
Discussiones Mathematicae
Graph Theory 41 (2021) 1077–1089
https://doi.org/10.7151/dmgt.2236

ON THE ISOMETRIC PATH PARTITION PROBLEM

Paul Manuel

Department of Information Science
College of Computing Science and Engineering

Kuwait University, Kuwait

e-mail: pauldmanuel@gmail.com

Abstract

The isometric path cover (partition) problem of a graph consists of find-
ing a minimum set of isometric paths which cover (partition) the vertex set
of the graph. The isometric path cover (partition) number of a graph is
the cardinality of a minimum isometric path cover (partition). We prove
that the isometric path partition problem and the isometric k-path parti-
tion problem for k ≥ 3 are NP-complete on general graphs. Fisher and
Fitzpatrick in [The isometric number of a graph, J. Combin. Math. Com-
bin. Comput. 38 (2001) 97–110] have shown that the isometric path cover
number of the (r × r)-dimensional grid is d2r/3e. We show that the iso-
metric path cover (partition) number of the (r × s)-dimensional grid is s
when r ≥ s(s − 1). We establish that the isometric path cover (partition)
number of the (r × r)-dimensional torus is r when r is even and is either r
or r+ 1 when r is odd. Then, we demonstrate that the isometric path cover
(partition) number of an r-dimensional Benes network is 2r. In addition, we
provide partial solutions for the isometric path cover (partition) problems
for cylinder and multi-dimensional grids. We apply two different techniques
to achieve these results.

Keywords: path cover problem, isometric path partition problem, isometric
path cover problem, multi-dimensional grids, cylinder, torus.
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1. Introduction

An undirected connected graph is represented by G = (V,E) where V is the
vertex set and E is the edge set. A path means a simple path with distinct
vertices. A path between two vertices is an isometric path if it induces the
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shortest distance between the two points. Let us recall that isometric path and
geodesic are other names for shortest path. While an isometric path cover is a
set of isometric paths which cover the vertex set V , an isometric path partition is
a set of isometric paths which partition V . The isometric path cover (partition)
number which is denoted by ipc(G) (ipp(G)) is the cardinality of a minimum
isometric path cover (partition). The isometric path cover (partition) problem
is to find a minimum isometric path cover (partition). Let diam(G) denote the
diameter of graph G.

Given a graph G = (V,E), a isometric k-path is an isometric path having
at most k vertices. A set S of isometric k-paths is an isometric k-path partition
if each vertex of V belongs to exactly one member of S. The isometric k-path
partition problem is to find an isometric k-path partition of minimum cardinal-
ity in G.

Last few decades, the theory of isometric paths has been studied extensively.
Aggarwal et al. [1] have illustrated the application of the isometric path cover
problem in the design of VLSI layouts. The theory of isometric path problems
is the backbone in the design of efficient algorithms in transport networks [20],
computer networks [14, 24], parallel architectures [25], social networks [3, 12],
VLSI layout design [1], wireless sensor networks [6], multimedia networks [5]
and in other networks such as GIS networks [26], large network systems [2] and
stochastic networks [23].

Since the Hamiltonian path problem is NP-complete [11], the path cover
problem and the path partition problem are NP-complete. Since the Hamiltonian
induced path problem is NP-complete [4, 11], the induced path cover problem and
the induced path partition problem are NP-complete. However, the complexity
status of the isometric path cover problem and the isometric path partition prob-
lem are unknown [16]. This fact has been highlighted and emphasized recently
[16, 17]. In this paper, we settle the long-standing open problem [16] by proving
that the isometric path partition problem is NP-complete on general graphs.

The isometric path cover number has been computed for trees, cycles, com-
plete bipartite graphs, and the Cartesian product of paths (including hypercubes)
under some restricted cases [7, 8, 9, 10]. Fisher and Fitzpatrick [7] have estab-

