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Abstract

Location detection problems have been studied for a variety of appli-
cations including finding faults in multiprocessors, contaminants in public
utilities, intruders in buildings and facilities, and for environmental monitor-
ing using wireless sensor networks. In each of these applications, the system
or structure can be modeled as a graph, and sensors placed strategically at
a subset of vertices can locate and detect anomalies in the system.

An open locating-dominating set (OLD-set) is a subset of vertices in a
graph in which every vertex in the graph has a non-empty and unique set
of neighbors in the subset. Sensors placed at OLD-set vertices can uniquely
detect and locate disturbances in a system. These sensors can be expensive
and, as a result, minimizing the size of the OLD-set is critical. Circulant
graphs, a group of regular cyclic graphs, are often used to model parallel
networks. We prove the optimal OLD-set size for a particular circulant
graph using Hall’s Theorem.

We also consider the mixed-weight OLD-set introduced in [R.M. Givens,
R.K. Kincaid, W. Mao and G. Yu, Mixed-weight open locating-dominating
sets, in: 2017 Annual Conference on Information Science and Systems,
(IEEE, Baltimor, 2017) 1–6] which models a system with sensors of vary-
ing strengths. To model these systems, we place weights on the vertices in
the graph, representing the strength of a sensor placed at the corresponding
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location in the system. We study particular mixed-weight OLD-sets in cy-
cles, which behave similarly to OLD-sets in circulant graphs, and show the
optimal mixed-weight OLD-set size using the discharging method.

Keywords: open locating-dominating sets, circulant graphs, Hall’s Match-
ing Theorem, mixed-weight open locating-dominating sets.
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1. Introduction

Location detection problems have been studied for a variety of problems that can
be modeled as a graph [11, 15, 20]. For these problems, a system is modeled
as a graph G = (V,E), with the goal of finding a minimally-sized subset of
vertices such that if sensors are placed at locations represented by this subset,
then the sensors are able to uniquely detect and locate anomalies in the system.
Open locating-dominating sets (OLD-sets), defined in Section 2, work under the
assumption that if an anomaly occurs at the location of a sensor node, then by
the nature of the anomaly, that sensor is unable to detect it. For example, a
nefarious individual may release a contaminant into a public waterworks system
and destroy the sensor at the same location.

The OLD-set problem, defined in [21], attempts to find the smallest subset
of vertices in a graph in which every vertex in the graph has a non-empty and
unique set of neighbors in the subset. Minimum OLD-set sizes have been studied
for a variety of graphs including grid-like graphs [22] and infinite triangular grids
[13]. A dynamic bibliography of results in open locating-dominating sets and
the related fields of identifying codes and locating-dominating sets can be found
in [16].

The mixed-weight open locating-dominating set (mixed-weight OLD-set) is
an extension of the open locating-dominating set that allows multiple integer
weights to be given to vertices in the graph [9]. The mixed-weight OLD-set
problem models a situation in which sensors of different strengths, and potentially
different costs, are strategically placed throughout the system. An increase in the
weight expands the reach of the vertex by an equivalent amount of edges in the
graph. Wireless sensor networks often use multiple types of sensors, such as in
systems that monitor natural habitats [17]. Mixed-weight OLD-sets can aid in
the development and cost management of these networks. We use the discharging
method [13] to provide a lower bound for mixed-weight OLD-sets in cycles and
provide a construction of a mixed-weight OLD-set at that size. The mixed-weight
OLD-set in a cycle behaves as a directed subgraph of the generalized circulant
graph, as defined in Section 4.2.
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Environmental monitoring using wireless sensor networks (WSNs) covers a
range of important research areas including the study of glaciers [19], marine pol-
lution [1], animal behavior and welfare [17], and the effect of climate change on
farming [7]. Environments can be modeled as a graph by dividing the physical
space into regions and adding vertices to the graph representing each of these
regions. An edge is added to the graph to represent two regions that would be
within communication range if a sensor was placed in one of the regions. The
benefits of using location detection problems in the design of WSNs, including ef-
ficiency and ease of monitoring, are discussed in [15]. Location detection problems
have been studied in other environments such as intruder detection in facilities
[21], survivor location in emergency situations [20], and contaminant detection
in public utilities [3].

A system of connected microprocessors can be modeled by an undirected
graph where a processor is represented by a vertex and a network connection be-
tween two processors is represented by an edge. Fault detection in such networks
has been studied using location detection problems [11]. Using OLD-sets we are
able to consider the additional problem of a sensor failing to detect a fault in the
processor where it is located. This type of sensor failure can be the result of the
fault causing the sensor to fail, or, by design, when faults are only detected via
routing messages directly between two connected processors.

