ON EDGE \boldsymbol{H}-IRREGULARITY STRENGTHS OF SOME GRAPHS

Muhammad Naeem ${ }^{1}$
Department of Mathematics, The University of Lahore
Pakpattan Campus, 57400, Pakistan
e-mail: naeempkn@gmail.com
Muhammad Kamran Siddiqui
Department of Mathematics, COMSATS University Islamabad
Sahiwal Campus, 57000, Pakistan
e-mail: kamransiddiqui75@gmail.com
Martin Bača, Andrea Semaničová-Feñovčíková
Department of Applied Mathematics and Informatics Technical University, Košice, Slovakia
e-mail: martin.baca@tuke.sk, andrea.fenovcikova@tuke.sk

AND

Faraha Ashraf
Abdus Salam School of Mathematical Sciences
GC University, Lahore, Pakistan
e-mail: faraha27@gmail.com

Abstract

For a graph G an edge-covering of G is a family of subgraphs H_{1}, H_{2}, \ldots, H_{t} such that each edge of $E(G)$ belongs to at least one of the subgraphs H_{i}, $i=1,2, \ldots, t$. In this case we say that G admits an $\left(H_{1}, H_{2}, \ldots, H_{t}\right)$-(edge) covering. An H-covering of graph G is an $\left(H_{1}, H_{2}, \ldots, H_{t}\right)$-(edge) covering in which every subgraph H_{i} is isomorphic to a given graph H.

Let G be a graph admitting H-covering. An edge k-labeling $\alpha: E(G) \rightarrow$ $\{1,2, \ldots, k\}$ is called an H-irregular edge k-labeling of the graph G if for every two different subgraphs H^{\prime} and $H^{\prime \prime}$ isomorphic to H their weights

[^0]$w t_{\alpha}\left(H^{\prime}\right)$ and $w t_{\alpha}\left(H^{\prime \prime}\right)$ are distinct. The weight of a subgraph H under an edge k-labeling α is the sum of labels of edges belonging to H. The edge H-irregularity strength of a graph G, denoted by $\operatorname{ehs}(G, H)$, is the smallest integer k such that G has an H-irregular edge k-labeling.

In this paper we determine the exact values of ehs (G, H) for prisms, antiprisms, triangular ladders, diagonal ladders, wheels and gear graphs. Moreover the subgraph H is isomorphic to only C_{4}, C_{3} and K_{4}.
Keywords: H-irregular edge labeling, edge H-irregularity strength, prism, antiprism, triangular ladder, diagonal ladder, wheel, gear graph.
2010 Mathematics Subject Classification: 05C78, 05C70.

1. Introduction

Consider a simple and finite graph $G=(V, E)$ of order at least 2. An edge k-labeling is a function $\alpha: E(G) \rightarrow\{1,2, \ldots, k\}$, where k is a positive integer. Then the associated weight of a vertex $x \in V(G)$ is $w_{\alpha}(x)=\sum_{x y \in E(G)} \alpha(x y)$, where the sum is taken over all edges incident to x. Such a labeling α is called irregular if the obtained weights of all vertices are different. The smallest positive integer k for which there exists an irregular labeling of G is called the irregularity strength of G and is denoted by $\mathrm{s}(G)$. If it does not exist, then we write $\mathrm{s}(\mathrm{G})=\infty$. One can easily see that $\mathrm{s}(\mathrm{G})<\infty$ if and only if G contains no isolated edges and has at most one isolated vertex.

The notion of the irregularity strength was firstly introduced by Chartrand et al. in [7]. Some results on the irregularity strength can be found in $[2,3,5,6$, $8,9,11-14]$.

A vertex k-labeling $\beta: V(G) \rightarrow\{1,2, \ldots, k\}$ is called an edge irregular k labeling of the graph G if the weights $w_{\beta}(x y) \neq w_{\beta}\left(x^{\prime} y^{\prime}\right)$ for every two distinct edges $x y$ and $x^{\prime} y^{\prime}$, where the weight of an edge $x y \in E(G)$ is $w_{\beta}(x y)=\beta(x)+\beta(y)$. The minimum k for which a graph G admits an edge irregular k-labeling is called the edge irregularity strength of G, denoted by es (G). The notion of the edge irregularity strength was defined by Ahmad et al. in [1].

A family of subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ is said to be an edge-covering of G if each edge of $E(G)$ belongs to at least one of the subgraphs $H_{i}, i=1,2, \ldots, t$. In this case we say that G admits an $\left(H_{1}, H_{2}, \ldots, H_{t}\right)$-(edge) covering. If every subgraph $H_{i}, i=1,2, \ldots, t$, is isomorphic to a given graph H, then the graph G admits an H-covering.

