary equality of domination and exponential domination, Discuss. Math.
Graph Theory 38 (2018) 275–285] gave a conjecture: There is a finite set
F of graphs such that a graph G satisfies γ(H) = γe(H) for every induced
subgraph H of G if and only if G is F -free. In this paper, we study the
conjecture for subcubic graphs. We characterize the class F by minimal for-
bidden induced subgraphs and prove that the conjecture holds for subcubic
graphs.
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1. Introduction

Graph theory terminology not presented here can be found in [3]. Let G be a
simple and undirected graph. The vertex set and the edge set of G are denoted by
V (G) and E(G), respectively. The degree, neighborhood and closed neighborhood
of a vertex v in the graph G are denoted by dG(v), NG(v) and NG[v] = NG(v) ∪
{v}, respectively. If the graph G is clear from context, we simply write d(v), N(v)
andN [v], respectively. The minimum degree and maximum degree of the graph G
are denoted by δ(G) and ∆(G), respectively. Let S ⊆ V (G); N(S) =

⋃

v∈S N(v)
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and N [S] = N(S) ∪ S. The graph induced by S ⊆ V is denoted by G[S]. The
distance distG(X,Y ) between two sets X and Y of vertices in G is the minimum
length of a path in G between a vertex in X and a vertex in Y . If no such path
exists, then let distG(X,Y ) = ∞. Let Pn, Cn and Kn denote the path, cycle and
complete graph with order n, respectively. Let l(G) denote the maximum length
of an induced cycle in G. If ∆(G) ≤ 3, then G is called a subcubic graph.

A set D ⊆ V in a graph G is called a dominating set if every vertex outside
D is adjacent to at least one vertex in D. The domination number γ(G) equals
the minimum cardinality of a dominating set in G. The literature on the subject
of domination parameters in graphs up to the year 1997 has been surveyed and
detailed in the two books [3] and [4].

Let D be a set of vertices of a graph G. For two vertices u and v of G, let
dist(G,D)(u, v) be the minimum length of a path P in G between u and v such
that D contains exactly one endvertex of P but no internal vertex of P . If no
such path exists, then let dist(G,D)(u, v) = ∞. Note that, if u and v are distinct
vertices in D, then dist(G,D)(u, u) = 0 and dist(G,D)(u, v) = ∞. For a vertex u of

G, let ω(G,D)(u) =
∑

v∈D

(

1
2

)dist(G,D)(u,v)−1
, where

(

1
2

)

∞
= 0.

Dankelmann et al. [2] define a set D to be an exponential dominating set

of G if ω(G,D)(u) ≥ 1 for every vertex u of G, and the exponential domination

number γe(G) of G as the minimum size of an exponential dominating set of G.
Note that ω(G,D)(u) ≥ 2 for u ∈ D, and that ω(G,D)(u) ≥ 1 for every vertex u
that has a neighbor in D, which implies γe(G) ≤ γ(G).

Bessy et al. [1] show that computing the exponential domination number is
APX-hard for subcubic graphs. It is not even known how to decide efficiently
for a given tree T whether its exponential domination number γe(T ) equals its
domination number γ(T ). The difficulty to decide whether γe(G) = γ(G) for a
given graph G motivates the study of the hereditary class G of graphs that satisfy
this equality, that is, G is the set of those graphs G such that γe(H) = γ(H) for
every induced subgraph H of G.

Henning et al. [5] proved the following results.

Proposition 1 [5]. If G is a {B,D,K4,K2,3, P2�P3}-free graph, then γ(H) =
γe(H) for every induced subgraph H of G if and only if G is {P7, C7, F1, F2, F3,
F4, F5}-free.

Proposition 2 [5]. If T is a tree, then γ(H) = γe(H) for every induced subgraph

H of T if and only if T is {P7, F1}-free.

Furthermore, they gave the following conjecture.

