Discussiones Mathematicae Graph Theory 41 (2021) 665–684 doi:10.7151/dmgt.2230

# BLOCK GRAPHS WITH LARGE PAIRED DOMINATION MULTISUBDIVISION NUMBER

Christina M. Mynhardt

Department of Mathematics and Statistics University of Victoria Victoria BC, Canada **e-mail:** kieka@uvic.ca

AND

JOANNA RACZEK

Faculty of Applied Physics and Mathematics Gdańsk University of Technology ul. Narutowicza 11/12, 80-233 Gdańsk, Poland

e-mail: joanna.raczek@pg.edu.pl

### Abstract

The paired domination multisubdivision number of a nonempty graph G, denoted by  $\operatorname{msd}_{\operatorname{pr}}(G)$ , is the smallest positive integer k such that there exists an edge which must be subdivided k times to increase the paired domination number of G. It is known that  $\operatorname{msd}_{\operatorname{pr}}(G) \leq 4$  for all graphs G. We characterize block graphs with  $\operatorname{msd}_{\operatorname{pr}}(G) = 4$ .

**Keywords:** paired domination, domination subdivision number, domination multisubdivision number, block graph.

2010 Mathematics Subject Classification: 05C69.

### 1. INTRODUCTION

The study of changes that occur in domination-related parameters of a graph when its edges are subdivided<sup>1</sup> was initiated in [11]. If  $\pi$  is a domination-type parameter of G, the smallest number of edges that must be subdivided, where each edge of G can be subdivided at most once, in order to increase  $\pi$  is called

<sup>&</sup>lt;sup>1</sup>See Section 2 for definitions of terms used in this section.

the  $\pi$ -subdivision number, denoted by  $\mathrm{sd}_{\pi}(G)$ . Subdivision numbers have been studied for the domination number [6, 11], as well as for connected [4], double [1], Roman [10], total [7, 9] and paired domination numbers [5].

Instead of subdividing multiple edges once each, one may wish to subdivide a single edge multiple times. The smallest number of times that a single edge of G must be subdivided to increase  $\pi$  is called the  $\pi$ -multisubdivision number, denoted by  $\operatorname{msd}_{\pi}(G)$ . Domination and paired domination multisubdivision numbers were studied in [3] and [2], respectively. In particular, it was shown in [2] that the paired domination multisubdivision number  $\operatorname{msd}_{\operatorname{pr}}(G)$  of any graph G is at most four. For brevity we refer to a graph G with  $\operatorname{msd}_{\operatorname{pr}}(G) = 4$  as an msd-4 graph. Msd-4 trees were characterized in [2].

We discuss methods of combining msd-4 graphs to yield new msd-4 graphs and use our results, combined with results from [2], to characterize msd-4 block graphs. Definitions and previous results are given in Section 2. We state the characterization of msd-4 block graphs in Section 3, but defer its proof to Section 6 to allow us to prove a number of results used in the proof; results that apply to general msd-4 graphs are given in Section 4, while results specific to block graphs can be found in Section 5.

#### 2. Definitions and Previous Results

We refer the reader to [8] for domination parameters not defined here. A set S of vertices of a graph G = (V, E) without isolated vertices is a *paired dominating* set of G if every vertex of G is adjacent to a vertex in S, and the subgraph G[S] of G induced by S has a perfect matching. If  $u, v \in S$  and there exists a perfect matching M of G[S] such that  $uv \in M$ , we say that u and v are *paired* in S. The smallest cardinality of a paired dominating set of G is the *paired domination* number of G, denoted by  $\gamma_{pr}(G)$ . If S is a paired dominating set of G such that  $|S| = \gamma_{pr}(G)$ , we call S a  $\gamma_{pr}(G)$ -set, or simply a  $\gamma_{pr}$ -set if the graph is clear from the context. If u is a vertex of G such that G - u has no isolated vertices and  $\gamma_{pr}(G)$ -critical vertex, or simply a  $\gamma_{pr}$ -critical vertex, and define  $Cr(G) = \{u \in V(G) : u \text{ is a } \gamma_{pr}$ -critical vertex}.

A neighbour of a vertex  $u \in V(G)$  is a vertex adjacent to u. The (open) neighbourhood N(u) of a vertex u is the set of all vertices adjacent to u, and its closed neighbourhood is  $N[u] = N(u) \cup \{u\}$ . For a set  $S \subseteq V(G)$ , the (open) neighbourhood of S is  $N(S) = \bigcup_{u \in S} N(u)$ , and its closed neighbourhood is N[S] = $N(S) \cup S$ . For a vertex  $u \in S$ , the private neighbourhood of u with respect to Sis the set  $PN(u, S) = N[u] \setminus N[S \setminus \{u\}]$ . It is possible that  $u \in PN(u, S)$ , but if S is a paired dominating set, then u is adjacent to the vertex it is paired with,

so  $u \notin PN(u, S)$  in this case.

An edge uv of a graph G is subdivided if it is replaced by a path (u, x, v), where x is a new vertex, and multisubdivided if it is replaced by a path  $(u, x_1, \ldots, x_k, v)$ ,  $k \ge 2$ , where  $x_1, \ldots, x_k$  are new vertices; we also say that uv is subdivided k times. Let  $G_{uv,k}$  denote the graph obtained from G by subdividing the edge uv k times. The paired domination multisubdivision number  $\operatorname{msd}_{\operatorname{pr}}(G)$  of a graph G without isolated vertices is the smallest positive integer k such that there exists an edge uv which must be subdivided k times for  $\gamma_{\operatorname{pr}}(G_{uv,k})$  to exceed  $\gamma_{\operatorname{pr}}(G)$ . As mentioned above,  $\operatorname{msd}_{\operatorname{pr}}(G) \le 4$  for all graphs. The three graphs in Figure 1 are all msd-4 graphs; the red vertices form  $\gamma_{\operatorname{pr}}$ -sets.



Figure 1. (a) The spider S(2,2,6) (b) the corona  $K_3 \circ K_1$  (c) a flared corona  $K_4 \circ^{*2} K_1$ .

A *leaf* of a graph is a vertex of degree one, and its neighbour is called a *stem*. The following properties of msd-4 graphs were proved in [2].

**Theorem 1** [2]. Let G be an msd-4 graph. Then

- (i) each edge of G belongs to a matching of a minimum paired dominating set of G;
- (ii) any leaf of G is a  $\gamma_{pr}$ -critical vertex;
- (iii) each stem is adjacent to exactly one leaf.

The complete bipartite graph  $K_{1,k}$ ,  $k \ge 2$ , is called a *star*. Let  $K_{1,k}$  have partite sets  $\{u\}$  and  $\{v_1, \ldots, v_k\}$ . The *spider*  $S(\ell_1, \ldots, \ell_k)$ ,  $\ell_i \ge 1$ ,  $k \ge 2$ , is a tree obtained from  $K_{1,k}$  by subdividing the edge  $uv_i \ \ell_i - 1$  times,  $i = 1, \ldots, k$ . Note that  $S(2,2) \cong P_5$ . See Figure 1(a) for S(2,2,6). The characterization of msd-4 trees in [2] immediately gives the following result. **Proposition 2** [2]. The spider T = S(2,...,2) satisfies  $msd_{pr}(T) = 4$ , and Cr(T) consists of the leaves of T.

The corona  $G \circ K_1$  of a graph G is the graph obtained by joining each vertex of G to a new leaf;  $K_3 \circ K_1$  is illustrated in Figure 1(b). A flared corona  $G \circ^{*t} K_1$ of G is a graph obtained by joining each vertex of G, except one vertex w, to a new leaf, while w is joined to a single vertex of each of  $t \ge 1$  copies of  $K_2$ . The flared corona  $K_4 \circ^{*2} K_1$  is depicted in Figure 1(c). The following facts can be verified easily and are stated without proof.

### Remark 3.

- (i) A corona  $K_n \circ K_1$ ,  $n \ge 2$ , is an msd-4 graph if and only if n is odd.
- (ii) A flared corona  $K_n \circ^{*t} K_1$ ,  $n \ge 2$ , is an msd-4 graph if and only if n is even.
- (iii) A vertex of  $K_{2n+1} \circ K_1$  or  $K_{2n} \circ^{*t} K_1$  is  $\gamma_{pr}$ -critical if and only if it is a leaf (see Theorem 1).

A block of a graph is a maximal connected subgraph with no cut-vertex, and a block graph is a graph, each of whose blocks is a complete graph. Thus, trees are block graphs since each block of a nontrivial tree is a  $K_2$ . Evidently, coronas and flared coronas are also block graphs. To characterize msd-4 block graphs, we use spiders S(2, ..., 2), coronas  $K_{2n+1} \circ K_1$  and flared coronas  $K_{2n} \circ^{*t} K_1$ , combining them by identifying vertices and edges in a prescribed way.

We begin by describing two operations, collectively known as  $\oplus$ -operations, for joining disjoint graphs; since the operations can be performed on any graphs, we state them in their most general form. (The operations are well known but we need to define our notation.)

 $G_1 \oplus^{u_1 u_2} G_2$ : Let  $G_1$  and  $G_2$  be vertex disjoint graphs and  $u_i \in V(G_i)$  for  $i \in \{1, 2\}$ . We denote the graph obtained from  $G_1$  and  $G_2$  by identifying  $u_1$  and  $u_2$  into one vertex  $u = u_1 = u_2$  by  $G_1 \oplus^{u_1 u_2}_u G_2$  (or by  $G_1 \oplus^{u_1 u_2}_u G_2$  if the label u is unimportant).

