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Abstract

The paired domination multisubdivision number of a nonempty graph
G, denoted by msdpr(G), is the smallest positive integer k such that there
exists an edge which must be subdivided k times to increase the paired
domination number of G. It is known that msdpr(G) ≤ 4 for all graphs G.
We characterize block graphs with msdpr(G) = 4.
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1. Introduction

The study of changes that occur in domination-related parameters of a graph
when its edges are subdivided1 was initiated in [11]. If π is a domination-type
parameter of G, the smallest number of edges that must be subdivided, where
each edge of G can be subdivided at most once, in order to increase π is called

1
See Section 2 for definitions of terms used in this section.
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the π-subdivision number, denoted by sdπ(G). Subdivision numbers have been
studied for the domination number [6, 11], as well as for connected [4], double
[1], Roman [10], total [7, 9] and paired domination numbers [5].

Instead of subdividing multiple edges once each, one may wish to subdivide a
single edge multiple times. The smallest number of times that a single edge of G
must be subdivided to increase π is called the π-multisubdivision number, denoted
by msdπ(G). Domination and paired domination multisubdivision numbers were
studied in [3] and [2], respectively. In particular, it was shown in [2] that the
paired domination multisubdivision number msdpr(G) of any graph G is at most
four. For brevity we refer to a graph G with msdpr(G) = 4 as an msd-4 graph.
Msd-4 trees were characterized in [2].

We discuss methods of combining msd-4 graphs to yield new msd-4 graphs
and use our results, combined with results from [2], to characterize msd-4 block
graphs. Definitions and previous results are given in Section 2. We state the
characterization of msd-4 block graphs in Section 3, but defer its proof to Section 6
to allow us to prove a number of results used in the proof; results that apply to
general msd-4 graphs are given in Section 4, while results specific to block graphs
can be found in Section 5.

2. Definitions and Previous Results

We refer the reader to [8] for domination parameters not defined here. A set S
of vertices of a graph G = (V,E) without isolated vertices is a paired dominating
set of G if every vertex of G is adjacent to a vertex in S, and the subgraph G[S]
of G induced by S has a perfect matching. If u, v ∈ S and there exists a perfect
matching M of G[S] such that uv ∈ M , we say that u and v are paired in S.
The smallest cardinality of a paired dominating set of G is the paired domination
number of G, denoted by γpr(G). If S is a paired dominating set of G such
that |S| = γpr(G), we call S a γpr(G)-set, or simply a γpr-set if the graph is
clear from the context. If u is a vertex of G such that G − u has no isolated
vertices and γpr(G − u) < γpr(G) (in which case γpr(G − u) = γpr(G) − 2), we
say that u is a γpr(G)-critical vertex, or simply a γpr-critical vertex, and define
Cr(G) = {u ∈ V (G) : u is a γpr-critical vertex}.

A neighbour of a vertex u ∈ V (G) is a vertex adjacent to u. The (open)
neighbourhood N(u) of a vertex u is the set of all vertices adjacent to u, and
its closed neighbourhood is N [u] = N(u) ∪ {u}. For a set S ⊆ V (G), the (open)
neighbourhood of S is N(S) =

⋃

u∈S N(u), and its closed neighbourhood is N [S] =
N(S) ∪ S. For a vertex u ∈ S, the private neighbourhood of u with respect to S
is the set PN(u, S) = N [u] \N [S \ {u}]. It is possible that u ∈ PN(u, S), but if
S is a paired dominating set, then u is adjacent to the vertex it is paired with,
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so u /∈ PN(u, S) in this case.

An edge uv of a graphG is subdivided if it is replaced by a path (u, x, v), where
x is a new vertex, and multisubdivided if it is replaced by a path (u, x1, . . . , xk, v),
k ≥ 2, where x1, . . . , xk are new vertices; we also say that uv is subdivided k times.
Let Guv,k denote the graph obtained from G by subdividing the edge uv k times.
The paired domination multisubdivision number msdpr(G) of a graph G without
isolated vertices is the smallest positive integer k such that there exists an edge uv
which must be subdivided k times for γpr(Guv,k) to exceed γpr(G). As mentioned
above, msdpr(G) ≤ 4 for all graphs. The three graphs in Figure 1 are all msd-4
graphs; the red vertices form γpr-sets.

(a) (b) (c)

Figure 1. (a) The spider S(2, 2, 6) (b) the corona K3 ◦K1 (c) a flared corona K4 ◦
∗2K1.

A leaf of a graph is a vertex of degree one, and its neighbour is called a stem.
The following properties of msd-4 graphs were proved in [2].

Theorem 1 [2]. Let G be an msd-4 graph. Then

(i) each edge of G belongs to a matching of a minimum paired dominating set
of G;

(ii) any leaf of G is a γpr-critical vertex;

(iii) each stem is adjacent to exactly one leaf.

The complete bipartite graph K1,k, k ≥ 2, is called a star. Let K1,k have
partite sets {u} and {v1, . . . , vk}. The spider S(ℓ1, . . . , ℓk), ℓi ≥ 1, k ≥ 2, is a
tree obtained from K1,k by subdividing the edge uvi ℓi − 1 times, i = 1, . . . , k.
Note that S(2, 2) ∼= P5. See Figure 1(a) for S(2, 2, 6). The characterization of
msd-4 trees in [2] immediately gives the following result.
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Proposition 2 [2]. The spider T = S(2, . . . , 2) satisfies msdpr(T ) = 4, and
Cr(T ) consists of the leaves of T .

The corona G◦K1 of a graph G is the graph obtained by joining each vertex
of G to a new leaf; K3 ◦K1 is illustrated in Figure 1(b). A flared corona G ◦∗tK1

of G is a graph obtained by joining each vertex of G, except one vertex w, to a
new leaf, while w is joined to a single vertex of each of t ≥ 1 copies of K2. The
flared corona K4 ◦

∗2 K1 is depicted in Figure 1(c). The following facts can be
verified easily and are stated without proof.

Remark 3.

(i) A corona Kn ◦K1, n ≥ 2, is an msd-4 graph if and only if n is odd.

(ii) A flared corona Kn ◦
∗tK1, n ≥ 2, is an msd-4 graph if and only if n is even.

(iii) A vertex of K2n+1 ◦K1 or K2n ◦∗t K1 is γpr-critical if and only if it is a leaf
(see Theorem 1).

A block of a graph is a maximal connected subgraph with no cut-vertex, and
a block graph is a graph, each of whose blocks is a complete graph. Thus, trees
are block graphs since each block of a nontrivial tree is a K2. Evidently, coronas
and flared coronas are also block graphs. To characterize msd-4 block graphs,
we use spiders S(2, . . . , 2), coronas K2n+1 ◦ K1 and flared coronas K2n ◦∗t K1,
combining them by identifying vertices and edges in a prescribed way.