Conjecture 1 [5]. There is a finite set F of graphs such that graph G satisfies

γ(H) = γe(H) for every induced subgraph H of G if and only if G is F -free.
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In this paper, we study the conjecture for subcubic graphs. We characterize
the class F by minimal forbidden induced subgraphs. Our main result is the
following.

2,3 32K PP B D

Figure 1. The graphs K2,3, P2�P3, B and D.
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Figure 2. The graphs F1, F2, F3, F4 and F5.

Theorem 1. Let G be a subcubic graph. Then γ(H) = γe(H) for every induced

subgraph H of G if and only if G is F -free, where F = {P7, C7, F1, F2, F3, F6, F7,
F8, F9, F10, F11}.
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Figure 3. The graphs F6, . . . , F11.
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2. Proof of Theorem 1

Proof. Since γ(H) > γe(H) for every graph H in F , necessity follows. In order
to prove sufficiency, suppose that G is an F -free graph with γ(G) > γe(G) of
minimum order. By the choice of G, we have γ(H) = γe(H) for every proper
induced subgraph H of G. Clearly, G is connected. Since γe(G) = 1 if and only
if γ(G) = 1, we obtain γe(G) ≥ 2 and γ(G) ≥ 3. Since G is {P7, C7}-free, either
G is a tree or G is a subcubic graph with 3 ≤ l(G) ≤ 6.

By Propostion 2, G is not a tree. Then G is a connected subcubic graph
with 3 ≤ l(G) ≤ 6. Let C : x1x2x3 · · ·xl(G)x1 be a longest induced cycle of G.
Let R = V (G) \ V (C).

Case 1. l(G) = 6. Assume some vertex z has distance 2 from a vertex on V (C)
in G and x1yz is a path in G. If y is adjacent to x2, then G[{x1, x2, x3, x6, y, z}] =
F6, which is a contradiction. If y is adjacent to x3, then G[{x1, x3, x4, x6, y, z}] =
F1, which is a contradiction. By symmetry, we can assume without loss of gener-
ality that y is adjacent to neither x5 nor x6. Then G[{x1, x2, x5, x6, y, z}] = F1,
which is a contradiction. So every vertex in R has distance one from one vertex
on V (C). Since G is F1-free, every vertex in R has at least two neighbors on C.
Since G is a subcubic graph and γ(G) ≥ 3, 2 ≤ |R| ≤ 3.

Case 1.1. |R| = 3. Say R = {u, v, w}. Then every vertex in R is adjacent
to exactly two vertices on C. Suppose that there exists one vertex in R that is
adjacent to two vertices on C with distance three. Without loss of generality, we
can assume that u is adjacent to x1 and x4. Then G[{x1, x2, x3, x5, x6, u}] = F1,
which is a contradiction. Hence every vertex in R is adjacent to two vertices on
C with distance at most two. Since G is subcubic and the three vertices in R can
not all be adjacent to two vertices on C, there exists a vertex in R that is adjacent
to two adjacent vertices on C. Without loss of generality, we can assume that u
is adjacent to x1 and x2. Assume that x3 is adjacent to v. Then v is adjacent to
either x4 or x5.

If v is adjacent to x4, then w is adjacent to x5 and x6. If vw /∈ E(G), then
G[{x1, x2, x3, x4, x5, v, w}] = F10, which is a contradiction. If vw ∈ E(G), then
G[{x1, x2, x3, x4, x6, u, w}] = F10, which is a contradiction.

If v is adjacent to x5, then w is adjacent to x4 and x6. If vw ∈ E(G), then
G[{x1, x4, x5, x6, u, v, w}] = F8, which is a contradiction. If vw /∈ E(G), then
G[{x1, x2, x5, x6, v, w}] = F1, which is a contradiction.

Case 1.2. |R| = 2. Say R = {u, v}. Suppose that there exists one vertex
in R such that it is adjacent to exactly two vertices on C with distance three.
Without loss of generality, we can assume that u is adjacent to x1 and x4. Then
G[{x1, x2, x3, x5, x6, u}] = F1, which is a contradiction. Hence, we can assume
that every vertex in R is not adjacent to exactly two vertices on C with distance
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three. So there exists one vertex, say u ∈ R, such that u is adjacent to two
vertices on C with distance at most two.

