
Discussiones Mathematicae
Graph Theory 41 (2021) 1091–1101
https://doi.org/10.7151/dmgt.2232

A NOTE ON THE EQUITABLE CHOOSABILITY

OF COMPLETE BIPARTITE GRAPHS

Jeffrey A. Mudrock, Madelynn Chase, Ezekiel Thornburgh

Isaac Kadera and Tim Wagstrom

Department of Mathematics

College of Lake County

Grayslake, IL 60030

e-mail: jumudrock@clcillinois.edu

Abstract

In 2003 Kostochka, Pelsmajer, and West introduced a list analogue of
equitable coloring called equitable choosability. A k-assignment, L, for a
graph G assigns a list, L(v), of k available colors to each v ∈ V (G), and an
equitable L-coloring of G is a proper coloring, f , of G such that f(v) ∈ L(v)
for each v ∈ V (G) and each color class of f has size at most ⌈|V (G)|/k⌉.
Graph G is said to be equitably k-choosable if an equitable L-coloring of
G exists whenever L is a k-assignment for G. In this note we study the
equitable choosability of complete bipartite graphs. A result of Kostochka,
Pelsmajer, and West impliesKn,m is equitably k-choosable if k ≥ max{n,m}
providedKn,m 6= K2l+1,2l+1. We proveKn,m is equitably k-choosable ifm ≤
⌈(m+ n)/k⌉ (k−n) which gives Kn,m is equitably k-choosable for certain k
satisfying k < max{n,m}. We also give a complete characterization of the
equitable choosability of complete bipartite graphs that have a partite set
of size at most 2.

Keywords: graph coloring, equitable coloring, list coloring, equitable choos-
ability.

2010 Mathematics Subject Classification: 05C15.

1. Introduction

All graphs in this note are assumed to be finite, simple graphs. We use Kt for
the complete graphs with t vertices, and we use Kn,m for the complete bipartite
graphs with partite sets of size n and m where n and m are always positive in-
tegers. Also, Kt denotes the graphs consisting of t isolated vertices. Generally
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speaking we follow West [21] for basic terminology and notation. The focus of this
note is the equitable choosability of complete bipartite graphs. Equitable choos-
ability is a list analogue of equitable coloring that was introduced by Kostochka,
Pelsmajer and West in 2003 [13]. Before introducing equitable choosability we
quickly review equitable coloring and list coloring.

1.1. Equitable coloring and list coloring

The notion of equitable coloring was formally introduced by Meyer in 1973 [17],
but the study of equitable coloring began with a conjecture of Erdős in 1964 [5]
(see Theorem 1 below). A proper k-coloring, f , of a graph G is said to be an
equitable k-coloring if the k color classes associated with f differ in size by at
most 1. If f is an equitable k-coloring of the graph G, it is easy to see that the
size of each color class associated with f must be ⌈|V (G)|/k⌉ or ⌊|V (G)|/k⌋. We
say that a graph G is equitably k-colorable if there exists an equitable k-coloring
of G. From an applied perspective, equitable colorings are useful when we wish
to find a proper coloring of a graph without over or under-using any colors (see
[8, 9, 18], and [19] for examples of applications).

Unlike the typical vertex coloring problem, if a graph is equitably k-colorable,
it need not be equitably (k + 1)-colorable. Indeed, K2m+1,2m+1 is equitably k-
colorable for each even k less than 2m+1, it is not equitably (2m+1)-colorable,
and it is equitably k-colorable for each k ≥ 2m+ 2 = ∆(K2m+1,2m+1) + 1 where
we use ∆(G) to denote the largest degree of a vertex in G (see [16] for further
details).

In 1970 Hajnál and Szemerédi proved Erdős’ 1964 conjecture. In particular,
they proved the following.

Theorem 1 [7]. Every graph G has an equitable k-coloring when k ≥ ∆(G) + 1.

In 1994 Chen, Lih, and Wu [1] conjectured that the result of Theorem 1 can
be improved by 1 for most connected graphs. Their conjecture is still open and
is known as the ∆-Equitable Coloring Conjecture (∆-ECC for short).

Conjecture 2 ([1], ∆-ECC). A connected graph G is equitably ∆(G)-colorable
if it is different from Km, C2m+1, and K2m+1,2m+1.