lished the lower bound ipc(G) ≥
⌈

|V |
diam(G)+1

⌉
and have shown that the isometric

path cover number of the (r×r) grid is d2r/3e. Fitzpatrick et al. [10] have shown
that the isometric path cover number of the hypercube Qr is at least 2r/(r + 1).
In addition, they have also shown that ipc(Qr) = 2r−log2(r+1) when r + 1 is a
power of 2. Pan and Chang have given a linear-time algorithm to solve the iso-
metric path cover problem on block graphs [21], complete r-partite graphs, and
the Cartesian products of 2 or 3 complete graphs [22]. There is no literature on
the isometric path partition problem [16]. The readers are suggested to read the
survey paper by Manuel [16] for detailed information.
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In Section 2, we show that the isometric path partition problem is NP-
complete. We also show that the isometric k-path partition problem is NP-
complete on general graphs for k ≥ 3. In Section 3, we demonstrate that the
isometric path cover problem and the isometric path partition problem are two
different combinatorial problems. In Section 4, we compute the exact values of
the isometric path cover and isometric path partition number for cylinders and
multi-dimensional grids under certain conditions. In Sections 5 and 6, we also
derive the exact values of the isometric path cover number and isometric path
partition number for square torus and Benes networks.

2. The Isometric Path Partition Problem Is NP-Complete for
General Graphs

The main result of this section is that the isometric path partition problem is NP-
complete on general graphs. In order to prove this result, we need the following
theorem.

Theorem 1 [19]. The 3-path partition problem is NP-complete on bipartite graphs.

As a first step, we provide a polynomial reduction from the 3-path partition
problem on bipartite graphs to the isometric path partition problem on general
graphs. The key fact is that each 3-path in a bipartite graph is an isometric
path. Given a graph G = (V,E) where V = {1, 2, . . . , n}, the transformed graph
is denoted by G′ = (V ′, E′). The vertex set V ′ is V ∪ {x, y, z}. The edge set E′

is E ∪ {xz, zy} ∪ {iz | i ∈ V }, see Figure 1.

Figure 1. (a) G = (V,E) and (b) G′ = (V ′, E′).

Next, we will identify some basic structural properties of G′ = (V ′, E′).
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Property 2. If G is a bipartite graph, then diam(G′) = 2. Moreover, an iso-
metric path of length diam(G′) in G′ is of the form xzy, izx, izy, ikj or izj for
some i, j, k ∈ V .

Property 3. A bipartite graph G has a 3-path partition S of cardinality k if and
only if G′ has an isometric path partition S′ of cardinality k + 1.

Proof. Let S be a 3-path partition of G. Then S′ = S ∪ {xzy} is an isometric
path partition of G′ and |S′| = |S|+ 1. Now, let us prove the converse.

Let S′ be an isometric path partition of G′. Suppose that xzy is a member
of S′. Then, define S = S′ \ {xzy}. Since diam(G′) = 2, S′ is 3-path partition of
G′. Hence, S is 3-path partition of G and |S| = |S′| − 1.

Suppose that izj is a member of S′ for some i and j of V . In such a situation,
isometric paths x and y are members of S′. Let us construct S′′ = S′\{x, y, izj}∪
{i, j, xzy}. Now, S′′ is an isometric path partition of G′ and |S′′| = |S′|. Then,
let us construct S from S′′ such that S = S′′ \ {xzy}. As argued before, S is
3-path partition of G and |S| = |S′′| − 1 = |S′| − 1.

Suppose that izx is a member of S′ for some i of V . In such a situation,
isometric path y is a member of S′. Let us construct S′′′ = S′ \{y, izx}∪{i, xzy}.
Now, S′′′ is an isometric path partition of G′ and |S′′′| = |S′|. Then, let us
construct S from S′′′ such that S = S′′′ \ {xzy}. As argued before, S is 3-path
partition of G and |S| = |S′′′| − 1 = |S′| − 1.

The last case is that izy is a member of S′ for some i of V . It is similar to
the previous case.

Applying Property 2 and 3, we state one of the main results of this paper.

Theorem 4. The isometric path partition problem is NP-complete on general
graphs.

The isometric k-path partition problem is a generalization of the isometric
path partition problem. Using the same logic, one can also prove that the
following.

Theorem 5. The isometric k-path partition problem is NP-complete on general
graphs for k ≥ 3.

3. Isometric Path Partition Versus Isometric Path Cover

Our point of discussion in this section is to emphasize that the isometric path
cover problem and the isometric path partition problem are two different com-
binatorial problems. From the perspective of computational complexity, let us
see how these two problems differ even on simple architectures such as trees and
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grids. For the star graph K1,`, while ipc(K1,`) = d`/2e, ipp(K1,`) = ` − 1. Pan
and Chang [21] have proved that the isometric path cover number of trees with
` leaves is d`/2e. For the isometric path partition number, this is not true even
in complete binary trees. In fact, it is a challenge to find the isometric path
partition number for trees and the isometric path partition number for trees is
unknown [16].