Suppose that u is adjacent to x1 and x2. If v is adjacent to xi, where i ∈
{4, 5}, then {x1, x4} or {x2, x5} is a dominating set of G and γ(G) ≤ 2, which
is a contradiction. So v is adjacent to exactly two vertices x3 and x6 on C with
distance three, which is a contradiction.

Suppose that u is adjacent to x1 and x3. If v is adjacent to xi, where i ∈
{4, 6}, then {x1, x4} or {x3, x6} is a dominating set of G and γ(G) ≤ 2, which
is a contradiction. So v is adjacent to exactly two vertices x2 and x5 on C with
distance three, which is a contradiction.

Case 2. l(G) = 5. Assume some vertex z has distance 2 from V (C) in G and
x1yz is a path in G. If y is adjacent to x2, then G[{x1, x2, x3, x5, y, z}] = F6,
which is a contradiction. If y is adjacent to x3, then G[{x2, x3, x4, x5, y, z}] = F1,
which is a contradiction. By symmetry, y has exactly one neighbor x1 on C.
Then G[{x1, x2, x3, x5, y, z}] = F1, which is a contradiction. So every vertex in
R has distance one from one vertex on V (C). Since G is a subcubic graph and
γ(G) ≥ 3, 2 ≤ |R| ≤ 5.

Case 2.1. |R| = 5. Say R = {yi |xiyi ∈ E(G), i = 1, 2, . . . , 5}. If y1y2 /∈ E(G),
then G[{x1, x2, x4, x5, y1, y2}] = F1, which is a contradiction. Hence, y1y2 ∈
E(G). Similarly, yiyi+1 ∈ E(G) for i = 1, 2, 3, 4. Then G[{x1, x2, x3, x4, y1, y2,
y4}] = F2, which is a contradiction.

Case 2.2. |R| = 4. Say R = {yi |xiyi ∈ E(G), i = 1, 2, 3, 4}. If y1y2 /∈ E(G),
then G[{x1, x2, x3, x4, y1, y2}] = F1, which is a contradiction. If y3y4 /∈ E(G),
then G[{x1, x2, x3, x4, y3, y4}] = F1, which is a contradiction. Hence, y1y2 ∈ E(G)
and y3y4 ∈ E(G). Since x5 is adjacent to at most one vertex in {y1, y2, y3, y4},
either G[V (C) ∪ {y1, y2}] = F3 or G[V (C) ∪ {y3, y4}] = F3, which is a contradic-
tion.

Case 2.3. |R| = 3. Let G′ be a graph with V (G′) = V (C) ∪ {y1, y2, y3} and
E(G′) = E(C) ∪ {x1y1, x2y2, x3y3, y1y2}. Suppose that G′ is a subgraph of G. If
y1x5 ∈ E(G), then {x3, y1} is a dominating set of G, which is a contradiction.
Hence, y1x5 /∈ E(G). It follows that y1 is adjacent to at most one vertex in
{x4, y3}.

Suppose that y1x4 ∈ E(G). If y2x5 ∈ E(G), then G[{x1, x2, x3, x5, y1, y2, y3}]
= F8, which is a contradiction. If y3x5 ∈ E(G), then G[{x1, x2, x3, x5, y1, y2, y3}]
= F3 or G[V (C) ∪ {y1, y2, y3}] = F11, which is a contradiction. If dG(x5) =
2, then G[{x2, x3, x4, x5, y2, y3}] = F1 or G[V (C) ∪ {y2, y3}] = F3, which is a
contradiction. Hence, y1x4 /∈ E(G).