Motivated by the irregularity strength and the edge irregularity strength of a graph G Ashraf et al. in [4] introduced a new parameter, edge H-irregularity strength, as a natural extension of the parameters $\mathrm{s}(G)$ and es (G). Let G be a graph admitting H-covering. An edge k-labeling α is called an H-irregular
edge k-labeling of the graph G if for every two different subgraphs H^{\prime} and $H^{\prime \prime}$ isomorphic to H we have

$$
w t_{\alpha}\left(H^{\prime}\right)=\sum_{e \in E\left(H^{\prime}\right)} \alpha(e) \neq \sum_{e \in E\left(H^{\prime \prime}\right)} \alpha(e)=w t_{\alpha}\left(H^{\prime \prime}\right)
$$

The edge H-irregularity strength of a graph G, denoted by ehs (G, H), is the smallest integer k for which G has an H-irregular edge k-labeling.

Next theorem proved in [4] gives the lower bound of the edge H-irregularity strength of a graph G.

Theorem 1 [4]. Let G be a graph admitting an H-covering and t is the number of all the subgraphs isomorphic to H. Then

$$
\operatorname{ehs}(G, H) \geq\left\lceil 1+\frac{t-1}{|E(H)|}\right\rceil
$$

Note that the parameter t is the number of all subgraphs of G isomorphic to H. In this paper we determine exact values of the edge H-irregularity strength for prisms, antiprisms, triangular ladders, diagonal ladders, wheels and gear graphs for some H. Moreover the subgraph H is isomorphic to only C_{4}, C_{3} and K_{4}.

2. Prism and Antiprism

The prism D_{n} can be defined as the Cartesian product $C_{n} \square P_{2}$ of a cycle on n vertices with a path on 2 vertices. Let $V\left(C_{n} \square P_{2}\right)=\left\{x_{i}, y_{i}: 1 \leq i \leq n\right\}$ be the vertex set and $E\left(C_{n} \square P_{2}\right)=\left\{x_{i} x_{i+1}, y_{i} y_{i+1}: 1 \leq i \leq n\right\} \cup\left\{x_{i} y_{i}: 1 \leq i \leq n\right\}$ be the edge set, where the indices are taken modulo n. Hence, the graph D_{n} has $2 n$ vertices and $3 n$ edges.

Theorem 2. Let $D_{n}=C_{n} \square P_{2}, n \geq 3, n \neq 4$, be a prism. Then

$$
\operatorname{ehs}\left(D_{n}, C_{4}\right)=\left\lceil\frac{n+3}{4}\right\rceil
$$

Proof. The prism $D_{n}, n \geq 3, n \neq 4$, admits a C_{4}-covering with exactly n cycles C_{4}. We denote these 4 -cycles by the symbols $C_{4}^{i}, i=1,2, \ldots, n$, such that the vertex set of C_{4}^{i} is $V\left(C_{4}^{i}\right)=\left\{x_{i}, x_{i+1}, y_{i}, y_{i+1}\right\}$ and the edge set is $E\left(C_{4}^{i}\right)=$ $\left\{x_{i} x_{i+1}, y_{i} y_{i+1}, x_{i} y_{i}, x_{i+1} y_{i+1}\right\}$.

From Theorem 1 it follows that ehs $\left(D_{n}, C_{4}\right) \geq\left\lceil\frac{n+3}{4}\right\rceil$. To show that $\left\lceil\frac{n+3}{4}\right\rceil$ is an upper bound for the edge C_{4}-irregularity strength of D_{n} we define a $C_{4}{ }^{-}$ irregular edge labeling $\alpha_{1}: E\left(D_{n}\right) \rightarrow\left\{1,2, \ldots,\left\lceil\frac{n+3}{4}\right\rceil\right\}$, in the following way. We distinguish to cases according to the parity of n.

Case 1. When n is odd, then

$$
\begin{aligned}
\alpha_{1}\left(x_{i} x_{i+1}\right) & = \begin{cases}\left\lceil\frac{i}{2}\right\rceil & \text { for } 1 \leq i \leq \frac{n+1}{2}, \\
\left\lceil\frac{n+1-i}{2}\right\rceil & \text { for } \frac{n+1}{2}+1 \leq i \leq n,\end{cases} \\
\alpha_{1}\left(y_{i} y_{i+1}\right) & = \begin{cases}\left\lceil\frac{i+1}{2}\right\rceil & \text { for } 1 \leq i \leq \frac{n+1}{2}, \\
\left\lceil\frac{n+2-i}{2}\right\rceil & \text { for } \frac{n+1}{2}+1 \leq i \leq n,\end{cases} \\
\alpha_{1}\left(x_{i} y_{i}\right) & = \begin{cases}\left\lceil\frac{i}{2}\right\rceil & \text { for } 1 \leq i \leq \frac{n+1}{2}, \\
\left\lceil\frac{n+3-i}{2}\right\rceil & \text { for } \frac{n+1}{2}+1 \leq i \leq n .\end{cases}
\end{aligned}
$$