Fisher and Fitzpatrick [7] have shown that the isometric path cover number
of the grid Pr �Pr is d2r/3e. However, the isometric path partition number of
the grid Pr �Pr remains an open problem [16]. It seems that the isometric path
partition number of the grid Pr �Pr is r. However, it requires a mathematical
proof which seems to be a challenge.

There are some features which are common to both problems. One straight-
forward lower bound that is common to both problems is as follows.

Theorem 6 [7]. If diam(G) denotes the diameter of a graph G, then ipp(G) ≥
ipc(G) ≥

⌈
|V (G)|

diam(G)+1

⌉
.

The bound in Theorem 6 is very effective and useful. This paper truly exploits
this lower bound to prove that the isometric path cover number and the isometric
path partition number are equal for some networks such as (r × r)-dimensional
torus and Benes networks.

Monnot and Toulouse [19] have studied an NP-complete problem that is
whether a graph on nk vertices can be partitioned into n paths of length k.
An isometric path version of this problem is to decide if a graph G = (V,E)
can be partitioned into isometric paths of length equal to diam(G). Any fixed
interconnection network which possesses this feature is considered as a “good”
architecture [15, 25] because it is easy to design and implement efficient data
communication, message broadcasting and other routing algorithms. In the fol-
lowing sections, we point out that a few fixed interconnection networks such as
torus and Benes networks inherit this nice feature.

4. The Isometric Path Cover/Partition Problem on the Cartesian
Product Pr �G

Given a graph G, let diam(G) denote the diameter of G. In this section, we
consider the Cartesian product Pr �G where G is any graph and Pr is a path
graph on r vertices. The vertex set V (Pr) of Pr is {1, 2, . . . , r} and the vertex set
V (Pr �G) of Pr �G is {(j, v) | j ∈ V (Pr) and v ∈ V (G)}. For each j ∈ V (Pr),
the subgraph induced by the vertices {(j, v) | v ∈ V (G)} of Pr �G is denoted
by Gj . In other words, there are r copies of G in Pr �G which are represented
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by G1, G2, . . . , Gr, respectively. An edge of Gj in Pr �G is called Gj-edge. A
G-edge in Pr �G is a Gj-edge for some j = 1, 2, . . . , r.

Lemma 7 [13]. Given a graph G with diam(G) = d and a path graph Pr, an
isometric path of the Cartesian product Pr �G can have at most d G-edges.

Lemma 8. Given a graph G and a path graph Pr, ipc(Pr �G) ≤ ipp(Pr �G) ≤
|V (G)|.

Proof. It is enough to construct an isometric path partition of cardinality |V (G)|.
Corresponding to each v ∈ V (G), consider the path P v = {(1, v), (2, v), . . . , (r, v)}.
Each path P v, v ∈ V (G), is an isometric path in Pr �G [13]. Since the collection
{P v | v ∈ V (G)} of isometric paths partitions V (Pr �G), {P v | v ∈ V (G)} is an
isometric path partition of Pr �G. Therefore, ipp(Pr �G) ≤ |V (G)|.

The following lemma is the key to derive a lower bound on ipc(Pr �G)) and
ipp(Pr �G)).

Lemma 9. Given a graph G and a path graph Pr, let S be an isometric path
cover (partition) of Cartesian product Pr �G. If there exists j0, 1 ≤ j0 ≤ r, such
that no isometric path of S contains an edge of Gj0, then |S| ≥ |V (G)|.

Proof. An isometric path of the Cartesian product G�H of graphs G and H
does not pass through the same edge of G (respectively, H) in two different copies
of H (respectively G) [13]. Since no edge of Gj0 is covered by any isometric path
of S, each vertex of Gj0 requires a distinct isometric path of S to be covered.
Thus, |S| ≥ |V (Gj0)| = |V (G)|.

Lemma 10. Let G be a graph and let Pr be a path satisfying r ≥ diam(G)|V (G)|,
then ipp(Pr �G) ≥ ipc(Pr �G) ≥ |V (G)|.

