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Abstract

Let G be a 4-connected graph G, and let Ec(G) denote the set of 4-
contractible edges of G. We prove results concerning the distribution of
edges in Ec(G). Roughly speaking, we show that there exists a set K0 and
a mapping ϕ : K0 → Ec(G) such that |ϕ−1(e)| ≤ 4 for each e ∈ Ec(G).
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1. Introduction

In this paper, we consider only finite undirected simple graphs with no loops and
no multiple edges.

Let G = (V (G), E(G)) be a graph. For e ∈ E(G), we let V (e) denote the
set of endvertices of e. For x ∈ V (G), NG(x) denotes the neighborhood of x and
degG(x) denotes the degree of x; thus degG(x) = |NG(x)|. For X ⊆ V (G), we
let NG(X) =

⋃

x∈X NG(x), and the subgraph induced by X in G is denoted by
G[X]. For an integer i ≥ 0, we let Vi(G) denote the set of vertices x of G with
degG(x) = i and we let V≥i(G) =

⋃

j≥i Vj(G). A subset S of V (G) is called a
cutset if G−S is disconnected. A cutset with cardinality i is simply referred to as
an i-cutset. For an integer k ≥ 1, we say that G is k-connected if |V (G)| ≥ k + 1
and G has no (k − 1)-cutset.
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Let G be a 4-connected graph. For two distinct 4-cutsets S, T , we say that
S crosses T if S intersects with every component of G− T . It is easy to see that
S crosses T if and only if T crosses S, which is in turn equivalent to saying that
S intersects at least two components of G− T . Furthermore, we call a family of
4-cutsets S cross free if no two members of S cross. A 4-cutset S of G is said to
be trivial if there exists a vertex z of degree 4 such that NG(z) = S; otherwise it
is said to be nontrivial. For e ∈ E(G), we let G/e denote the graph obtained from
G by contracting e into one vertex (and replacing each resulting pair of double
edges by a simple edge). We say that e is 4-contractible or 4-noncontractible
according as G/e is 4-connected or not. A 4-noncontractible edge e = ab is said
to be trivially 4-noncontractible if there exists a vertex z of degree 4 such that
za, zb ∈ E(G). We let Ec(G), En(G) and Etn(G) denote the set of 4-contractible
edges, the set of 4-noncontractible edges and the set of trivially 4-noncontractible
edges, respectively. Note that if |V (G)| ≥ 6, then e ∈ En(G) if and only if there
exists a 4-cutset S such that V (e) ⊆ S, and e ∈ Etn(G) if and only if there exists
a trivial 4-cutset S such that V (e) ⊆ S.

The following theorem concerning the number of 4-contractible edges in a
4-connected graph was proved in [2].

Theorem A. If G is a 4-connected graph, then |Ec(G)| ≥ (1/68)
∑

u∈V (G)

(degG(u)− 4).

The coefficient 1/68 in Theorem A seems far from best possible. The purpose
of this paper is to prove two results which will be useful in refining Theorem A.
Our results can be also seen as a “large-degree version” of the two structure
theorems proved in [1] concerning edges not contained in triangles (see Theorems
C and D below).

Throughout the rest of this paper, we let G be a 4-connected graph. Set

L = {(S,A) | S is a 4-cutset, A is the union of the vertex set of

some components of G− S, ∅ 6= A 6= V (G)− S},

L0 = {(S,A) ∈ L | S is a nontrivial 4-cutset}.

For (S,A) ∈ L, we let A = V (G) − S − A. Thus if (S,A) ∈ L, then (S,A) ∈ L
and NG(A)−A = NG(A)−A = S.

Let F be a subset of En(G) − Etn(G). Let Ṽ (G) denote the set of those
vertices of G which are incident with an edge in F , and let G̃ denote the spanning
subgraph of G with edge set F ; that is to say, Ṽ (G) =

⋃

e∈F V (e) and G̃ =
(V (G), F ). Now take (S1, A1), . . . , (Sk, Ak) ∈ L so that for each e ∈ F , there
exists Si such that V (e) ⊆ Si. We choose (S1, A1), . . . , (Sk, Ak) so that k is
minimum and so that (|A1|, . . . , |Ak|) is lexicographically minimum, subject to
the condition that k is minimum (thus if F = ∅, then k = 0). Note that the
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minimality of k implies that for each 1 ≤ i ≤ k, we have E(G[Si]) ∩ F 6= ∅ and
hence (Si, Ai) ∈ L0. Set S = {S1, . . . , Sk}. Further set

K =
{

(u, S,A) | u ∈ Ṽ (G), S ∈ S, (S,A) ∈ L0, there exists

e ∈ F such that u ∈ V (e) ⊆ S
}

,

K∗ =
{

(u, S,A) ∈ K | there is no (v, T,B) ∈ K with

v = u and (T,B) 6= (S,A) such that B ⊆ A
}

.

Moreover let K0 be the set of those members (u, S,A) ∈ K∗ which satisfy one of
the following two conditions:

(1) degG(u) ≥ 5; or

(2) degG(u) = 4, |NG(u) ∩ A| = 1 and, if we write NG(u) ∩ A = {a}, then
ua ∈ Ec(G).

We say that F is admissible if the following statement is true (note that this
definition implies that if F = ∅, then F is admissible).

Statement B. Let uv ∈ F , and let S be a 4-cutset with u, v ∈ S, and let A be

the vertex set of a component of G − S. Then there exists e ∈ Ec(G) such that

either e is incident with u or there exists a ∈ NG(u) ∩ (S ∪A) ∩ V4(G) such that

e is incident with a.

Now we let Ẽ(G) denote the set of those edges of a 4-connected graph G
which are not contained in a triangle. The following result appears as Theorem
1 in [1].

Theorem C. The set Ẽ(G) ∩ En(G) is admissible.

Let L be the set of edges e such that both endvertices of e have degree 4. In
this paper, we prove the following theorem.

Theorem 1. Let F = En(G)−Etn(G)−L. Let S be as above, and suppose that

S is cross free. Then F is admissible.

Note that in the case where F = Ẽ(G)∩En(G), we can show that S is cross
free (see Claim 4.1 in [1]), and this is why we do not need the assumption that
S is cross free in Theorem C.

The following theorem appears as Theorem 2 in [1].