 $G_1 \oplus^{e_1e_2} G_2$ : Let  $G_1$  and  $G_2$  be vertex disjoint graphs and  $e_i = u_i v_i \in E(G_i)$ . We denote the graph obtained from  $G_1$  and  $G_2$  by identifying  $u_1$  and  $u_2$  into one vertex  $u = u_1 = u_2$ ,  $v_1$  and  $v_2$  into one vertex  $v = v_1 = v_2$ , and  $e_1$  and  $e_2$  into one edge e = uv by  $G_1 \oplus^{e_1e_2} G_2$  (or by  $G_1 \oplus^{e_1e_2} G_2$  if the label e is unimportant).

The graph  $G_1 \oplus_e^{e_1e_2} G_2$ , where  $G_1 = S(2, 2, 6)$ ,  $G_2 = K_3 \circ K_1$ , and  $e_i = u_i v_i$  for i = 1, 2, is illustrated in Figure 2. Note that  $u_i$  is  $\gamma_{\rm pr}(G_i)$ -critical for i = 1, 2, and  $u_1 = u_2$  is  $\gamma_{\rm pr}$ -critical in  $G_1 \oplus_e^{e_1e_2} G_2$ . The spider S(2, 2, 6), in turn, is obtained as  $H_1 \oplus^{u_1u_2} H_2$ , where  $H_1 = S(2, 2, 2)$ ,  $H_2 = P_5 = S(2, 2)$ , and  $u_i$  is a leaf of  $H_i$ , i = 1, 2.



Figure 2. The graph  $S(2,2,6) \oplus^{u_1v_1} u_2v_2 K_3 \circ K_1$ .

### 3. CHARACTERIZATION OF MSD-4 BLOCK GRAPHS

We now state our main result — the characterization of msd-4 block graphs. The proof is deferred to Section 6.

Let  $\mathcal{U}$  be the collection of all spiders  $S(2, \ldots, 2)$ , coronas  $K_{2n+1} \circ K_1$  and flared coronas  $K_{2n} \circ^{*t} K_1$ ,  $n \ge 1$ . Define  $\mathcal{B}$  to be the family of all block graphs Gthat can be obtained as a graph  $G_j$ ,  $j \ge 1$ , from a sequence  $G_1, \ldots, G_j$  of graphs, where  $H_1 = G_1 \in \mathcal{U}$ , and, if j > 1,  $G_{i+1}$  can be constructed recursively from  $G_i$ by

- adding a graph  $H_{i+1} \in \mathcal{U}$ ,
- choosing vertices  $u_1 \in Cr(G_i)$ ,  $u_2 \in Cr(H_{i+1})$ , and if necessary,  $v_1 \in N(u_1)$ ,  $v_2 \in N(u_2)$ ,
- performing the operation  $G_i \oplus^{u_1u_2} H_{i+1}$  or  $G_i \oplus^{u_1v_1} u_2v_2 H_{i+1}$ .

**Theorem 4.** Let G be a connected block graph. Then G is an msd-4 graph if and only if  $G \in \mathcal{B}$ . Moreover, if G is an msd-4 graph constructed from the graphs  $H_1, \ldots, H_j \in \mathcal{U}$ , then  $\operatorname{Cr}(G) = \bigcup_{i=1}^j \operatorname{Cr}(H_i)$ .

The second statement of Theorem 4 implies that any  $\gamma_{\text{pr}}$ -critical vertex v of an msd-4 block graph remains  $\gamma_{\text{pr}}$ -critical after the  $\oplus$ -operations have been performed any number of times, whether v was identified with another vertex or not. The following corollary of Theorem 4 was proved in [2].

**Corollary 5.** A tree T is an msd-4 graph if and only if  $T \in \mathcal{B}$ , that is, if and only if T can be constructed as described, using only spiders  $S(2, \ldots, 2)$ .

#### 4. General Results

In this section we discuss ways of constructing larger msd-4 graphs from smaller ones. We first prove a useful lemma.

**Lemma 6.** Let G be a graph with  $\operatorname{msd}_{\operatorname{pr}}(G) = 4$ . For any edge uv of G, subdivide uv by replacing it with the path  $(u, x_1, x_2, x_3, v)$ . If D is any  $\gamma_{\operatorname{pr}}(G_{uv,3})$ -set, then  $D \cap \{u, x_1, x_2, x_3, v\} =$ 

- (i)  $\{x_1, x_2\}$  or  $\{x_2, x_3\}$ , or
- (ii)  $\{u, x_1, v\}$  or  $\{u, x_3, v\}$ .

If the first part of (i) holds, then u is  $\gamma_{pr}$ -critical, and if the second part of (i) holds, then v is  $\gamma_{pr}$ -critical.

**Proof.** Let  $X = \{x_1, x_2, x_3\}$ . To dominate  $x_2, X \cap D \neq \emptyset$ . We consider three cases.

Case 1.  $X \cap D = X$ . Without loss of generality assume that  $x_1$  is paired with  $u \in D$ , and  $x_2$  and  $x_3$  are paired. Then  $v \notin D$ , otherwise  $D \setminus \{x_2, x_3\}$  is also a paired dominating set of  $G_{uv,3}$ , contradicting the minimality of D. But now  $D' = (D \setminus X) \cup \{v\}$  is a paired dominating set of G, which is impossible because  $msd_{pr}(G) = 4$ .

Case 2.  $|X \cap D| = 2$ . If  $X \cap D = \{x_1, x_3\}$ , then  $\{u, v\} \subseteq D$  with u paired with  $x_1$ , and v with  $x_3$ . However, then  $D \setminus \{x_1, x_3\}$  is a paired dominating set of G, contradicting  $\operatorname{msd}_{\operatorname{pr}}(G) = 4$ . Suppose  $X \cap D = \{x_1, x_2\}$ . Then  $x_1$  and  $x_2$  are paired in D. If  $\{u, v\} \cap D \neq \emptyset$ , then  $D \setminus \{x_1, x_2\}$  is a paired dominating set of G, which is a contradiction. Hence  $D \cap \{u, x_1, x_2, x_3, v\} = \{x_1, x_2\}$ . Now  $D \setminus \{x_1, x_2\}$ is a paired dominating set of G - u, so  $\gamma_{\operatorname{pr}}(G - u) < \gamma_{\operatorname{pr}}(G_{uv,3}) = \gamma_{\operatorname{pr}}(G)$ . We conclude that u is  $\gamma_{\operatorname{pr}}$ -critical. Arguing similarly if  $X \cap D = \{x_2, x_3\}$ , we conclude that (i) and the last part of the statement of the lemma hold.

Case 3.  $|X \cap D| = 1$ . Then  $x_2 \notin D$ . If  $x_1 \in D$ , then  $x_1$  is paired with  $u \in D$ , while  $v \in D$  to dominate  $x_3$ . Consequently,  $D \cap \{u, x_1, x_2, x_3, v\} = \{u, x_1, v\}$ . Similarly, if  $x_3 \in D$ , then  $D \cap \{u, x_1, x_2, x_3, v\} = \{u, x_3, v\}$ .

Our first result regarding the construction of msd-4 graphs from smaller graphs shows that subdividing any edge of an msd-4 graph four times produces another msd-4 graph. Repeatedly subdividing edges of an msd-4 graph thus yields, for example, msd-4 graphs of arbitrary large girth. In fact, we prove a stronger result: subdividing any edge of any graph G without isolated vertices four times produces a graph that has the same multisubdivision number as G.

**Proposition 7.** For any graph G and any edge e of G,  $msd_{pr}(G_{e,4}) = msd_{pr}(G)$ .

**Proof.** Say  $\operatorname{msd}_{\operatorname{pr}}(G) = t \leq 4$  and e = uv has been subdivided by replacing it with the path  $(u, x_1, x_2, x_3, x_4, v)$ . Then  $\gamma_{\operatorname{pr}}(G_{e,4}) = \gamma_{\operatorname{pr}}(G) + 2$  and there exists an edge e' of G such that  $\gamma_{\operatorname{pr}}(G_{e',t}) = \gamma_{\operatorname{pr}}(G) + 2$ . If  $e \neq e'$ , then subdividing  $e \in E(G_{e',t})$  four times yields the graph  $(G_{e',t})_{e,4}$ . Since  $\operatorname{msd}_{\operatorname{pr}}(G_{e',t}) \leq 4$ ,  $\gamma_{\operatorname{pr}}((G_{e',t})_{e,4}) = \gamma_{\operatorname{pr}}(G_{e',t}) + 2 = \gamma_{\operatorname{pr}}(G) + 4$ . But  $(G_{e',t})_{e,4} = (G_{e,4})_{e',t}$ , hence  $\gamma_{\operatorname{pr}}((G_{e,4})_{e',t}) = \gamma_{\operatorname{pr}}(G) + 4 = \gamma_{\operatorname{pr}}(G_{e,4}) + 2$ . If e = e', say uv has been subdivided, in G, by replacing it with  $(u, x_1, \ldots, x_t, v)$ . Subdividing (without loss of generality) the edge  $x_t v$  four times by replacing it with  $(x_t, x_{t+1}, \ldots, x_{t+4}, v)$ , we obtain the graph  $(G_{e,t})_{x_tv,4} = (G_{e,4})_{x_4v,t}$  with  $\gamma_{\operatorname{pr}}((G_{e,4})_{x_4v,t}) = \gamma_{\operatorname{pr}}(G_{e,4}) + 2$ . It follows that  $\operatorname{msd}_{\operatorname{pr}}(G_{e,4}) \leq t$ .