Several topologies have been studied for fault location in multiprocessor sys-
tem including trees, hypercubes, and meshes [11]. Circulant graphs, defined in
Section 2, are another topology considered for multiprocessors and other mas-
sively parallel systems [23]. Connected circulant graphs are regular and cyclic
with symmetric adjacencies, making them attractive for both design and study.
Other related results for circulant graphs were presented in [18].

Hall’s Matching Theorem [10] gives the conditions necessary and sufficient to
find a matching or pairing in a bipartite graph. We use Hall’s Matching Theorem
to prove the following theorem: the optimal OLD-set density in Cn(1, 3) is 1/2.
To the best of our knowledge this is the first time Hall’s Theorem has been
used to prove a result for open locating-dominating sets. Recently, a result using
matching theory in a different context was published in [8]. This further illustrates
that matching is a valuable proof technique in addressing location detection.

Proof techniques in location detection problems have been dominated by the
discharging method [13] and other similar methods. The discharging method was
first used and made famous in the proof of the Four-Color Theorem [2]. It has
recently been used to provide lower bounds on the size of an identifying code in
infinite grids [5, 6]. Similarly, we use the discharging method to find the lower
bound on the mixed-weight OLD-set size in cycles with weights 1 and 2, and
provide an OLD-set construction at that same size, thus providing the optimal
OLD-set density.
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This paper is organized as follows. Section 2 provides background, definitions,
and construction. In Section 3 we use Hall’s Matching Theorem to prove the
optimal OLD-set density in Cn(1, 3). We consider mixed-weight OLD-sets in
cycles in Section 4, and we conclude in Section 5.

2. Background

A circulant graph Cn(1, t) is a degree four, undirected graph containing n vertices
labeled {0, 1, . . . , n− 1} where each vertex x is adjacent to vertices x± 1 mod n
and x±t mod n. In Figure 1(a) we depict circulant graph C16(1, 3) with vertices
drawn in the typical circular way. For graphs with n � t, edges are contained
locally, so we can draw segments of the graph linearly to get a better view of this
locality as seen in Figure 1(b).
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(a) C16(1, 3) circulant graph. (b) Cn(1, 3) drawn linearly.

Figure 1.

The neighborhood of a vertex x, N(x), is the set of vertices that are adjacent
to x in the graph, not including x, i.e., x 6∈ N(x) (the open property). For a set of
vertices A, the neighborhood of the set, N(A), contains all the vertices adjacent
to the set and not in the set, i.e., N(A) =

⋃
x∈AN(x)\A. If y ∈ N(x) or N(A),

we say that y is a neighbor of x or A.
A set S of vertices in a graph is an open locating-dominating set or OLD-

set, if for every vertex x in the graph N(x) ∩ S 6= ∅, and for any two vertices
x and y in the graph such that x 6= y, N(x) ∩ S 6= N(y) ∩ S. Thus S is an
OLD-set of the graph if every vertex in the graph has at least one neighbor in
S (the dominating property), and if for every pair of vertices in the graph, x
and y, there is at least one vertex in S that is adjacent to either x or y but not
both (the locating property). We call the neighbors of a vertex x that are in the
OLD-set S, N(x)∩S, the OLD-set neighborhood. In determining if S is an OLD-
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set, we say two vertices share OLD-set neighborhoods if N(x) ∩ S = N(y) ∩ S,
thus if S is an OLD-set any two vertices in the graph must not share OLD-set
neighborhoods. We say an OLD-set covers a set of vertices if it has the locating
and the dominating properties in the graph.

The OLD-set density is the proportion of vertices in an OLD-set S to the
total number of vertices in the graph, |S|/n for a circulant graph Cn(1, t). The
optimal OLD-set density is the achievable minimum OLD-set density in a graph,
i.e., for optimal OLD-set density d, every OLD-set has density at least d, and
there exists an OLD-set with density d.

By construction the upper bound on the minimum OLD-set density for
Cn(1, 3) is 1/2, as seen in Figures 2(a) and 2(b) for two OLD-sets in C16(1, 3).
If we consider these OLD-sets as {x1, x2, x3, x4, x5, x6, x7, x8}, then the set {xj +
16i|1 ≤ j ≤ 8, 0 ≤ i < k} is an OLD-set in C16k(1, 3) of density 1/2.
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(a) Connected, size 8 OLD-set (b) Size 8 OLD-set in C16(1, 3) with

in C16(1, 3). 2 connected components.