Suppose that y1y3 ∈ E(G). If y3x4 ∈ E(G), then G[{x2, x3, x4, x5, y1, y3}] =
F6, which is a contradiction. If y3x5 ∈ E(G), then G[V (C) ∪ {y1, y2}] = F3

or G[V (C) ∪ {y1, y2, y3}] = F11, which is a contradiction. If y3x4 /∈ E(G) and
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y3x5 /∈ E(G), then G[{x1, x3, x4, x5, y1, y3}] = C6 and l(G) ≥ 6, which is a
contradiction. Hence, y1y3 /∈ E(G).

So dG(y1) = 2. Since G is F3-free, y2x4 ∈ E(G) or y2x5 ∈ E(G). If y2x4 ∈
E(G), then G[{x1, x2, x3, x5, y2, y3}] = F1 or G[{x1, x2, x3, x5, y1, y2, y3}] = F3,
which is a contradiction. If y2x5 ∈ E(G), then G[V (C)∪ {y1, y2}] = F9, which is
a contradiction. Hence, we can assume that no subgraph in G is isomorphic to G′.

By symmetry, we discuss it in the following cases.

Case 2.3.1. R = {yi |xiyi ∈ E(G), i = 1, 2, 3}. If E(G[{y1, y2, y3}]) = ∅, then
G[{x1, x2, x3, y1, y2, y3}] = F1, which is a contradiction. Hence, E(G[{y1, y2, y3}])
6= ∅. Since no subgraph in G is isomorphic to G′, y1y2, y2y3 /∈ E(G) and y1y3 ∈
E(G). Since no subgraph in G is isomorphic to G′, y1x4 /∈ E(G). If y2x4 /∈ E(G),
then G[{x1, x2, x3, x4, y1, y2}] = F1, which is a contradiction. Hence, y2x4 ∈
E(G). Then G[{x1, x2, x3, x4, y1, y2, y3}] = F3, which is a contradiction.

Case 2.3.2. R = {yi |xiyi ∈ E(G), i = 1, 2, 4}. If E(G[{y1, y2, x3}]) = ∅, then
G[{x1, x2, x3, x4, y1, y2}] = F1, which is a contradiction. Hence, E(G[{y1, y2, x3}])
6= ∅. Suppose that y1x3 ∈ E(G). Since G is F1-free and no subgraph in G is
isomorphic to G′, y1y2, y1y4 /∈ E(G) and y2y4 ∈ E(G). Then G[{x1, x2, x3, x4, y1,
y2, y4}] = F3, which is a contradiction. Hence, y1x3 /∈ E(G).

Suppose that y2x3 ∈ E(G). If E(G[{y1, y2, y4}]) = ∅, then G[{x1, x2, x3, x4,
y1, y2, y4}] = F10, which is a contradiction. Hence, E(G[{y1, y2, y4}]) 6= ∅. If
y1y4 ∈ E(G), then G[{x1, x2, x3, x4, y1, y4}] = C6, which is a contradiction. If
y1y2 ∈ E(G) or y2y4 ∈ E(G), then G[{x1, x2, x3, x4, y1, y2, y4}] = F7, which is a
contradiction. Hence, y2x3 /∈ E(G).

So y1x3 /∈ E(G), y2x3 /∈ E(G) and y1y2 ∈ E(G). Since no subgraph in G
is isomorphic to G′, y4x3 /∈ E(G). Then G[{x1, x2, x3, x4, y1, y2, y4}] = F2 or
G[{x1, x2, x3, x4, y1, y2, y4}] = F3, which is a contradiction.

Case 2.4. |R| = 2. Say R = {y1, y2} and y1x1 ∈ E(G). If y2xi ∈ E(G) for
i ∈ {3, 4}, then {x1, xi} is a dominating set of G, which is a contradiction. Hence,
y2x3 /∈ E(G) and y2x4 /∈ E(G). Without loss of generality, we can assume that
y2x2 ∈ E(G). If y1xi ∈ E(G) for i ∈ {4, 5}, then {x2, xi} is a dominating set of
G, which is a contradiction. Hence, y1x4 /∈ E(G) and y1x5 /∈ E(G).