Conjecture 2 has been proven true for interval graphs, bipartite graphs, out-
erplanar graphs, subcubic graphs, certain planar graphs, and several other classes
of graphs (see [1, 2, 3, 15, 16] and [22]).

List coloring is another variation on the classic vertex problem introduced
independently by Vizing [20] and Erdős, Rubin, and Taylor [6] in the 1970’s. For
list coloring we associate with a graph G a list assignment, L, that assigns to
each vertex v ∈ V (G) a list, L(v), of available colors. Graph G is said to be
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L-colorable if there exists a proper coloring f of G such that f(v) ∈ L(v) for
each v ∈ V (G) (we refer to f as a proper L-coloring of G). A list assignment
L is called a k-assignment for G if |L(v)| = k for each v ∈ V (G). We say G is
k-choosable if G is L-colorable whenever L is a k-assignment for G.

1.2. Equitable choosability

In 2003 Kostochka, Pelsmajer, and West introduced a list analogue of equitable
coloring called equitable choosability [13]. They use the word equitable to capture
the idea that no color may be used excessively often. Specifically, if L is a k-
assignment for the graph G, a proper L-coloring of G is equitable if each color
appears on at most ⌈|V (G)|/k⌉ vertices. Such a coloring is called an equitable L-
coloring of G, and we call G equitably L-colorable when an equitable L-coloring of
G exists. We say G is equitably k-choosable if G is equitably L-colorable whenever
L is a k-assignment for G. So, the upper bound on the number of times we are
allowed to use a color in an equitable L-coloring is the same as the upper bound on
the size of the color classes in an ordinary equitable k-coloring. It is conjectured
in [13] that Theorem 1 and the ∆-ECC hold in the list context.

Conjecture 3 [13]. Every graph G is equitably k-choosable when k ≥ ∆(G) + 1.

Conjecture 4 [13]. A connected graph G is equitably k-choosable for each k ≥
∆(G) if it is different from Km, C2m+1 and K2m+1,2m+1.

In [13] it is shown that Conjectures 3 and 4 hold for forests, complete bipartite
graphs, connected interval graphs, and 2-degenerate graphs with maximum degree
at least 5. Conjectures 3 and 4 have also been verified for outerplanar graphs [25],
series-parallel graphs [23], graphs with small maximum average degree [3], certain
graphs related to grids [4], powers of cycles [10], and certain planar graphs (see
[2, 14, 24] and [26]). In 2013, Kierstead and Kostochka made substantial progress
on Conjecture 3, and proved it for all graphs of maximum degree at most 7
(see [12]).

Most of the research on equitable choosability has been focused on Con-
jectures 3 and 4. There is not much research that considers the equitable k-
choosability of a graph G when k < ∆(G). In [13] it is shown that if G is a
forest and k ≥ 1+∆(G)/2, then G is equitably k-choosable. It is also shown that
this bound is tight for forests. Also, in [10], it is conjectured that if T is a total
graph, then T is equitably k-choosable for each k ≥ max{χℓ(T ),∆(T )/2 + 2}
where χℓ(T ) is the smallest m such that T is m-choosable. In this note we will
present some results on the equitable choosability of complete bipartite graphs
that will give us equitable k-choosability for values of k that are smaller than the
maximum degree of the graph.

Most results about equitable choosability state that some family of graphs
is equitably k-choosable for all k above some constant; even though, as with
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equitable coloring, if G is equitably k-choosable, it need not be equitably (k +
1)-choosable. It is rare to have a result that determines whether a family of
graphs is equitably k-choosable for each k ∈ N. In this note we have results of
this form: we will completely determine when K1,m and K2,m are equitably k-
choosable. It is worth mentioning that a new list analogue of equitable coloring
called proportional choosability was recently introduced in [11], and a simple
characterization of the proportional choosability of stars (i.e., graphs of the form
K1,m) has been found [11].

1.3. An open question and outline

We now present a brief outline of our results. The following open question moti-
vated our research.

Question 5. For what values of k is the complete bipartite graph Kn,m equitably

k-choosable?

Since Conjecture 4 is known to be true for complete bipartite graphs, we know
that when n 6= m or n is even, Kn,m is equitably k-choosable if k ≥ max{n,m}.
Our first two results give a partial answer to Question 5.