Figure 2. OLD-set vertices are shown in black with connections also shown in black.

3. Hall’s Matching Theorem

We prove the optimal OLD-set density for Cn(1, 3) is 1/2. Hall’s Theorem states
that for bipartite graphs with vertices partitioned into sets R and S there is a
matching of size |R| if and only if for every subset A ⊆ R, |A| ≤ |N(A)|. We use
Hall’s Theorem to show there is a matching from vertices not in an OLD-set to
vertices in the OLD-set for graph Cn(1, 3). If such a matching exists, then the
number of vertices in the OLD-set is at least n/2.

For the rest of this section we will consider x and y to be vertices such that
x = 2i and y = 2i + 1 for 0 ≤ i ≤ n/2, so that x and y may be neighbors of
each other, but x and y do not share neighbors. We say that two vertices have
different parity if their label is a different parity, so all vertices x and y have
different parity. We note that for any vertex x in Cn(1, 3), x does not have the
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same parity as its neighbors, x± 1, x± 3. In particular, two vertices of different
parity do not share neighbors.

3.1. Preliminary results

Lemma 1. If |xi − xj | ≥ 8, i.e., xi and xj have three or more vertices of the
same parity between them, then they do not share neighbors.

Proof. If |xi − xj | ≥ 8 and xi < xj , then the largest neighbor of xi is xi + 3 and
the smallest neighbor of xj is xj − 3. However, xi + 3 ≤ xj − 5, therefore xi and
xj do not share neighbors.

Lemma 2. If A = {x1, x2, . . . , xk} such that xi = xi−1+2, then |N(A)| = |A|+3.
Subsequently, if |A| = k ≥ 4, then there is a set B = {y1, y2, . . . , yk−3} of size
k − 3 such that yi = yi−1 + 2 and N(B) = A.

Proof. If A = {x1, x2, . . . , xk} such that xi = xi−1 + 2, then N(A) = {x1 −
3, x1 − 1, x1 + 1, . . . , x1 + 2k − 1, x1 + 2k + 1} = {y−2, y−1, y0, y1, . . . , yk} and
|N(A)| = |A|+ 3. We note that yi = yi−1 + 2, the set B = {y1, y2, . . . , yk−3} has
neighbors N(B) = {x1, x2, . . . , xk} = A, and |B| = k − 3.

x1 x2 x3 x3 + 2 x3 + 4 x3 + 6 x3 + 8

y1 y2 y3 y4

Figure 3. Three consecutive vertices of the same parity not in the OLD-set are followed
by four consecutive vertices in the OLD-set.

Lemma 3. If vertices x1, x2, and x3, such that x3 = x2 + 2 and x2 = x1 + 2, are
not in an OLD-set, then x3+ i for i = 2, 4, 6, 8 must be in the OLD-set. It follows
that the four preceding vertices of the same parity must also be in the OLD-set.

Proof. As seen in Figure 3 neighbor y1 only has one possible vertex in the OLD-
set, so x3 + 2 must be in the OLD-set. Vertices y1 and y2 cannot share OLD-set
neighborhood {x3 + 2}, so x3 + 4 must be in the OLD-set. Vertices y2 and
y3 cannot share OLD-set neighborhood {x3 + 2, x3 + 4}, so x3 + 6 must be in
the OLD-set. Finally, vertices y3 and y4 cannot share OLD-set neighborhood
{x3 + 2, x3 + 4, x3 + 6}, so x3 + 8 must be in the OLD-set. The proof follows
similarly for the four preceding vertices of the same parity.

Lemma 4. If A = {x1, x2, . . . , xk} such that xi = xi−1 + 2 for i < k, and S is
an OLD-set on Cn(1, 3), then |N(A) ∩ S| ≥

⌊
k
2

⌋
+ 1.
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Proof. For k = 1, the vertex must be dominated by S, so one neighbor must be
in S. For k = 2, one vertex in S cannot locate two vertices, so 2 neighbors must be
in S. It is easy to show that for k ∈ {2, 3} neighbors must be in S, k = 4 requires
3 neighbors, k ∈ {5, 6, 7} requires 4 neighbors, and k = 8 requires 5 neighbors.

Assume for all 8 ≤ ` < k that ` vertices xi = xi−1 + 2 for i < ` have⌊
`
2

⌋
+ 1 neighbors in the OLD-set. Consider k vertices A = {x1, x2, . . . , xk} and

by induction {x3, . . . , xk} contains
⌊
k−2
2

⌋
+ 1 =

⌊
k
2

⌋
neighbors in S. Vertices x1

and x2 introduce two new neighbors to N(A), namely {x1 − 3, x1 − 1}. We may
assume that neither of the neighbors is in S.