Case 2. When n is even, then

$$
\begin{aligned}
& \alpha_{1}\left(x_{i} x_{i+1}\right)= \begin{cases}\left\lceil\frac{i}{2}\right\rceil & \text { for } 1 \leq i \leq \frac{n}{2}, \\
\left\lceil\frac{n+1-i}{2}\right\rceil & \text { for } \frac{n}{2}+1 \leq i \leq n,\end{cases} \\
& \alpha_{1}\left(y_{i} y_{i+1}\right)= \begin{cases}\left\lceil\frac{i+1}{2}\right\rceil & \text { for } 1 \leq i \leq \frac{n}{2}, \\
\left\lceil\frac{n+3}{4}\right\rceil & \text { for } i=\frac{n}{2}+1, \\
\left\lceil\frac{n+2-i}{2}\right\rceil & \text { for } \frac{n}{2}+2 \leq i \leq n,\end{cases} \\
& \alpha_{1}\left(x_{i} y_{i}\right)= \begin{cases}\left\lceil\frac{i}{2}\right\rceil & \text { for } 1 \leq i \leq \frac{n}{2}, \\
\frac{n}{4}+1 & \text { for } i=\frac{n}{2}+1 \text { and } n \equiv 0(\bmod 4), \\
\frac{n+2}{4} & \text { for } i=\frac{n}{2}+1 \text { and } n \equiv 2(\bmod 4), \\
\left\lceil\frac{n+3-i}{2}\right\rceil & \text { for } \frac{n}{2}+2 \leq i \leq n .\end{cases}
\end{aligned}
$$

It is easy to see that under the labeling α_{1} all edge labels are at most $\left\lceil\frac{n+3}{4}\right\rceil$. The C_{4}-weights of the cycles $C_{4}^{i}, i=1,2, \ldots, n$, under the edge labeling α_{1}, are given by

$$
w t_{\alpha_{1}}\left(C_{4}^{i}\right)=\sum_{e \in E\left(C_{4}^{i}\right)} \alpha_{1}(e)=\alpha_{1}\left(x_{i} x_{i+1}\right)+\alpha_{1}\left(y_{i} y_{i+1}\right)+\alpha_{1}\left(x_{i} y_{i}\right)+\alpha_{1}\left(x_{i+1} y_{i+1}\right) .
$$

Case 1. When n is odd, then

$$
\begin{aligned}
w t_{\alpha_{1}}\left(C_{4}^{i}\right)= & \left\lceil\frac{i}{2}\right\rceil+\left\lceil\frac{i+1}{2}\right\rceil+\left\lceil\frac{i}{2}\right\rceil+\left\lceil\frac{i+1}{2}\right\rceil=2 i+2 \quad \text { for } 1 \leq i \leq \frac{n-1}{2} \\
w t_{\alpha_{1}}\left(C_{4}^{\frac{n+1}{2}}\right)= & \left\lceil\frac{n+1}{4}\right\rceil+\left\lceil\frac{n+3}{4}\right\rceil+\left\lceil\frac{n+1}{4}\right\rceil+\left\lceil\frac{n+3}{4}\right\rceil=n+3, \\
w t_{\alpha_{1}}\left(C_{4}^{i}\right)= & \left\lceil\frac{n+1-i}{2}\right\rceil+\left\lceil\frac{n+2-i}{2}\right\rceil+\left\lceil\frac{n+3-i}{2}\right\rceil+\left\lceil\frac{n+2-i}{2}\right\rceil=2 n+5-2 i \\
& \text { for } \frac{n+1}{2}+1 \leq i \leq n-1, \\
w t_{\alpha_{1}}\left(C_{4}^{n}\right)= & \left\lceil\frac{1}{2}\right\rceil+\left\lceil\frac{2}{2}\right\rceil+\left\lceil\frac{3}{2}\right\rceil+\left\lceil\frac{1}{2}\right\rceil=5 .
\end{aligned}
$$