Theorem D. Let K0 be as above with F = Ẽ(G)∩En(G). Then we can assign to

each (u, S,A) ∈ K0 a 4-contractible edge ϕ(u, S,A) having the property stated in

Statement B, so that for each e ∈ Ec(G) there are at most two members (u, S,A)
of K0 such that ϕ(u, S,A) = e.
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The following theorem is our main result.

Theorem 2. Let S and K0 be as above with F = En(G) − Etn(G) − L, and

suppose that S is cross free. Then we can assign to each (u, S,A) ∈ K0 a 4-
contractible edge ϕ(u, S,A) having the property stated in Statement B, so that

for each e ∈ Ec(G) there are at most four members (u, S,A) of K0 such that

ϕ(u, S,A) = e.

We remark that in Theorem 2, situations in which there are three or four
members (u, S,A) of K0 such that ϕ(u, S,A) = e are rather limited (see Claim
4.17).

Recall that Theorems 1 and 2 will be useful in refining Theorem A. The rea-
sons are as follows. Let k be a maximum value with |Ec(G)| ≥ k

∑

u∈V (G)(degG(u)
−4) for a 4-connected graph G. Note that we know that 1/68 ≤ k ≤ 1/13,
and hence assume 1/68 ≤ k ≤ 1/13 throughout the rest of this argument. If
|V≥5(G)| = 0, then the above inequality holds immediately. Thus we now as-
sume that |V≥5(G)| ≥ 1. Let S be as above with F = En(G) − Etn(G) − L.
If |Ec(G)| < k

∑

u∈V (G)(degG(u) − 4), then we can show that S is cross free by
Theorem 1 in [4]. Suppose that |Ec(G)| < (1/28)

∑

u∈V (G)(degG(u) − 4). Then
S is cross free by the above argument. Hence we can use Theorem 2, and we can
show that |Ec(G)| ≥ (1/28)

∑

u∈V (G)(degG(u)−4) by Theorem 2 (the verification
of this statement involves lengthy calculations), which is a contradiction. Thus
we have |Ec(G)| ≥ (1/28)

∑

u∈V (G)(degG(u) − 4). However, it is likely that the
coefficient 1/28 can further be improved in view of the fact that situations in
which there are three or four members (u, S,A) of K0 such that ϕ(u, S,A) = e
are limited. Thus matters concerning refinements of Theorem A will be discussed
in a separate paper.

Our notation is standard, and is mostly taken from Diestel [3]. The organi-
zation of this paper is as follows. In Section 2, we introduce known results proved
in [1], and prove some preliminary results. We prove Theorem 1 in Section 3,
and Theorem 2 in Section 4.

2. Preliminaries

Throughout the rest of this paper, we let G denote a 4-connected graph with
F = En(G) − Etn(G) − L 6= ∅ (note that in proving Theorems 1 and 2, we may
clearly assume F 6= ∅). Thus |V (G)| ≥ 6. Also let L, L0 be as in the second
paragraph following the statement of Theorem A.

In this section, we state several results which we use in the proof of Theorems
1 and 2.
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2.1. Known results

In this subsection, we state results about the distribution of 4-contractible edges.
The following lemmas follow from Lemmas 2.2 through 2.13, respectively, in [1].

Lemma 2.1. Let (S,A), (T,B) ∈ L0, and suppose that S ∩ T 6= ∅. Then either

A ∩B 6= ∅ and A ∩B 6= ∅, or A ∩B 6= ∅ and A ∩B 6= ∅.

Lemma 2.2. Let (S,A), (T,B) ∈ L, and suppose that A∩B 6= ∅ and A∩B 6= ∅.
Then ((S ∩ T )∪ (S ∩B)∪ (A∩ T ), A∩B) ∈ L and ((S ∩ T )∪ (S ∩B)∪ (A∩ T ),
A ∩B) ∈ L.

Lemma 2.3. Let (S,A) ∈ L.

(i) If W ⊆ S and |W | ≤ |A|, then |NG(W )∩A| ≥ |W |. Further if |W | < |A| and
|NG(W )∩A| = |W |, then ((S−W )∪ (NG(W )∩A), A− (NG(W )∩A)) ∈ L.

(ii) If x ∈ S, then NG(x) ∩A 6= ∅. Further if (S,A) ∈ L0 and |NG(x) ∩A| = 1,
then ((S − {x}) ∪ (NG(x) ∩A), A− (NG(x) ∩A)) ∈ L.

Lemma 2.4. Let ab ∈ E(G) with degG(a) = degG(b) = 4. Then NG(a)− {b} 6=
NG(b)− {a}.

Lemma 2.5. Let u, a, b, w be four distinct vertices with ua, ub, ab, aw, bw ∈ E(G)
and degG(a) = degG(b) = 4, and write NG(a) = {u, b, w, x} and NG(b) = {u, a,
w, y}. Then x 6= y, and we have ax, by ∈ Ec(G) ∪ Etn(G).

Lemma 2.6. Under the notation of Lemma 2.5, suppose that degG(u), degG(w)
≥ 5. Then ax, by ∈ Ec(G).

Lemma 2.7. Under the notation of Lemma 2.5, suppose that degG(u) ≥ 5 and

degG(w) = 4. Then one of the following holds:

(i) xw /∈ E(G) and ax ∈ Ec(G); or

(ii) yw /∈ E(G) and by ∈ Ec(G).

Lemma 2.8. Let (P,X) ∈ L0 and u ∈ P . Suppose that X is minimal, subject to

the condition that u ∈ P (i.e., there is no (R,Z) ∈ L0 with (P,X) 6= (R,Z) such
that u ∈ R and Z ⊆ X). Then ua ∈ Ec(G) ∪ Etn(G) for each a ∈ NG(u) ∩X.

Lemma 2.9. Let (R,Z) ∈ L0 and a ∈ R. Suppose that |NG(a) ∩ Z| = 1, and
write NG(a) ∩ Z = {x}. Then ax ∈ Ec(G) ∪ Etn(G).

Lemma 2.10. Let u, a, b be three distinct vertices with ua, ub, ab ∈ E(G) and

degG(a) = 4, and write NG(a) = {u, b, x, y}. Suppose that there exists (R,Z) ∈
L0 such that u, a ∈ R, b, y ∈ Z and x ∈ Z. Suppose further that Z is minimal,

subject to the condition that u, a ∈ R and b ∈ Z. Then the following hold.
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(i) xy /∈ E(G).