Case 1. Neighbor x1 + 1 is in the OLD-set. Suppose x1 + 1 is in the OLD-set
as seen in Figure 4(a). Vertices x1 and x2 cannot share OLD-set neighborhood
{x1+1}, so x2+3 must be in the OLD-set. Vertices x2 and x3 cannot share OLD-
set neighborhood {x1+1, x2+3}, so x3+3 must be in the OLD-set. And vertices
x4 and x5 cannot share OLD-set neighborhood {x2 +3, x3 +3}, so x5 +3 must be
in the OLD-set. The OLD-set vertices {x1+1, x2+3, x3+3, x5+3} cover vertices
{x1, x2, . . . , x7}. Consider the set {x9, x10, . . . , xk} which is size k − 8 and does
not have neighbors in the set of OLD-set vertices {x1 + 1, x2 + 3, x3 + 3, x5 + 3}.
This set of k−8 needs at least

⌊
k−8
2

⌋
+1 of its neighbors in the OLD-set. Thus the

set of k vertices need at least 4 +
⌊
k−8
2

⌋
+ 1 =

⌊
k
2

⌋
+ 1 neighbors in the OLD-set.

· · ·
· · ·x1 x2 x3 x4 x5 x6 x7 x8 x9 xk

x1 + 1 x2 + 3 x3 + 3 x5 + 3

(a) x1 + 1 is in the OLD-set.

· · ·
· · ·x1 x2 x3 x4 x5 x6 x7 x8 xk

x1 + 3 x2 + 3 x3 + 3 x4 + 3

(b) x1 + 3 is in the OLD-set.

Figure 4.

Case 2. Neighbor x1+3 is in the OLD-set. If x1+3 is in the OLD-set, then the
3 neighbors of x1 are not in the OLD-set, and by Lemma 3 the next four vertices of
that parity, including x1+3, must be in the OLD-set as shown in Figure 4(b). The
first 7 vertices of the k total vertices are covered by these 4 OLD-set neighbors.
The remaining k− 7 vertices do not currently share any OLD-set neighbors with
the first 7 vertices, but will require

⌊
k−7
2

⌋
+ 1 neighbors in the OLD-set to cover
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them. Thus the set of k vertices need at least 4 +
⌊
k−7
2

⌋
+ 1 ≥

⌊
k
2

⌋
+ 1 neighbors

in the OLD-set.

3.2. Main results

Theorem 5. The optimal OLD-set density in Cn(1, 3) is 1/2.

Proof. We note that by construction the upper bound for the minimum OLD-set
size is 1/2. To show the lower bound is 1/2, we show there is a matching from
vertices not in the OLD-set to vertices in the OLD-set for Cn(1, 3). We build an
auxiliary bipartite graph from Cn(1, 3), B = (R,S), where R = V \S, with edges
E(B) = {(u, v)|u ∈ R, v ∈ S, (u, v) ∈ E(Cn(1, 3))} ∪ {(x, x + 5)|x − 4, x − 2, x 6∈
S, x + 5 ∈ S}. We only need to consider A ⊆ R such that the vertices in A
share neighbors. If A has sets of vertices that do not share neighbors, A can
be separated into sets of vertices with disjoint neighbor sets, and the size of the
neighbors of A in the OLD-set will be the sum of the size of the neighbors in the
OLD-set of the individual sets.

Case 1. |A| = 1. The bipartite graph contains A in one partition, N(A) ∩ S
in the other, and all edges between those sets that occur in the graph. For
|A| = 1, the vertex in A must be covered by at least 1 vertex in the OLD-set,
thus |N(A) ∩ S| ≥ |A|.

Case 2. |A| = 2. The bipartite graph contains A in one partition, N(A)∩S in
the other, and all edges between those sets that occur in the graph. For |A| = 2,
each vertex must be covered by 1 vertex, but they cannot be covered by the same
vertex or they would not be distinguishable by the OLD-set. Thus they must be
covered by at least 2 vertices and |N(A) ∩ S| ≥ |A|.

Case 3. |A| ≥ 3.