We show that  $\operatorname{msd}_{\operatorname{pr}}(G_{e,4}) \geq t$ . If t = 1, this is obvious, hence assume  $t \geq 2$ . Consider any  $e' \in E(G)$ . Suppose first that  $e' \neq e$ . Since  $\operatorname{msd}_{\operatorname{pr}}(G) = t$ ,  $\gamma_{\operatorname{pr}}(G_{e',t-1}) = \gamma_{\operatorname{pr}}(G)$ . If D' is any  $\gamma_{\operatorname{pr}}(G_{e',t-1})$ -set, then  $D = D' \cup \{x_1, x_4\}$  (if u and v are paired in D') or  $D = D' \cup \{x_2, x_3\}$  (otherwise) is a paired dominating set of  $(G_{e,4})_{e',t-1}$  of cardinality  $|D| = \gamma_{\operatorname{pr}}(G_{e',t-1}) + 2 = \gamma_{\operatorname{pr}}(G) + 2 = \gamma_{\operatorname{pr}}(G_{e,4})$ .

Assume e' = e. Without loss of generality subdivide the edge  $x_4v$  of  $G_{e,4} t-1$ times by replacing it with the path  $(x_4, \ldots, x_{3+t}, v)$  and denote the resulting graph  $(G_{e,4})_{x_4v,t-1}$  by  $G_{e,3+t}$  for simplicity. Also consider the graph  $G_{e,t-1}$  obtained from G by subdividing e = uv by replacing it with  $(u, x_1, \ldots, x_{t-1}, v)$ . Since  $\operatorname{msd}_{\operatorname{pr}}(G) = t$ ,  $\gamma_{\operatorname{pr}}(G_{e,t-1}) = \gamma_{\operatorname{pr}}(G)$ . Let S' be any  $\gamma_{\operatorname{pr}}(G_{e,t-1})$ -set. We consider three cases. In each case we construct a paired dominating set S of  $G_{e,3+t}$  such that  $|S| = |S'| + 2 = \gamma_{\operatorname{pr}}(G_{e,4})$ ; this shows that  $\operatorname{msd}_{\operatorname{pr}}(G_{e,4}) \geq t$ .

Case 1. t = 2. If  $x_1 \notin S'$ , then without loss of generality  $u \in S'$  to dominate  $x_1$ , and  $S' \setminus \{u\}$  dominates v. Let  $S = S' \cup \{x_3, x_4\}$ . If  $x_1 \in S'$ , then again without loss of generality  $x_1$  is paired with u. Let  $S = S' \cup \{x_4, x_5\}$ .

Case 2. t = 3. If  $S' \cap \{x_1, x_2\} = \emptyset$ , then u dominates  $x_1$  while v dominates  $x_2$ ; let  $S = S' \cup \{x_3, x_4\}$  (so v dominates  $x_6$ ). If (without loss of generality)  $S' \cap \{x_1, x_2\} = \{x_1\}$ , then u and  $x_1$  are paired, and  $S' \setminus \{u, x_1\}$  dominates v. Let  $S = S' \cup \{x_4, x_5\}$ . If  $\{x_1, x_2\} \subseteq S'$ , then  $x_1$  and  $x_2$  are paired (otherwise  $S' \setminus \{x_1, x_2\}$  is a paired dominating set of G, which is not the case). Let  $S = S' \cup \{x_5, x_6\}$ .

Case 3. t = 4. By Lemma 6, without loss of generality  $S' \cap \{u, x_1, x_2, x_3, v\} = \{x_1, x_2\}$  or  $\{u, x_1, v\}$ . In the former case, let  $S = S' \cup \{x_5, x_6\}$ , and in the latter case, let  $S = S' \cup \{x_4, x_5\}$ .

In all cases, S is a paired dominating set of  $G_{e,3+t}$  of cardinality  $\gamma_{\rm pr}(G) + 2 = \gamma_{\rm pr}(G_{e,4})$ , and  $\operatorname{msd}_{\rm pr}(G_{e,4}) \ge t$ . It follows that  $\operatorname{msd}_{\rm pr}(G_{e,4}) = t$ , as required.

We next prove results pertaining to the  $\oplus$ -operations defined above that hold for general msd-4 graphs, not only block graphs. We show that the  $\oplus$ -operations can be used to construct new connected msd-4 graphs from smaller ones. Our next result shows that performing the operation  $G_1 \oplus_u^{u_1u_2} G_2$  on msd-4 graphs  $G_1$  and  $G_2$  with  $\gamma_{\text{pr}}$ -critical vertices  $u_1$  and  $u_2$ , respectively, results in an msd-4 graph in which each  $\gamma_{\text{pr}}(G_i)$ -critical vertex is  $\gamma_{\text{pr}}(G)$ -critical.

**Proposition 8.** Let  $G_1$  and  $G_2$  be disjoint msd-4 graphs with  $\gamma_{\rm pr}(G_i)$ -critical vertices  $u_i$ , i = 1, 2. Then for the graph  $G = G_1 \oplus_u^{u_1 u_2} G_2$ ,  $\gamma_{\rm pr}(G) = \gamma_{\rm pr}(G_1) + \gamma_{\rm pr}(G_2) - 2$ , any  $\gamma_{\rm pr}(G_i)$ -critical vertex (including u) is  $\gamma_{\rm pr}(G)$ -critical and

$$\operatorname{msd}_{\operatorname{pr}}(G) = 4$$

**Proof.** Since  $u_i \in V(G_i)$  is  $\gamma_{\text{pr}}(G_i)$ -critical,  $\gamma_{\text{pr}}(G_1 - u_1) + \gamma_{\text{pr}}(G_2 - u_2) = \gamma_{\text{pr}}(G_1) + \gamma_{\text{pr}}(G_2) - 4$ , and at most two more vertices are needed to pairwise dominate G. Therefore  $\gamma_{\text{pr}}(G) \leq \gamma_{\text{pr}}(G_1) + \gamma_{\text{pr}}(G_2) - 2$ .

Suppose there exists a paired dominating set S of G such that  $|S| < \gamma_{\rm pr}(G_1) + \gamma_{\rm pr}(G_2) - 2$  and let  $S_i = S \cap V(G_i)$ . First suppose that  $u \notin S$ . Assume without loss of generality that  $S_1$  dominates u. Then  $S_1$  is a paired dominating set of  $G_1$  and  $S_2$  is a paired dominating set of  $G_2 - u_2$ . Hence  $|S_1| \ge \gamma_{\rm pr}(G_1)$  and  $|S_2| \ge \gamma_{\rm pr}(G_2) - 2$ . But then  $|S| = |S_1| + |S_2| \ge \gamma_{\rm pr}(G_1) + \gamma_{\rm pr}(G_2) - 2$ , which is not the case. Therefore we may assume that  $u \in S$  (in this case  $u_i \in S_i$ , i = 1, 2) and  $|S_1| + |S_2| = |S| + 1$ . Without loss of generality, u is paired with  $v \in V(G_1)$ , hence  $S_1$  is a paired dominating set of  $G_1$ . Therefore  $|S_1| \ge \gamma_{\rm pr}(G_1)$  so that  $|S_2| \le \gamma_{\rm pr}(G_2) - 3$ . If  $N_{G_2}(u_2) \subseteq S_2$ , then  $S_2 \setminus \{u_2\}$  is a paired dominating set of  $G_2$ , and if there exists  $w \in N_{G_2}(u_2) \setminus S_2$ , then  $S_2 \cup \{w\}$  is a paired dominating set of  $G_2$ . This is impossible because  $|S_2 \cup \{w\}| \le \gamma_{\rm pr}(G_2) - 2$ . Hence

$$\gamma_{\rm pr}(G) = \gamma_{\rm pr}(G_1) + \gamma_{\rm pr}(G_2) - 2.$$

If  $w_i$  is  $\gamma_{\rm pr}(G_i)$ -critical, then, for  $j \neq i$ , the union of any  $\gamma_{\rm pr}(G_i - w_i)$ -set and any  $\gamma_{\rm pr}(G_j - u_j)$ -set is a paired dominating set of  $G - w_i$  (this holds for  $w_i = u_i = u$  also), so

$$\gamma_{\mathrm{pr}}(G-w_i) \le \gamma_{\mathrm{pr}}(G_i-w_i) + \gamma_{\mathrm{pr}}(G_j-u_j) = \gamma_{\mathrm{pr}}(G_1) + \gamma_{\mathrm{pr}}(G_2) - 4 < \gamma_{\mathrm{pr}}(G).$$

Therefore  $w_i$  is  $\gamma_{\rm pr}(G)$ -critical.

Without loss of generality consider  $e \in E(G_1)$  and subdivide e three times. Then, since  $\operatorname{msd}_{\operatorname{pr}}(G_1) = 4$  and  $u_2$  is  $\gamma_{\operatorname{pr}}(G_2)$ -critical, we obtain

$$\gamma_{\rm pr}(G_{e,3}) \le \gamma_{\rm pr}(G_{1_{e,3}}) + \gamma_{\rm pr}(G_2 - u_2) = \gamma_{\rm pr}(G_1) + \gamma_{\rm pr}(G_2) - 2 = \gamma_{\rm pr}(G).$$

Therefore  $\operatorname{msd}_{\operatorname{pr}}(G) = 4.$ 

We show next that performing the operation  $G_1 \oplus^{e_1e_2} G_2$  on msd-4 graphs  $G_i$ , i = 1, 2, with edges  $e_i = x_i y_i$ , where  $x_i$  is a  $\gamma_{\rm pr}(G_i)$ -critical vertex, results in an msd-4 graph in which each  $\gamma_{\rm pr}(G_i)$ -critical vertex is  $\gamma_{\rm pr}(G)$ -critical.