Theorem 6. Kn,m is equitably k-choosable if

m ≤

⌈

m+ n

k

⌉

(k − n).

Consequently, for each i ≥ 2, Kn,m is equitably k-choosable if

m+ in

i
≤ k <

m+ n

i− 1
.

Theorem 7. Kn,m is not equitably k-choosable if

m >

⌈

m+ n

k

⌉

(k − 1).

Consequently, for each i = n+1, n+2, . . . , n+m, Kn,m is not equitably k-choosable
if

m+ n

i
≤ k <

m+ i

i
.

Note Theorem 6 is only interesting if k < m + n (i.e., if ⌈(m + n)/k⌉ ≥ 2).
So, the inequality in Theorem 6 is easier to satisfy if m = max{m,n}. Since
Km,n = Kn,m, it is more helpful to apply Theorem 6 whenm ≥ n. Also, Theorems
6 and 7 do not address all possible values of k when n ≥ 2. However, Theorems 6
and 7 do address all possible k values when n = 1. In particular, we have the
following corollary.
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Corollary 8. K1,m is equitably k-choosable if and only if

m ≤

⌈

m+ 1

k

⌉

(k − 1).

Corollary 8 answers Question 5 for stars (i.e., the n = 1 case). Notice that the
result in [13] for forests only implies that K1,m is equitably k-choosable whenever
k ≥ 1 +m/2. Using further ideas, we also prove that Theorem 7 gives the best
possible result for K2,m and hence answer Question 5 in the case that n = 2. In
particular, we prove the following result.

Theorem 9. K2,m is equitably k-choosable if and only if

m ≤

⌈

m+ 2

k

⌉

(k − 1).

We now quickly present some illustrative examples of Corollary 8 and Theo-
rem 9. For example, note Corollary 8 implies that K1,25 is equitably k-choosable
if and only if k ∈ {6, 8, 10, 11, 12}∪{z ∈ N : z ≥ 14}. Notice that the result in [13]
for forests only implies that K1,25 is equitably k-choosable whenever k ≥ 14. Sim-
ilarly, note that Theorem 9 implies that K2,139 is equitably k-choosable if and
only if k ∈ {14, 15, 17, 19, 20, 21, 22, 23} ∪ {z ∈ N : z ≥ 25}.

With Corollary 8 and Theorem 9 in mind, one might conjecture that K3,m is
equitably k-choosable if and only if m ≤

⌈

m+3
k

⌉

(k− 1) (i.e., Theorem 7 gives the
best possible result in the case that n = 3). However, this is not true. Indeed,
3 ≤ ⌈(3+3)/2⌉(2−1) and 4 ≤ ⌈(3+4)/2⌉(2−1), yet it easy to see that both K3,3

and K3,4 are not equitably 2-choosable since such graphs are not even 2-choosable
(see [6] and [20]).

2. Proofs of Results

We begin with a useful lemma.

Lemma 10. Suppose that G = Km and L(1) is a list assignment for G such that

|L(1)(v)| ≥ η for each v ∈ V (G). If σ ∈ N is such that m ≤ ση, then there is a

proper L(1)-coloring of G that uses no color more than σ times.

Proof. We begin by describing an inductive process for coloring G. If there is no
color in at least σ of the lists associated with L(1) the process stops. Otherwise,
there is a color, c1, in at least σ of the lists associated with L(1), and we arbitrarily
color σ of the vertices that have c1 in their list with c1. Call the set of all vertices
colored with c1, A1.

Now, we inductively continue in this fashion. In particular, for t ≥ 2, let
L(t)(v) = L(t−1)(v) − {ct−1} for each v ∈ V (G) −

⋃t−1
i=1 Ai. Note that |L(t)(v)| ≥
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η−(t−1) for each v ∈ V (G)−
⋃t−1

i=1 Ai. If there is no color in at least σ of the lists
associated with L(t) the process stops. Otherwise, there is a color, ct, in at least
σ of the lists associated with L(t), and we arbitrarily color σ of the uncolored
vertices that have ct in their list with ct. Then, call the set of all vertices colored
with ct, At.