(ii) ax ∈ Ec(G) ∪ Etn(G).

(iii) ay ∈ Ec(G) ∪ Etn(G).

Lemma 2.11. Under the notation of Lemma 2.10, suppose that degG(b) ≥ 5.
Then ax ∈ Ec(G) or ay ∈ Ec(G).

Lemma 2.12. Under the notation of Lemma 2.10, suppose that degG(b), degG(u)
≥ 5. Then ax, ay ∈ Ec(G).

2.2. Vertices not contained in Ṽ (G)

Recall that F = En(G)−Etn(G)−L and Ṽ (G) =
⋃

e∈F V (e). In this subsection,

we prove results concerning conditions for a vertex not to belong to Ṽ (G).

Lemma 2.13. Under the notation of Lemma 2.5, a, b /∈ Ṽ (G).

Proof. In view of the symmetry of the roles of a and b, it suffices to prove
a /∈ Ṽ (G). Suppose that a ∈ Ṽ (G). Then there exists e ∈ F such that e is
incident with a. Since au, aw ∈ Etn(G) and ab ∈ L, e 6= au, ab, aw. Hence
e = ax. By Lemma 2.5, we get e ∈ Ec(G) ∪ Etn(G), a contradiction.

Lemma 2.14. Under the notation of Lemma 2.10, suppose that degG(u) = 4 or

degG(b) = 4. Then a /∈ Ṽ (G).

Proof. Suppose that a ∈ Ṽ (G). Then there exists e ∈ F such that e is incident
with a. Since au, ab ∈ Etn(G)∪L, e 6= au, ab. Consequently e = ax or ay, which
contradicts Lemma 2.10(ii) or (iii).

3. Proof of Theorem 1

In the rest of this paper, we establish Theorems 1 and 2 by proving several claims.
The proofs of most of the claims in this paper are quite similar to the proofs of
the claims in [1] having virtually the same statements. However, considering
that we are dealing with En(G)−Etn(G)−L instead of Ẽ(G)∩En(G), we have
decided to include the details of the proofs in this paper. In this section, we prove
Theorem 1.

3.1. Neighborhood of a vertex of degree 5

In this subsection, we prove that Statement B is true if degG(u) ≥ 5. Specifically,
we prove the following proposition in a series of claims.
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Proposition 3.1. Let (P,X) ∈ L0 and u ∈ P , and suppose that degG(u) ≥ 5.
Then one of the following holds:

(1) there exists a ∈ NG(u) ∩X such that ua ∈ Ec(G); or

(2) there exists a ∈ NG(u) ∩ (P ∪X) ∩ V4(G) for which there exists e ∈ Ec(G)
such that e is incident with a.

Note that Proposition 3.1 implies that in Theorem 1, the assumption that
S is cross free is not necessary for vertices u with degG(u) ≥ 5. Throughout
this subsection, let (P,X), u be as in Proposition 3.1. We may assume that X is
minimal, subject to the condition that u ∈ P (i.e., there is no (R,Z) ∈ L0 with
(R,Z) 6= (P,X) such that u ∈ R and Z ⊆ X).

The following four claims are virtually the same as Claims 3.2 through 3.5
in [1].

Claim 3.2. Suppose that there exists an edge e joining a vertex in NG(u) ∩X ∩
V4(G) and a vertex NG(u)∩ (P ∪X)∩V4(G). Suppose that e ∈ En(G), and write

e = ab. Then a or b, say a, satisfies the following conditions.

(i) If we write NG(a) = {u, b, x, y}, then xy /∈ E(G).

(ii) a /∈ Ṽ (G).

(iii) There exists e′ ∈ Ec(G) such that e′ is incident with a.

Proof. If ab ∈ Etn(G), then there exists w ∈ V4(G) such that wa,wb ∈ E(G),
and hence the desired conclusions follows from Lemmas 2.7 and 2.13. Thus we
may assume that ab ∈ En(G) − Etn(G). Then there exists (R,Z) ∈ L0 with
a, b ∈ R. We first show that u /∈ R. Suppose that u ∈ R. Then by Lemma 2.1,
we may assume X∩Z 6= ∅ and X∩Z 6= ∅. Since a, b ∈ (P ∪X)∩R, it follows from
Lemma 2.2 that ((P ∩R)∪ (P ∩Z)∪ (X ∩R), X ∩Z) ∈ L0, which contradicts the
minimality of X. Thus u /∈ R. We may assume u ∈ Z. We may also assume that
we have chosen (R,Z) so that Z is minimal, subject to the condition that a, b ∈ R
and u ∈ Z. By Lemma 2.3(i), we have NG(a) ∩ Z 6= {u} or NG(b) ∩ Z 6= {u}.
We may assume NG(a) ∩ Z 6= {u}. Since NG(a) ∩ Z 6= ∅ by Lemma 2.3(ii), we
have |NG(a) ∩ Z| = 2 and |NG(a) ∩ Z| = 1. Write NG(a) ∩ Z = {u, y} and
NG(a)∩Z = {x}. Then b, a, u, x, y satisfy the assumptions of Lemmas 2.10, 2.11
and 2.14 with the roles of b and u replaced by each other. Consequently the
desired conclusions follow from (i) of Lemma 2.10 and Lemmas 2.11 and 2.14.

Claim 3.3. Let a ∈ X, and suppose that ua ∈ En(G). Then ua ∈ Etn(G).

Proof. This follows from Lemma 2.8.

Claim 3.4. Suppose that each edge joining u and a vertex in X is 4-noncontrac-
tible, and that there is no edge which joins a vertex in NG(u) ∩X ∩ V4(G) and a

vertex in NG(u) ∩ (P ∪X) ∩ V4(G). Then NG(u) ∩X ∩ V4(G) = ∅.
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Proof. Suppose thatNG(u)∩X∩V4(G) 6= ∅, and take a ∈ NG(u)∩X∩V4(G). We
have ua ∈ Etn(G) by Claim 3.3. Hence there exists b ∈ V4(G) such that ub, ab ∈
E(G). From a ∈ X and ab ∈ E(G), it follows that b ∈ P ∪X. Thus ab is an edge
joining a vertex in NG(u)∩X ∩ V4(G) and a vertex in NG(u)∩ (P ∪X)∩ V4(G),
a contradiction.