**Proposition 9.** Let  $G_i$ , i = 1, 2, be disjoint msd-4 graphs with  $e_i = x_i y_i \in E(G_i)$ , where  $x_i \in Cr(G_i)$ . Then for the graph  $G = G_1 \oplus^{e_1e_2} G_2$ ,  $\gamma_{pr}(G) = \gamma_{pr}(G_1) + \gamma_{pr}(G_2) - 2$ , any  $\gamma_{pr}(G_i)$ -critical vertex (including  $x = x_1 = x_2$ ) is  $\gamma_{pr}(G)$ -critical and  $msd_{pr}(G) = 4$ .

**Proof.** By Theorem 1, there exists a  $\gamma_{pr}(G_i)$ -set in which  $x_i$  and  $y_i$  are matched. Therefore

(1) 
$$\gamma_{\rm pr}(G) \le \gamma_{\rm pr}(G_1) + \gamma_{\rm pr}(G_2) - 2.$$

On the other hand, it suffices to add two vertices to a  $\gamma_{\rm pr}(G)$ -set when splitting it into paired dominating sets of  $G_1$  and  $G_2$ . Hence we have equality in (1). As in the proof of Proposition 8, any  $\gamma_{\rm pr}(G_i)$ -critical vertex is  $\gamma_{\rm pr}(G)$ -critical.

Let  $e \in E(G)$  be any edge. If  $e \in E(G_1) \setminus \{e_1\}$ , then

$$\gamma_{\rm pr}(G_{e,3}) \le \gamma_{\rm pr}(G_{1_{e,3}}) + \gamma_{\rm pr}(G_2 - x_2) = \gamma_{\rm pr}(G_1) + \gamma_{\rm pr}(G_2) - 2 = \gamma_{\rm pr}(G).$$

The case when  $e \in E(G_2) \setminus \{e_2\}$  is analogous. Thus assume e = xy and subdivide e by replacing it with the path (x, u, v, w, y). Let S be any  $\gamma_{pr}(G - x)$ -set. As shown above,  $|S| = \gamma_{pr}(G) - 2$ . Now  $S \cup \{u, v\}$  is a paired dominating set of  $G_{e,3}$  of cardinality  $\gamma_{pr}(G)$ . It follows that G is an msd-4 graph.

We now describe a type of "reverse" operation, called a *split operation*, for each of the  $\oplus$ -operations.

 $G \ominus u$ . Let G be a connected graph with a cut-vertex u. Denote the components of G - u by  $F_1, F_2, \ldots, F_k$ . For each i, let  $G_i$  be the graph obtained from  $F_i$ by adding a new vertex  $u_i$ , joining  $u_i$  to  $v_i \in V(F_i)$  if and only if  $uv_i \in E(G)$ . Denote the disjoint union  $G_1 + \cdots + G_k$  by  $G \ominus u$ .

 $G \ominus xy$ . Let G be a connected graph containing a vertex-cut  $\{x, y\}$ , where  $xy \in E(G)$ . Denote the components of  $G - \{x, y\}$  by  $F_1, F_2, \ldots, F_k$ . For each i, let  $G_i$  be the graph obtained from  $F_i$  by adding the edge  $x_iy_i$ , joining  $x_i$  ( $y_i$ , respectively) to  $v_i \in V(F_i)$  if and only if  $xv_i \in E(G)$  ( $yv_i \in E(G)$ , respectively). Denote the disjoint union  $G_1 + \cdots + G_k$  by  $G \ominus xy$ .

The next proposition shows that if an msd-4 graph G is split at a  $\gamma_{pr}$ -critical cut-vertex u, the components of  $G \ominus u$  are msd-4 graphs having the copies of u as  $\gamma_{pr}$ -critical vertices.

**Proposition 10.** Let G be an msd-4 graph with a  $\gamma_{pr}$ -critical cut-vertex u. Denote the components of  $G \ominus u$  by  $G_1, \ldots, G_k$ . Then for each  $i = 1, \ldots, k$ ,  $u_i$  is a  $\gamma_{pr}(G_i)$ -critical vertex and  $msd_{pr}(G_i) = 4$ .

**Proof.** Since u is  $\gamma_{pr}(G)$ -critical and G - u is the disjoint union of  $G_i - u_i$ ,  $i = 1, \ldots, k$ ,

$$\gamma_{\mathrm{pr}}(G) - 2 = \gamma_{\mathrm{pr}}(G - u) = \sum_{i=1}^{k} \gamma_{\mathrm{pr}}(G_i - u_i).$$

Suppose  $\gamma_{\rm pr}(G_1 - u_1) \ge \gamma_{\rm pr}(G_1)$ . Let  $R_1$  be a  $\gamma_{\rm pr}(G_1)$ -set and, for  $i \ge 2$ , let  $R_i$  be a  $\gamma_{\rm pr}(G_i - u_i)$ -set. Since  $R_1$  dominates  $u_1, R = \bigcup_{i=1}^k R_i$  is a paired dominating set of G. But then

$$\gamma_{\rm pr}(G) \le |R| \le \gamma_{\rm pr}(G_1) + \sum_{i=2}^k \gamma_{\rm pr}(G_i - u_i) \le \sum_{i=1}^k \gamma_{\rm pr}(G_i - u_i) = \gamma_{\rm pr}(G) - 2,$$

which is impossible. Thus  $u_1$  is  $\gamma_{pr}(G_1)$ -critical. The same argument works for each  $i \in \{2, \ldots, k\}$ .

Consider an arbitrary edge  $e \in E(G_1)$  and subdivide e three times. Then

(2) 
$$\gamma_{\rm pr}(G_{e,3}) \le \gamma_{\rm pr}(G_{1_{e,3}}) + \sum_{i=2}^k \gamma_{\rm pr}(G_i - u_i).$$

We show that equality holds in (2). Let S be any  $\gamma_{\rm pr}(G_{e,3})$ -set and define  $S_1 = S \cap V(G_{1_{e,3}})$  and  $S_i = S \cap V(G_i)$  for  $i = 2, \ldots, k$  (if  $u \in S$ , then  $u_i \in S_i$  for each i). First suppose that  $u \notin S$ . If  $S_1$  dominates u, then  $S_1$  is a paired dominating set of  $G_{1_{e,3}}$  and  $S_i$ ,  $i \geq 2$ , is a paired dominating set of  $G_i - u_i$ . Hence  $|S_1| \geq \gamma_{\rm pr}(G_{1_{e,3}})$  and  $|S_i| \geq \gamma_{\rm pr}(G_i - u_i)$ , so that  $\gamma_{\rm pr}(G_{e,3}) = |S| = \sum_{i=1}^k |S_i| \geq \gamma_{\rm pr}(G_{1_{e,3}}) + \sum_{i=2}^k \gamma_{\rm pr}(G_i - u_i)$  as required. On the other hand, if  $S_1$  does not dominate u, then  $S_j$  is a paired dominating set of  $G_j$  for some  $j \geq 2$ , so that  $|S_j| \geq \gamma_{\rm pr}(G_j) = \gamma_{\rm pr}(G_j - u_j) + 2$  (since  $u_j$  is  $\gamma_{\rm pr}(G_j)$ -critical). Let  $S'_j$  be a  $\gamma_{\rm pr}(G_j - u_j)$ -set,  $S'_1 = S_1 \cup \{u, u'\}$  for some  $u' \in N_{G_1}(u)$ , and  $S' = (S \setminus S_1 \setminus S_j) \cup S'_1 \cup S'_j$ . Then  $|S'| = |S|, S'_1$  is a paired dominating set of  $G_{1_{e,3}}$  and the result follows as before.

Now suppose that  $u \in S$ . Then  $|S_1| + \sum_{i=2}^k |S_i| = |S| + k - 1$  and u is paired with a vertex in exactly one of the graphs  $G_{1_{e,3}}$  or  $G_i$ ,  $i \geq 2$ . For each of the k-1 other graphs, either  $S_i \cup \{w_i\}$ , for some neighbour  $w_i \notin S_i$  of  $u_i$ , or  $S_i \setminus \{u_i\}$ (if all neighbours of  $u_i$  in  $G_i$  belong to  $S_i$ ) is a paired dominating set. Hence

$$\gamma_{\rm pr}(G_{1_{e,3}}) + \sum_{i=2}^k \gamma_{\rm pr}(G_i) \le |S| + 2(k-1).$$

Since  $u_i$  is  $\gamma_{pr}(G_i)$ -critical for each i = 2, 3..., k,  $\gamma_{pr}(G_i - u_i) = \gamma_{pr}(G_i) - 2$ . This gives

$$\gamma_{\rm pr}(G_{1_{e,3}}) + \sum_{i=2}^k \gamma_{\rm pr}(G_i - u_i) \le |S| = \gamma_{\rm pr}(G_{e,3}).$$

Therefore we have equality (2). Now

$$\gamma_{\rm pr}(G_{1_{e,3}}) = \gamma_{\rm pr}(G_{e,3}) - \sum_{i=2}^k \gamma_{\rm pr}(G_i - u_i) = \gamma_{\rm pr}(G) - \sum_{i=2}^k \gamma_{\rm pr}(G_i - u_i)$$
$$= \gamma_{\rm pr}(G_1) + \sum_{i=2}^k \gamma_{\rm pr}(G_i - u_i) - \sum_{i=2}^k \gamma_{\rm pr}(G_i - u_i) = \gamma_{\rm pr}(G_1).$$

Hence, for any edge  $e \in E(G_1)$ ,  $\gamma_{\text{pr}}(G_{1_{e,3}}) = \gamma_{\text{pr}}(G)$ . Thus  $\operatorname{msd}_{\text{pr}}(G_1) = 4$ . Similar reasoning may be applied to  $G_i$  for  $i \in \{2, 3, \ldots, k\}$ .

