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Abstract

In this paper, we show the non-1-planarity of the lexicographic product
of a theta graph and K2. This result completes the proof of the conjecture
that a graph G ◦ K2 is 1-planar if and only if G has no edge belonging to
two cycles.
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1. Introduction

In this paper, we only consider simple and connected graphs, which have neither
loops nor multiple edges. We denote the vertex set and the edge set of a graph
G by V (G) and E(G), respectively. For a graph H, an H-subgraph of G is a
subgraph of G isomorphic to H.

A drawing of a graph G on the Euclidean plane or the sphere S2 is a rep-
resentation of G on S2 where vertices are distinct points of S2, and edges are
curves on the sphere joining the points corresponding to their end vertices; we
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are preferential to “sphere” in the paper since we do not distinguish between the
outer region and the inner regions of the plane. A drawing is proper if edges are
simple curves without vertices of the graph in their interiors. A crossing point is
a transversal intersection of two curves on the sphere. In this paper, we consider
only proper drawings such that no two adjacent edges cross, no two edges touch
each other tangently and no more than two edges cross at the same point.

A graph G is 1-planar if it can be properly drawn on the sphere S2 so that
each of its edges crosses at most one other edge. By the above definition, no-
tice that every planar graph is 1-planar. We can also regard the drawing as a
continuous map f : G → S2 which may not be injective where G is regarded
as a 1-dimensional topological space. In this paper, we call the above map f a
1-embedding of G into the sphere. In this case, we say that the image f(G) is
a 1-plane graph; similarly to the difference between “planar graph” and “plane
graph”. Sometimes, for simplicity, we denote a given 1-plane graph by G, instead
of f(G). Similarly, for simplicity, we use v (respectively, e) instead of f(v) (re-
spectively, f(e)) for v ∈ V (G) (respectively, e ∈ E(G)) in a 1-plane graph f(G)
(or simply G).

An edge of a 1-plane graph G is crossing if it crosses another edge, and is
non-crossing otherwise. If an edge v0v2 of a 1-plane graph G crosses an edge v1v3
at a crossing point z, then we say that the arc viz is a half-edge of G for each
i ∈ {0, 1, 2, 3}. The crossing point of two edges ab and cd can be denoted by
z{ab,cd} with the subscript to clarify such a pair of crossing edges. A connected
component D of S2−G whose boundary contains no crossing point is a face of the
1-plane graph G; the boundary of the face D is a closed walk consisting of non-
crossing edges only. A connected componentD of S2−G whose boundary contains
a crossing point is a fake face. For the number of edges of a 1-planar graph G, the
following tight upper bound is well-known (e.g., see [1]): |E(G)| ≤ 4|V (G)| − 8.
A 1-planar graph G is optimal if it satisfies the equality in the above inequality.

Recently, 1-planar graphs have been widely researched in the literature (e.g.,
see the survey paper [5]). Especially, in contrast with general planar embeddings
(without crossings) of graphs, it was shown in [7] that testing 1-planarity of a
given graph is an NP-complete problem. As a relevant fact, we can easily check
that an edge contraction may not preserve the 1-planarity. Hence, the 1-planarity
of a graph cannot be characterized in terms of forbidden minors. Furthermore,
it is known [6, 7] that there are infinitely many non-1-planar graphs G with
minimum degree at least 3 such that G− e is 1-planar for any edge e of G. This
implies that we cannot establish a Kuratowski-like theorem for 1-planar graphs.

As stated above, it is not easy to test the 1-planarity of a given graph.
However, there are results for some special classes of graphs. It is known that the
complete graph Kn is 1-planar if and only if n ≤ 6. Figure 1 shows the unique
(unlabeled) 1-embedding ofK6 on the sphere; the “uniqueness” is discussed in [8].
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Figure 1. Unique 1-embedding of K6 on the sphere.

Furthermore in [3], the characterization of complete multi-partite 1-planar graphs
was given.