Claim 3.5. Suppose that each edge joining u and a vertex in X is 4-noncontrac-
tible, and that there is no edge which joins a vertex in NG(u) ∩ X ∩ V4(G) and

a vertex in NG(u) ∩ (P ∪X) ∩ V4(G). Then there exists a ∈ NG(u) ∩ P ∩ V4(G)
and b ∈ NG(u) ∩X such that ab ∈ E(G), |NG(a) ∩X| = 2 and |NG(a) ∩X| = 1.

Proof. Take z ∈ NG(u) ∩X. Then uz ∈ Etn(G) by Claim 3.3, and hence there
exists az ∈ V4(G) such that azu, azz ∈ E(G). Since NG(u) ∩X ∩ V4(G) = ∅ by
Claim 3.4, az ∈ P . Since degG(az) = 4 and u ∈ NG(az) ∩ P , |NG(az) ∩ X| +
|NG(az) ∩X| ≤ 3, and hence it follows from Lemma 2.3(ii) that 1 ≤ |NG(az) ∩
X| ≤ 2. Now by way of contradiction, suppose that the claim is false. Then
|NG(az) ∩ X| = 1, i.e., NG(az) ∩ X = {z}. Since z ∈ NG(u) ∩ X is arbitrary,
this means that ay 6= az for any y, z ∈ NG(u) ∩ X with y 6= z and if we set
W = {az | z ∈ NG(u)∩X}, then we have |W | = |NG(u)∩X| and NG({u}∪W )∩
X = NG(u) ∩X, and hence |N({u} ∪W ) ∩X| = |W | = |{u} ∪W | − 1. In view
of Lemma 2.3(i), this implies |{u} ∪ W | ≥ |X| + 1, i.e., |W | ≥ |X|. Again fix
z ∈ NG(u)∩X. Since NG(ay)∩X = {y} for each y ∈ (NG(u)∩X)−{z}, NG(z) ⊆
(P−(W−{az}))∪(X−{z}). Consequently degG(z) ≤ |P |−|W |+ |X| ≤ |P | = 4,
which implies z ∈ NG(u)∩X∩V4(G). But this contradicts Claim 3.4, completing
the proof.

The following claim corresponds to Claim 3.6 in [1].

Claim 3.6. Suppose that each edge joining u and a vertex in X is 4-noncontrac-
tible, and that there is no edge which joins a vertex in NG(u) ∩X ∩ V4(G) and a

vertex in NG(u)∩ (P ∪X)∩V4(G). Further let a, b be as in Claim 3.5, and write

NG(a)∩X = {b, y} and NG(a)∩X = {x}. Then xy /∈ E(G), and ax, ay ∈ Ec(G).

Proof. Note that degG(b) ≥ 5 by Claim 3.4, and degG(u) ≥ 5 by the assumption
of Proposition 3.1. Thus the desired conclusions follows from (i) of Lemma 2.10
and Lemma 2.12.

Proposition 3.1 now follows from Claims 3.2 and 3.6.

3.2. Non-crossing 4-cutsets

In this subsection, we complete the proof of Theorem 1. Throughout the rest of
this paper, we let S, K, K∗ and K0 be as in the paragraph preceding Statement
B with F = En(G)− Etn(G)− L, and suppose that S is cross free.

The following claim immediately follows from the definition of K∗.
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Claim 3.7. Let u ∈ Ṽ (G). Then for each (u, S,A) ∈ K, there exists a member

(v, T,B) of K∗ with v = u and B ⊆ A. In particular, there exist at least two

members (v, T,B) of K∗ with v = u.

The following claim is virtually the same as Claim 4.3 in [1].

Claim 3.8. Let (u, S,A), (v, T,B) ∈ K∗ with u = v and (S,A) 6= (T,B). Then

(S ∪A) ∩B = A ∩ (T ∪B) = ∅.

Proof. If S = T , the desired conclusion clearly holds. Thus we may assume that
S 6= T . Since S is cross free, we have that S∩B = T ∩A = ∅, S∩B = T ∩A = ∅,
S∩B = T ∩A = ∅, or S∩B = T ∩A = ∅. Suppose that S∩B = T ∩A = ∅. Then
since S 6= T , we have A∩T 6= ∅ and |(S∩T )∪(A∩T )∪(S∩B)| = |T |−|A∩T | < 4,
and hence A∩B = ∅. Since S ∩B = ∅ and A∩ T 6= ∅, this implies B is a proper
subset of A. But since (u, T,B) ∈ K and (u, S,A) ∈ K∗, this contradicts the
definition of K∗. If S ∩ B = T ∩ A = ∅ or S ∩ B = T ∩ A = ∅, then we obtain
B ⊆ A or A ⊆ B, respectively, and hence we similarly get a contradiction. Thus
S ∩B = T ∩A = ∅. Since S 6= T , this also implies A ∩B = ∅, as desired.

Recall that G̃ = (V (G), F ). The following claim corresponds to Claim 4.4
in [1].

Claim 3.9. Let u ∈ Ṽ (G). Then the following hold.

(i) There exists a member (v, T,B) of K0 with v = u.

(ii) Suppose that degG(u) ≥ 5, or degG̃(u) ≥ 2, or there exist three members

(v, T,B) of K∗ with v = u. Then for each (u, S,A) ∈ K∗, we have (u, S,A) ∈
K0. In particular, if degG(u) = 4 and degG̃(u) ≥ 2, then degG̃(u) = 2 and

there exist precisely two members (v, T,B) of K0 with v = u.