## 5. MSD-4 BLOCK GRAPHS

The last three results we need for the proof of Theorem 4 concern block graphs. In the first result we prove that every non-leaf vertex of an msd-4 block graph is a cut-vertex.

**Theorem 11.** Let G be a graph containing a block  $B \cong K_n$ , where  $n \ge 3$ , such that some vertex of B is not adjacent to any vertex of G - B. Then

$$\operatorname{msd}_{\operatorname{pr}}(G) < 4.$$

**Proof.** Suppose the hypothesis of the theorem holds but  $\operatorname{msd}_{\operatorname{pr}}(G) = 4$ . Let  $V(B) = \{v_0, \ldots, v_{n-1}\}$  and say  $u = v_0$  is not adjacent to any vertex of G - B. Subdivide the edge  $uv_2$  by replacing it with the path  $(u, x_3, x_2, x_1, v_2)$  (see Figure 3). Denote  $X = \{x_1, x_2, x_3\}$  and let D be a  $\gamma_{\operatorname{pr}}$ -set of  $G_{uv_2,3}$ . By Lemma 6 we only have to consider the cases  $D \cap \{u, x_1, x_2, x_3, v_2\} \in \{\{u, x_1, v_2\}, \{u, x_3, v_2\}, \{x_1, x_2\}, \{x_2, x_3\}\}$ .



Figure 3. The block B with the edge  $uv_2$  subdivided with vertices  $x_1, x_2, x_3$ .

Case 1.  $|X \cap D| = 1$ . If  $D \cap \{u, x_1, x_2, x_3, v_2\} = \{u, x_1, v_2\}$ , then  $x_1$  and  $v_2$  are paired in D, while u is paired with  $v_i$  for some  $i \neq 0, 2$ . However, then  $D \setminus \{x_1, u\}$ , with  $v_2$  and  $v_i$  paired, is a smaller paired dominating set of G. If  $D \cap \{u, x_1, x_2, x_3, v_2\} = \{u, x_3, v_2\}$ , then  $D \setminus \{x_3, u\}$  is a smaller paired dominating set of G. In either case  $\operatorname{msd}_{\operatorname{pr}}(G) < 4$ , contrary to our assumption.

Case 2.  $|X \cap D| = 2$ . If  $D \cap \{u, x_1, x_2, x_3, v_2\} = \{x_1, x_2\}$ , then  $x_1$  and  $x_2$  are paired in D. To pairwise dominate  $u, v_i \in D$  for some  $i \neq 0, 2$ . But then  $D \setminus \{x_1, x_2\}$  is a paired dominating set of G (with  $v_i$  paired as in D) and  $msd_{pr}(G) < 4$ , contrary to our assumption. Hence assume  $D \cap \{u, x_1, x_2, x_3, v_2\} = \{x_2, x_3\}$ . Then  $x_2$  and  $x_3$  are matched in D. If  $v_i \in D$  for some i, then  $D \setminus \{x_2, x_3\}$  is a paired dominating set of G (again with  $v_i$  paired as in D), a contradiction.

We therefore assume henceforth that

- (i) D contains  $x_2$  and  $x_3$ , but neither  $x_1$  nor any  $v_0, \ldots, v_{n-1}$ .
- By Lemma 6, u is  $\gamma_{\rm pr}$ -critical, that is,
- (ii)  $\gamma_{\rm pr}(G-u) = \gamma_{\rm pr}(G) 2.$

For each i = 1, ..., n-1, let  $G_i$  be the component of G - E(B) that contains  $v_i$ . Since B is a block of G, the subgraphs  $G_i$  are distinct and pairwise vertexdisjoint. Let  $D_i = D \cap V(G_i)$ . Then  $\left|\bigcup_{i=1}^{n-1} D_i\right| = |D \setminus \{x_2, x_3\}| = \gamma_{\rm pr}(G) - 2$ . By (i), each  $D_i$  is a  $\gamma_{\rm pr}(G_i)$ -set that does not contain  $v_i$ .

We next show that

(iii) no  $\gamma_{\rm pr}(G)$ -set contains  $u = v_0$  and at least two  $v_i, i \ge 1$ .

Suppose there exists such a set Z; assume without loss of generality that  $\{u, v_1, v_2, \ldots, v_k\} \subseteq Z, k \geq 2$ . Necessarily, u is paired with some  $v_i, i = 1, \ldots, k$ , in Z. Assume (again without loss of generality) u is paired with  $v_1$ . Let  $Z_1 = Z \cap V(G_1) \setminus \{v_1\}$  and, for  $i \geq 2$ , let  $Z_i = Z \cap V(G_i)$ . Then  $\bigcup_{i=1}^{n-1} Z_i \subseteq V(G-u)$  and  $|\bigcup_{i=1}^{n-1} Z_i| = |Z| - 2 = \gamma_{\rm pr}(G-u) < \gamma_{\rm pr}(G)$ , by (ii). Since  $v_1$  and u are paired,  $G_1[Z_1]$  contains a perfect matching, as does  $G[\bigcup_{i=2}^{n-1} Z_i]$ . Since  $v_1$  is not adjacent to any vertex of  $G_i - v_i, i \geq 2$ , and  $v_2$  dominates B in  $G, \bigcup_{i=2}^{n-1} Z_i$  is a paired dominating set of  $G - G_1$ .

Suppose  $|Z_1| < |D_1|$ . Since both  $Z_1$  and  $D_1$  have even cardinality,  $|Z_1| \le |D_1| - 2$ . Then  $Z_1$  does not dominate  $G_1 - v_1$ , otherwise  $\bigcup_{i=1}^{n-1} Z_i$  is a paired dominating set of G of cardinality less than  $\gamma_{\rm pr}(G)$ , which is impossible. Since  $Z_1 \cup \{v_1\}$  dominates  $G_1$ , there exists a vertex  $w \in N_{G_1}(v_1)$  that is undominated by  $Z_1$ . Then  $W_1 = Z_1 \cup \{w, v_1\}$  is a paired dominating set of  $G_1$  of cardinality at most  $|D_1|$  that contains  $v_1$ . But now  $W_1 \cup D_2 \cup D_3 \cup \cdots \cup D_{n-1}$  is a paired dominating set of G of cardinality at most  $|D \setminus \{x_2, x_3\}| = \gamma_{\rm pr}(G) - 2$ , which is impossible. We conclude that  $|Z_1| = |D_1|$ .

Let  $Z' = D_1 \cup \left(\bigcup_{i=2}^{n-1} Z_i\right)$ . Since  $\bigcup_{i=2}^{n-1} Z_i$  is a paired dominating set of G- $G_1$  and  $D_1$  is a paired dominating set of  $G_1, Z'$  is a paired dominating set of G.

Moreover,

$$|Z'| = \left| \bigcup_{i=2}^{n-1} Z_i \right| + |D_1| = \left| \bigcup_{i=1}^{n-1} Z_i \right| = |Z| - 2 = \gamma_{\rm pr}(G - u) < \gamma_{\rm pr}(G),$$

which is impossible. This concludes the proof of (iii).

Subdivide the edge  $v_1v_2$  with vertices  $y_1, y_2, y_3$ , where  $y_1$  is adjacent to  $v_1$ and  $y_3$  is adjacent to  $v_2$  (see Figure 4). Denote  $Y = \{y_1, y_2, y_3\}$  and let Q be a  $\gamma_{\text{pr}}$ -set of  $G_{v_1v_2,3}$ . Without loss of generality, by Lemma 6 we only have to consider the cases  $Q \cap \{v_1, v_2, y_1, y_2, y_3\} \in \{\{y_1, y_2\}, \{v_1, v_2, y_1\}\}$ .



Figure 4. The block B with the edge  $v_1v_2$  subdivided with vertices  $y_1, y_2, y_3$ .

Case 3a.  $Q \cap \{v_1, v_2, y_1, y_2, y_3\} = \{y_1, y_2\}$ . Then these two vertices are paired in Q. To pairwise dominate  $u, v_i \in Q$  for some i. It follows that  $Q \setminus \{y_1, y_2\}$  is a paired dominating set of G, so  $msd_{pr}(G) < 4$ , contrary to our assumption.

Case 3b.  $Q \cap \{v_1, v_2, y_1, y_2, y_3\} = \{v_1, v_2, y_1\}$ . Then  $y_1$  is paired with  $v_1$ . If  $u \notin Q$ , then  $Q' = (Q \setminus \{y_1\}) \cup \{u\}$  is a paired dominating set of G containing  $u, v_1, v_2$ . By (iii), Q' is not a  $\gamma_{\text{pr}}$ -set of G, from which it follows that  $\gamma_{\text{pr}}(G) < |Q|$  and  $\operatorname{msd}_{\text{pr}}(G) < 4$ . Assume therefore that  $u \in Q$ . Then u is paired in Q with  $v_i$  for some i > 1. Now  $Q'' = Q \setminus \{y_1, u\}$  is a paired dominating set of G in which  $v_1$  and  $v_i$  are paired. In both cases we again have a contradiction and the proof is complete.

The graph in Figure 5 shows that the statement of Theorem 11 is false if the complete subgraph B is not a block of G.

The next result in this section shows that msd-4 block graphs have many  $\gamma_{\rm pr}$ -critical vertices.



Figure 5. A graph G with  $msd_{pr}(G) = 4$  and a subgraph  $K_3$  that is not a block of G.