Case 2. When n is even, then

$$
\begin{aligned}
& w t_{\alpha_{1}}\left(C_{4}^{i}\right)=\left\lceil\frac{i}{2}\right\rceil+\left\lceil\frac{i+1}{2}\right\rceil+\left\lceil\frac{i}{2}\right\rceil+\left\lceil\frac{i+1}{2}\right\rceil=2 i+2 \quad \text { for } 1 \leq i \leq \frac{n}{2}-1, \\
& w t_{\alpha_{1}}\left(C_{4}^{\frac{n}{2}}\right)=\left\lceil\frac{n}{4}\right\rceil+\left\lceil\frac{n+2}{4}\right\rceil+\left\lceil\frac{n}{4}\right\rceil+\frac{n}{4}+1=n+2 \quad \text { for } n \equiv 0(\bmod 4), \\
& w t_{\alpha_{1}}\left(C_{4}^{\frac{n}{2}}\right)=\left\lceil\frac{n}{4}\right\rceil+\left\lceil\frac{n+2}{4}\right\rceil+\left\lceil\frac{n}{4}\right\rceil+\frac{n+2}{4}=n+2 \quad \text { for } n \equiv 2(\bmod 4), \\
& w t_{\alpha_{1}}\left(C_{4}^{\frac{n}{2}+1}\right)=\left\lceil\frac{n}{4}\right\rceil+\left\lceil\frac{n+3}{4}\right\rceil+\left\lceil\frac{n}{4}\right\rceil+1+\frac{n}{4}+1=n+3 \quad \text { for } n \equiv 0(\bmod 4), \\
& w t_{\alpha_{1}}\left(C_{4}^{\frac{n}{2}+1}\right)=\left\lceil\frac{n}{4}\right\rceil+\left\lceil\frac{n+3}{4}\right\rceil+\left\lceil\frac{n+2}{4}\right\rceil+\frac{n+2}{4}=n+3 \quad \text { for } n \equiv 2(\bmod 4), \\
& w t_{\alpha_{1}}\left(C_{4}^{i}\right)=\left\lceil\frac{n+1-i}{2}\right\rceil+\left\lceil\frac{n+2-i}{2}\right\rceil+\left\lceil\frac{n+3-i}{2}\right\rceil+\left\lceil\frac{n+2-i}{2}\right\rceil=2 n+5-2 i \\
& \text { for } \frac{n}{2}+2 \leq i \leq n-1, \\
& w t_{\alpha_{1}}\left(C_{4}^{n}\right)=\left\lceil\frac{1}{2}\right\rceil+\left\lceil\frac{2}{2}\right\rceil+\left\lceil\frac{3}{2}\right\rceil+\left\lceil\frac{1}{2}\right\rceil=5 .
\end{aligned}
$$

Combining the previous we get that

$$
w t_{\alpha_{1}}\left(C_{4}^{i}\right)= \begin{cases}2(1+i) & \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\ 1+2(n+2-i) & \text { for }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n\end{cases}
$$

One can see that the weights of cycles C_{4}^{i}, for $i=1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil$, are even and in increasing order, therefore $w t_{\alpha_{1}}\left(C_{4}^{i+1}\right)>w t_{\alpha_{1}}\left(C_{4}^{i}\right)$.

On the other hand, the weights of cycles C_{4}^{i}, for $i=\left\lceil\frac{n}{2}\right\rceil+1, \ldots, n$, are odd and in decreasing order, therefore $w t_{\alpha_{1}}\left(C_{4}^{i+1}\right)<w t_{\alpha_{1}}\left(C_{4}^{i}\right)$.

Thus the edge weights are distinct numbers from the set $\{4,5, \ldots, n+3\}$. This shows that ehs $\left(D_{n}, C_{4}\right) \leq\left\lceil\frac{n+3}{4}\right\rceil$. Hence the proof is concluded.

The antiprism $A_{n}[10], n \geq 3$, is a 4 -regular graph (Archimedean convex polytope), consisting of $2 n$ vertices and $4 n$ edges. The vertex and edge set of A_{n} are defined as: $V\left(A_{n}\right)=\left\{x_{i}, y_{i}: 1 \leq i \leq n\right\}, E\left(A_{n}\right)=\left\{x_{i} y_{i}: 1 \leq i \leq\right.$ $n\} \cup\left\{x_{i} x_{i+1}: 1 \leq i \leq n\right\} \cup\left\{y_{i} x_{i+1}: 1 \leq i \leq n\right\} \cup\left\{y_{i} y_{i+1}: 1 \leq i \leq n\right\}$, with indices taken modulo n.

Theorem 3. Let $A_{n}, n \geq 4$, be an antiprism. Then

$$
\operatorname{ehs}\left(A_{n}, C_{3}\right)=\left\lceil\frac{2 n+2}{3}\right\rceil .
$$

Proof. The antiprism $A_{n}, n \geq 4$, admits a C_{3}-covering with exactly $2 n$ cycles C_{3}. The first type of the cycle C_{3} has the vertex set $V\left(C_{3}^{i}\right)=\left\{x_{i}, x_{i+1}, y_{i}: 1 \leq i \leq n\right\}$ and the edge set $E\left(C_{3}^{i}\right)=\left\{x_{i} x_{i+1}, x_{i} y_{i}, y_{i} x_{i+1}: 1 \leq i \leq n\right\}$. The second type
of the cycle C_{3} has the vertex set $V\left(\mathcal{C}_{3}^{i}\right)=\left\{y_{i}, y_{i+1}, x_{i+1}: 1 \leq i \leq n\right\}$ and the edge set $E\left(\mathcal{C}_{3}^{i}\right)=\left\{y_{i} y_{i+1}, y_{i} x_{i+1}, y_{i+1} x_{i+1}: 1 \leq i \leq n\right\}$. Note that the indices are taken modulo n.