Proof. If degG(u) ≥ 5, the desired conclusion immediately follows from Claim
3.7 and the definition of K0. Thus we may assume that degG(u) = 4. We first
prove (ii). Thus let u be as in (ii) with degG(u) = 4. Then by Lemma 2.3(ii) and
Claim 3.8, it follows that |NG(u) ∩ A| = 1 for each (u, S,A) ∈ K∗, and that for
each a ∈ NG(u) −NG̃(u), there exists (u, S,A) ∈ K∗ such that a ∈ A. Again by
Claim 3.8, this implies that for each (u, S,A) ∈ K∗, NG(u)∩S = NG̃(u)∩S. Note
that this also implies that if degG̃(u) ≥ 2, then we have degG̃(u) = 2 and there
exist precisely two members (v, T,B) of K∗ with v = u. Now let (u, S,A) ∈ K∗,
and write NG(u) ∩ A = {a}. To complete the proof of (ii), it suffices to show
that (u, S,A) ∈ K0. Suppose that (u, S,A) /∈ K0. Then ua ∈ En(G), and hence
ua ∈ Etn(G) by Lemma 2.9, which implies that there exists c ∈ V4(G) such that
cu, ca ∈ E(G). Since NG(u) ∩ A = {a}, this forces c ∈ S. But since uc ∈ L,
c /∈ NG̃(u), which contradicts the earlier assertion that NG(u) ∩ S = NG̃(u) ∩ S.
Thus (ii) is proved.
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We now prove (i). We may assume that there exists (u, S,A) ∈ K∗ such that
(u, S,A) /∈ K0. Then arguing as above, we see that |NG(u) ∩ (S ∪ A)| ≥ 3 (note
that if |NG(u)∩A| ≥ 2, we clearly have |NG(u)∩(S∪A)| ≥ 3). Take (u, T,B) ∈ K∗

with B ⊆ A. Then |NG(u) ∩ B| = 1. Write NG(u) ∩ B = {b}. Suppose that
(u, T,B) /∈ K0. Then there exists c′ ∈ V4(G) such that c′u, c′b ∈ E(G). This in
turn implies |NG(u)∩A| = 1. WriteNG(u)∩A = {a}. Then there exists c ∈ V4(G)
such that cu, ca ∈ E(G). Since degG(u) = 4, degG̃(u) ≥ 1 and ab /∈ E(G), this
forces c = c′. But then applying Lemma 2.13 with a and b replaced by u and c,
we obtain u /∈ Ṽ (G), which contradicts the assumption that u ∈ Ṽ (G). Thus (i)
is also proved.

We are now in a position to complete the proof of Theorem 1.
Let u, S, A be as in Statement B. Then (S,A) ∈ L0. Hence if degG(u) ≥ 5,

then the desired conclusion follows from Proposition 3.1. Thus we may assume
degG(u) = 4. But then from Claim 3.9(i) and the definition of K0, we see that
there exists e ∈ Ec(G) such that e is incident with u. Consequently F = En(G)−
Etn(G)− L is admissible, as desired. �

4. Proof of Theorem 2

In this section, we prove Theorem 2. We continue with the notation of Subsection
3.2. In particular, we suppose that S is cross free, which is the assumption of
Theorem 2.

4.1. Definition of λ(u, S,A), α(u, S,A) and ϕ(u, S,A)

In this subsection, to each (u, S,A) ∈ K0, we assign an edge λ(u, S,A), and an
endvertex α(u, S,A) of λ(u, S,A), and a 4-contractible edge ϕ(u, S,A) incident
with α(u, S,A). The following claim corresponds to Claim 5.1 in [1].

Claim 4.1. Let (u, S,A) ∈ K0, and set W = {z ∈ S −{u}−NG̃(u) | |NG(z)∩A|
= 1}. Then ((S −W ) ∪ (NG(W ) ∩A), A− (NG(W ) ∩A)) ∈ L0.

Proof. By the definition of K, there exists e ∈ F such that u ∈ V (e) ⊆ S. Hence
W ⊆ S − V (e), which implies |W | ≤ 2. On the other hand, since (S,A) ∈ L0,
|A| ≥ 2. Thus |W | ≤ |A|. Suppose that |W | = |A|. Then |W | = |A| = 2.
By Lemma 2.3(i), NG({x, z}) ∩ A = A for each x ∈ V (e) and z ∈ W . Since
we also have NG(W ) ∩ A = A by Lemma 2.3(i) and since |NG(z) ∩ A| = 1 for
each z ∈ W , this means that NG(x) ∩ A = A for each x ∈ V (e). Consequently
degG(a) = 4 and V (e) ⊆ NG(a) for each a ∈ A, which implies e ∈ Etn(G), a
contradiction. Thus |W | < |A|. Therefore it follows from Lemma 2.3(i) that
((S − W ) ∪ (NG(W ) ∩ A), A − (NG(W ) ∩ A)) ∈ L, which implies the desired
conclusion because V (e) ⊆ S −W .



Distribution of Contractible Edges and the Structure of ... 1061

Now let (u, S,A) ∈ K0, and let W be as in Claim 4.1. We let (Pu,S,A, Xu,S,A)
be a member of L0 with u ∈ Pu,S,A and Xu,S,A ⊆ A − (NG(W ) ∩ A) such that
Xu,S,A is minimal, i.e., there is no (R,Z) ∈ L0 with (R,Z) 6= (Pu,S,A, Xu,S,A)
such that u ∈ R and Z ⊆ Xu,S,A. We remark that we do not require that there
should exist an edge e ∈ En(G) with u ∈ V (e) ⊆ Pu,S,A. The following claim
immediately follows from the definition of (Pu,S,A, Xu,S,A).

Claim 4.2. Let (u, S,A) ∈ K0. Let z ∈ S − {u} − NG̃(u) and suppose that

|NG(z) ∩A| = 1. Then z /∈ Pu,S,A.

Let again (u, S,A) ∈ K0, and let (P,X) = (Pu,S,A, Xu,S,A) be as above. We
define the type of (u, S,A) as follows: (u, S,A) is of type 1 if there exists a 4-
contractible edge joining u and a vertex in X; (u, S,A) is of type 2 if it is not of
type 1 and there exists a 4-contractible edge joining a vertex in NG(u)∩X∩V4(G)
and a vertex in NG(u)∩ (P ∪X)∩V4(G); (u, S,A) is of type 3 if it is not of type 1
or 2 but there exists an edge joining a vertex in NG(u)∩X ∩ V4(G) and a vertex
in NG(u) ∩ (P ∪ X) ∩ V4(G); (u, S,A) is of type 4 if it is not of type i for any
i = 1, 2, 3. We let Ki denote the set of those members of K0 which are the type i
(i = 1, 2, 3, 4). The following claim, which will be used implicitly throughout the
rest of this paper, is virtually the same as Claim 5.3 in [1].

Claim 4.3. Let (u, S,A) ∈ K0 −K1. Then degG(u) ≥ 5.