Subcase 3a. A is {x1, x2, x3} with xi = xi−1+2. The bipartite graph contains
A in one partition, (N(A)∩S)∪{x3+5} in the other, all edges between those sets
that occur in the graph, and edge (x3, x3+5) if x3+5 ∈ S. By Lemma 4 we know
that the three vertices can be covered by two OLD-set vertices. However, because
A only contains vertices not in the OLD-set, by Lemma 3 the next four vertices
to be in the OLD-set, as shown in Figure 5. Thus x3 + 5 will not be in N(A)∩S
for any A. If A only has 2 neighbors in the OLD-set in Cn(1, 3), it is also the
case that x3 + 5 must be in the OLD-set in order to cover x4 = x3 + 2, otherwise
x3 and x4 share OLD-set neighborhoods. For any subset A = {x1, x2, x3} with
xi = xi−1 + 2, if x3 + 5 ∈ S, the bipartite graph includes an edge from x3 to
x3 + 5, also shown in Figure 5. If x3 + 5 6∈ S, a third neighbor of A must be in
S. Thus |N(A) ∩ S| ≥ |A|.

Subcase 3b. A = {x1, x2, . . . , x|A|} such that xi + 2j mod n = xi+1 for j > 0
with at least one j > 1, and for any vertex y such that y /∈ A, x1+2 ≤ y ≤ x|A|−2,
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y1 y2 y3 y4

x1 x2 x3 x4 x5 x6 x7

Figure 5. A = {x1, x2, x3} is three consecutive vertices of the same parity.

y either does not share neighbors with vertices in A or y is in the OLD-set. For
example, A = {x1, x1 + 2, x1 + 6, x1 + 8}, where x1 + 4 is in the OLD-set, is one
set covered by this case.

We note that if a subset of A has two vertices xi and xi+1 that do not share
neighbors, A can be split into at least two different sets with disjoint neighbors.
Then the size of the OLD-set neighborhood A would be the sum of the size of the
OLD-set neighbors of the individual sets. Because of this consideration, j < 4 by
Lemma 1. And by Lemma 3, A will not contain three consecutive vertices of the
same parity, as in Case 3a, as these vertices would not share neighbors with any
other vertex not in the OLD-set.

Let S′ be the set of OLD-set vertices
{
x′1, x

′
2, . . . , x

′
j

}
such that A ∪ S′ is

the set of all vertices
{
x1 + 2i | 0 ≤ i ≤ x|A|−x1

2

}
. We note that |A ∪ S′| = k ≥ 4

and A ∪ S′ is a neighborhood to k − 3 consecutive vertices of the same parity
by Lemma 2. Thus at least

⌊
k−3
2

⌋
+ 1 vertices of A ∪ S′ must be in the OLD-

set, and |A| ≤ k −
(⌊

k−3
2

⌋
+ 1
)
. We note that because each xi in A shares at

least one neighbor with xi+1, N(S′) ⊂ N(A) and thus N(A) = N(A ∪ S′). At
least

⌊
k
2

⌋
+ 1 neighbors of A ∪ S′ must be in the OLD-set, and thus at least⌊

k
2

⌋
+ 1 neighbors of A must be in the OLD-set. For k even or odd we find that

|A| ≤ k −
(⌊

k−3
2

⌋
+ 1
)

=
⌊
k
2

⌋
+ 1 = |N(A ∪ S′) ∩ S| = |N(A) ∩ S|.

Thus we have created a bipartite graph from R to S such that for all A ⊆ R,
|N(A)∩S| ≥ |A|. By Hall’s Theorem there is a matching from R to S of size |R|,
and therefore an OLD-set on Cn(1, 3) needs at least n/2 vertices. By construction
an OLD-set needs at most n/2 vertices.

4. Mixed-Weight OLD-sets

The mixed-weight open locating-dominating set (mixed-weight OLD-set) models
a system in which sensors have varying strengths, represented by placing weights
on vertices in the graph. Mixed-weight OLD-sets are related to the weighted or
d-identifying code, where all vertices receive the same weight d, which have been
studied for paths and cycles [4], hypercubes [12], and other graphs. The mixed-
weight OLD-set is also similar to an OLD-set on a directed graph: increased
weight can be represented by adding arcs to other vertices. Identifying codes
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have also been studied for directed graphs in [14]. We note that the weighted
OLD-set problem is a special case of the mixed-weight OLD-set problem, and,
to our knowledge, there is no literature for weighted OLD-sets or OLD-sets in
directed graphs.

4.1. Definitions and properties

Definition 6. The weight function, w, such that w(x) ≥ 1 for every x ∈ V ,
provides an integer value, or weight, for each vertex in the graph.

For a particular vertex x, w(x) is the weight of the vertex. For a set of vertices
A ⊆ V , the weight of the set w(A) is the sum of all the weights of vertices in
that set,

∑
x∈Aw(x). The distance between two vertices, d(x, y), is the length of

the shortest path between vertex x and vertex y, where each edge is considered
to be length 1.