Recently, the 1-planarity of “joins” and “products” of graphs have been dis-
cussed in [2, 4]. The lexicographic product G ◦ H of two graphs G and H is a
graph such that the vertex set of G ◦H is the Cartesian product V (G)× V (H),
and two vertices (u, v) and (x, y) are adjacent if and only if either u is adjacent
to x in G or u = x and v is adjacent to y in H. For example, the complete graph
with 6 vertices shown in Figure 1 is the lexicographic product of C3 and K2;
where Ck denotes a cycle with k edges. By definition, G ◦H 6= H ◦G in general.
It was shown in [2] that K2 ◦H, where |V (H)| ≤ 4, is 1-planar if and only if H
is a subgraph of either C3 or C4, and the following conjecture was proposed in
the same paper. A graph G is a cactus if G is connected and if every edge of G
belongs to at most one cycle.

Conjecture 1 [2]. The lexicographic product of a graph G and K2 is 1-planar if

and only if G is a cactus.

The “if”-part of the conjecture was proved in [2]. In the present paper, we
prove the “only if”-part of the conjecture by proving the following theorem.

Theorem 2. If a lexicographic product of a graph G and K2 is 1-planar, then G
is a cactus.

In the next section, we introduce the notion of a “barrier loop”, which plays
an important role to discuss 1-embeddability of graphs in our argument. To prove
Theorem 2, we first consider in Section 3 the ways to 1-embed the lexicographic
product of Cn and K2 on the sphere. Then we prove that the lexicographic
product of a theta graph and K2 is not 1-planar. Our main result is proved in
the end of Section 4.

2. Barrier Loop

Let G be a 1-planar graph and let f be a 1-embedding of G. Suppose that the
1-plane graph f(G) has a simple closed curve L = v0z0v1z1v2z2 · · · vk−1zk−1v0 on
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S2 where each vi is a vertex of G and each zj is a crossing point of f(G) such
that vizi and zivi+1 are half-edges of f(G) for each i ∈ {0, . . . , k−1} with indices
taken modulo k. We call the above simple closed curve on S2 a barrier loop of
f(G). In the above L, if vizivi+1 in the sequence corresponds to an edge vivi+1 of
G, then we sometimes omit the crossing point zi and write L = · · · vivi+1 · · ·. The
following proposition plays an important role when discussing re-1-embeddings of
1-planar graphs. For two graphs G and H, we define G ∩H = (V (G) ∩ V (H)) ∪
(E(G) ∩ E(H)).

Proposition 3. Let G be a 1-planar graph and f : G → S2 be a 1-embedding of

G such that f(H) has a barrier loop L for a subgraph H of G. If u and v locate

in distinct regions separated by L for u, v ∈ V (G), then there exists no path P
joining u and v such that P ∩H ⊆ {u, v}.

Proof. Suppose, for a contradiction, that there exists a path P joining u and
v such that P ∩ H ⊆ {u, v}. Then, P crosses L by the above assumption.
Since u, v /∈ V (L), we have V (P ) ∩ V (L) = ∅, hence P crosses L transversally
at a crossing point z in f where xz and yz are half-edges contained in L for
x, y ∈ V (G). In this case, xy should be an edge of G and xy crosses another edge
e ∈ E(P ). Since xy is a crossing edge in f(H), e is contained in E(H); otherwise,
L would not be a barrier loop in f(H). This implies that P ∩ H contains the
edge e, a contradiction.

It easily follows from the above proposition that there exists no edge uv ∈
E(G) \ E(H) such that u and v are in the different regions separated by the
barrier loop L in f(H).

3. Possible Re-1-Embeddings of Cn ◦K2

It was proved in [8] that there exist exactly two ways to 1-embed K4 into the
sphere as shown in Figure 2. We say that the left-hand side 1-embedding of K4

in the figure is tetrahedral and the right-hand side one is pyramidal .