Proof. Suppose that degG(u) = 4. Then by the definition of K0, |NG(u)∩A| = 1
and, if we write NG(u) ∩ A = {a}, then ua ∈ Ec(G). By Lemma 2.3(ii), a ∈ X.
Consequently (u, S,A) ∈ K1 by definition, which contradicts the assumption that
(u, S,A) ∈ K0 −K1.

We first define λ(u, S,A). If (u, S,A) ∈ K1, let λ(u, S,A) be a 4-contractible
edge joining u and a vertex in X; if (u, S,A) ∈ K2, let λ(u, S,A) be a 4-
contractible edge joining a vertex in NG(u)∩X ∩V4(G) and a vertex in NG(u)∩
(P ∪X) ∩ V4(G); if (u, S,A) ∈ K3, let λ(u, S,A) be an edge joining a vertex in
NG(u)∩X ∩V4(G) and a vertex in NG(u)∩ (P ∪X)∩V4(G); if (u, S,A) ∈ K4, let
λ(u, S,A) = ab where a, b are as in Claim 3.5. The following claim follows from
the definition of λ(u, S,A).

Claim 4.4. Let 2 ≤ i, j ≤ 4 with i 6= j, and let (u1, S1, A1) ∈ Ki and (u2, S2, A2)
∈ Kj. Then λ(u1, S1, A1) 6= λ(u2, S2, A2).

The following claims are virtually the same as Claims 5.5 and 5.6, respec-
tively, in [1].

Claim 4.5. Let (u1, S1, A1), (u2, S2, A2) ∈ K0 with u1 = u2 and (S1, A1) 6=
(S2, A2). Then λ(u1, S1, A1) 6= λ(u2, S2, A2).
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Proof. By Claim 3.8, A1 ∩ A2 = ∅. Hence Xu1,S1,A1
∩Xu2,S2,A2

⊆ A1 ∩ A2 = ∅.
Since at least one of the endvertices of λ(uj , Sj , Aj) is in Xuj ,Sj ,Aj

, this implies
λ(u1, S1, A1) 6= λ(u2, S2, A2).

Claim 4.6. Let e be an edge joining two vertices of degree 4. Then there exist

at most two members (u, S,A) of K2 ∪ K3 for which λ(u, S,A) = e.

Proof. Suppose that there exist three members (uj , Sj , Aj) (1 ≤ j ≤ 3) of
K2 ∪ K3 such that λ(uj , Sj , Aj) = e. By Claim 4.5, the uj are all distinct. But
this contradicts Lemma 2.4.

We prove two more claims concerning properties of λ(u, S,A). The following
claim corresponds to Claim 6.1 in [1].

Claim 4.7. Let (u, S,A), (v, T,B) ∈ K0 − K1 with u = v and (S,A) 6= (T,B).
Then V (λ(u, S,A)) ∩ V (λ(v, T,B)) ∩ V4(G) = ∅.

Proof. Suppose that V (λ(u, S,A)) ∩ V (λ(v, T,B)) ∩ V4(G) 6= ∅, and let a ∈
V (λ(u, S,A)) ∩ V (λ(v, T,B)) ∩ V4(G), and let (P,X) = (Pu,S,A, Xu,S,A). Then
a ∈ P ∪X ⊆ S ∪ A. Similarly a ∈ T ∪B. Hence a ∈ (S ∪ A) ∩ (T ∩B) ⊆ S ∩ T
by Claim 3.8. Since degG(a) = 4 and u ∈ NG(a) ∩ S ∩ T , |NG(a) ∩ (A ∪B)| ≤ 3.
Since A ∩B = ∅ by Claim 3.8, this together with Lemma 2.3(ii) implies that we
have |NG(a) ∩ A| = 1 or |NG(a) ∩ B| = 1. We may assume |NG(a) ∩ A| = 1. If
(u, S,A) ∈ K4, then by the definition of λ(u, S,A), a coincides with the vertex
a in Claim 3.5, and hence |NG(a) ∩ A| ≥ |NG(a) ∩ X| = 2 by Claim 3.5, a
contradiction. Thus (u, S,A) ∈ K2 ∪ K3. Consequently ua ∈ Etn(G) by the
definition of types 2 and 3, and hence a /∈ NG̃(u). By Claim 4.2, this implies
a /∈ P , which contradicts the fact that a ∈ (P ∪X) ∩ S ⊆ P .

The following claim is virtually the same as Claim 6.2 in [1].

Claim 4.8. Let (u, S,A), (v, T,B) ∈ K4 with (u, S,A) 6= (v, T,B). Then λ(u, S,
A) 6= λ(v, T,B).

Proof. Suppose that λ(u, S,A) = λ(v, T,B). Let (P,X) = (Pu,S,A, Xu,S,A), and
let a, b, x, y be as in Claims 3.5 and 3.6. Then λ(u, S,A) = λ(v, T,B) = ab, and
hence v ∈ NG(a) ∩ NG(b). In particular, v ∈ NG(a) − {b} = {u, x, y}. Since we
get xb /∈ E(G) from x ∈ X and b ∈ X, v 6= x. We also have v 6= u by Claim
4.5. Thus v = y, and hence y, a ∈ Pv,T,B. Consequently ya ∈ En(G), which
contradicts Claim 3.6.

We now define α(u, S,A). If (u, S,A) ∈ K1, let α(u, S,A) = u. Now assume
(u, S,A) ∈ K2. In this case, we let α(u, S,A) be an endvertex of λ(u, S,A). If
λ(u, S,A) has an endvertex in P and there is no (w,R,Z) ∈ K2 with (w,R,Z) 6=
(u, S,A) such that λ(w,R,Z) = λ(u, S,A), then we let α(u, S,A) be the endvertex
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of λ(u, S,A) in X. Next assume (u, S,A) ∈ K3. In this case, we let α(u, S,A)
be an endvertex of λ(u, S,A) which satisfies (ii) and (iii) of Claim 3.2. If there
is no (w,R,Z) ∈ K3 with (w,R,Z) 6= (u, S,A) such that λ(w,R,Z) = λ(u, S,A),
then we choose α(u, S,A) so that it also satisfies (i) of Claim 3.2. Finally, if
(u, S,A) ∈ K4, let α(u, S,A) = a, where a is as in Claim 3.5. Note that if
(u1, S1, A1), (u2, S2, A2) ∈ K3 with (u1, S1, A1) 6= (u2, S2, A2) and λ(u1, S1, A1) =
λ(u2, S2, A2), then u1 6= u2 by Claim 4.5, and hence it follows from Lemmas 2.6
and 2.13 that both endvertices of λ(u1, S1, A1) satisfy (ii) and (iii) of Claim 3.2.
Thus in view of Claim 4.6, we can define α(u, S,A) so that the following claim
holds.