Definition 7. The open outgoing-ball, B−(x) is the set of all vertices within a
distance of w(x) from x but not including x, i.e., B−(x) = {y ∈ V |0 < d(x, y) ≤
w(x)}. The open incoming-ball, B+(x) is the set of all vertices that contain x in
their open outgoing-ball, i.e., B+(x) = {y ∈ V |0 < d(x, y) ≤ w(y)}.

Definition 8. A mixed-weight open locating-dominating set, mixed-weight OLD-
set, or MW-OLD-set of a graph G is a set of vertices S ⊆ V such that B+(x)∩S
is nonempty and unique for every x ∈ V . The total weight of the (mixed-weight)
OLD-set S, w(S), is the sum of all the weights of all vertices in S.

Definition 9. The eccentricity of a vertex x in a graph, ε(x), is the maximum
distance of all the shortest paths between x and any other vertex in the graph.

x2 x3

x4

x5x6

x7

x1

Figure 6. The effect of the weighted vertex, w(x1) = 2, is indicated by dashed arrows.

The case in which w(x) = 1 for all x ∈ V defines the non-weighted OLD-set.
For the mixed-weight OLD-set, we say a vertex y is a neighbor of vertex x if
y ∈ B+(x). In this case neighbors are not symmetric. We note that the weight
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of a vertex x not in mixed-weight OLD-set S does not affect S or the size of S,
both theoretically and in the application of sensor monitoring.

In Figure 6, a vertex with weight greater than 1 becomes the neighbor of other
vertices. In a wireless sensor network, a weighted vertex under this definition
would represent a sensor that has a stronger antenna and can therefore receive
data from transmitters that are further away.

Figure 7 shows an example of a mixed-weight OLD-set in a graph that does
not contain a non-weighted OLD-set. Vertices x1 and x3 share open incoming-
ball {x2, x4} when w(x) = 1 for every x ∈ V . If vertex x3 is given weight 2, then
every open incoming-ball becomes unique, allowing for a mixed-weight OLD-set.
One minimum sized mixed-weight OLD-set is {x3, x4, x5, x6}.

x1

x2

x3

x4

x5

x6

x7

x B+(x), weighted

x1 {x2, x3, x4}
x2 {x1, x3, x4, x5}
x3 {x2, x4}
x4 {x1, x2, x3, x7}
x5 {x2, x3, x6}
x6 {x5, x7}
x7 {x3, x4, x6}

(a) (b)

Figure 7. Mixed-Weight OLD-set Example. If there are no weighted vertices, x1 and
x3 share open incoming-ball {x2, x4}, and the graph does not have an OLD-set. If
w(x3) = 2, as indicated by dashed arrows, then {x3, x4, x5, x6} is one minimum mixed-
weight OLD-set, as shown with black vertices.

As in the case of the OLD-set, we are interested in minimizing the size of the
mixed-weight OLD-set. In [9] we showed that the decision problem for finding
the minimum mixed-weight OLD-set, MW-OLD, is NP-Complete.

The following lemmas provide the necessary conditions for the existence of
mixed-weight OLD-sets.

Lemma 10. For graph G = (V,E) and weight function w, a mixed-weight OLD-
set S ⊆ V exists if and only if for every x, y ∈ V , x 6= y, B+(x) 6= B+(y), i.e., if
the open incoming-ball is unique for all vertices in the graph.

Lemma 11. For graph G = (V,E) and weight function w, if a mixed-weight
OLD-set exists, then S = V is a mixed-weight OLD-set.

Lemma 12. For every connected graph G = (V,E) with |V | > 1, there exists a
weight function such that the graph contains a mixed-weight OLD-set. If w(x) =
ε(x), the eccentricity of x, then the graph has a mixed-weight OLD-set.
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4.2. Mixed-weight OLD-sets in cycles

The weight of a vertex can be represented by the addition of arcs from the
weighted vertex to its new neighbors, as seen in Figure 6. A cycle is an undi-
rected graph containing n vertices labeled {0, 1, . . . , n − 1} where each vertex x
is adjacent to vertices x ± 1 mod n. Weighted vertices in a cycle Cn of size n,
transform the graph into a directed subgraph of a generalized circulant graph
Cn(1, 2, . . . ,max (w)) where max (w) is the maximum weight of a vertex in the
cycle and Cn(1, 2, . . . ,max (w)) is a graph where every vertex is adjacent to x± i
mod n for 1 ≤ i ≤ max (w).