Now, if the process stops at some t ≤ η, we can complete a proper L(1)-
coloring of G with the property that no color is used more than σ times by
greedily coloring each v ∈ V (G)−

⋃t−1
i=1 Ai with a color in L(t)(v); this is possible

since |L(t)(v)| ≥ 1 whenever t ≤ η. Otherwise, we get to t = η and then σ vertices
in V (G)−

⋃η−1
i=1 Ai are colored with cη. After coloring vertices with cη, ση of the

vertices in V (G) are colored. Since |V (G)| = m ≤ ση, we must have colored all
the vertices in V (G) which means we have obtained a proper L(1)-coloring of G
such that no color is used more than σ times.

We are now ready to prove Theorem 6.

Proof. Assume m,n, k ∈ N satisfy m ≤ ⌈(m + n)/k⌉(k − n). Let G = Kn,m

with partite sets A′ = {u1, u2, . . . , un} and A = {v1, v2, . . . , vm}. Let L be a
k-assignment for G. We will show that G is equitably L-colorable.

Since m is positive, we must have k > n. So, there exists a ci ∈ L(ui) for each
i ∈ {1, 2, . . . , n} such that c1, c2, . . . , cn are pairwise distinct. We color ui with
ci for each i ∈ {1, 2, . . . , n}. Note that at this stage each color in {c1, c2, . . . , cn}
has been used exactly once, and 1 ≤ ⌈(m+ n)/k⌉.

Now, for each v ∈ A, let L′(v) = L(v)−{c1, c2, . . . , cn}. Clearly |L(v)| ≥ k−n.
Lemma 10 implies that we can find a proper L′-coloring of G[A] such that no color
is used more than ⌈(m + n)/k⌉ times. Such a coloring completes an equitable
L-coloring of G.

Now, we prove Theorem 7.

Proof. The result is obvious when k = 1. So, assume k ≥ 2 and n,m ∈ N satisfy
m > ⌈(m + n)/k⌉(k − 1). Let G = Kn,m with partite sets A′ = {u1, u2, . . . , un}
and A = {v1, v2, . . . , vm}. Next, let L be the k-assignment for G that assigns
{1, 2, . . . , k} to every vertex in V (G). It suffices to show G is not equitably L-
colorable. For the sake of contradiction, assume f is an equitable L-coloring of
G. Suppose |f(A′)| = a. Clearly 1 ≤ a < k, and without loss of generality,
we may assume f(A′) = {1, 2, . . . , a}. Since f is a proper coloring, this means
f(A) ⊆ {a+1, . . . , k} and |f−1({a+1, . . . , k})| = m. Also, since f is an equitable
L-coloring, |f−1(j)| ≤ ⌈|V (G)|/k⌉ = ⌈(m+n)/k⌉ when j ∈ {a+1, . . . , k}. Thus,

m =
k

∑

i=a+1

|f−1(i)| ≤
k

∑

j=a+1

⌈

m+ n

k

⌉

= (k − a)

⌈

m+ n

k

⌉

≤ (k − 1)

⌈

m+ n

k

⌉

which is a contradiction.
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It is clear that Corollary 8 follows immediately from Theorems 6 and 7.

We now turn our attention to proving Theorem 9. We begin by proving
a lemma that will allow us to restrict our attention to the case where the lists
corresponding to the vertices in the partite set of size two are disjoint.

Lemma 11. Suppose G = K2,m and the partite sets of G are A′ = {u1, u2} and

A = {v1, v2, . . . , vm}. Also, suppose that L is a k-assignment for G such that

L(u1)∩L(u2) 6= ∅. If m ≤ ⌈(m+2)/k⌉(k−1) and k < m+2, then G is equitably

L-colorable.

Proof. Suppose z1 ∈ L(u1)∩L(u2). Also, suppose that m ≤ ⌈(m+2)/k⌉(k− 1)
and k < m + 2. We color u1 and u2 with z1. For each v ∈ A we let L′(v) =
L(v) − {z1} which implies |L′(v)| ≥ k − 1. Lemma 10 implies that we can find
a proper L′-coloring of G[A] such that no color is used more than ⌈(m + 2)/k⌉
times. Such a coloring completes an equitable L-coloring of G.