Claim 4.9. Let (u1, S1, A1), (u2, S2, A2) ∈ K2∪K3 with (u1, S1, A1) 6= (u2, S2, A2)
and λ(u1, S1, A1) = λ(u2, S2, A2). Then α(u1, S1, A1) 6= α(u2, S2, A2).

Finally we define ϕ(u, S,A). If (u, S,A) ∈ K1 ∪ K2, simply let ϕ(u, S,A) =
λ(u, S,A); if (u, S,A) ∈ K3, let ϕ(u, S,A) be a 4-contractible edge incident with
α(u, S,A), whose existence is guaranteed by Claim 3.2(iii) or Lemma 2.6 (it is
possible that the other endvertex of ϕ(u, S,A) lies in X); if (u, S,A) ∈ K4, let
ϕ(u, S,A) = ax, where a, x are as in Claim 3.6.

4.2. Properties of ϕ(u, S,A)

In this subsection, we complete the proof of Theorem 2 by showing that for any
pair (e, a) of a 4-contractible edge e and an endvertex a of e, there are at most
two members (u, S,A) of K0 for which (ϕ(u, S,A), α(u, S,A)) = (e, a). The first
two claims immediately follow from Claims 4.5 and 4.9, respectively.

Claim 4.10. Let (u, S,A), (v, T,B) ∈ K1 with (u, S,A) 6= (v, T,B). Then (ϕ(u,
S,A), α(u, S,A)) 6= (ϕ(v, T,B), α(v, T,B)).

Claim 4.11. Let (u, S,A), (v, T,B) ∈ K2 with (u, S,A) 6= (v, T,B). Then (ϕ(u,
S,A), α(u, S,A)) 6= (ϕ(v, T,B), α(v, T,B)).

The following claims are virtually the same as Claims 7.3 and 7.4, respec-
tively, in [1].

Claim 4.12. Let (u, S,A) ∈ K2 and (v, T,B) ∈ K1, and suppose that ϕ(u, S,A) =
ϕ(v, T,B). Then v ∈ Pu,S,A, and there is no (w,R,Z) ∈ K2 with (w,R,Z) 6=
(u, S,A) such that ϕ(w,R,Z) = ϕ(u, S,A).

Proof. Write ϕ(u, S,A) = ϕ(v, T,B) = vb. Also let vz be an edge in F such
that v, z ∈ T . Let (P,X) = (Pu,S,A, Xu,S,A). Suppose that v ∈ X. Then since
vz ∈ E(G), we have z ∈ P ∪X, and hence z ∈ (P ∪X)∩T . Since degG(v) = 4, it
follows from the definition of K0 that NG(v)∩B = {b}. Since u ∈ NG(v)∩NG(b),
this implies u ∈ T , and hence u ∈ P ∩ T . Thus by Lemmas 2.1 and 2.2, there
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exists a 4-cutset U with U ⊇ (P ∪ X) ∩ T such that G − U has a component
H with V (H) ⊆ X − (X ∩ T ) ⊆ X − {v}. But then since v ∈ X ∩ T ⊆ U ,
z ∈ (P ∪ X) ∩ T ⊆ U and vz ∈ F ⊆ En(G) − Etn(G), U is a nontrivial 4-
cutset, which contradicts the minimality of X because u ∈ P ∩ T ⊆ U (see
the remark made in the paragraph preceding Claim 4.2). Thus v ∈ P . Now
suppose that there exists (w,R,Z) ∈ K2 with (w,R,Z) 6= (u, S,A) such that
ϕ(w,R,Z) = ϕ(u, S,A). Then w 6= u by Claim 4.5. Hence applying Lemma 2.13
with a = v, we see that v /∈ Ṽ (G). But this contradicts the assumption that
(v, T,B) ∈ K1. Thus there no such (w,R,Z).

Claim 4.13. Let (u, S,A) ∈ K2 and (v, T,B) ∈ K1. Then (ϕ(u, S,A), α(u, S,A))
6= (ϕ(v, T,B), α(v, T,B)).

Proof. We may assume ϕ(u, S,A) = ϕ(v, T,B). Write ϕ(u, S,A) = vb. We
have α(v, T,B) = v by definition. On the other hand, in view of Claim 4.12,
α(u, S,A) = b by the choice of α(u, S,A) described in Subsection 4.1. Thus
α(u, S,A) 6= α(v, T,B).

The following claim corresponds to Claim 7.5 in [1].

Claim 4.14. Let (u, S,A) ∈ K3 and (v, T,B) ∈ K1. Then α(u, S,A) 6= α(v, T,B).

Proof. By Lemma 2.13 and Claim 3.2, α(u, S,A) /∈ Ṽ (G). On the other hand,
α(v, T,B) = v ∈ Ṽ (G). Thus α(u, S,A) 6= α(v, T,B).

The following claims are virtually the same as Claims 7.6 and 7.7, respec-
tively, in [1].

Claim 4.15. Let (u, S,A) ∈ K3 ∪ K4 and (v, T,B) ∈ K2. Then ϕ(u, S,A) 6=
ϕ(v, T,B).