We begin by describing two operations, collectively known as ⊕-operations,
for joining disjoint graphs; since the operations can be performed on any graphs,
we state them in their most general form. (The operations are well known but
we need to define our notation.)

G1 ⊕u1u2 G2: Let G1 and G2 be vertex disjoint graphs and ui ∈ V (Gi) for
i ∈ {1, 2}. We denote the graph obtained from G1 and G2 by identifying u1 and
u2 into one vertex u = u1 = u2 by G1 ⊕

u1u2

u G2 (or by G1 ⊕
u1u2 G2 if the label u

is unimportant).

G1 ⊕
e1e2 G2: Let G1 and G2 be vertex disjoint graphs and ei = uivi ∈ E(Gi).

We denote the graph obtained from G1 and G2 by identifying u1 and u2 into one
vertex u = u1 = u2, v1 and v2 into one vertex v = v1 = v2, and e1 and e2 into
one edge e = uv by G1⊕

e1e2
e G2 (or by G1⊕

e1e2 G2 if the label e is unimportant).

The graph G1⊕
e1e2
e G2, where G1 = S(2, 2, 6), G2 = K3◦K1, and ei = uivi for

i = 1, 2, is illustrated in Figure 2. Note that ui is γpr(Gi)-critical for i = 1, 2, and
u1 = u2 is γpr-critical in G1 ⊕

e1e2
e G2. The spider S(2, 2, 6), in turn, is obtained

as H1 ⊕
u1u2 H2, where H1 = S(2, 2, 2), H2 = P5 = S(2, 2), and ui is a leaf of Hi,

i = 1, 2.
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u1

v1

u2

v2

u1 = u2

v1 = v2

⊕

=

Figure 2. The graph S(2, 2, 6)⊕u1v1 u2v2 K3 ◦K1.

3. Characterization of msd-4 Block Graphs

We now state our main result — the characterization of msd-4 block graphs. The
proof is deferred to Section 6.

Let U be the collection of all spiders S(2, . . . , 2), coronas K2n+1 ◦ K1 and
flared coronas K2n ◦

∗t K1, n ≥ 1. Define B to be the family of all block graphs G
that can be obtained as a graph Gj , j ≥ 1, from a sequence G1, . . . , Gj of graphs,
where H1 = G1 ∈ U , and, if j > 1, Gi+1 can be constructed recursively from Gi

by

• adding a graph Hi+1 ∈ U ,

• choosing vertices u1 ∈ Cr(Gi), u2 ∈ Cr(Hi+1), and if necessary, v1 ∈ N(u1),
v2 ∈ N(u2),

• performing the operation Gi ⊕
u1u2 Hi+1 or Gi ⊕

u1v1 u2v2 Hi+1.

Theorem 4. Let G be a connected block graph. Then G is an msd-4 graph if
and only if G ∈ B. Moreover, if G is an msd-4 graph constructed from the graphs
H1, . . . , Hj ∈ U , then Cr(G) =

⋃j
i=1Cr(Hi).

The second statement of Theorem 4 implies that any γpr-critical vertex v
of an msd-4 block graph remains γpr-critical after the ⊕-operations have been
performed any number of times, whether v was identified with another vertex or
not. The following corollary of Theorem 4 was proved in [2].

Corollary 5. A tree T is an msd-4 graph if and only if T ∈ B, that is, if and
only if T can be constructed as described, using only spiders S(2, . . . , 2).
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4. General Results

In this section we discuss ways of constructing larger msd-4 graphs from smaller
ones. We first prove a useful lemma.

Lemma 6. Let G be a graph with msdpr(G) = 4. For any edge uv of G, subdivide
uv by replacing it with the path (u, x1, x2, x3, v). If D is any γpr(Guv,3)-set, then
D ∩ {u, x1, x2, x3, v} =

(i) {x1, x2} or {x2, x3}, or

(ii) {u, x1, v} or {u, x3, v}.

If the first part of (i) holds, then u is γpr-critical, and if the second part of
(i) holds, then v is γpr-critical.

Proof. Let X = {x1, x2, x3}. To dominate x2, X ∩ D 6= ∅. We consider three
cases.

Case 1. X ∩ D = X. Without loss of generality assume that x1 is paired
with u ∈ D, and x2 and x3 are paired. Then v /∈ D, otherwise D\{x2, x3} is also
a paired dominating set of Guv,3, contradicting the minimality of D. But now
D′ = (D\X) ∪ {v} is a paired dominating set of G, which is impossible because
msdpr(G) = 4.

Case 2. |X ∩ D| = 2. If X ∩ D = {x1, x3}, then {u, v} ⊆ D with u paired
with x1, and v with x3. However, then D\{x1, x3} is a paired dominating set of
G, contradicting msdpr(G) = 4. Suppose X ∩D = {x1, x2}. Then x1 and x2 are
paired in D. If {u, v} ∩D 6= ∅, then D\{x1, x2} is a paired dominating set of G,
which is a contradiction. Hence D∩{u, x1, x2, x3, v} = {x1, x2}. Now D\{x1, x2}
is a paired dominating set of G − u, so γpr(G − u) < γpr(Guv,3) = γpr(G). We
conclude that u is γpr-critical. Arguing similarly if X∩D = {x2, x3}, we conclude
that (i) and the last part of the statement of the lemma hold.

Case 3. |X ∩D| = 1. Then x2 /∈ D. If x1 ∈ D, then x1 is paired with u ∈ D,
while v ∈ D to dominate x3. Consequently, D ∩ {u, x1, x2, x3, v} = {u, x1, v}.
Similarly, if x3 ∈ D, then D ∩ {u, x1, x2, x3, v} = {u, x3, v}.

Our first result regarding the construction of msd-4 graphs from smaller
graphs shows that subdividing any edge of an msd-4 graph four times produces
another msd-4 graph. Repeatedly subdividing edges of an msd-4 graph thus
yields, for example, msd-4 graphs of arbitrary large girth. In fact, we prove a
stronger result: subdividing any edge of any graph G without isolated vertices
four times produces a graph that has the same multisubdivision number as G.

Proposition 7. For any graph G and any edge e of G, msdpr(Ge,4) = msdpr(G).