If y1x3 /∈ E(G) and y1y2 /∈ E(G), then G[{x1, x2, x3, x4, y1, y2}] = F1, which
is a contradiction. Hence, y1x3 ∈ E(G) or y1y2 ∈ E(G).

Suppose that y1x3 ∈ E(G). If y2x5 ∈ E(G), then {x3, x5} is a dominating
set of G, which is a contradiction. Hence, y2x5 /∈ E(G). If y1y2 /∈ E(G), then
G[{x2, x3, x4, x5, y1, y2}] = F1, which is a contradiction. If y1y2 ∈ E(G), then
G[V (C)∪{y1, y2}] = F9, which is a contradiction. Hence, y1x3 /∈ E(G) and y1y2 ∈
E(G). If y2x5 /∈ E(G), then G[V (C) ∪ {y1, y2}] = F3, which is a contradiction.
If y2x5 ∈ E(G), then G[V (C) ∪ {y1, y2}] = F9, which is a contradiction.
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Case 3. l(G) = 4. Assume some vertex t has distance 3 from one vertex
on V (C) in G and x1yzt is a path in G. If y is adjacent to x2, then G[V (C) ∪
{y, z, t}] = F7, which is a contradiction. If y is adjacent to x3, then G[V (C) ∪
{y, z, t}] = F8, which is a contradiction. If y is not adjacent to xi for i = 2, 3, 4,
then G[V (C) ∪ {y, z, t}] = F2, which is a contradiction. So every vertex in R
has distance at most two from a vertex on V (C). If |N(V (C)) ∩ R| = 1, say
x1y1 ∈ E(G), then {y1, x3} is a dominating set of G, which is a contradiction.
Hence, 2 ≤ |N(V (C)) ∩R| ≤ 4.

Case 3.1. |N(V (C)) ∩ R| = 4. Say N(V (C)) ∩ R = {yi |xiyi ∈ E(G),
i = 1, 2, 3, 4}. If y1y3 ∈ E(G), then G[{x1, x2, x3, y1, y3}] = C5, which is a
contradiction with l(G) = 4. By symmetry, y1y3 /∈ E(G) and y2y4 /∈ E(G).

If y1y2 /∈ E(G) and y2y3 /∈ E(G), thenG[{x1, x2, x3, y1, y2, y3}] = F1, which is
a contradiction. Hence, y1y2 ∈ E(G) or y2y3 ∈ E(G). Without loss of generality,
we can assume that y1y2 ∈ E(G). If y2y3 ∈ E(G), thenG[{x1, x3, x4, y1, y2, y3}] =
C6, which is a contradiction. If y1y4 ∈ E(G), then G[{x2, x3, x4, y1, y2, y4}] = C6,
which is a contradiction. Hence, y2y3 /∈ E(G) and y1y4 /∈ E(G). If y3y4 ∈ E(G),
then G[{x1, x3, x4, y1, y2, y3, y4}] = F2, which is a contradiction. If y3y4 /∈ E(G),
then G[{x2, x3, x4, y2, y3, y4}] = F1, which is a contradiction.

Case 3.2. |N(V (C)) ∩ R| = 3. Say N(V (C)) ∩ R = {yi |xiyi ∈ E(G), i = 1,
2, 3}. If y1y3 ∈ E(G), then G[{x1, x2, x3, y1, y3}] = C5, which is a contradiction.
Hence y1y3 /∈ E(G). If y1y2 /∈ E(G) and y2y3 /∈ E(G), then G[{x1, x2, x3, y1,
y2, y3}] = F1, which is a contradiction. Hence, y1y2 ∈ E(G) or y2y3 ∈ E(G).
Without loss of generality, we can assume that y1y2 ∈ E(G). If y1x4 ∈ E(G),
then G[{x2, x3, x4, y1, y2}] = C5, which is a contradiction.