Proof. Suppose that ϕ(u, S,A) = ϕ(v, T,B). Write λ(u, S,A) = ab with α(u,
S,A) = a. Then degG(a) = 4. Also write ϕ(v, T,B) = ax. Then v ∈ NG(a) ∩
NG(x). First assume that there exists (w,R,Z) ∈ K3 with (w,R,Z) 6= (u, S,A)
such that λ(w,R,Z) = λ(u, S,A). Then degG(b) = 4. By Claim 4.5, w 6= u.
Thus NG(a) = {u, b, w, x}. Since degG(v) ≥ 5 and degG(b) = 4, v 6= b.
Since v ∈ NG(a) ∩ NG(x) ⊆ NG(a) − {x}, this implies v = u or w. On
the other hand, degG(a) = 4 and a is a common endvertex of ϕ(v, T,B) and
λ(u, S,A) = λ(w,R,Z). Since ϕ(v, T,B) = λ(v, T,B), this contradicts Claim
4.7. Next assume that there is no such (w,R,Z). Write NG(a) = {u, b, x, y}.
Suppose that (u, S,A) ∈ K3. Then xy /∈ E(G) by the choice of α(u, S,A), which
implies v 6= y. Also we have degG(b) = 4 by the definition of λ(u, S,A), which
implies v 6= b. Consequently, v = u, which contradicts Claim 4.7. Suppose that
(u, S,A) ∈ K4. By Claim 3.6, xy /∈ E(G), which implies v 6= y. Again by
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Claim 3.6, xb /∈ E(G), and hence v 6= b. Thus v = u, which again contradicts
Claim 4.7.

Claim 4.16. Let (u, S,A), (v, T,B) ∈ K3 with (u, S,A) 6= (v, T,B). Then (ϕ(u,
S,A), α(u, S,A)) 6= (ϕ(v, T,B), α(v, T,B)).

Proof. Suppose that (ϕ(u, S,A), α(u, S,A)) = (ϕ(v, T,B), α(v, T,B)). Write
λ(u, S,A) = ab, ϕ(u, S,A) = ϕ(v, T,B) = ax, and NG(a) = {u, b, x, y}. Then
α(u, S,A) = α(v, T,B) = a, and v ∈ NG(a) − {x}. Since degG(a) = 4 and a
is a common endvertex of λ(u, S,A) and λ(v, T,B), v 6= u by Claim 4.7. Since
degG(b) = 4, v 6= b. Thus v = y, and hence λ(v, T,B) = au or ab. On the other
hand, since degG(u) ≥ 5, λ(v, T,B) 6= au. Consequently λ(v, T,B) = ab, which
contradicts Claim 4.9.

The following claim shows that in most cases, we have (ϕ(u, S,A), α(u, S,A))
6= (ϕ(v, T,B), α(v, T,B)) for (u, S,A), (v, T,B) ∈ K0 with (u, S,A) 6= (v, T,B).

Claim 4.17. The following hold.

(i) Let (u, S,A), (v, T,B) ∈ K0−K4 with (u, S,A) 6= (v, T,B). Then (ϕ(u, S,A),
α(u, S,A)) 6= (ϕ(v, T,B), α(v, T,B)).

(ii) Let (u, S,A) ∈ K4, (v, T,B) ∈ K0 − K1 with (u, S,A) 6= (v, T,B). Then

(ϕ(u, S,A), α(u, S,A)) 6= (ϕ(v, T,B), α(v, T,B)).

Proof. Statement (i) follows from Claims 4.10, 4.11 and 4.13 through 4.16.
Thus we prove (ii). By Claim 4.15, we may assume that (v, T,B) ∈ K3 ∪ K4.
Suppose that (ϕ(u, S,A), α(u, S,A)) = (ϕ(v, T,B), α(v, T,B)). Let (P,X) =
(Pu,S,A, Xu,S,A) and let a, b, x, y be as in Claims 3.5 and 3.6. Also let (Q, Y ) =
(Pv,T,B, Xv,T,B). Note that NG(a) = {u, b, x, y} and v ∈ NG(a) − {x}. If v = y,
then a, y ∈ Q, and hence ay ∈ En(G), which contradicts Claim 3.6. Thus v 6= y.
We also have v 6= u by Claim 4.7. Consequently v = b, which implies λ(v, T,B) =
au or ay. Suppose that (v, T,B) ∈ K3. Then since V (λ(v, T,B)) ⊆ V4(G),
λ(v, T,B) = ay. But then ay ∈ En(G) by the definition of K3, which contra-
dicts Claim 3.6. Thus we have (v, T,B) ∈ K4. Applying Claim 3.6 to (Q, Y ),
we now obtain b, a ∈ Q, x ∈ Y and y, u ∈ Y . In particular, xu /∈ E(G). Set
U = (P ∩Q)∪ (P ∩Y )∪ (X ∩Q). Since y ∈ X ∩Y and x ∈ X ∩Y , it follows from
Lemma 2.2 that (U,X ∩ Y ) ∈ L. Since u ∈ P ∩ Y ⊆ U , it follows from the mini-
mality of X that (U,X ∩ Y ) /∈ L0, i.e., U is a trivial 4-cutset. Hence there exists
c ∈ V4(G) such that NG(c) = U . Since a, b, u ∈ U , c ∈ NG(a) − {b, u} = {x, y}.
On the other hand, since xu /∈ E(G), c 6= x. Consequently c = y, which implies
y ∈ NG(u) ∩X ∩ V4(G). But since (u, S,A) ∈ K4, this contradicts Claim 3.4.

The following claim, together with Claim 4.17, shows that for each e ∈ Ec(G)
and for each endvertex a of e, there are at most two members (u, S,A) of K0 such
that (ϕ(u, S,A), α(u, S,A)) = (e, a).
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Claim 4.18. Let (u, S,A) ∈ K4, (v, T,B) ∈ K1 with (ϕ(u, S,A), α(u, S,A)) =
(ϕ(v, T,B), α(v, T,B)). Then (ϕ(w,R,Z), α(w,R,Z)) 6= (ϕ(u, S,A), α(u, S,A))
for (w,R,Z) ∈ K0 − {(u, S,A), (v, T,B)}.

Proof. Suppose that there exists (w,R,Z) ∈ K0−{(u, S,A), (v, T,B)} such that

(ϕ(w,R,Z), α(w,R,Z)) = (ϕ(u, S,A), α(u, S,A)).

By Claim 4.17(ii), we have (w,R,Z) ∈ K1−{(v, T,B)}. On the other hand, since

(ϕ(v, T,B), α(v, T,B)) = (ϕ(u, S,A), α(u, S,A)) = (ϕ(w,R,Z), α(w,R,Z)),

it follows from Claim 4.17(i) that (w,R,Z) ∈ K4−{(u, S,A)}, which is a contra-
diction.

In view of the remark made before the statement of Claim 4.18, it follows
from Claims 4.17 and 4.18 that for each e ∈ Ec(G), there are at most four
members (u, S,A) of K0 such that ϕ(u, S,A) = e. This completes the proof of
Theorem 2. �
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