Block Graphs with Large Paired Domination Multisubdivision ...671

Proof. Say msdpr(G) = t ≤ 4 and e = uv has been subdivided by replacing it
with the path (u, x1, x2, x3, x4, v). Then γpr(Ge,4) = γpr(G) + 2 and there exists
an edge e′ of G such that γpr(Ge′,t) = γpr(G) + 2. If e 6= e′, then subdivid-
ing e ∈ E(Ge′,t) four times yields the graph (Ge′,t)e,4. Since msdpr(Ge′,t) ≤ 4,
γpr((Ge′,t)e,4) = γpr(Ge′,t) + 2 = γpr(G) + 4. But (Ge′,t)e,4 = (Ge,4)e′,t, hence
γpr((Ge,4)e′,t) = γpr(G)+4 = γpr(Ge,4)+2. If e = e′, say uv has been subdivided,
in G, by replacing it with (u, x1, . . . , xt, v). Subdividing (without loss of general-
ity) the edge xtv four times by replacing it with (xt, xt+1, . . . , xt+4, v), we obtain
the graph (Ge,t)xtv,4 = (Ge,4)x4v,t with γpr((Ge,4)x4v,t) = γpr(Ge,4) + 2. It follows
that msdpr(Ge,4) ≤ t.

We show that msdpr(Ge,4) ≥ t. If t = 1, this is obvious, hence assume
t ≥ 2. Consider any e′ ∈ E(G). Suppose first that e′ 6= e. Since msdpr(G) = t,
γpr(Ge′,t−1) = γpr(G). If D′ is any γpr(Ge′,t−1)-set, then D = D′ ∪ {x1, x4} (if u
and v are paired in D′) or D = D′ ∪ {x2, x3} (otherwise) is a paired dominating
set of (Ge,4)e′,t−1 of cardinality |D| = γpr(Ge′,t−1) + 2 = γpr(G) + 2 = γpr(Ge,4).

Assume e′ = e. Without loss of generality subdivide the edge x4v of Ge,4 t−1
times by replacing it with the path (x4, . . . , x3+t, v) and denote the resulting graph
(Ge,4)x4v,t−1 by Ge,3+t for simplicity. Also consider the graph Ge,t−1 obtained
from G by subdividing e = uv by replacing it with (u, x1, . . . , xt−1, v). Since
msdpr(G) = t, γpr(Ge,t−1) = γpr(G). Let S′ be any γpr(Ge,t−1)-set. We consider
three cases. In each case we construct a paired dominating set S of Ge,3+t such
that |S| = |S′|+ 2 = γpr(Ge,4); this shows that msdpr(Ge,4) ≥ t.

Case 1. t = 2. If x1 /∈ S′, then without loss of generality u ∈ S′ to dominate
x1, and S′\{u} dominates v. Let S = S′∪{x3, x4}. If x1 ∈ S′, then again without
loss of generality x1 is paired with u. Let S = S′ ∪ {x4, x5}.

Case 2. t = 3. If S′ ∩ {x1, x2} = ∅, then u dominates x1 while v dominates
x2; let S = S′ ∪ {x3, x4} (so v dominates x6). If (without loss of generality)
S′ ∩ {x1, x2} = {x1}, then u and x1 are paired, and S′\{u, x1} dominates v.
Let S = S′ ∪ {x4, x5}. If {x1, x2} ⊆ S′, then x1 and x2 are paired (otherwise
S′\{x1, x2} is a paired dominating set of G, which is not the case). Let S =
S′ ∪ {x5, x6}.

Case 3. t = 4. By Lemma 6, without loss of generality S′∩{u, x1, x2, x3, v} =
{x1, x2} or {u, x1, v}. In the former case, let S = S′ ∪ {x5, x6}, and in the latter
case, let S = S′ ∪ {x4, x5}.

In all cases, S is a paired dominating set of Ge,3+t of cardinality γpr(G)+2 =
γpr(Ge,4), and msdpr(Ge,4) ≥ t. It follows that msdpr(Ge,4) = t, as required.

We next prove results pertaining to the ⊕-operations defined above that hold
for general msd-4 graphs, not only block graphs. We show that the ⊕-operations
can be used to construct new connected msd-4 graphs from smaller ones.
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Our next result shows that performing the operation G1 ⊕
u1u2

u G2 on msd-4
graphs G1 and G2 with γpr-critical vertices u1 and u2, respectively, results in an
msd-4 graph in which each γpr(Gi)-critical vertex is γpr(G)-critical.

Proposition 8. Let G1 and G2 be disjoint msd-4 graphs with γpr(Gi)-critical
vertices ui, i = 1, 2. Then for the graph G = G1 ⊕

u1u2

u G2, γpr(G) = γpr(G1) +
γpr(G2)− 2, any γpr(Gi)-critical vertex (including u) is γpr(G)-critical and

msdpr(G) = 4.

Proof. Since ui ∈ V (Gi) is γpr(Gi)-critical, γpr(G1 − u1) + γpr(G2 − u2) =
γpr(G1) + γpr(G2) − 4, and at most two more vertices are needed to pairwise
dominate G. Therefore γpr(G) ≤ γpr(G1) + γpr(G2)− 2.

Suppose there exists a paired dominating set S of G such that |S| < γpr(G1)+
γpr(G2)− 2 and let Si = S ∩ V (Gi). First suppose that u /∈ S. Assume without
loss of generality that S1 dominates u. Then S1 is a paired dominating set of
G1 and S2 is a paired dominating set of G2 − u2. Hence |S1| ≥ γpr(G1) and
|S2| ≥ γpr(G2)− 2. But then |S| = |S1|+ |S2| ≥ γpr(G1) + γpr(G2)− 2, which is
not the case. Therefore we may assume that u ∈ S (in this case ui ∈ Si, i = 1, 2)
and |S1|+ |S2| = |S|+ 1. Without loss of generality, u is paired with v ∈ V (G1),
hence S1 is a paired dominating set of G1. Therefore |S1| ≥ γpr(G1) so that
|S2| ≤ γpr(G2)− 3. If NG2

(u2) ⊆ S2, then S2\{u2} is a paired dominating set of
G2, and if there exists w ∈ NG2

(u2)\S2, then S2∪{w} is a paired dominating set
of G2. This is impossible because |S2 ∪ {w}| ≤ γpr(G2)− 2. Hence

γpr(G) = γpr(G1) + γpr(G2)− 2.

If wi is γpr(Gi)-critical, then, for j 6= i, the union of any γpr(Gi−wi)-set and any
γpr(Gj − uj)-set is a paired dominating set of G−wi (this holds for wi = ui = u
also), so

γpr(G− wi) ≤ γpr(Gi − wi) + γpr(Gj − uj) = γpr(G1) + γpr(G2)− 4 < γpr(G).

Therefore wi is γpr(G)-critical.
Without loss of generality consider e ∈ E(G1) and subdivide e three times.

Then, since msdpr(G1) = 4 and u2 is γpr(G2)-critical, we obtain

γpr(Ge,3) ≤ γpr(G1e,3) + γpr(G2 − u2) = γpr(G1) + γpr(G2)− 2 = γpr(G).

Therefore msdpr(G) = 4.