Suppose that y2y3 ∈ E(G). If y3x4 ∈ E(G), then G[{x1, x4, y1, y2, y3}] =
C5, which is a contradiction. Hence, y1x4 /∈ E(G) and y3x4 /∈ E(G). Then
G[{x1, x3, x4, y1, y2, y3}] = C6, which is a contradiction. Hence y2y3 /∈ E(G).

Suppose that N(y3) \ (V (C) ∪ {y1, y2, y3}) 6= ∅, say t ∈ N(y3) \ (V (C) ∪
{y1, y2, y3}). Since l(G) = 4, y1t, y2t /∈ E(G). Then G[{x1, x2, x3, y1, y2, y3, t}] =
F2, which is a contradiction. Hence N(y3) \ (V (C) ∪ {y1, y2, y3}) = ∅.

Suppose that N(y2) \ (V (C) ∪ N [y1]) 6= ∅, say t ∈ N(y2) \ (V (C) ∪ N [y1]).
Since l(G) = 4, y3t /∈ E(G). Then G[{x1, x2, x3, y2, y3, t}] = F1, which is a
contradiction. Hence, N(y2)\ (V (C)∪N [y1]) = ∅. Then {y1, x3} is a dominating
set of G, which is a contradiction.

Case 3.3. |N(V (C)) ∩R| = 2.

Case 3.3.1. N(V (C))∩R = {yi |xiyi ∈ E(G), i = 1, 2}. Since {x1, x2} is not a
dominating set of G, V (G)\(V (C)∪{y1, y2}) 6= ∅. Say t1 ∈ N(y1)\(V (C)∪{y2}).
Suppose that y1y2 ∈ E(G). If N(y2) \ (V (C) ∪ {y1, t1}) = ∅, then {y1, x3} is
a dominating set of G, which is a contradiction. Hence, we can assume that
t2 = N(y2) \ {x2, y1}. If t1t2 /∈ E(G), then G[{x2, x3, y1, y2, t1, t2}] = F1, which
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is a contradiction. If t1t2 ∈ E(G), then G[{x2, x3, x4, y1, y2, t1, t2}] = F2, which
is a contradiction. Hence, we can assume that y1y2 /∈ E(G).

Suppose that N(y2) \ V (C) = ∅. Since G[{x1, x2, x4, y1, y2, t1}] = F1 , x4y1 ∈
E(G) or x4y2 ∈ E(G). If x4y1 ∈ E(G), then {y1, x2} is a dominating set of
G, which is a contradiction. Hence, x4y2 ∈ E(G). If x3y1 ∈ E(G) or x3y2 ∈
E(G), then {y1, y2} is a dominating set of G, which is a contradiction. Hence,
x3y1 /∈ E(G) and x3y2 /∈ E(G). Then G[{x1, x2, x3, x4, y1, y2, t1}] = F8, which is
a contradiction. Hence, N(y2) \ V (C) 6= ∅. Say t2 ∈ N(y2) \ V (C). Since G is
F1-free, {x3, x4} ⊆ N({y1, y2}). Then {y1, y2} is a dominating set of G, which is
a contradiction.

Case 3.3.2. N(C) = {yi |xiyi ∈ E(G), i = 1, 3}. Since l = 4, y1y3 /∈ E(G).
Since {x1, x3} is not a dominating set of G, V (G) \ (V (C) ∪ {y1, y2}) 6= ∅. Say
t1 ∈ N(y1) \ V (C). If N(y3) \ V (C) = ∅, then {y1, x3} is a dominating set of G,
which is a contradiction. Hence, we can assume that t3 ∈ N(y3) \ V (C). Then
G[{x1, x2, x3, y1, y3, t1, t3}] = P7, which is a contradiction.