From Theorem 1 it follows that $\operatorname{ehs}\left(A_{n}, C_{3}\right) \geq\left\lceil\frac{2 n+2}{3}\right\rceil$. To show that $\left\lceil\frac{2 n+2}{3}\right\rceil$ is an upper bound for the edge C_{3}-irregularity strength of A_{n} we define a C_{3} irregular edge labeling $\alpha_{2}: E\left(A_{n}\right) \rightarrow\left\{1,2, \ldots,\left\lceil\frac{2 n+2}{3}\right\rceil\right\}$, in the following way. We distinguish two cases.

Case 1. When $n \equiv 0,4,5(\bmod 6)$, then

$$
\alpha_{2}\left(x_{i} x_{i+1}\right)= \begin{cases}i & \text { for } i=1,2 \\ i+\left\lfloor\frac{i}{3}\right\rfloor & \text { for } 3 \leq i \leq t-1 \\ \left\lceil\frac{2 n+2}{3}\right\rceil & \text { for } i=t \\ n-i+3+\left\lfloor\frac{n-i-2}{3}\right\rfloor & \text { for } t+1 \leq i \leq n-2 \\ n-i+2 & \text { for } i=n-1, n\end{cases}
$$

where $t= \begin{cases}\frac{n+1}{2} & \text { if } n \equiv 5(\bmod 6), \\ \frac{n}{2}+1 & \text { if } n \equiv 0,4(\bmod 6) .\end{cases}$

$$
\begin{gathered}
\alpha_{2}\left(y_{i} y_{i+1}\right)= \begin{cases}i+1+\left\lfloor\frac{i-1}{3}\right\rfloor & \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1, \\
\left\lceil\frac{2 n+2}{3}\right\rceil & \text { for } i=\left\lceil\frac{n}{2}\right\rceil \text { and } n \equiv 5(\bmod 6), \\
\left\lceil\frac{2 n+2}{3}\right\rceil-1 & \text { for } i=\left\lceil\frac{n}{2}\right\rceil \text { and } n \equiv 0,4(\bmod 6), \\
n-i+2+\left\lfloor\frac{n-i-1}{3}\right\rfloor & \text { for }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n-1, \\
1 & \text { for } i=n,\end{cases} \\
\alpha_{2}\left(x_{i} y_{i}\right)= \begin{cases}i+\left\lfloor\frac{i-1}{3}\right\rfloor & \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, \\
\left\lceil\frac{2 n+2}{3}\right\rceil & \text { for } i=\left\lceil\frac{n}{2}\right\rceil+1 \text { and } n \equiv 0,5(\bmod 6), \\
\left\lceil\frac{2 n+2}{3}\right\rceil-1 & \text { for } i=\left\lceil\frac{n}{2}\right\rceil+1 \text { and } n \equiv 4(\bmod 6), \\
n-i+3+\left\lfloor\frac{n-i-1}{3}\right\rfloor & \text { for }\left\lceil\frac{n}{2}\right\rceil+2 \leq i \leq n-1, \\
2 & \text { for } i=n,\end{cases} \\
\alpha_{2}\left(y_{i} x_{i+1}\right)= \begin{cases}1 & \text { for } i=1, \\
i+1+\left\lfloor\frac{i-2}{3}\right\rfloor & \text { for } 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1, \\
\left\lceil\frac{2 n+2}{3}\right\rceil-1 & \text { for } i=\left\lceil\frac{n}{2}\right\rceil \text { and } n \equiv 0,4(\bmod 6), \\
\left\lceil\frac{2 n+2}{3}\right\rceil & \text { for } i=\left\lceil\frac{n}{2}\right\rceil \text { and } n \equiv 5(\bmod 6), \\
n-i+2+\left\lfloor\frac{n-i}{3}\right\rfloor & \text { for }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n .\end{cases}
\end{gathered}
$$

Case 2. When $n \equiv 1,2,3(\bmod 6)$, then

$$
\alpha_{2}\left(x_{i} x_{i+1}\right)= \begin{cases}i & \text { for } i=1,2 \\ i+\left\lfloor\frac{i}{3}\right\rfloor & \text { for } 3 \leq i \leq t-1 \\ \left\lceil\frac{2 n+2}{3}\right\rceil & \text { for } i=t \text { and } n \equiv 2(\bmod 6) \\ \left\lceil\frac{2 n+2}{3}\right\rceil-1 & \text { for } i=t \text { and } n \equiv 1,3(\bmod 6) \\ n-i+3+\left\lfloor\frac{n-i-2}{3}\right\rfloor & \text { for } t+1 \leq i \leq n-2 \\ n-i+2 & \text { for } i=n-1, n\end{cases}
$$

where $t= \begin{cases}\frac{n+1}{2} & \text { if } n \equiv 1,3(\bmod 6), \\ \frac{n}{2}+1 & \text { if } n \equiv 2(\bmod 6) .\end{cases}$