We show next that performing the operation G1 ⊕
e1e2 G2 on msd-4 graphs

Gi, i = 1, 2, with edges ei = xiyi, where xi is a γpr(Gi)-critical vertex, results in
an msd-4 graph in which each γpr(Gi)-critical vertex is γpr(G)-critical.
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Proposition 9. Let Gi, i = 1, 2, be disjoint msd-4 graphs with ei = xiyi ∈ E(Gi),
where xi ∈ Cr(Gi). Then for the graph G = G1 ⊕

e1e2 G2, γpr(G) = γpr(G1) +
γpr(G2)− 2, any γpr(Gi)-critical vertex (including x = x1 = x2) is γpr(G)-critical
and msdpr(G) = 4.

Proof. By Theorem 1, there exists a γpr(Gi)-set in which xi and yi are matched.
Therefore

(1) γpr(G) ≤ γpr(G1) + γpr(G2)− 2.

On the other hand, it suffices to add two vertices to a γpr(G)-set when splitting
it into paired dominating sets of G1 and G2. Hence we have equality in (1). As
in the proof of Proposition 8, any γpr(Gi)-critical vertex is γpr(G)-critical.

Let e ∈ E(G) be any edge. If e ∈ E(G1)\{e1}, then

γpr(Ge,3) ≤ γpr(G1e,3) + γpr(G2 − x2) = γpr(G1) + γpr(G2)− 2 = γpr(G).

The case when e ∈ E(G2)\{e2} is analogous. Thus assume e = xy and subdivide
e by replacing it with the path (x, u, v, w, y). Let S be any γpr(G − x)-set. As
shown above, |S| = γpr(G)− 2. Now S ∪{u, v} is a paired dominating set of Ge,3

of cardinality γpr(G). It follows that G is an msd-4 graph.

We now describe a type of “reverse” operation, called a split operation, for
each of the ⊕-operations.

G⊖ u. Let G be a connected graph with a cut-vertex u. Denote the components
of G − u by F1, F2, . . . , Fk. For each i, let Gi be the graph obtained from Fi

by adding a new vertex ui, joining ui to vi ∈ V (Fi) if and only if uvi ∈ E(G).
Denote the disjoint union G1 + · · ·+Gk by G⊖ u.

G⊖ xy. Let G be a connected graph containing a vertex-cut {x, y}, where xy ∈
E(G). Denote the components of G−{x, y} by F1, F2, . . . , Fk. For each i, let Gi

be the graph obtained from Fi by adding the edge xiyi, joining xi (yi, respectively)
to vi ∈ V (Fi) if and only if xvi ∈ E(G) (yvi ∈ E(G), respectively). Denote the
disjoint union G1 + · · ·+Gk by G⊖ xy.

The next proposition shows that if an msd-4 graph G is split at a γpr-critical
cut-vertex u, the components of G ⊖ u are msd-4 graphs having the copies of u
as γpr-critical vertices.

Proposition 10. Let G be an msd-4 graph with a γpr-critical cut-vertex u. De-
note the components of G⊖ u by G1, . . . , Gk. Then for each i = 1, . . . , k, ui is a
γpr(Gi)-critical vertex and msdpr(Gi) = 4.
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Proof. Since u is γpr(G)-critical and G − u is the disjoint union of Gi − ui,
i = 1, . . . , k,

γpr(G)− 2 = γpr(G− u) =
k

∑

i=1

γpr(Gi − ui).

Suppose γpr(G1−u1) ≥ γpr(G1). Let R1 be a γpr(G1)-set and, for i ≥ 2, let Ri be

a γpr(Gi − ui)-set. Since R1 dominates u1, R =
⋃k

i=1Ri is a paired dominating
set of G. But then

γpr(G) ≤ |R| ≤ γpr(G1) +
k

∑

i=2

γpr(Gi − ui) ≤
k

∑

i=1

γpr(Gi − ui) = γpr(G)− 2,

which is impossible. Thus u1 is γpr(G1)-critical. The same argument works for
each i ∈ {2, . . . , k}.

Consider an arbitrary edge e ∈ E(G1) and subdivide e three times. Then

(2) γpr(Ge,3) ≤ γpr(G1e,3) +
k

∑

i=2

γpr(Gi − ui).

We show that equality holds in (2). Let S be any γpr(Ge,3)-set and define S1 =
S ∩ V (G1e,3) and Si = S ∩ V (Gi) for i = 2, . . . , k (if u ∈ S, then ui ∈ Si for
each i). First suppose that u /∈ S. If S1 dominates u, then S1 is a paired
dominating set of G1e,3 and Si, i ≥ 2, is a paired dominating set of Gi − ui.
Hence |S1| ≥ γpr(G1e,3) and |Si| ≥ γpr(Gi − ui), so that γpr(Ge,3) = |S| =
∑k

i=1 |Si| ≥ γpr(G1e,3) +
∑k

i=2 γpr(Gi − ui) as required. On the other hand, if
S1 does not dominate u, then Sj is a paired dominating set of Gj for some
j ≥ 2, so that |Sj | ≥ γpr(Gj) = γpr(Gj − uj) + 2 (since uj is γpr(Gj)-critical).
Let S′

j be a γpr(Gj − uj)-set, S′

1 = S1 ∪ {u, u′} for some u′ ∈ NG1
(u), and

S′ = (S\S1\Sj)∪S′

1 ∪S′

j . Then |S′| = |S|, S′

1 is a paired dominating set of G1e,3

and the result follows as before.
Now suppose that u ∈ S. Then |S1|+

∑k
i=2 |Si| = |S|+ k− 1 and u is paired

with a vertex in exactly one of the graphs G1e,3 or Gi, i ≥ 2. For each of the
k− 1 other graphs, either Si ∪{wi}, for some neighbour wi /∈ Si of ui, or Si\{ui}
(if all neighbours of ui in Gi belong to Si) is a paired dominating set. Hence

γpr(G1e,3) +
k

∑

i=2

γpr(Gi) ≤ |S|+ 2(k − 1).

Since ui is γpr(Gi)-critical for each i = 2, 3 . . . , k, γpr(Gi−ui) = γpr(Gi)−2. This
gives

γpr(G1e,3) +
k

∑

i=2

γpr(Gi − ui) ≤ |S| = γpr(Ge,3).

Therefore we have equality (2). Now
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γpr(G1e,3) = γpr(Ge,3)−
k

∑

i=2

γpr(Gi − ui) = γpr(G)−
k

∑

i=2

γpr(Gi − ui)

= γpr(G1) +
k

∑

i=2

γpr(Gi − ui)−
k

∑

i=2

γpr(Gi − ui) = γpr(G1).

Hence, for any edge e ∈ E(G1), γpr(G1e,3) = γpr(G). Thus msdpr(G1) = 4.
Similar reasoning may be applied to Gi for i ∈ {2, 3, . . . , k}.