Suppose Cn has a weight function w(x) ≥ 1. We consider the mixed-weight
OLD-set problem for possible weights 1 and 2. Let OLD(Cn, w) be the minimum
size OLD-set in Cn with weight function w(x) ≤ 2. We show that OLD(Cn, w) ≥
2n
5 using the a discharging argument.

In the discharging method each vertex in a set of unknown size is given a
charge of 1, and all other vertices in the graph are given a charge of 0. Thus
the total charge in the graph is equivalent to the number of vertices in the set of
unknown size. If the total charge in the graph can be redistributed from vertices
in the set to vertices not in the set, so that each vertex has at least a fraction of
charge f , then the size of the original set of vertices must be at least f ·n, where
n is the total number of vertices in the graph.

We define an m-cluster as a weakly connected component of order m in the
graph induced by a mixed-weight OLD-set S, where vertex x with w(x) = 2
is considered to have arcs from x to x − 2 and x + 2. We define a neighbor
of a cluster as a vertex that has at least one vertex in its open incoming-ball
that is in the cluster. All neighbors of a cluster cannot be in the mixed-weight
OLD-set. For the following proof, we refer to the open incoming-ball intersected
with the OLD-set, B+(x) ∩ S, as the mixed-weight neighborhood. We say two
vertices share mixed-weight neighborhoods if B+(x)∩S = B+(y)∩S, thus if S is a
mixed-weight OLD-set any two vertices in the graph must not share mixed-weight
neighborhoods.

Theorem 13. OLD(Cn, w) ≥ 2/5 where w(x) ≤ 2 for every x.

Proof. Let S be a mixed-weight OLD-set on Cn for Cn > 2 and w(x) ≤ 2.
Assign charge 1 to vertices in the mixed-weight OLD-set S and 0 to all other
vertices.

Redistribution Rule: If x 6∈ S is adjacent to k clusters in S, then x gets 1
k · 25

charge from each of the clusters.
By this rule, each vertex not in S will have a charge of at least 2/5. For the

proof we consider all the possible m-clusters in S with all possible mixed-weight
functions with weights 1 and 2. The m-cluster must allow for its vertices and
its neighbors to be open-located and dominated, and the weight function must
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allow it to be a cluster. If each possible m-cluster in S is left with 2m/5 charge
after redistribution, then all vertices in S will maintain 2/5 charge. We note that
an m-cluster can give at most 3m/5 charge to its neighbors to maintain at least
2m/5 charge, thus a cluster can provide enough charge for b3m/2c neighbors. We
also note that there are no 1-clusters in a mixed-weight OLD-set, as the vertex
in that cluster would not be dominated by the mixed-weight OLD-set.

Case 1. 2-cluster. There are two 2-clusters with more than b3m/2c = 3 neigh-
bors that can occur in a mixed-weight OLD-set. The first 2-cluster is {x1, x2}
with x2 = x1+1 and w(xi) = 2 and has four neighbors {x1−2, x1−1, x2+1, x2+2}.
In order for x1 − 1 and x2 + 1 to not share mixed-weight neighborhood {x1, x2},
without loss of generality, x1 − 3 must be in the mixed-weight OLD-set with
w(x1 − 3) = 2. This also prevents x1 − 2 and x2 from sharing mixed-weight
neighborhood {x1}. In order for x1 and x2 + 2 to not share mixed-weight neigh-
borhood {x2}, x2+2 must have x2+3 or x2+4 in its mixed-weight neighborhood.
Thus x1 − 2, x1 − 1, and x2 + 2 receive at most 1

5 charge from the cluster, and
x2 +1 receives at most 2

5 charge from the cluster, leaving the cluster with at least
4
5 charge.

The second 2-cluster is {x1, x2} with x2 = x1 + 2 and w(xi) = 2 and has five
neighbors {x1−2, x1−1, x1 +1, x2 +1, x2 +2}. In order for x1−2, x1−1, and x2
to not share mixed-weight neighborhood {x1}, x1 − 3 and x1 − 4 must be in the
mixed-weight OLD-set with w(x1 − 3) = w(x1 − 4) = 2. Similarly, in order for
x1, x2 + 1, and x2 + 2 to not share mixed-weight neighborhood {x2}, x2 + 3 and
x2 + 4 must be in the mixed-weight OLD-set with w(x2 + 3) = w(x2 + 4) = 2.
Thus x1− 2, x1− 1, x2 + 1, and x2 + 2 receive at most 1

5 charge from the cluster,
and x1 + 1 receives at most 2

5 charge from the cluster, leaving the cluster with at
least 4

5 charge.