Figure 2. Two 1-embeddings of K4.
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Lemma 4. Let G be a disjoint union of H1 and H2 where Hi
∼= K4 for each

i ∈ {1, 2} and let f be a 1-embedding of G into the sphere. If there is a crossing

point created by e1 ∈ E(H1) and e2 ∈ E(H2), then each of f(H1) and f(H2) is

tetrahedral and they are dual to each other.

Proof. We assume that H1 (respectively, H2) has vertices a0, a1, a2 and a3 (re-
spectively, b0, b1, b2 and b3). First, suppose that f(H1) is pyramidal. In f(G), we
may assume that a0a1a2a3 is the unique cycle consisting of non-crossing edges
without loss of generality. Note that {a0a2, a1a3} forms a pair of crossing edges.
Furthermore, we may assume that a0a1 crosses b0b1 by the assumption in the
statement. In this case, b2 cannot be adjacent to b0 or b1 by Proposition 3, since
a0a1z{a0a2,a1a3} forms a barrier loop. Thus, we have got a contradiction.

Secondly, suppose that both f(H1) and f(H2) are tetrahedral. We denote
the region corresponding to the triangular face bounded by aiai+1ai+2 in f(H1)
by Ri where the indices are taken modulo 4. In this case, we may assume that
a0a1 crosses b0b3 and that b0 lies in R0. Observe that b3 is in the interior of
R3. Now, if b1 is also in R0 (respectively, R3), then b1 cannot be adjacent to
b3 (respectively, b0) by the 1-planarity of G. Therefore, b1 lies in R1 or R2, say
R1. Similarly, the remaining vertex b2 must be in R2, and we get our desired
conclusion by the 1-planarity of G.

ui ui+1 ui+2ui−1ui−2

vi vi+1 vi+2vi−1vi−2

Figure 3. 1-embedding of Xn.

Consider a 1-embedding of Xn = Cn ◦ K2 for n ≥ 3, shown in Figure 3.
In the figure, there are two cycles C = u0u1 · · ·un−1 and C ′ = v0v1 . . . vn−1 of
length n which consist of non-crossing edges only. Then non-crossing edges uivi
called rungs are placed between C and C ′ in parallel for 0 ≤ i ≤ n − 1. In the
1-embedding, uivi+1 and ui+1vi forms a pair of crossing edges for 0 ≤ i ≤ n − 1
with indices taken modulo n. Denote by Hi a subgraph of Xn isomorphic to
K4 such that V (Hi) = {ui, vi, ui+1, vi+1} and E(Hi) = {uivi, vivi+1, vi+1ui+1,
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ui+1ui, uivi+1, ui+1vi}, where indices are taken modulo n. In the following ar-
guments, Xn is supposed to have the above vertices and edges, and indices are
taken modulo n unless otherwise stated. First, we prove the following proposi-
tions giving basic properties of Xn.

Proposition 5. Xn (n ≥ 3) is 4-connected. Furthermore, if n ≥ 4, then the

connectivity of Xn is exactly 4.

Proof. Since X3 is isomorphic to K6 and the connectivity of G ◦H for two con-
nected graphsG (which is not a complete graph) andH is exactly the connectivity
of G times the order of H [9], the proposition follows.

Proposition 6. In Xn (n ≥ 4), there is no subgraph isomorphic to K4 other

than Hi.

Proof. In Xn, ui has degree 5, and we have to choose three vertices adjacent to
ui from {ui−1, vi−1, vi, ui+1, vi+1}. However, there is no edge between {ui−1, vi−1}
and {ui+1, vi+1} if n ≥ 4. Therefore, the proposition follows.

Proposition 7. In Xn (n ≥ 4), each rung uivi is included in exactly two K4-

subgraphs Hi−1 and Hi while each of the other edges is included in only one

K4-subgraph.

Proof. It easily follows from Proposition 6.

Now we consider local structures of 1-embeddedXn on the sphere with n ≥ 5.

Lemma 8. In any 1-embedding f : Xn → S2 with n ≥ 5, edges e ∈ E(Hi) and

e′ ∈ E(Hj) cannot cross if j equals neither i− 1 nor i+ 1.