**Theorem 12.** If G is a block graph with  $msd_{pr}(G) = 4$ , then for any edge  $uv \in E(G)$ ,

$$(N_G[u] \cup N_G[v]) \cap \operatorname{Cr}(G) \neq \emptyset.$$

**Proof.** Suppose there exists an edge  $uv \in E(G)$  such that  $(N_G[u] \cup N_G[v]) \cap Cr(G) = \emptyset$ . By Theorem 1, no vertex in  $N_G[u] \cup N_G[v]$  is a leaf. We subdivide the edge uv by replacing it with the path  $(u, x_1, x_2, x_3, v)$  to obtain the graph  $G_{uv,3}$ . By Lemma 6, for any  $\gamma_{pr}$ -set S of  $G_{uv,3}$ ,  $S \cap \{u, v, x_1, x_2, x_3\} \in \{\{u, v, x_1\}, \{u, v, x_3\}\}$ . Without loss of generality assume there exists such a set S such that  $S \cap \{u, v, x_1, x_2, x_3\} = \{u, v, x_1\}$ , and among all such sets S, let D be one for which PN(u, D) is as small as possible. Then  $x_1$  and u are paired in D.

Say v is paired with v' and let B be the block of G that contains uv. If  $v' \in V(G) \setminus V(B)$ , let  $G_v$  be the subgraph of G - E(B) that contains v, and if  $v' \in V(B)$ , let  $G_v$  be the subgraph of  $G - (E(B) - \{vv'\})$  that contains v. In either case,  $v' \in V(G_v)$ . Let  $D_v = D \cap V(G_v)$  and  $D' = D \setminus \{x_1, u\}$ . Then G[D'] has a perfect matching and  $D_v$  is a paired dominating set of  $G_v$  containing v and v'. In fact,  $D_v$  is a  $\gamma_{pr}(G_v)$ -set, for if not, let D'' be a smaller paired dominating set of  $G_v$ . Consider  $N_G(u) \setminus V(B)$ . If  $B \cong K_2$ , then  $N_G(u) \setminus V(B) = N_G(u) \setminus \{v\}$  is nonempty because u is not a leaf, and if  $B \cong K_n$  for  $n \ge 3$ , then  $N_G(u) \setminus V(B)$  is nonempty by Theorem 11. If  $N_G(u) \setminus V(B) \subseteq D$ , then D' is a paired dominating set of G, and if there exists  $w \in N_G(u) \setminus V(B) \setminus D$ , then  $(D \setminus \{x_1\} \setminus D_v) \cup D'' \cup \{w\}$  is a smaller paired dominating set of G than D. In both cases we have a contradiction to  $msd_{pr}(G) = 4$ .

Since  $\operatorname{msd}_{\operatorname{pr}}(G) = 4$ ,  $|D'| = \gamma_{\operatorname{pr}}(G_{uv,3}) - 2 = \gamma_{\operatorname{pr}}(G) - 2$ . Consequently, D' does not dominate G. Since  $v \in D'$  dominates B in G, there exist vertices  $w_1, \ldots, w_k \in N_G(u) \setminus N_G[v] \subseteq N_G(u) \setminus B$  that are undominated by D', that is,  $\{w_1, \ldots, w_k\} = \operatorname{PN}(u, D)$ . For  $i = 1, \ldots, k$ , let  $G_i$  be the component of G-u that contains  $w_i$ . Possibly,  $G_i = G_j$  for  $i \neq j$ ; this happens exactly when  $w_i w_j \in E(G)$ , and then  $w_i$  and  $w_j$  also belong to the same (complete) block of  $G_i$ . Since no  $w_i$  is adjacent to v or v',  $V(G_i) \cap V(G_v) = \emptyset$  for each i. Define  $D_i = D \cap V(G_i)$ . Then  $G_i[D_i]$  has a perfect matching, but does not dominate  $w_i$ . If it is nevertheless true that  $\gamma_{\operatorname{pr}}(G_i) = |D_i|$  for some i, let  $Q_i$  be a  $\gamma_{\operatorname{pr}}(G_i)$  set. Then  $D^* = (D \setminus D_i) \cup Q_i$ is a  $\gamma_{\operatorname{pr}}(G_{uv,3})$ -set such that  $\operatorname{PN}(u, D^*) \subseteq \operatorname{PN}(u, D) \setminus \{w_i\}$ , contrary to the choice of D. Therefore  $\gamma_{\operatorname{pr}}(G_i) \geq |D_i| + 2$  for each i.

Since each stem belongs to all paired dominating sets, no  $w_i$  is a stem, and by our initial assumption, no  $w_i$  is a leaf. Subdivide the edge  $uw_1$  by replacing it with the path  $(u, y_1, y_2, y_3, w_1)$ . Consider a  $\gamma_{\text{pr}}(G_{uw_1,3})$ -set S. Since  $u, w_1 \notin \text{Cr}(G)$ , Lemma 6 states that  $S \cap \{u, y_1, y_2, y_3, w_1 \in \{\{u, y_1, w_1\}, \{u, y_3, w_1\}\}$ .

• In the former case,  $y_1$  is paired with u and  $S_1 = S \cap V(G_1)$  is a paired dominating set of  $G_1$ ; hence  $|S_1| \ge \gamma_{\rm pr}(G_1) \ge |D_1|+2$ . Since  $w_1$  is adjacent to all  $w_i \in V(G_1)$ ,  $D_1 \cup \{w_1\}$  dominates  $G_1$  (but not pairwise). Now  $S' = (S \setminus S_1) \cup D_1 \cup \{w_1, y_3\}$  is a paired dominating set of  $G_{uw_1,3}$  such that  $|S'| \le |S|$ , hence S' is a  $\gamma_{\rm pr}(G_{uw_1,3})$ -set. Moreover,  $S' \cap \{u, y_1, y_2, y_3, w_1\} = \{u, y_1, y_3, w_1\}$ , contrary to Lemma 6.

• In the latter case,  $y_3$  is paired with  $w_1$ . Then  $S_2 = (S \cap V(G_1)) \cup \{y_3\}$  is a paired dominating set of the graph obtained from  $G_1$  by joining  $y_3$  to  $w_1$ . If all neighbours of  $w_1$  in  $G_1$  belong to  $S_2$ , then  $S_2 \setminus \{w_1, y_3\}$  is a paired dominating set of  $G_1$ . But then  $S'' = S \setminus \{w_1, y_3\}$  is a paired dominating set of G such that |S''| < |S|, contradicting  $\operatorname{msd}_{\operatorname{pr}}(G) = 4$ . Assume some neighbour z of  $w_1$  in  $G_1$ does not belong to  $S_2$ . Then  $S_3 = (S_2 \setminus \{y_3\}) \cup \{z\}$  is a paired dominating set of  $G_1$ , so that  $|S_2| = |S_3| \ge |D_1| + 2$ . Since  $u \in S$  and  $\{w_1, \ldots, w_k\} \subseteq N(u)$ ,  $S^* = (S \setminus S_2) \cup D_1$  is a paired dominating set of G such that  $|S^*| < |S|$ , again a contradiction.

This completes the proof of the theorem.

Although the graph G in Figure 5 satisfies  $msd_{pr}(G) = 4$  without being a block graph, Theorem 12 holds for G as well.

Our final result in this section concerns the reverse operation  $G \ominus xy$  for certain msd-4 block graphs.

**Proposition 13.** Let G be a connected msd-4 block graph such that the only  $\gamma_{pr}(G)$ -critical vertices are leaves. Let x be a leaf adjacent to the stem y, where  $\{x, y\}$  is a vertex-cut, and denote the components of  $G \ominus xy$  by  $G_1, \ldots, G_k$ . Then for each  $i = 1, \ldots, k$ ,  $G_i$  is an msd-4 graph and  $x_i \in Cr(G_i)$ .

**Proof.** If  $G_i$  is an msd-4 graph, it will follow from Theorem 1(ii) that  $x_i \in Cr(G_i)$ . However, we need the fact that  $x_i$  is  $\gamma_{pr}(G_i)$ -critical to show that  $msd_{pr}(G_i) = 4$ , hence this is what we prove first.

Since G is a block graph,  $N_{G_i-x_i}(y_i)$  induces a clique for each i = 1, ..., k. Since x is a leaf, y belongs to every paired dominating set of G, and by Theorem 1(ii),  $x \in Cr(G)$ . Hence y belongs to no  $\gamma_{pr}(G-x)$ -set (for such a set would dominate x and thus G, contradicting  $x \in Cr(G)$ ).

Let D be a  $\gamma_{\rm pr}(G-x)$  set such that  $|D \cap N(y)|$  is maximum and let  $D_i = D \cap V(G_i)$ ,  $i = 1, \ldots, k$ . Since  $x \in \operatorname{Cr}(G)$  and  $y \notin D$ ,  $|D| = \sum_{i=1}^k |D_i| = \gamma_{\rm pr}(G) - 2$ . Also,  $D_i$  is a paired dominating set of  $G_i - \{x_i, y_i\}$  for each i, and a paired dominating set of  $G_i - x_i$  for at least one i. We show that, in fact,

(A)  $D_i$  is a paired dominating set of  $G_i - x_i$  for each *i*.