$$
\begin{aligned}
& \alpha_{2}\left(y_{i} y_{i+1}\right)= \begin{cases}i+1+\left\lfloor\frac{i-1}{3}\right\rfloor & \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1, \\
\left\lceil\frac{2 n+2}{3}\right\rceil & \text { for } i=\left\lceil\frac{n}{2}\right\rceil, \\
n-i+2+\left\lfloor\frac{n-i-1}{3}\right\rfloor & \text { for }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n-1, \\
1 & \text { for } i=n,\end{cases} \\
& \alpha_{2}\left(x_{i} y_{i}\right)= \begin{cases}i+\left\lfloor\frac{i-1}{3}\right\rfloor & \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, \\
\left\lceil\frac{2 n+2}{3}\right\rceil & \text { for } i=\left\lceil\frac{n}{2}\right\rceil+1 \text { and } n \equiv 2(\bmod 6), \\
\left\lceil\frac{2 n+2}{3}\right\rceil-1 & \text { for } i=\left\lceil\frac{n}{2}\right\rceil+1 \text { and } n \equiv 1,3(\bmod 6), \\
n-i+3+\left\lfloor\frac{n-i-1}{3}\right\rfloor & \text { for }\left\lceil\frac{n}{2}\right\rceil+2 \leq i \leq n-1, \\
2 & \text { for } i=n,\end{cases} \\
& \alpha_{2}\left(y_{i} x_{i+1}\right)= \begin{cases}1 & \text { for } i=1, \\
i+1+\left\lfloor\frac{i-2}{3}\right\rfloor & \text { for } 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1, \\
\left\lceil\frac{2 n+2}{3}\right\rceil-1 & \text { for } i=\left\lceil\frac{n}{2}\right\rceil \text { and } n \equiv 1,2(\bmod 6), \\
\left\lceil\frac{2 n+2}{3}\right\rceil & \text { for } i=\left\lceil\frac{n}{2}\right\rceil \text { and } n \equiv 3(\bmod 6), \\
n-i+2+\left\lfloor\frac{n-i}{3}\right\rfloor & \text { for }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n .\end{cases}
\end{aligned}
$$

Now we compute the C_{3}-weights under the edge labeling α_{2} as follows. For the weights of 3 -cycles of the first type we get

$$
\begin{aligned}
w t_{\alpha_{2}}\left(C_{3}^{i}\right) & =\sum_{e \in E\left(C_{3}^{i}\right)} \alpha_{2}(e)=\alpha_{2}\left(x_{i} x_{i+1}\right)+\alpha_{2}\left(x_{i} y_{i}\right)+\alpha_{2}\left(y_{i} x_{i+1}\right) \\
& = \begin{cases}4 i-1 & \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, \\
4 n-4 i+6 & \text { for }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n,\end{cases}
\end{aligned}
$$

and for the weights of 3 -cycles of the second type we have

$$
\begin{aligned}
w t_{\alpha_{2}}\left(\mathcal{C}_{3}^{i}\right) & =\sum_{e \in E\left(\mathcal{C}_{3}^{i}\right)} \alpha_{2}(e)=\alpha_{2}\left(y_{i} y_{i+1}\right)+\alpha_{2}\left(y_{i} x_{i+1}\right)+\alpha_{2}\left(y_{i+1} x_{i+1}\right) \\
& = \begin{cases}4 i+1 & \text { for } 1 \leq i \leq\left\lceil\frac{n+1}{2}\right\rceil-1, \\
4 n-4 i+4 & \text { for }\left\lceil\frac{n+1}{2}\right\rceil \leq i \leq n .\end{cases}
\end{aligned}
$$

Combining these two cases one can see that the weights of the cycles C_{3}^{i} are different to the weights of the cycles \mathcal{C}_{3}^{i}. This shows that α_{2} is an edge $C_{3}{ }^{-}$ irregular labeling of A_{n}. Therefore, ehs $\left(A_{n}, C_{4}\right) \leq\left\lceil\frac{2 n+2}{3}\right\rceil$ and we arrive at the desired result.

3. Triangular Ladder and Diagonal Ladder

Let $L_{n} \cong P_{n} \square P_{2}, n \geq 2$, be a ladder with the vertex set $V\left(L_{n}\right)=\left\{x_{i}, y_{i}: i=\right.$ $1,2, \ldots, n\}$ and the edge set $E\left(L_{n}\right)=\left\{x_{i} x_{i+1}, y_{i} y_{i+1}: i=1,2, \ldots, n-1\right\} \cup\left\{x_{i} y_{i}\right.$: $i=1,2, \ldots, n\}$. The triangular ladder $T L_{n}, n \geq 2$, is obtained from a ladder L_{n} by adding the edges $y_{i} x_{i+1}$ for $i=1,2, \ldots, n-1$.