Proof. Suppose that i < j and j equals neither i − 1 nor i + 1. Suppose,
for a contradiction, that Hi and Hj have a pair of crossing edges e ∈ E(Hi)
and e′ ∈ E(Hj). By Lemma 4, f(Hi) and f(Hj) are dual to each other; note
that each of them is tetrahedral. In this case, we can easily find a barrier loop
corresponding to a cycle in f(Hj) which separates any two vertices of f(Hi). If
j 6= i+ 2, the path ui+1ui+2vi+1 cannot exist by Proposition 3. Also in the case
when j = i + 2, the path uiui−1vi cannot exist by the same reason; note that
i− 1 6= j + 1 since n ≥ 5.

Lemma 9. In any 1-embedding f : Xn → S2 with n ≥ 5, {uivi, ui+1vi+1} is not

a pair of crossing edges.

Proof. This is just a corollary of Lemma 8.

Lemma 10. In any 1-embedding f : Xn → S2 with n ≥ 5, if edges e ∈ E(Hi)
and e′ ∈ E(Hi+1) cross, then each of f(Hi) and f(Hi+1) is tetrahedral and f(Hi∪
Hi+1) is one of the 1-plane graphs (A), (B), (C) and (D) shown in Figure 4.
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Figure 4. Hi and Hi+1 having crossing edges.

Proof. First, suppose, for a contradiction, that f(Hi) is pyramidal. By Lemma
9, one of uivivi+1ui+1 and uiviui+1vi+1, say uivivi+1ui+1 bounds the unique quad-
rangular face of f(Hi). If an edge between {ui+1, vi+1} and {ui+2, vi+2} crosses
an edge of Hi, then exactly one of ui+2 and vi+2, say ui+2, lies in the fake face
uiviz{uivi+1,viui+1} of f(Hi). In this case, uiviz{uivi+1,viui+1} forms a barrier loop
and ui+2 cannot be adjacent to vi+1 by Proposition 3, a contradiction. On the
other hand, if ui+2vi+2 cross an edge of Hi, then f(Hi ∪ Hi+2) has a pair of
crossing edgs e ∈ E(Hi) and e′ ∈ E(Hi+2), contrary to Lemma 8.

Hence f(Hi) is tetrahedral. By Lemma 8, ui+2 and vi+2 lie in the same
face of f(Hi). If both ui+2 and vi+2 lie in the face uiui+1vi+1 or viui+1vi+1 of
f(Hi), then f(Hi ∪Hi+1) does not have a pair of crossing edges e ∈ E(Hi) and
e′ ∈ E(Hi+1), a contradiction.

Hence both ui+2 and vi+2 lie in the same face uiviui+1 or uivivi+1 of f(Hi).
Suppose that the edge ui+2vi+2 lies inside the face uiviui+1 of f(Hi). If uivi
crosses an edge of Hi+1, then the edge is vi+1ui+2 or vi+1vi+2, say vi+1ui+2 (see
the left-hand side of Figure 5). Then since ui−1 is adjacent to both ui and vi,
the vertex ui−1 lies inside the face ui+1ui+2vi+2 of f(Hi ∪ Hi+1) (see the right-
hand side of Figure 5) and now a barrier loop vi+1ui+2vi+2 separating ui and
vi prevents the path uivi−1vi to be placed on the sphere. Therefore, uivi is
not crossing in f(Hi ∪ Hi+1) and hence vi+1ui+2 crosses uiui+1 or viui+1, and
consequently, f(Hi ∪Hi+1) is the 1-plane graph (A) or (B), respectively, shown
in Figure 4. Similarly, if we suppose that uivivi+1 contains the edge ui+2vi+2,
then we obtain (C) and (D) in Figure 4. Thus, the lemma follows.

In a 1-embedding f : Xn → S2, the 1-plane graph f(Hi ∪ Hi+1) is called a
bow if it is one of the 1-plane graphs (A), (B), (C) and (D) shown in Figure 4.
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Figure 5. Configurations in the proof of Lemma 10.