Proof. Suppose there exists an isometric path cover S such that |S| < |V (G)|.
Then by Lemma 9, for every Gj , 1 ≤ j ≤ r, there exists at least one Gj-edge ej

of Gj such that ej is covered by some isometric path of S. Thus, the number of
G-edges of Pr �G which are covered by the isometric paths of S is greater than
or equal to r. Since each isometric path of S can cover at most diam(G) number
of G-edges, the number of G-edges which are covered by the isometric paths of S
is less than or equal to diam(G)|S|. Thus, r ≤ diam(G)|S|. Since |S| < |V (G)|,
r ≤ diam(G)|S| < diam(G)|V (G)|. This is a contradiction to the hypothesis.

Following Lemmas 10 and 8, we state the following result.

Theorem 11. Let G be a graph and let Pr be a path satisfying r ≥ diam(G)|V (G)|,
then ipp(Pr �G)) = ipc(Pr �G)) = |V (G)|.
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Now, we consider multi-dimensional grids Pd1 �Pd2 � · · · �Pdr , which are
the Cartesian product of paths Pd1 , Pd2 , . . . , Pdr . Fisher and Fitzpatrick [7] have
shown that the isometric path cover number of Pr �Pr is d2r/3e. Fitzpatrick et
al. [10] have shown that the lower bound on the isometric path cover number of
the hypercube Qr is 2r/(r+1). In addition, they have also shown that ipc(Qr) =
2r−log2(r+1) when r+1 is a power of 2. Though there are some results available for
the isometric path cover number on grids, there is no literature for the isometric
path partition problem on multi-dimensional grids, including 2-dimensional grids
and cylinders [16].

Theorem 12. Given an r-dimensional grid Pd1 �Pd2 � · · · �Pdr , ipp(Pd1 �Pd2

� · · · � Pdr) = ipc(Pd1 �Pd2 � · · · �Pdr) = d2d3 · · · dr when d1 ≥ ((d2 − 1) +
(d3 − 1) · · · (dr − 1))× (d2d3 · · · dr).

Proof. The proof follows from Theorem 11 where G = Pd2 �Pd3 � · · · �Pdr .
The diameter of Pd2 �Pd3 � · · · �Pdr is (d2 − 1) + (d3 − 1) + · · ·+ (dr − 1) and
the number of vertices of Pd2 �Pd3 � · · · �Pdr is d2d3 · · · dr.

Corollary 13. The isometric path cover (partition) number of the (r×s)-dimen-
sional grid is s when r ≥ s(s− 1).

Theorem 14. Given a cylinder Pr �Cs, ipp(Pr �Cs) = ipc(Pr �Cs) = s when
r ≥ bs/2cs.

Proof. The proof of the theorem follows from Theorem 11 where G = Cs. The
diameter of Cs is bs/2c and the number of vertices of Cs is s.

5. The Isometric Path Partition Problem on Tori

In this section, we study the exact value of the isometric path partition number
of (r × r)-dimensional torus. To our knowledge, there is no literature on the
isometric path partition problem on tori. In this section, we will show that the
isometric path cover (partition) number of the (r×r)-dimensional torus is r when
r is even and is either r or r + 1 when r is odd. An (8× 8)-dimensional torus is
given in Figure 2 and a (9× 9)-dimensional torus is given in Figure 3.

Theorem 15. The isometric path cover (partition) number of the (r× r)-dimen-
sional torus is r, when r is even, and is either r or r + 1, when r is odd.

Proof. Let G be an (r×r)-dimensional torus network. The proof is by construc-
tion. When r is even, let us define the following isometric paths:

P0 =
(
0, r2
)
· · · (0, 0) · · ·

(
r
2 , 0
)
;

Pi =
(
i, r2
)
· · · (i, i) · · ·

(
i + r

2 , i
)
· · ·
(
i + r

2 , 0
)

for i = 1, 2, . . . , r2 − 1;
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Figure 2. An (8× 8)-dimensional torus.