5. Msd-4 Block Graphs

The last three results we need for the proof of Theorem 4 concern block graphs.
In the first result we prove that every non-leaf vertex of an msd-4 block graph is
a cut-vertex.

Theorem 11. Let G be a graph containing a block B ∼= Kn, where n ≥ 3, such
that some vertex of B is not adjacent to any vertex of G−B. Then

msdpr(G) < 4.

Proof. Suppose the hypothesis of the theorem holds but msdpr(G) = 4. Let
V (B) = {v0, . . . , vn−1} and say u = v0 is not adjacent to any vertex of G − B.
Subdivide the edge uv2 by replacing it with the path (u, x3, x2, x1, v2) (see Figure
3). Denote X = {x1, x2, x3} and let D be a γpr-set of Guv2,3. By Lemma 6 we
only have to consider the cases D ∩ {u, x1, x2, x3, v2}∈ {{u, x1, v2}, {u, x3, v2},
{x1, x2}, {x2, x3}}.

u

x3

x2

x1

v2

v1

vn−1

B

Figure 3. The block B with the edge uv2 subdivided with vertices x1, x2, x3.
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Case 1. |X ∩ D| = 1. If D ∩ {u, x1, x2, x3, v2} = {u, x1, v2}, then x1 and
v2 are paired in D, while u is paired with vi for some i 6= 0, 2. However, then
D\{x1, u}, with v2 and vi paired, is a smaller paired dominating set of G. If
D∩{u, x1, x2, x3, v2} = {u, x3, v2}, then D\{x3, u} is a smaller paired dominating
set of G. In either case msdpr(G) < 4, contrary to our assumption.

Case 2. |X ∩ D| = 2. If D ∩ {u, x1, x2, x3, v2} = {x1, x2}, then x1 and
x2 are paired in D. To pairwise dominate u, vi ∈ D for some i 6= 0, 2. But
then D\{x1, x2} is a paired dominating set of G (with vi paired as in D) and
msdpr(G) < 4, contrary to our assumption. Hence assumeD∩{u, x1, x2, x3, v2} =
{x2, x3}. Then x2 and x3 are matched in D. If vi ∈ D for some i, then D\{x2, x3}
is a paired dominating set of G (again with vi paired as in D), a contradiction.

We therefore assume henceforth that

(i) D contains x2 and x3, but neither x1 nor any v0, . . . , vn−1.

By Lemma 6, u is γpr-critical, that is,

(ii) γpr(G− u) = γpr(G)− 2.

For each i = 1, . . . , n−1, let Gi be the component of G−E(B) that contains
vi. Since B is a block of G, the subgraphs Gi are distinct and pairwise vertex-
disjoint. Let Di = D ∩ V (Gi). Then

∣

∣

⋃n−1
i=1 Di

∣

∣ = |D\{x2, x3}| = γpr(G)− 2. By
(i), each Di is a γpr(Gi)-set that does not contain vi.

We next show that

(iii) no γpr(G)-set contains u = v0 and at least two vi, i ≥ 1.

Suppose there exists such a set Z; assume without loss of generality that
{u, v1, v2, . . . , vk} ⊆ Z, k ≥ 2. Necessarily, u is paired with some vi, i = 1, . . . , k,
in Z. Assume (again without loss of generality) u is paired with v1. Let Z1 =
Z ∩ V (G1)\{v1} and, for i ≥ 2, let Zi = Z ∩ V (Gi). Then

⋃n−1
i=1 Zi ⊆ V (G − u)

and
∣

∣

⋃n−1
i=1 Zi

∣

∣ = |Z| − 2 = γpr(G − u) < γpr(G), by (ii). Since v1 and u are

paired, G1[Z1] contains a perfect matching, as does G
[
⋃n−1

i=2 Zi

]

. Since v1 is not

adjacent to any vertex of Gi − vi, i ≥ 2, and v2 dominates B in G,
⋃n−1

i=2 Zi is a
paired dominating set of G−G1.

Suppose |Z1| < |D1|. Since both Z1 and D1 have even cardinality, |Z1| ≤
|D1| − 2. Then Z1 does not dominate G1 − v1, otherwise

⋃n−1
i=1 Zi is a paired

dominating set of G of cardinality less than γpr(G), which is impossible. Since
Z1 ∪ {v1} dominates G1, there exists a vertex w ∈ NG1

(v1) that is undominated
by Z1. Then W1 = Z1 ∪ {w, v1} is a paired dominating set of G1 of cardinality
at most |D1| that contains v1. But now W1 ∪ D2 ∪ D3 ∪ · · · ∪ Dn−1 is a paired
dominating set of G of cardinality at most |D\{x2, x3}| = γpr(G) − 2, which is
impossible. We conclude that |Z1| = |D1|.

Let Z ′ = D1 ∪
(

⋃n−1
i=2 Zi

)

. Since
⋃n−1

i=2 Zi is a paired dominating set of G−

G1 and D1 is a paired dominating set of G1, Z
′ is a paired dominating set of G.
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Moreover,

|Z ′| =

∣

∣

∣

∣

∣

n−1
⋃

i=2

Zi

∣

∣

∣

∣

∣

+ |D1| =

∣

∣

∣

∣

∣

n−1
⋃

i=1

Zi

∣

∣

∣

∣

∣

= |Z| − 2 = γpr(G− u) < γpr(G),

which is impossible. This concludes the proof of (iii).

Subdivide the edge v1v2 with vertices y1, y2, y3, where y1 is adjacent to v1
and y3 is adjacent to v2 (see Figure 4). Denote Y = {y1, y2, y3} and let Q be
a γpr-set of Gv1v2,3. Without loss of generality, by Lemma 6 we only have to
consider the cases Q ∩ {v1, v2, y1, y2, y3} ∈ {{y1, y2}, {v1, v2, y1}}.

u

y3 y2 y1

v2

v1

vn−1

B

Figure 4. The block B with the edge v1v2 subdivided with vertices y1, y2, y3.

Case 3a. Q∩{v1, v2, y1, y2, y3} = {y1, y2}. Then these two vertices are paired
in Q. To pairwise dominate u, vi ∈ Q for some i. It follows that Q\{y1, y2} is a
paired dominating set of G, so msdpr(G) < 4, contrary to our assumption.

Case 3b. Q ∩ {v1, v2, y1, y2, y3} = {v1, v2, y1}. Then y1 is paired with v1. If
u /∈ Q, then Q′ = (Q\{y1}) ∪ {u} is a paired dominating set of G containing
u, v1, v2. By (iii), Q′ is not a γpr-set of G, from which it follows that γpr(G) < |Q|
and msdpr(G) < 4. Assume therefore that u ∈ Q. Then u is paired in Q with vi
for some i > 1. Now Q′′ = Q\{y1, u} is a paired dominating set of G in which v1
and vi are paired. In both cases we again have a contradiction and the proof is
complete.