Theorem 4. Let $T L_{n}, n \geq 2$, be a triangular ladder. Then

$$
\operatorname{ehs}\left(T L_{n}, C_{3}\right)=\left\lceil\frac{2 n}{3}\right\rceil
$$

Proof. The triangular ladder $T L_{n}, n \geq 2$, admits a C_{3}-covering with exactly $2(n-1)$ cycles C_{3}. There are two types of cycles C_{3} that cover $T L_{n}$. The first type of cycles C_{3} has the vertex set $V\left(C_{3}^{i}\right)=\left\{x_{i}, x_{i+1}, y_{i}: 1 \leq i \leq n-1\right\}$ and the edge set $E\left(C_{3}^{i}\right)=\left\{x_{i} x_{i+1}, x_{i} y_{i}, y_{i} x_{i+1}: 1 \leq i \leq n-1\right\}$. The second type of cycles C_{3} has the vertex set $V\left(\mathcal{C}_{3}^{i}\right)=\left\{y_{i}, y_{i+1}, x_{i+1}: 1 \leq i \leq n-1\right\}$ and the edge set $E\left(\mathcal{C}_{3}^{i}\right)=\left\{y_{i} y_{i+1}, y_{i} x_{i+1}, y_{i+1} x_{i+1}: 1 \leq i \leq n-1\right\}$.

According to Theorem 1 it follows that ehs $\left(T L_{n}, C_{3}\right) \geq\left\lceil\frac{2 n}{3}\right\rceil$. To show that $\left\lceil\frac{2 n}{3}\right\rceil$ is an upper bound for the edge C_{3}-irregularity strength of $T L_{n}$ we define a C_{3}-irregular edge labeling $\alpha_{3}: E\left(T L_{n}\right) \rightarrow\left\{1,2, \ldots,\left\lceil\frac{2 n}{3}\right\rceil\right\}$ as follows. Let us consider three cases.

Case 1 . When $i \equiv 0(\bmod 3)$, then

$$
\begin{aligned}
\alpha_{3}\left(x_{i} x_{i+1}\right)=\alpha_{3}\left(y_{i} y_{i+1}\right) & =\frac{2 i}{3} & & \text { for } i=3,6, \ldots, n-1, \\
\alpha_{3}\left(y_{i} x_{i+1}\right) & =\frac{2 i+3}{3} & & \text { for } i=3,6, \ldots, n-1, \\
\alpha_{3}\left(x_{i} y_{i}\right) & =\frac{2 i}{3} & & \text { for } i=3,6, \ldots, n .
\end{aligned}
$$

Case 2 . When $i \equiv 1(\bmod 3)$, then

$$
\begin{aligned}
\alpha_{3}\left(x_{i} x_{i+1}\right)=\alpha_{3}\left(y_{i} y_{i+1}\right)=\alpha_{3}\left(y_{i} x_{i+1}\right) & =\frac{2 i+1}{3} \\
\alpha_{3}\left(x_{i} y_{i}\right) & =\frac{2 i+1}{3}
\end{aligned} \quad \text { for } i=1,4, \ldots, n-1, ~ \text { for } i=1,4, \ldots, n . ~ \$ ~
$$

Case 3. When $i \equiv 2(\bmod 3)$, then

$$
\begin{aligned}
\alpha_{3}\left(x_{i} x_{i+1}\right) & =\frac{2 i-1}{3} & & \text { for } i=2,5, \ldots, n-1, \\
\alpha_{3}\left(y_{i} y_{i+1}\right)=\alpha_{3}\left(y_{i} x_{i+1}\right) & =\frac{2 i+2}{3} & & \text { for } i=2,5, \ldots, n-1, \\
\alpha_{3}\left(x_{i} y_{i}\right) & =\frac{2 i+2}{3} & & \text { for } i=2,5, \ldots, n .
\end{aligned}
$$

It is a routine matter to verify that under the labeling α_{3} all edge labels are at most $\left\lceil\frac{2 n}{3}\right\rceil$. It is not difficult to see that under the edge labeling α_{3} the weights of the cycles $C_{3}^{i}, 1 \leq i \leq n-1$, are of the form

$$
w t_{\alpha_{3}}\left(C_{3}^{i}\right)=\alpha_{3}\left(x_{i} x_{i+1}\right)+\alpha_{3}\left(x_{i} y_{i}\right)+\alpha_{3}\left(y_{i} x_{i+1}\right)=2 i+1 .
$$

The weights of the cycles $\mathcal{C}_{3}^{i}, 1 \leq i \leq n-1$, are of the form

$$
w t_{\alpha_{3}}\left(\mathcal{C}_{3}^{i}\right)=\alpha_{3}\left(y_{i} y_{i+1}\right)+\alpha_{3}\left(x_{i+1} y_{i+1}\right)+\alpha_{3}\left(y_{i} x_{i+1}\right)=2(i+1) .
$$

Combining these two cases we obtained that the weights are different for any two distinct cycles C_{3}. Thus ehs $\left(T L_{n}, C_{3}\right) \leq\left\lceil\frac{2 n}{3}\right\rceil$. This completes the proof.