Case 2. 3-cluster. There is one 3-cluster with more than b3m/2c = 4 neigh-
bors, {x1, x2, x3} with xi = xi−1 + 2 and at least one of x1 or x3 having a weight
of 2. Without loss of generality, suppose w(x1) = 2. If w(x2) = 1, then x1 will
not have any vertices in its mixed-weight neighborhood. If w(x2) = w(x3) = 2,
then x1 and x3 will share mixed-weight neighborhood {x2}. If w(x2) = 2 and
w(x3) = 1, then the neighbors of the cluster are x1−2, x1−1, x1 + 1, x2 + 1, and
x3 + 1. In order for vertices x1 and x3 to not share mixed-weight neighborhood
{x2}, x3 + 2 must be in the OLD-set with w(x3 + 2) = 2. In this case, x3 + 1
will be the neighbor of two clusters. Thus x3 + 1 will receive at most 1

5 charge
from the cluster and the remaining four neighbors will receive at most 2

5 charge,
leaving the cluster with at least 6

5 charge.

Case 3. m-cluster with m ∈ {4, 5}. There is one 4-cluster and one 5-cluster
with more than b3m/2c = m + 2, for m ∈ {4, 5}, neighbors that can occur in
a mixed-weight OLD-set. The clusters are {x1, x2, . . . , xm} with xi = xi−1 + 2,
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w(x1) = w(xm) = 2, w(xi) ≤ 2 for 1 < i < m and has m + 3 neighbors {x1 −
2, x1 − 1, xm + 2} ∪ {x1 + 1, . . . , xm + 1}. In order for x1 − 2 and x1 − 1 to not
share mixed-weight neighborhood {x1}, either x1−3 with w(x1−3) = 1 or x1−4
with w(x1− 4) = 2 must be in the mixed-weight OLD-set. Similarly, in order for
xm + 2 and xm + 1 to not share mixed-weight neighborhood {xm}, either xm + 3
with w(xm + 3) = 1 or x1 + 4 with w(xm + 4) = 2 must be in the mixed-weight
OLD-set. Thus x1− 2 and xm + 2 receive at most 1

5 charge from the cluster, and
the remaining m+ 1 neighbors receive at most 2

5 charge from the cluster, leaving

the cluster with m− 2(m+1)
5 − 2

5 = 3m−4
5 ≥ 2m

5 charge.

Case 4. m-cluster with m ≥ 6. For this case we note that for any m-cluster
in Cn with weight function w(x) ≤ 2, the cluster has at most m+ 3 neighbors. If
the first vertex in the cluster is x, then the last vertex in the cluster, y, is at most
x + 2(m − 1) given any possible weight function. This means there are at most
x+ 2(m− 1)− x− (m− 1) = m− 1 vertices between x and y that are not in the
mixed-weight OLD-set. Vertex x has at most 2 neighbors prior to it in the path,
and vertex y has at most 2 neighbors after it in the path. Thus the cluster has at
most m + 3 neighbors, and is responsible for discharging at most 2(m+3)

5 charge

to its neighbors. This leaves the cluster with at least m− 2(m+3)
5 = 3m

5 − 6
5 ≥ 2m

5
charge.

This lower bound can be achieved in the trivial case w(x) = 2 for x ∈ S.
Consider the cycle C10n for n ≥ 1. The set S = {10i, 10i+ 2, 10i+ 4, 10i+ 6|0 ≤
i < n} where w(x) = 2 for x ∈ S is a mixed-weight OLD-set of size 4n. Vertices
not in the OLD-set can have weights 1 or 2.

5. Conclusion

We showed the optimal OLD-set density in Cn(1, 3) is 1/2. We provided the upper
bound by construction and derived the lower bound using Hall’s Theorem. To
our knowledge this is the first time Hall’s Theorem has been used to provide this
type of a result in the open locating-dominating sets literature. This method has
the potential to find OLD-set size bounds in other circulant graphs and topologies
used in microprocessor systems. Finding these bounds will help determine best
practices for location detection problems in a variety of applications.

We considered mixed-weight OLD-sets [9] in cycles which, with weighted
vertices, behave like directed subgraphs of circulant graphs. We showed that the
lower bound for the size of mixed-weight OLD-sets in cycles is 2/5 for weight
functions w(x) ≤ 2 via the discharging method. We provided a construction to
show this bound is optimal when w(x) = 2 for all vertices in the OLD-set.
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