Lemma 11. In any 1-embedding f : Xn → S2 with n ≥ 5, if f(Hi) is tetrahedral,
then either f(Hi−1) or f(Hi+1), say f(Hi+1), is also tetrahedral and f(Hi∪Hi+1)
is a bow.

Proof. Suppose, for a contradiction, that no edge of Hi−1 and Hi+1 crosses an
edge of Hi. This implies that {ui−1, vi−1} and {ui+2, vi+2} lie in different faces of
f(Hi). Then the path P = ui+2ui+3 · · ·ui−1 of Xn has an edge usus+1 for some
s ∈ {i+2, . . . , i−2} that crosses an edge of Hi, contrary to Lemma 8. Hence one
of f(Hi−1) and f(Hi+1) has a crossing edge that crosses an edge of f(Hi) and,
by Lemma 10, the lemma follows.

Lemma 12. In any 1-embedding f : Xn → S2 with n ≥ 5, if f(Hi ∪Hi+1) is a

bow, then each of two triangular faces and six triangular fake faces of f(Hi∪Hi+1)
contains no vertex of V (Xn) \ {ui, vi, ui+1, vi+1, ui+2, vi+2}.

Proof. It suffices to prove the lemma when f(Hi ∪Hi+1) is of the form (A) in
Figure 4. Suppose that the triangular face ui+1ui+2vi+2 of f(Hi∪Hi+1) contains
a vertex us for some s /∈ {i, i+1, i+2}. Similar to the proof of the above lemma,
we consider a path usus+1 · · ·ui and obtain a contradiction. The same argument
works for the other triangular face and six triangular fake faces.

Lemma 13. In any 1-embedding f : Xn → S2 with n ≥ 5, if f(Hi) is pyramidal,

then each of the four triangular fake faces of f(Hi) contains no vertex of V (Xn)\
{ui, vi, ui+1, vi+1}.

Proof. The proof is analogous to the proof of Lemma 12.

By Lemmas 8, 9, 10, 11, 12 and 13, every 1-embedding of Xn is like a chain
consisting of pyramidal K4’s which contain no vertices in their four triangular
fake faces and pairs of tetrahedral K4’s each of which contains no vertex in its
two triangular faces and six triangular fake faces (see Figure 6 which represents a
1-embedding ofX14 with three bows). IfHi is pyramidal for any i ∈ {0, . . . , n−1},
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then we call f(Xn) canonical. Any f(Xn) with n ≥ 5 has exactly two big fake

faces, or two big faces if f(Xn) is canonical, each of whose boundaries contains
exactly n vertices and crossing points in total. Observe that each of the other
faces and fake faces is triangular in the 1-embedding.

Figure 6. 1-embedding of X14 with three bows.

4. Proof of the Main Result

Let θi,j,k denote the theta graph consisting of three inner disjoint paths joining
two vertices having length i, j and k, respectively. Such a theta graph θi,j,k is
expected to be simple, hence if i ≤ j ≤ k, then j ≥ 2. For our purpose, we first
prove the following theorem.

Theorem 14. A lexicographic product of a theta graph θi,j,k and K2 is not 1-
planar.

Proof. We consider a theta graph θi,j,k with i ≤ j ≤ k. First we show that the
graphs θ1,2,2 ◦K2 and θ2,2,2 ◦K2 are not 1-planar. Since θ1,2,2 ◦K2 has 8 vertices
and 24 edges, if it has a 1-embedding on the sphere, then the 1-embedding is
optimal. However, this graph has a vertex having odd degree, a contradiction,
since every vertex of every optimal 1-planar graph has even degree (see [8]). Also
it is easy to see that θ2,2,2 ◦K2 contains a non-1-planar graph K4,6 (see [3]) as a
subgraph.