The graph in Figure 5 shows that the statement of Theorem 11 is false if the
complete subgraph B is not a block of G.

The next result in this section shows that msd-4 block graphs have many
γpr-critical vertices.
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u

v1 v2

G

Figure 5. A graph G with msdpr(G) = 4 and a subgraph K3 that is not a block of G.

Theorem 12. If G is a block graph with msdpr(G) = 4, then for any edge uv ∈
E(G),

(NG[u] ∪NG[v]) ∩ Cr(G) 6= ∅.

Proof. Suppose there exists an edge uv ∈ E(G) such that (NG[u] ∪NG[v]) ∩
Cr(G) = ∅. By Theorem 1, no vertex in NG[u] ∪ NG[v] is a leaf. We subdivide
the edge uv by replacing it with the path (u, x1, x2, x3, v) to obtain the graph
Guv,3. By Lemma 6, for any γpr-set S of Guv,3, S ∩{u, v, x1, x2, x3} ∈ {{u, v, x1},
{u, v, x3}}. Without loss of generality assume there exists such a set S such that
S ∩ {u, v, x1, x2, x3} = {u, v, x1}, and among all such sets S, let D be one for
which PN(u,D) is as small as possible. Then x1 and u are paired in D.

Say v is paired with v′ and let B be the block of G that contains uv. If
v′ ∈ V (G)\V (B), let Gv be the subgraph of G−E(B) that contains v, and if v′ ∈
V (B), letGv be the subgraph ofG−(E(B)−{vv′}) that contains v. In either case,
v′ ∈ V (Gv). Let Dv = D∩V (Gv) and D′ = D\{x1, u}. Then G[D′] has a perfect
matching and Dv is a paired dominating set of Gv containing v and v′. In fact,
Dv is a γpr(Gv)-set, for if not, let D

′′ be a smaller paired dominating set of Gv.
Consider NG(u)\V (B). If B ∼= K2, then NG(u)\V (B) = NG(u)\{v} is nonempty
because u is not a leaf, and if B ∼= Kn for n ≥ 3, then NG(u)\V (B) is nonempty
by Theorem 11. If NG(u)\V (B) ⊆ D, then D′ is a paired dominating set of
G, and if there exists w ∈ NG(u)\V (B)\D, then (D\{x1}\Dv) ∪D′′ ∪ {w} is a
smaller paired dominating set of G than D. In both cases we have a contradiction
to msdpr(G) = 4.

Since msdpr(G) = 4, |D′| = γpr(Guv,3) − 2 = γpr(G) − 2. Consequently,
D′ does not dominate G. Since v ∈ D′ dominates B in G, there exist vertices
w1, . . . , wk ∈ NG(u)\NG[v] ⊆ NG(u)\B that are undominated by D′, that is,
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{w1, . . . , wk} = PN(u,D). For i = 1, . . . , k, let Gi be the component of G−u that
contains wi. Possibly, Gi = Gj for i 6= j; this happens exactly when wiwj ∈ E(G),
and then wi and wj also belong to the same (complete) block of Gi. Since no wi is
adjacent to v or v′, V (Gi)∩V (Gv) = ∅ for each i. Define Di = D∩V (Gi). Then
Gi[Di] has a perfect matching, but does not dominate wi. If it is nevertheless true
that γpr(Gi) = |Di| for some i, let Qi be a γpr(Gi) set. Then D∗ = (D\Di) ∪Qi

is a γpr(Guv,3)-set such that PN(u,D∗) ⊆ PN(u,D)\{wi}, contrary to the choice
of D. Therefore γpr(Gi) ≥ |Di|+ 2 for each i.

Since each stem belongs to all paired dominating sets, no wi is a stem, and by
our initial assumption, no wi is a leaf. Subdivide the edge uw1 by replacing it with
the path (u, y1, y2, y3, w1). Consider a γpr(Guw1,3)-set S. Since u,w1 /∈ Cr(G),
Lemma 6 states that S ∩ {u, y1, y2, y3, w1 ∈ {{u, y1, w1}, {u, y3, w1}}.

• In the former case, y1 is paired with u and S1 = S∩V (G1) is a paired dominating
set of G1; hence |S1| ≥ γpr(G1) ≥ |D1|+2. Since w1 is adjacent to all wi ∈ V (G1),
D1∪{w1} dominates G1 (but not pairwise). Now S′ = (S\S1)∪D1∪{w1, y3} is a
paired dominating set of Guw1,3 such that |S′| ≤ |S|, hence S′ is a γpr(Guw1,3)-set.
Moreover, S′ ∩ {u, y1, y2, y3, w1} = {u, y1, y3, w1}, contrary to Lemma 6.

• In the latter case, y3 is paired with w1. Then S2 = (S ∩ V (G1)) ∪ {y3} is a
paired dominating set of the graph obtained from G1 by joining y3 to w1. If all
neighbours of w1 in G1 belong to S2, then S2\{w1, y3} is a paired dominating
set of G1. But then S′′ = S\{w1, y3} is a paired dominating set of G such that
|S′′| < |S|, contradicting msdpr(G) = 4. Assume some neighbour z of w1 in G1

does not belong to S2. Then S3 = (S2\{y3}) ∪ {z} is a paired dominating set
of G1, so that |S2| = |S3| ≥ |D1| + 2. Since u ∈ S and {w1, . . . , wk} ⊆ N(u),
S∗ = (S\S2) ∪D1 is a paired dominating set of G such that |S∗| < |S|, again a
contradiction.

This completes the proof of the theorem.

Although the graph G in Figure 5 satisfies msdpr(G) = 4 without being a
block graph, Theorem 12 holds for G as well.

Our final result in this section concerns the reverse operation G ⊖ xy for
certain msd-4 block graphs.

Proposition 13. Let G be a connected msd-4 block graph such that the only
γpr(G)-critical vertices are leaves. Let x be a leaf adjacent to the stem y, where
{x, y} is a vertex-cut, and denote the components of G⊖xy by G1, . . . , Gk. Then
for each i = 1, . . . , k, Gi is an msd-4 graph and xi ∈ Cr(Gi).

Proof. If Gi is an msd-4 graph, it will follow from Theorem 1(ii) that xi ∈
Cr(Gi). However, we need the fact that xi is γpr(Gi)-critical to show that
msdpr(Gi) = 4, hence this is what we prove first.
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Since G is a block graph, NGi−xi
(yi) induces a clique for each i = 1, . . . , k.