We are now ready to focus on the case where the lists corresponding to the
vertices in the partite set of size two are disjoint. The next lemma shows that in
this case there exists a way to color the vertices in the partite set of size two such
that both used colors do not appear together in more than one fourth of the lists
corresponding to the vertices in the other partite set.

Lemma 12. Suppose G = K2,m and the partite sets of G are A′ = {u1, u2}
and A = {v1, v2, . . . , vm}. Also, suppose that L is a k-assignment for G such

that L(u1) ∩ L(u2) = ∅. There must exist cq ∈ L(u1) and cr ∈ L(u2) such that

|{v ∈ A : {cq, cr} ⊆ L(v)}| ≤ m/4.

Proof. Suppose L(u1) = {c1, . . . , ck} and L(u2) = {ck+1, . . . , c2k}. Let P =
L(u1) × L(u2). Then, for each (ci, cj) ∈ P we say (ci, cj) is contained in L(v) if
{ci, cj} ⊆ L(v). For each (ci, cj) ∈ P , we let βi,j = |{v ∈ A : (ci, cj) is contained
in L(v)}|.

For each v ∈ A, we let γv = |{(ci, cj) ∈ P : (ci, cj) is contained in L(v)}|.
From these definitions, it is easy to see that

∑

(ci,cj)∈P
βi,j =

∑m
i=1 γvi . If v ∈ A,

a = |L(u1) ∩ L(v)|, and b = |L(u2) ∩ L(v)|, then the number of elements of
P contained in L(v) is ab and a + b ≤ k. So, ab ≤ ⌈k/2⌉⌊k/2⌋. This means
γv ≤ ⌈k/2⌉⌊k/2⌋ for each v ∈ A, and we have the following:

∑

(ci,cj)∈P

βi,j =

m
∑

i=1

γvi ≤

⌈

k

2

⌉⌊

k

2

⌋

m ≤
k2m

4
.

For the sake of contradiction, suppose that there does not exist a (ci, cj) ∈ P
such that βi,j ≤ m/4. This means that
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∑

(ci,cj)∈P

βi,j >
k2m

4

which is a contradiction.

We are now ready to prove Theorem 9.

Proof. Note that the only if direction is implied by Theorem 7. So, we prove
the if direction. The result is obvious when k ≥ m + 2 and when k = 1. Notice
that when k = 2 the only values that satisfy the inequality are m = 1, 2, 3 and
it is easy to verify that K2,1,K2,2,K2,3 are equitably 2-choosable. So, we may
assume that 3 ≤ k < m+ 2.

Suppose G = K2,m and the partite sets of G are A′ = {u1, u2} and A =
{v1, v2, . . . , vm}. Also, suppose that L is an arbitrary k-assignment for G such
that m ≤ ⌈(m + 2)/k⌉(k − 1). Showing that an equitable L-coloring of G exists
will complete the proof. By Lemma 11 we may assume that L(u1) ∩ L(u2) = ∅.
By Lemma 12 we know there exists a z1 ∈ L(u1) and z2 ∈ L(u2) such that
|{v ∈ A : {z1, z2} ⊆ L(v)}| ≤ m/4. Color u1 with z1 and u2 with z2. Let
L(1)(v) = L(v) − {z1, z2} for each v ∈ A. We will now construct a proper L(1)-
coloring of G[A] that uses no color more than ⌈(m+2)/k⌉ times. Such a coloring
will complete an equitable L-coloring of G.

Note that |L(1)(v)| ≥ k − 2 for each v ∈ A. Let B1 =
{

v ∈ A :
∣

∣L(1)(v)
∣

∣ =
k− 2

}

. By our choice of z1 and z2, |B1| ≤ m/4. We color a subset of the vertices
in B1 by the following inductive process. If there is no color appearing in at least
⌈(m+2)/k⌉ of the lists assigned by L(1) to vertices in B1, then the process stops.
Otherwise, there is a color, c1, in at least ⌈(m+2)/k⌉ of the lists assigned by L(1)

to vertices in B1, and we arbitrarily color ⌈(m+ 2)/k⌉ of the vertices in B1 that
have c1 in their list with c1. Let A1 be the set of vertices colored with c1.