First suppose  $|N_{G_i-x_i}(y_i)| \geq 2$ ; say  $z_1, z_2 \in N_{G_i-x_i}(y_i)$ . Since  $N_{G_i-x_i}(y_i)$ induces a clique,  $z_1z_2 \in E(G)$ . By Theorem 12,  $(N_G[z_1] \cup N_G[z_2]) \cap \operatorname{Cr}(G) \neq \emptyset$ . Since  $N_G[z_i] = N_{G_i-x_i}[z_i]$  and  $z_i$  is not a leaf (and thus, by the hypothesis, not  $\gamma_{\operatorname{pr}}(G)$ -critical),  $z_1$  or  $z_2$  is adjacent to a  $\gamma_{\operatorname{pr}}(G)$ -critical vertex, i.e., a leaf. Say  $z_1$  is adjacent to a leaf z'. Then  $z_1$  belongs to any paired dominating set of any subgraph of G containing both  $z_1$  and z', so  $z_1 \in D$ . Therefore  $D_i$  dominates  $y_i$ and (A) holds.

Assume therefore that  $|N_{G_i-x_i}(y_i)| = 1$ , say  $N_{G_i-x_i}(y_i) = \{z\}$ . If  $z \in D$ , we are done, hence assume  $z \notin D$ . By Theorem 1(iii), z is not a leaf, hence there exists a vertex  $z' \in N_{G_i-x_i}(z) \setminus \{y_i\}$ . By Theorem 1(i), G has a  $\gamma_{\text{pr}}$ -set X such that zz' belongs to a matching of G[X]. Now  $y \in X$ , but y is not paired with any vertex of  $G_i - x_i$ , since  $N_{G_i-x_i}(y_i) = \{z\}$ . Therefore  $X_i = (X \setminus \{x, y\}) \cap V(G_i)$  is a paired dominating set of  $G_i - x_i$ . Moreover,  $|X_i| \leq |D_i|$ , otherwise  $(X - X_i) \cup D_i$ is a smaller paired dominating set of G, which is impossible. However, now  $D' = (D \setminus D_i) \cup X_i$  is a paired dominating set of G - x, hence a  $\gamma_{\text{pr}}(G - x)$ -set, containing more neighbours of y than D, contrary to the choice of D. Hence (A) holds in this case as well.

Therefore  $\gamma_{\rm pr}(G_i - x_i) \leq |D_i|$  for each *i*, so that

(3) 
$$\sum_{i=1}^{k} \gamma_{\rm pr}(G_i - x_i) \le \sum_{i=1}^{k} |D_i| = |D| = \gamma_{\rm pr}(G - x).$$

Suppose there exists a  $\gamma_{\rm pr}(G_i - x_i)$ -set  $Y_i$  containing  $y_i$ . Since no  $D_j$  contains  $y_j$ ,  $D' = (D \setminus D_i) \cup Y_i$  is a paired dominating set of G - x such that  $|D'| \leq |D| = \gamma_{\rm pr}(G) - 2$  and D' dominates x. Then D' is a paired dominating set of G, which is impossible. Therefore no  $\gamma_{\rm pr}(G_i - x_i)$ -set contains  $y_i$ . Similarly, if  $\gamma_{\rm pr}(G_i - x_i) < |D_i|$  for some i and  $Z_i$  is a  $\gamma_{\rm pr}(G_i - x_i)$ -set, then  $D'' = (D \setminus D_i) \cup Z_i$  is a paired dominating set of G - x such that |D''| < |D|, which is also impossible. From these two facts we deduce that  $D_i$  is a  $\gamma_{\rm pr}(G_i - x_i)$ -set, equality holds in (3) and  $\gamma_{\rm pr}(G_i) = \gamma_{\rm pr}(G_i - x_i) + 2$ , that is,  $x_i$  is  $\gamma_{\rm pr}(G_i)$ -critical for each i.

We show that  $\operatorname{msd}_{\operatorname{pr}}(G_1) = 4$ ; it will follow similarly that  $\operatorname{msd}_{\operatorname{pr}}(G_i) = 4$ for each *i*. Since  $D_1$  is a  $\gamma_{\operatorname{pr}}(G_1 - x_1)$ -set, it is easy to see that we can pairwise

dominate  $G_{1_{xy,3}}$  by  $|D_1| + 2 = \gamma_{\text{pr}}(G_1)$  vertices. Hence consider any edge  $e \in E(G_1 - x_1)$  and the graphs  $G_{e,3}$  and  $G_{1_{e,3}}$ . Since combining any  $\gamma_{\text{pr}}(G_{1_{e,3}})$ -set with the sets  $D_j$ ,  $j = 2, \ldots, k$ , produces a paired dominating set of  $G_{e,3}$ ,

(4) 
$$\gamma_{\rm pr}(G_{e,3}) \le \gamma_{\rm pr}(G_{1_{e,3}}) + \sum_{i=2}^k \gamma_{\rm pr}(G_i - x_i).$$

We show that equality holds in (4). For convenience of notation, define  $H_1 = G_{1_{e,3}}$ and  $H_i = G_i$ ,  $i \ge 2$ . Let S be a  $\gamma_{\text{pr}}(G_{e,3})$ -set and define  $S_i = S \cap V(H_i)$  for  $i = 1, \ldots, k$  (since  $y \in S$ ,  $y_i \in S_i$  for each i, and if  $x \in S$ , then  $x_i \in S_i$  for each i). We consider two cases, depending on whether  $x \in S$  or not.

Case 1.  $x \notin S$ . Then  $\sum_{i=1}^{k} |S_i| = |S| + k - 1$ . Note that y is paired with  $w \in V(H_i) \setminus \{x_i, y_i\}$  for exactly one i. Then  $S_i$  is a paired dominating set of  $H_i$ . For  $j \neq i$ ,  $S_j \cup \{x_j\}$  is a paired dominating set of  $H_j$ . Therefore  $\gamma_{\text{pr}}(H_i) \leq |S_i|$  and  $\gamma_{\text{pr}}(H_j) \leq |S_j| + 1$  for  $j \neq i$ . For  $\ell \geq 2$ ,  $x_\ell$  is  $\gamma_{\text{pr}}(H_\ell)$ -critical, hence  $\gamma_{\text{pr}}(H_\ell - x_\ell) \leq \gamma_{\text{pr}}(H_\ell) - 2$ . Therefore

$$\gamma_{\rm pr}(G_{1_{e,3}}) + \sum_{i=2}^k \gamma_{\rm pr}(G_i - x_i) \le \sum_{i=1}^k |S_i| - 2(k-1) + (k-1) = \sum_{i=1}^k |S_i| - (k-1) = |S|$$

and equality holds in (4).

Case 2.  $\{x, y\} \subseteq S$ . Then x and y are paired in S,  $\{x_i, y_i\} \subseteq S_i$  for each i, and  $S_i$  is a paired dominating set of  $H_i$ . Also,  $\sum_{i=2}^k |S_i| = |S| + 2(k-1) - |S_1|$ . Since  $x_i$  is  $\gamma_{\rm pr}(G_i)$ -critical,

$$\gamma_{\rm pr}(G_{1_{e,3}}) + \sum_{i=2}^k \gamma_{\rm pr}(G_i - x_i) \le |S_1| + \sum_{i=2}^k |S_i| - 2(k-1) = |S| = \gamma_{\rm pr}(G_{e,3}),$$

giving equality in (4).

It now follows as in the proof of Proposition 10 that  $msd(G_1) = 4$ . Similarly,  $msd(G_i) = 4$  for  $i \ge 2$ .

### 6. Proof of Theorem 4

We are now ready to prove our main theorem, the characterization of msd-4 block graphs. We restate the theorem here for convenience.

**Theorem 4** (again). Let G be a connected block graph. Then G is an msd-4 graph if and only if  $G \in \mathcal{B}$ . Moreover, if G is an msd-4 graph constructed from the graphs  $H_1, \ldots, H_j \in \mathcal{U}$ , then  $\operatorname{Cr}(G) = \bigcup_{i=1}^j \operatorname{Cr}(H_i)$ .

**Proof.** If  $G \in \mathcal{B}$ , it follows immediately from Propositions 8 and 9 that G is an msd-4 graph and  $\operatorname{Cr}(G) = \bigcup_{i=1}^{j} \operatorname{Cr}(H_i)$ .

For the converse, let G be an msd-4 block graph. If G is a tree, the result follows from Corollary 5, hence we assume that  $B \cong K_n$ ,  $n \ge 3$ , is a block of G. By (the contrapositive of) Theorem 11, each vertex of B is a cut-vertex, so  $\deg(v) \ge n$  for each  $v \in V(B)$ . Since each non-leaf vertex of a  $K_2$ -block is a cut-vertex, we deduce that each vertex of G is either a leaf or a cut-vertex.

Suppose  $v \in V(B)$  is  $\gamma_{\text{pr}}$ -critical. Applying Proposition 10 to v we obtain an msd-4 graph  $G_1$  with  $v_1 = v$  and  $N_{G_1}[v_1] = B$ , which contradicts Theorem 11. Thus every  $\gamma_{\text{pr}}(G)$ -critical vertex belongs only to  $K_2$ -blocks.