Since x is a leaf, y belongs to every paired dominating set of G, and by Theo-
rem 1(ii), x ∈ Cr(G). Hence y belongs to no γpr(G− x)-set (for such a set would
dominate x and thus G, contradicting x ∈ Cr(G)).

Let D be a γpr(G−x) set such that |D∩N(y)| is maximum and let Di = D∩

V (Gi), i = 1, . . . , k. Since x ∈ Cr(G) and y /∈ D, |D| =
∑k

i=1 |Di| = γpr(G) − 2.
Also, Di is a paired dominating set of Gi − {xi, yi} for each i, and a paired
dominating set of Gi − xi for at least one i. We show that, in fact,

(A) Di is a paired dominating set of Gi − xi for each i.

First suppose |NGi−xi
(yi)| ≥ 2; say z1, z2 ∈ NGi−xi

(yi). Since NGi−xi
(yi)

induces a clique, z1z2 ∈ E(G). By Theorem 12, (NG[z1] ∪NG[z2]) ∩ Cr(G) 6= ∅.
Since NG[zi] = NGi−xi

[zi] and zi is not a leaf (and thus, by the hypothesis, not
γpr(G)-critical), z1 or z2 is adjacent to a γpr(G)-critical vertex, i.e., a leaf. Say
z1 is adjacent to a leaf z′. Then z1 belongs to any paired dominating set of any
subgraph of G containing both z1 and z′, so z1 ∈ D. Therefore Di dominates yi
and (A) holds.

Assume therefore that |NGi−xi
(yi)| = 1, say NGi−xi

(yi) = {z}. If z ∈ D, we
are done, hence assume z /∈ D. By Theorem 1(iii), z is not a leaf, hence there
exists a vertex z′ ∈ NGi−xi

(z)\{yi}. By Theorem 1(i), G has a γpr-set X such
that zz′ belongs to a matching of G[X]. Now y ∈ X, but y is not paired with any
vertex of Gi−xi, since NGi−xi

(yi) = {z}. Therefore Xi = (X\{x, y})∩V (Gi) is a
paired dominating set of Gi−xi. Moreover, |Xi| ≤ |Di|, otherwise (X −Xi)∪Di

is a smaller paired dominating set of G, which is impossible. However, now
D′ = (D\Di) ∪Xi is a paired dominating set of G − x, hence a γpr(G − x)-set,
containing more neighbours of y than D, contrary to the choice of D. Hence (A)
holds in this case as well.

Therefore γpr(Gi − xi) ≤ |Di| for each i, so that

(3)
k

∑

i=1

γpr(Gi − xi) ≤
k

∑

i=1

|Di| = |D| = γpr(G− x).

Suppose there exists a γpr(Gi − xi)-set Yi containing yi. Since no Dj contains
yj , D′ = (D\Di) ∪ Yi is a paired dominating set of G − x such that |D′| ≤
|D| = γpr(G) − 2 and D′ dominates x. Then D′ is a paired dominating set of
G, which is impossible. Therefore no γpr(Gi − xi)-set contains yi. Similarly, if
γpr(Gi−xi) < |Di| for some i and Zi is a γpr(Gi−xi)-set, then D′′ = (D\Di)∪Zi

is a paired dominating set of G−x such that |D′′| < |D|, which is also impossible.
From these two facts we deduce that Di is a γpr(Gi − xi)-set, equality holds in
(3) and γpr(Gi) = γpr(Gi − xi) + 2, that is, xi is γpr(Gi)-critical for each i.

We show that msdpr(G1) = 4; it will follow similarly that msdpr(Gi) = 4
for each i. Since D1 is a γpr(G1 − x1)-set, it is easy to see that we can pairwise
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dominate G1xy,3 by |D1| + 2 = γpr(G1) vertices. Hence consider any edge e ∈
E(G1 − x1) and the graphs Ge,3 and G1e,3 . Since combining any γpr(G1e,3)-set
with the sets Dj , j = 2, . . . , k, produces a paired dominating set of Ge,3,

(4) γpr(Ge,3) ≤ γpr(G1e,3) +
k

∑

i=2

γpr(Gi − xi).

We show that equality holds in (4). For convenience of notation, defineH1 = G1e,3

and Hi = Gi, i ≥ 2. Let S be a γpr(Ge,3)-set and define Si = S ∩ V (Hi) for
i = 1, . . . , k (since y ∈ S, yi ∈ Si for each i, and if x ∈ S, then xi ∈ Si for each
i). We consider two cases, depending on whether x ∈ S or not.

Case 1. x /∈ S. Then
∑k

i=1 |Si| = |S| + k − 1. Note that y is paired
with w ∈ V (Hi)\{xi, yi} for exactly one i. Then Si is a paired dominating
set of Hi. For j 6= i, Sj ∪ {xj} is a paired dominating set of Hj . Therefore
γpr(Hi) ≤ |Si| and γpr(Hj) ≤ |Sj |+ 1 for j 6= i. For ℓ ≥ 2, xℓ is γpr(Hℓ)-critical,
hence γpr(Hℓ − xℓ) ≤ γpr(Hℓ)− 2. Therefore

γpr(G1e,3)+
k

∑

i=2

γpr(Gi−xi) ≤
k

∑

i=1

|Si|−2(k−1)+(k−1) =
k

∑

i=1

|Si|−(k−1) = |S|

and equality holds in (4).

Case 2. {x, y} ⊆ S. Then x and y are paired in S, {xi, yi} ⊆ Si for each i,
and Si is a paired dominating set of Hi. Also,

∑k
i=2 |Si| = |S|+ 2(k − 1)− |S1|.

Since xi is γpr(Gi)-critical,

γpr(G1e,3) +
k

∑

i=2

γpr(Gi − xi) ≤ |S1|+
k

∑

i=2

|Si| − 2(k − 1) = |S| = γpr(Ge,3),

giving equality in (4).
It now follows as in the proof of Proposition 10 that msd(G1) = 4. Similarly,

msd(Gi) = 4 for i ≥ 2.

6. Proof of Theorem 4

We are now ready to prove our main theorem, the characterization of msd-4 block
graphs. We restate the theorem here for convenience.

Theorem 4 (again). Let G be a connected block graph. Then G is an msd-4
graph if and only if G ∈ B. Moreover, if G is an msd-4 graph constructed from
the graphs H1, . . . , Hj ∈ U , then Cr(G) =

⋃j
i=1Cr(Hi).
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Proof. If G ∈ B, it follows immediately from Propositions 8 and 9 that G is an
msd-4 graph and Cr(G) =

⋃j
i=1Cr(Hi).