Case 4. l(G) = 3. Since G is P7-free, every vertex in R has distance at most
4 from one vertex on V (C). Assume vertex y4 has distance 4 from one vertex on
V (C) in G and x1y1y2y3y4 is a path in G. Since {x1, y3} is not a dominating set of
G, there is a vertex u at distance 2 from {x1, y3} inG. If uxi ∈ E(G) for i ∈ {2, 3},
then G[{u, xi, x1, y1, y2, y3, y4}] = P7, which is a contradiction. Suppose that u
is adjacent to y1. If uy2 /∈ E(G), then G[{u, x1, x2, y1, y2, y3}] = F1, which is
a contradiction. If uy2 ∈ E(G), then G[{u, x1, x2, y1, y2, y3, y4}] = F10, which
is a contradiction. Hence, uy1 /∈ E(G). By a similar way, uy2 /∈ E(G) and
uy4 /∈ E(G). Suppose that there exists a path y3vu. If vy2 ∈ E(G), then G[{u, v,
y1, y2, y3, y4}] = F6, which is a contradiction. Since l = 3, {x2, x3, y1} ∩N(v) =
∅. So G[{u, v, x1, x2, y1, y2, y3}] = P7 , which is a contradiction. Hence, we can
assume that every vertex in R has distance at most 3 from one vertex on V (C).

Case 4.1. |N(V (C)) ∩ R| = 3. Say |N(V (C)) ∩ R = {yi |xiyi ∈ E(G), i =
1, 2, 3}. Since l = 3, E(G[{y1, y2, y3}]) = ∅. Then G[{x1, x2, x3, y1, y2, y3}] = F6,
which is a contradiction.

Case 4.2. ||N(V (C)) ∩ R| = 2. Say |N(V (C)) ∩ R = {yi |xiyi ∈ E(G),
i = 1, 2}. Since l = 3, y1y2 /∈ E(G). Suppose that there exists an induced path
x1y1u1v1. Since G is P7-free, N(y2) \ V (C) = ∅.

Suppose that there exists a vertex u such that u ∈ N(y1) \ {x1, u1}. If
u1u /∈ E(G), thenG[{u, x1, x2, y1, u1, v1}] = F1, which is a contradiction. If u1u ∈
E(G), then {u1, x2} is a dominating set of G, which is a contradiction. If N(y1)\
{x1, u1} = ∅, then {u1, x2} is a dominating set of G, which is a contradiction.
Hence, we can assume that every vertex in V (G) \ (V (C) ∪ {y1, y2}) is adjacent
to exactly one vertex in {y1, y2}.
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If N(yi) ∩ (V (G) \ (V (C) ∪ {y1, y2})) = ∅, then {xi, yj} is a dominating set
of G, where i, j ∈ {1, 2} and j 6= i, which is a contradiction. Suppose that
N(yi) ∩ (V (G) \ (V (C) ∪ {y1, y2})) 6= ∅ for i ∈ {1, 2}. If x3 is not adjacent to
y1 and y2, then G[{x1, x2, x3, y1, s1, y2, s2}] = F10, where si ∈ N(yi), which is a
contradiction. If x3 is adjacent to y1 or y2, then {y1, y2} is a dominating set of
G, which is a contradiction.

Case 4.3. ||N(V (C)) ∩ R| = 1. Say y1x1 ∈ E(G). Since {x1, y1} is not a
dominating set of G, there is a vertex u at distance 2 from y1 in G. Without
loss of generality, we can assume that y1vu be a induced path. If there exists a
vertex t such that y1t ∈ E(G). If tv /∈ E(G), then G[{u, v, x1, x2, y1, t}] = F1,
which is a contradiction. Suppose that tv ∈ E(G). If N(t) \ {y1, v} 6= ∅, say
s ∈ N(t) \ {y1, v}, then G[{t, s, u, v, u, x1, y1}] = F6, which is a contradiction. If
N(t) \ {y1, v} = ∅ or dG(y1) = 2, then {v, x1} is a dominating set of G, which is
a contradiction.

3. Remark

Henning et al. also gave the following conjecture.

Conjecture 2 [5]. The set F in Conjecture 1 can be chosen such that γ(F ) = 3
and γe(F ) = 2 for every graph F in F .

It is obvious that the conjecture holds for subcubic graphs.
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