We say that a vertex u is a *type-A vertex* if it is a  $\gamma_{pr}(G)$ -critical cut-vertex, and an edge uv is a *type-A edge* if u is a leaf (hence  $\gamma_{pr}(G)$ -critical) and  $G - \{u, v\}$  is disconnected. Denote the number of type-A elements (vertices and edges together) of G by a(G). First we show that

### (B) if a(G) = 0, then $G \in \mathcal{U}$ .

Suppose a(G) = 0. Then every  $\gamma_{\rm pr}(G)$ -critical vertex is a leaf. Say  $V(B) = \{v_1, \ldots, v_n\}$ . Since no vertex of B is  $\gamma_{\rm pr}(G)$ -critical, Theorem 12 implies that  $v_1$  or  $v_n$  is adjacent to a  $\gamma_{\rm pr}(G)$ -critical vertex. Without loss of generality we assume that  $v_1u_1 \in E(G)$ ,  $u_1 \notin V(B)$ , and  $u_1$  is  $\gamma_{\rm pr}(G)$ -critical. Similarly, without loss of generality,  $v_i$  is adjacent to a  $\gamma_{\rm pr}(G)$ -critical vertex  $u_i \notin V(B)$  for  $i = 2, \ldots, n-1$ . Since a(G) = 0 and each vertex of G is either a leaf or a cut-vertex,  $\deg_G(u_i) = 1$  for each  $i = 1, \ldots, n-1$  and  $G - \{v_i, u_i\}$  is connected. Thus,  $v_i$  belongs to only the two blocks B and  $v_iu_i$ , so  $\deg_G(v_i) = n$  for each  $i = 1, \ldots, n-1$ .

Since  $v_n$  is a cut-vertex,  $N(v_n) \setminus V(B) \neq \emptyset$ . If  $v_n$  is adjacent to a  $\gamma_{\rm pr}(G)$ critical vertex, say  $u_n$ , then, arguing as above,  $\deg(u_n) = 1$ ,  $\deg(v_n) = n$  and  $G = K_n \circ K_1$ . By Remark 3(i), n is odd, hence G belongs to the family  $\mathcal{U} \subseteq \mathcal{B}$ . If no vertex in  $N(v_n) \setminus V(B)$  is critical, let  $N(v_n) \setminus V(B) = \{w_1, \ldots, w_t\}$  for  $t \geq 1$ . By Theorem 12, each  $w_i$  is adjacent to a critical vertex  $w'_i \neq v_n$ , and since a(G) = 0,  $w'_i$  is a leaf. We show that

### (C) $\{w_1, \ldots, w_t\}$ is an independent set of G.

Suppose (without loss of generality) that  $w_1w_2 \in E(G)$  and consider  $G_{w_1w_2,3}$ . Let  $w_1, x_1, x_2, x_3, w_2$  be the  $w_1 - w_2$  path in  $G_{w_1w_2,3}$  and let D be a  $\gamma_{pr}(G_{w_1w_2,3})$ set. Since  $w'_1$  and  $w'_2$  are leaves,  $w_1, w_2 \in D$ . To dominate  $x_2, \{x_1, x_2, x_3\} \cap D \neq \emptyset$ . If  $|\{x_1, x_2, x_3\} \cap D| = 2$ , then  $D \setminus \{x_1, x_2, x_3\}$  is a paired dominating set (with  $w_1$ and  $w_2$  paired) of G of smaller cardinality than D, contrary to msd(G) = 4. Hence assume without loss of generality that  $\{x_1, x_2, x_3\} \cap D = \{x_1\}$ , so  $w_1$  and  $x_1$  are paired (and  $w'_1 \notin D$ ), while  $w_2$  is paired with either  $w'_2$  or  $v_n$ . However, each vertex in  $N_G(v_n)$  is adjacent to a leaf and belongs to D, thus  $D \setminus \{v_n\}$  dominates G. Therefore, either  $D \setminus \{x_1, w'_2\}$  or  $D \setminus \{x_1, v_n\}$  is a paired dominating set of G in which  $w_1$  and  $w_2$  are paired, contrary to msd(G) = 4. It follows that (C) holds. Since G is a block graph,  $w_i$  and  $w_j$  belong to different components of  $G - v_n$  for all  $i \neq j$ .

Consequently, if there exists a vertex  $z \notin \{v_n, w'_i\}$  adjacent to  $w_i$ , then z and  $v_n$  belong to different components of  $G - \{w_i, w'_i\}$ . But now  $w_i w'_i$  is a type-A edge, which is not the case as a(G) = 0. Hence  $\deg(w_i) = 2$  and  $G \cong K_n \circ^{*t} K_1$ . Since msd(G) = 4, n is even, by Remark 3(ii). Therefore  $G \in \mathcal{U} \subseteq \mathcal{B}$ . Thus (B) holds.

Now suppose  $a(G) \geq 1$ . If G has a type-A critical cut-vertex u, perform the operation  $G \ominus u$ ; each resulting graph is an msd-4 graph by Proposition 10, and clearly a block graph. Moreover, the copies of u in each graph are  $\gamma_{pr}$ critical. Repeat this process until no resulting msd-4 block graph has a type-A critical cut-vertex. Let  $G_1, \ldots, G_k$  be the resulting graphs. Then each critical vertex of each  $G_i$  is a leaf. If any  $G_i$  has a type-A critical edge uv, where u is a leaf, perform the operation  $G \ominus uv$ . Each resulting graph is an msd-4 block graph by Proposition 13. Repeat this process until all resulting graphs  $H_j$  satisfy  $a(H_j) = 0$ . If  $H_j$  is a tree, then  $H_j \cong S(2, \ldots, 2) \in \mathcal{U}$  by Corollary 5, otherwise  $H_j \in \mathcal{U}$  by (B). Now G can be reconstructed by performing the  $\oplus$ -operations on the  $H_j$ , hence  $G \in \mathcal{B}$ , as required.

### 7. Open Problems

We conclude with a short list of open problems for future consideration.

Question 1. Does Theorem 12 hold for all msd-4 graphs?

Define another  $\oplus$ -operation as follows.

 $\bigoplus_{u,Q}^{u_1Q_1,u_2Q_2}$ : Let  $G_1$  and  $G_2$  be vertex disjoint graphs containing (not necessarily maximal) cliques  $Q_1$  and  $Q_2$  of equal size, and vertices  $u_i \in V(Q_i)$  for  $i \in \{1,2\}$ . We denote a graph obtained from  $G_1$  and  $G_2$  by identifying  $Q_1$  and  $Q_2$  into one clique Q, and  $u_1$  and  $u_2$  into one vertex  $u = u_1 = u_2$ , by  $G_1 \oplus_{u,Q}^{u_1Q_1,u_2Q_2} G_2$  (or by  $G_1 \oplus^{u_1Q_1,u_2Q_2} G_2$  if u and Q are unimportant).

Note that if the cliques  $Q_i$  have order at least three, then identifying the vertices of  $Q_i - u_i$  in different ways may yield different graphs. Both operations  $\bigoplus_{u}^{u_1u_2}$  and  $\bigoplus_{e}^{e_1e_2}$  are special cases of  $\bigoplus_{u,O}^{u_1Q_1,u_2Q_2}$ .

**Question 2.** Let  $G_1$  and  $G_2$  be disjoint msd-4 graphs containing cliques  $Q_1$  and  $Q_2$  of equal size and  $\gamma_{\rm pr}(G_i)$ -critical vertices  $u_i \in V(Q_i)$ , i = 1, 2. Is it true that for any graph  $G = G_1 \bigoplus_{u,Q}^{u_1Q_1,u_2Q_2} G_2$ , u is  $\gamma_{\rm pr}(G)$ -critical and  ${\rm msd}_{\rm pr}(G) = 4$ ?

If  $G_1$  and  $G_2$  are copies of the msd-4 graph in Figure 5, with  $u_i = u$ , which is  $\gamma_{\text{pr}}$ -critical, and  $Q_i$  is the triangle containing u, then both graphs obtainable as  $G_1 \oplus_{u,Q}^{u_1Q_1,u_2Q_2} G_2$  are msd-4 graphs having u as critical vertex. **Question 3.** Let G be a graph with  $msd_{pr}(G) = 4$ . What is the largest number of edges of G that can be subdivided three times before the paired domination number increases? If this number can be arbitrarily high, what is its ratio to the number of edges of G?

### Acknowledgement

The authors are grateful to the referees of the first version of this paper for pointing out errors in our work.

### References

- M. Atapour, A. Khodkar and S.M. Sheikholeslami, *Characterization of double dom*ination subdivision number of trees, Discrete Appl. Math. 155 (2007) 1700–1707. doi:10.1016/j.dam.2007.03.007
- [2] M. Dettlaff and J. Raczek, Paired domination multisubdivision numbers of graphs, submitted.
- M. Dettlaff, J. Raczek and J. Topp, Domination subdivision and domination multisubdivision numbers of graphs, Discuss. Math. Graph. Theory 39 (2019) 829–839. doi:10.7151/dmgt.2103
- [4] O. Favaron, H. Karami and S.M. Sheikholeslami, Connected domination subdivision numbers of graphs, Util. Math. 77 (2008) 101–111.
- [5] O. Favaron, H. Karami and S.M. Sheikholeslami, *Paired-domination subdivision numbers of graphs*, Graphs Combin. 25 (2009) 503-512. doi:10.1007/s00373-005-0871-1
- [6] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, J. Knisely and L.C. van der Merwe, *Domination subdivision numbers*, Discuss. Math. Graph Theory **21** (2001) 239–253.
  - doi:10.7151/dmgt.1147
- T.W. Haynes, M.A. Henning and L.S. Hopkins, *Total domination subdivision numbers of graphs*, Discuss. Math. Graph Theory **24** (2004) 457–467. doi:10.7151/dmgt.1244
- [8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).
- [9] T.W. Haynes, S.T. Hedetniemi and L.C. van der Merwe, *Total domination subdivision numbers*, J. Combin. Math. Combin. Comput. 44 (2003) 115–128.
- [10] A. Khodkar, B.P. Mobaraky and S.M. Sheikholeslami, Upper bounds for the Roman domination subdivision number of a graph, AKCE Int. J. Graphs Comb. 5 (2008) 7–14.
- [11] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997).

Received 27 June 2018 Revised 28 December 2018 Accepted 16 May 2019