Now for t ≥ 2 let L(t)(v) = L(t−1)(v) − {ct−1} for each v ∈ A −
⋃t−1

i=1 Ai.
Clearly, for each v ∈ A −

⋃t−1
i=1 Ai,

∣

∣L(t)(v)
∣

∣ ≥ k − 2 − (t − 1). Let Bt =
{

v ∈

A−
⋃t−1

i=1 Ai :
∣

∣L(t)(v)
∣

∣ = k−2−(t−1)
}

. Suppose w ∈ Bt. Note that |L
(t−1)(w)| ≥

k− 2− (t− 2), and L(t)(w) = L(t−1)(w)−{ct}. Since
∣

∣L(t)(w)
∣

∣ = k− 2− (t− 1),

ct ∈ L(t−1)(w) and
∣

∣L(t−1)(w)
∣

∣ = k − 2 − (t − 2). This means w ∈ Bt−1 and

Bt ⊆ Bt−1. If there are no colors in ⌈(m + 2)/k⌉ of the lists assigned by L(t) to
vertices in Bt, then the process stops. Otherwise, there is a color ct in ⌈(m+2)/k⌉
of those lists and we arbitrarily color ⌈(m + 2)/k⌉ vertices in Bt that have ct in
their list with ct. Then, we let At be the set of vertices colored with ct.

Suppose t gets to k − 2 but the process does not stop. This implies there is
a color ck−2 in at least ⌈(m+ 2)/k⌉ of the lists assigned by L(k−2) to vertices in
Bk−2. We have Bk−2 ⊆ B1 and

⋃k−3
i=1 Ai ⊆ B1. Thus |B1| ≥ (k − 2)⌈(m+ 2)/k⌉.

Since |B1| ≤ m/4, (k − 2)⌈(m + 2)/k⌉ ≤ m/4. Since k ≥ 3, (k − 2) > 1
4(k − 1).
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This implies

(k − 2)

⌈

m+ 2

k

⌉

>
1

4
(k − 1)

⌈

m+ 2

k

⌉

≥
m

4

which is a contradiction. So, the process must stop at some t ≤ k − 2.
Suppose the process stops at t = α. This means α ≤ k − 2. Suppose there

is no color in at least ⌈(m + 2)/k⌉ of the lists assigned by L(α) to the vertices
in A −

⋃α−1
i=1 Ai. In this case we can complete an equitable L-coloring of G by

greedily coloring each v ∈ A −
⋃α−1

i=1 Ai with a color in L(α)(v). This is possible
since for each v ∈ A−

⋃α−1
i=1 Ai,

∣

∣L(α)(v)
∣

∣ ≥ k−2−(α−1) ≥ k−2−(k−2−1) ≥ 1.
So, we may assume there is a color cα that appears in at least ⌈(m+2)/k⌉ of

the lists assigned by L(α) to the vertices in A−
⋃α−1

i=1 Ai. Let Cα =
{

v ∈ Bα : cα ∈

L(α)(v)
}

. Since the process stopped at t = α, we know |Cα| < ⌈(m+2)/k⌉. Color
each vertex in Cα with cα. Then arbitrarily color ⌈(m+ 2)/k⌉ − |Cα| vertices in

A −
((

⋃α−1
i=1 Ai

)

∪ Cα

)

that have cα in their list with cα. Let Aα be the set of

vertices colored with cα. For each v ∈ A−
⋃α

i=1Ai, let L
(α+1)(v) = L(α)(v)−{cα}.

Note that if v ∈ Bα − Cα then cα /∈ L(α)(v). Thus, for each v ∈ A −
⋃α

i=1Ai,
∣

∣L(α+1)(v)
∣

∣ ≥ k − 1 − α. Note
∣

∣A −
⋃α

i=1Ai

∣

∣ = m − α⌈(m + 2)/k⌉. We know
m ≤ ⌈(m+2)/k⌉(k−1) which implies m−α⌈(m+2)/k⌉ ≤ ⌈(m+2)/k⌉(k−1−α).
Lemma 10 implies there is a proper L(α+1)-coloring of G

[

A−
⋃α

i=1Ai

]

that uses

no color more than ⌈(m+ 2)/k⌉ times. This completes a proper L(1)-coloring of
G[A] that uses no color more than ⌈(m+ 2)/k⌉ times.
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