For the converse, let G be an msd-4 block graph. If G is a tree, the result
follows from Corollary 5, hence we assume that B ∼= Kn, n ≥ 3, is a block of
G. By (the contrapositive of) Theorem 11, each vertex of B is a cut-vertex, so
deg(v) ≥ n for each v ∈ V (B). Since each non-leaf vertex of a K2-block is a
cut-vertex, we deduce that each vertex of G is either a leaf or a cut-vertex.

Suppose v ∈ V (B) is γpr-critical. Applying Proposition 10 to v we obtain an
msd-4 graph G1 with v1 = v and NG1

[v1] = B, which contradicts Theorem 11.
Thus every γpr(G)-critical vertex belongs only to K2-blocks.

We say that a vertex u is a type-A vertex if it is a γpr(G)-critical cut-vertex,
and an edge uv is a type-A edge if u is a leaf (hence γpr(G)-critical) and G −
{u, v} is disconnected. Denote the number of type-A elements (vertices and
edges together) of G by a(G). First we show that

(B) if a(G) = 0, then G ∈ U .

Suppose a(G) = 0. Then every γpr(G)-critical vertex is a leaf. Say V (B) =
{v1, . . . , vn}. Since no vertex of B is γpr(G)-critical, Theorem 12 implies that v1
or vn is adjacent to a γpr(G)-critical vertex. Without loss of generality we assume
that v1u1 ∈ E(G), u1 /∈ V (B), and u1 is γpr(G)-critical. Similarly, without loss of
generality, vi is adjacent to a γpr(G)-critical vertex ui /∈ V (B) for i = 2, . . . , n−1.
Since a(G) = 0 and each vertex of G is either a leaf or a cut-vertex, degG(ui) = 1
for each i = 1, . . . , n− 1 and G− {vi, ui} is connected. Thus, vi belongs to only
the two blocks B and viui, so degG(vi) = n for each i = 1, . . . , n− 1.

Since vn is a cut-vertex, N(vn)\V (B) 6= ∅. If vn is adjacent to a γpr(G)-
critical vertex, say un, then, arguing as above, deg(un) = 1, deg(vn) = n and
G = Kn ◦K1. By Remark 3(i), n is odd, hence G belongs to the family U ⊆ B. If
no vertex in N(vn)\V (B) is critical, let N(vn)\V (B) = {w1, . . . , wt} for t ≥ 1. By
Theorem 12, each wi is adjacent to a critical vertex w′

i 6= vn, and since a(G) = 0,
w′

i is a leaf. We show that

(C) {w1, . . . , wt} is an independent set of G.

Suppose (without loss of generality) that w1w2 ∈ E(G) and consider Gw1w2,3.
Let w1, x1, x2, x3, w2 be the w1−w2 path in Gw1w2,3 and let D be a γpr(Gw1w2,3)-
set. Since w′

1 and w′

2 are leaves, w1, w2 ∈ D. To dominate x2, {x1, x2, x3}∩D 6= ∅.
If |{x1, x2, x3} ∩D| = 2, then D\{x1, x2, x3} is a paired dominating set (with w1

and w2 paired) ofG of smaller cardinality thanD, contrary to msd(G) = 4. Hence
assume without loss of generality that {x1, x2, x3} ∩D = {x1}, so w1 and x1 are
paired (and w′

1 /∈ D), while w2 is paired with either w′

2 or vn. However, each
vertex in NG(vn) is adjacent to a leaf and belongs to D, thus D\{vn} dominates
G. Therefore, either D\{x1, w

′

2} or D\{x1, vn} is a paired dominating set of G in
which w1 and w2 are paired, contrary to msd(G) = 4. It follows that (C) holds.
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Since G is a block graph, wi and wj belong to different components of G− vn for
all i 6= j.

Consequently, if there exists a vertex z /∈ {vn, w
′

i} adjacent to wi, then z and
vn belong to different components of G − {wi, w

′

i}. But now wiw
′

i is a type-A
edge, which is not the case as a(G) = 0. Hence deg(wi) = 2 and G ∼= Kn ◦∗t K1.
Since msd(G) = 4, n is even, by Remark 3(ii). Therefore G ∈ U ⊆ B. Thus (B)
holds.

Now suppose a(G) ≥ 1. If G has a type-A critical cut-vertex u, perform
the operation G ⊖ u; each resulting graph is an msd-4 graph by Proposition 10,
and clearly a block graph. Moreover, the copies of u in each graph are γpr-
critical. Repeat this process until no resulting msd-4 block graph has a type-A
critical cut-vertex. Let G1, . . . , Gk be the resulting graphs. Then each critical
vertex of each Gi is a leaf. If any Gi has a type-A critical edge uv, where u is
a leaf, perform the operation G ⊖ uv. Each resulting graph is an msd-4 block
graph by Proposition 13. Repeat this process until all resulting graphs Hj satisfy
a(Hj) = 0. If Hj is a tree, then Hj

∼= S(2, . . . , 2) ∈ U by Corollary 5, otherwise
Hj ∈ U by (B). Now G can be reconstructed by performing the ⊕-operations on
the Hj , hence G ∈ B, as required.

7. Open Problems

We conclude with a short list of open problems for future consideration.

Question 1. Does Theorem 12 hold for all msd-4 graphs?

Define another ⊕-operation as follows.

⊕u1Q1,u2Q2

u,Q : Let G1 and G2 be vertex disjoint graphs containing (not necessarily
maximal) cliques Q1 and Q2 of equal size, and vertices ui ∈ V (Qi) for i ∈ {1, 2}.
We denote a graph obtained from G1 and G2 by identifying Q1 and Q2 into one
clique Q, and u1 and u2 into one vertex u = u1 = u2, by G1⊕

u1Q1,u2Q2

u,Q G2 (or by

G1 ⊕
u1Q1,u2Q2 G2 if u and Q are unimportant).
Note that if the cliques Qi have order at least three, then identifying the

vertices of Qi − ui in different ways may yield different graphs. Both operations
⊕u1u2

u and ⊕e1e2
e are special cases of ⊕u1Q1,u2Q2

u,Q .

Question 2. Let G1 and G2 be disjoint msd-4 graphs containing cliques Q1 and
Q2 of equal size and γpr(Gi)-critical vertices ui ∈ V (Qi), i = 1, 2. Is it true that

for any graph G = G1 ⊕
u1Q1,u2Q2

u,Q G2, u is γpr(G)-critical and msdpr(G) = 4?

If G1 and G2 are copies of the msd-4 graph in Figure 5, with ui = u, which
is γpr-critical, and Qi is the triangle containing u, then both graphs obtainable

as G1 ⊕
u1Q1,u2Q2

u,Q G2 are msd-4 graphs having u as critical vertex.
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Question 3. Let G be a graph with msdpr(G) = 4. What is the largest number of
edges of G that can be subdivided three times before the paired domination number
increases? If this number can be arbitrarily high, what is its ratio to the number
of edges of G?
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