Pi =
(
i, r2
)
· · · (i, i+ 1) · · ·

(
i− r

2 , i+ 1
)
· · ·
(
i− r

2 , r− 1
)

for i = r
2 ,

r
2 + 1, . . . , r− 2;

Pr−1 =
(
r − 1, r2

)(
r − 1, r2 + 1

)
· · · (r − 1, r − 1),

see Figure 2. Let us consider the collection C = {Pi | i = 0, 1, . . . , r − 1} of iso-
metric paths. It is straightforward to verify that the collection C is an isometric
path partition of the (r × r)-dimensional torus when r is even. Thus, ipp(G) ≤
|C| = r =

⌈
|V (G)|

diam(G)+1

⌉
. By Theorem 6, ipp(G) ≥ ipc(G) ≥

⌈
|V (G)|

diam(G)+1

⌉
. There-

fore, ipp(G) = ipc(G) = r.

When r is odd, let us consider the following paths:

P0 =
(
0, r−12

)
· · · (0, 0) · · ·

(
r−1
2 , 0

)
;

Pi =
(
i, r−12

)
· · · (i, i) · · ·

(
i + r−1

2 , i
)
· · ·
(
i + r−1

2 , 0
)

for i = 1, 2, . . . , r−12 − 1;

Pi =
(
i, r−12

)
· · · (i, i + 1) · · ·

(
i− r−1

2 , i + 1
)
· · ·
(
i− r−1

2 , r − 1
)

for i = r−1
2 , r−12 +

1 · · · r − 3;
Pr−2 =

(
r − 2, r−12

)
· · · (r − 2, r − 1) · · ·

(
r−3
2 , r − 1

)
;

Pr−1,1 =
(
r − 1, r−12

)(
r − 1, r−12 − 1

)
· · · (r − 1, 0);

Pr−1,2 =
(
r − 1, r−12 + 1

)(
r − 1, r−12 + 2

)
· · · (r − 1, r − 1),

see Figure 3. Let us consider the collection C = {Pi | i = 1, 2, . . . , r − 3} ∪
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Figure 3. A (9× 9)-dimensional torus.

{P0, Pr−2, Pr−1,1, Pr−1,2} of isometric paths. It is straightforward to verify that
the above collection C is an isometric path partition of the (r × r)-dimensional

torus when r is odd. Therefore, ipp(G) ≤ |C| = r+ 1 =
⌈
|V (G)|

diam(G)+1

⌉
+ 1 when r is

odd. Thus, by Theorem 6,
⌈
|V (G)|

diam(G)+1

⌉
≤ ipc(G) ≤ ipp(G) ≤

⌈
|V (G)|

diam(G)+1

⌉
+ 1. In

other words, r ≤ ipc(G) ≤ ipp(G) ≤ r + 1. Therefore, when r is odd, ipc(G) = r
or r + 1 and ipp(G) = r or r + 1.

The above technique does not provide a solution to solve the isometric path
(partition) problem for the (r × s)-dimensional torus when r 6= s. Thus, the
status of isometric path cover (partition) problems on rectangular torus remains
unknown.

6. The Isometric Path Partition Problem on Benes Networks

The network architectures Butterfly and Benes are known for their versatile and
parallel implementations in the field of digital communication systems such as
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wireless communication, fiber-optic communication, and on-chip communications
[18, 25]. Let Zk = {0, 1, . . . , k − 1} and Zk

2 = {x0x1 · · ·xk−1 |xi = 0 or 1}. When
we say i ∈ Zk, it means i mod k. The vertex set of an r-dimensional Butterfly
BF (r) is {〈w, i〉 |w ∈ Zr

2 and i ∈ Zr+1}. Two vertices 〈w, i〉 and 〈w′, i′〉 of BF (r)
are linked by an edge if i′ = i + 1 and either w = w′ or w and w′ differ only in
the bit in position i.

An r-dimensional Benes network BN(r) is called back-to-back butterflies and
is obtained by merging the r-level vertices of two Butterfly networks BF (r). The
vertex set of BN(r) is {〈w, i〉 |w ∈ Zr

2 and i ∈ Z2r+1}. Thus, the vertices 〈w, 0〉,
w ∈ Zr

2 have degree 2. Figure 4 displays BN(3). We apply the lower bound
of Theorem 6 to find the exact value for ipp(BN(r)) and ipc(BN(r)) of Benes
networks.

Figure 4. A 3-dimensional Benes network.

Theorem 16. The isometric path cover (partition) number of an r-dimensional
Benes network is 2r.