Since j ≥ 2, we may assume that j + k ≥ 5 in what follows. The theta
graph θi,j,k is a cycle C = x0x1 · · ·xn−1 (n = j + k) with a path of length i
linking two vertices x0 and xj . Then the graph G = θi,j,k ◦ K2 has a subgraph
H isomorphic to Xn with n ≥ 5. Suppose, for a contradiction, that G has a
1-embedding f . All possible f(H) are described in Section 3. In f(H) there are
either two big fake faces or two big faces whose boundaries are denoted by L and
L′, respectively, such that each of L and L′ has exactly n points each of which is
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either a vertex of H or a crossing point of f(H). Relabel vertices of L and L′ such
that the vertices of H lying on L (respectively, L′) belong to {u0, u1, . . . , un−1}
(respectively, {v0, v1, . . . , vn−1}). If f(Hs ∪Hs+1) is a bow, then the two vertices
us+1 and vs+1 are placed so that usvsus+1 is a triangular face of H. In the above
labeling of vertices of H, {us, vs} corresponds to xs ∈ V (C).

In f(H) with vertices labeled as above, f(Hn−1 ∪ H0) is not a bow. For
otherwise, either u1u0v1z{u1v2,v1u2} (when f(H1) is pyramidal) or u1u0v1v2 (when
f(H1) is tetrahedral) is a barrier loop in f(H) that separates v0 and vj . This
contradicts (by Proposition 3) the fact that G has a path P joining v0 and vj
such that P ∩H = {v0, vj}.

Now we choose half edges from f(H) to form a barrier loop denoted by L0.
First, we take a part of such a barrier loop around v0 so as not to pass through v0.

(i) If each of f(Hn−1) and f(H0) is pyramidal, then vn−1u0v1 are taken (from
f(Hn−1 ∪H0)).

(ii) If one of f(Hn−1) and f(H0), say f(Hn−1), is pyramidal and f(H0 ∪H1) is
a bow, then vn−1u0z{u0v1,u1u2}u1v2 are taken (from f(Hn−1 ∪H0 ∪H1)).

(iii) If each of f(Hn−2 ∪Hn−1) and f(H0 ∪H1) is a bow, then
vn−2vn−1z{un−2vn−1,un−1u0}u0z{u1u2,u0v1}u1v2 are taken (from f(Hn−2∪Hn−1

∪H0 ∪H1)).

For each s ∈ {0, . . . , n − 1} such that no half edge is chosen from f(Hs) so
far, we do as follows.

(iv) If f(Hs) is pyramidal, then vsz{vsus+1,usvs+1}vs+1 are taken.

(v) If f(Hs) is tetrahedral and either f(Hs−1 ∪Hs) or f(Hs ∪Hs+1), now say
f(Hs ∪Hs+1), is a bow, then vsz{vsvs+1,us+1vs+2}vs+2 are taken.

The above obtained L0 is clearly a barrier loop separating v0 and uj . This
contradicts (by Proposition 3) the fact that G has a path P joining v0 and uj
such that P ∩H = {v0, uj}.

Finally, we prove Theorem 2 to solve Conjecture 1.

Proof of Theorem 2. Suppose that G is not a cactus. Then, it is easy to
see that G contains a simple theta graph as its subgraph. By Theorem 14, the
lexicographic product of a graph G and K2 is not 1-planar and hence the theorem
follows.

5. Remarks

In the paper, we mainly discussed the way to 1-embed Xn = Cn ◦ K2 for our
purpose. The obtained result can be useful when considering re-1-embedding
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of other 1-plane graphs since we can find canonical f(Xn)’s in some classes of
1-plane graphs; e.g., a class of optimal 1-plane graphs. However, the condition
n ≥ 5 in the argument is necessary. As we can see, the 1-embedding of X4 in
Figure 7 does not satisfy Lemma 9. As we stated before, X3 is isomorphic to K6

and hence any four vertices of X3 can induce K4, which is Hi in our argument.

u0

v0u1 v1

v2

u2

u3 v3

Figure 7. 1-embedding of X4 not satisfying Lemma 9.
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