Proof. An r-dimensional Benes network BN(r) consists of (2r + 1)2r vertices.
The diameter of BN(r) is 2r [18, 25]. Thus, it is enough to identify 2r number
of vertex-disjoint isometric paths of length equal to diam(BN(r)) in BN(r).
Given a binary string w ∈ Zr

2, let us define a path Pw as 〈w, 0〉 〈w, 1〉 · · · 〈w, 2r〉.
Consider the collection S = {Pw |w ∈ Zr

2}. It is known that each member of
the collection S is an isometric path of length equal to diam(BN(r)) in BN(r)
[18, 25]. Thus, S is an isometric path partition of BN(r). Since each member of
S is an isometric path of length equal to diam(BN(r)) in BN(r), ipp(BN(r)) =

2r =
⌈
|V (BN(r))|

diam(BN(r))+1

⌉
.
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7. Conclusion

We have proved that the isometric path partition problem is NP-complete. We
have shown that the isometric k-path partition problem is also NP-complete on
general graphs for k ≥ 3. However, the complexity status of the isometric path
cover problem is still unknown.

The aim of this manuscript is to determine or to derive properties that allow
to calculate the considered parameters, and these parameters have been studied
for graphs that can be expressed as Cartesian product.

The isometric path cover number of the (r × r)-dimensional grid is d2r/3e
[7]. We have established that the isometric path cover (partition) number of the
(r × s)-dimensional grid is s when r ≥ s(s − 1). Thus the isometric path cover
(partition) number of the (r×s)-dimensional grid is still unknown for r < s(s−1).
Moreover, the isometric path partition number of the (r× r)-dimensional grid is
unknown. We have also studied the isometric path cover (partition) problem for
cylinders. We have proved in Section 5 that the isometric path cover (partition)
number of the (r × r)-dimensional torus is r when r is even and is either r or
r + 1 when r is odd. However, the isometric path cover number of the (r × s)-
dimensional torus remains unknown.

We have demonstrated that the isometric path cover (partition) number of
an r-dimensional Benes network is 2r. These results are unknown for other fixed
interconnection networks such as hypercubes, butterfly, and circulant networks.
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[17] P. Manuel, S. Klavžar, A. Xavier, A. Arokiaraj and E. Thomas, Strong edge geodetic
problem in networks, Open Math. 15 (2017) 1225–1235.
https://doi.org/10.1515/math-2017-0101

[18] P.D. Manuel, M.I. Abd-El-Barr, I. Rajasingh and B. Rajan, An efficient representa-
tion of Benes networks and its applications, J. Discrete Algorithms 6 (2008) 11–19.
https://doi.org/10.1016/j.jda.2006.08.003

https://doi.org/10.1002/net.10073
https://doi.org/10.1109/JSEN.2016.2543680
https://doi.org/10.1016/S0012-365X(01)00197-2
https://doi.org/10.1016/j.trit.2016.03.011
https://doi.org/10.1201/b10613
https://doi.org/10.1109/INFOCOM.2016.7524550
https://doi.org/10.1016/B978-1-4832-0772-8.50005-4
https://doi.org/10.1515/math-2017-0101
https://doi.org/10.1016/j.jda.2006.08.003


On the Isometric Path Partition Problem 1089

[19] J. Monnot and S. Toulouse, The path partition problem and related problems in
bipartite graphs, Oper. Res. Lett. 35 (2007) 677–684.
https://doi.org/10.1016/j.orl.2006.12.004

[20] H. Ortega-Arranz, D.R. Llanos and A. Gonzalez-Escribano, The shortest-path prob-
lem: Analysis and comparison of methods, Synth. Lect. Theor. Comput. Sci. 1 (2014)
1–87.
https://doi.org/10.2200/S00618ED1V01Y201412TCS001

[21] J.-J. Pan and G.J. Chang, Isometric-path numbers of block graphs, Inform. Process.
Lett. 93 (2005) 99–102.
https://doi.org/10.1016/j.ipl.2004.09.021

[22] J.-J. Pan and G.J. Chang, Isometric path numbers of graphs, Discrete Math. 306
(2006) 2091–2096.
https://doi.org/10.1016/j.disc.2006.04.003

[23] S.K. Peer and D.K. Sharma, Finding the shortest path in stochastic networks, Com-
put. Math. Appl. 53 (2007) 729–740.
https://doi.org/10.1016/j.camwa.2007.01.012
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