The diagonal ladder $D L_{n}$ is obtained from a ladder L_{n} by adding the edges $\left\{x_{i} y_{i+1}, x_{i+1} y_{i}: 1 \leq i \leq n-1\right\}$. So the diagonal ladder $D L_{n}$ contains $2 n$ vertices and $5 n-4$ edges.

Theorem 5. Let $D L_{n}, n \geq 2$, be a diagonal ladder. Then

$$
\operatorname{ehs}\left(D L_{n}, K_{4}\right)=\left\lceil\frac{n+4}{6}\right\rceil .
$$

Proof. The diagonal ladder $D L_{n}, n \geq 2$, admits a K_{4}-covering with exactly ($n-$ 1) complete graphs K_{4}. The K_{4}^{i} has the vertex set $V\left(K_{4}^{i}\right)=\left\{x_{i}, y_{i}, x_{i+1}, y_{i+1}\right.$: $1 \leq i \leq n-1\}$ and the edge set $E\left(K_{4}^{i}\right)=\left\{x_{i} x_{i+1}, x_{i} y_{i}, x_{i} y_{i+1}, y_{i} y_{i+1}, y_{i} x_{i+1}\right.$, $\left.x_{i+1} y_{i+1}: 1 \leq i \leq n-1\right\}$.

With respect to Theorem 1 it follows that $\operatorname{ehs}\left(D L_{n}, K_{4}\right) \geq\left\lceil\frac{n+4}{6}\right\rceil$. To show that ehs $\left(D L_{n}, K_{4}\right) \leq\left\lceil\frac{n+4}{6}\right\rceil$ we define a K_{4}-irregular edge labeling α_{4} :
$E\left(D L_{n}\right) \rightarrow\left\{1,2, \ldots,\left\lceil\frac{n+4}{6}\right\rceil\right\}$, in the following way.

$$
\begin{aligned}
& \alpha_{4}\left(y_{i} y_{i+1}\right)=\left\lceil\frac{i}{6}\right\rceil \\
& \alpha_{4}\left(x_{i} x_{i+1}\right) \text { for } 1 \leq i \leq n-1, \\
& \alpha_{4}\left(x_{i} y_{i}\right)= \begin{cases}\left\lceil\frac{i}{6}\right\rceil & \text { for } 1 \leq i \leq 5, \\
\left\lceil\frac{i+1}{6}\right\rceil & \text { for } 6 \leq i \leq n-1, \\
\left\lceil\frac{i+2}{6}\right\rceil & \text { for } 1 \leq i \leq 4,\end{cases} \\
& \text { for } 5 \leq i \leq n,
\end{aligned}, \begin{array}{lll}
& \text { for } i=1,
\end{array}, \begin{array}{ll}
1 & \left(x_{i} y_{i+1}\right)
\end{array}= \begin{cases}\left\lceil\frac{i+5}{6}\right\rceil & \text { for } 2 \leq i \leq n-1, \\
\alpha_{4}\left(x_{i+1} y_{i}\right) & = \begin{cases}1 & \text { for } i=1,2, \\
\left\lceil\frac{i+4}{6}\right\rceil & \text { for } 3 \leq i \leq n-1 .\end{cases} \end{cases}
$$

One can verify that under the labeling α_{4} all edge labels are at least 1 and at most $\left\lceil\frac{n+4}{6}\right\rceil$. To show that α_{4} is edge K_{4}-irregular labeling it will be enough to show that $w t_{\alpha_{4}}\left(K_{4}^{i}\right)<w t_{\alpha_{4}}\left(K_{4}^{i+1}\right)$. It is a simple mathematical exercise that the weights of the subgraphs $K_{4}^{i}, i=1,2,3,4,5$ are $w t_{\alpha_{4}}\left(K_{4}^{i}\right)=5+i$.

For $i=6,7, \ldots, n-1$ we get

$$
\begin{aligned}
w t_{\alpha_{4}}\left(K_{4}^{i}\right) & =\sum_{e \in E\left(K_{4}^{i}\right)} \alpha_{4}(e)=\alpha_{4}\left(x_{i} x_{i+1}\right)+\alpha_{4}\left(y_{i} y_{i+1}\right)+\alpha_{4}\left(x_{i} y_{i}\right)+\alpha_{4}\left(x_{i+1} y_{i+1}\right) \\
& +\alpha_{4}\left(x_{i} y_{i+1}\right)+\alpha_{4}\left(x_{i+1} y_{i}\right)=\left\lceil\frac{i+1}{6}\right\rceil+\left\lceil\frac{i}{6}\right\rceil+\left\lceil\frac{i+2}{6}\right\rceil+\left\lceil\frac{i+3}{6}\right\rceil+\left\lceil\frac{i+5}{6}\right\rceil \\
& +\left\lceil\frac{i+4}{6}\right\rceil=5+i .
\end{aligned}
$$

This proves that $w t_{\alpha_{4}}\left(K_{4}^{i+1}\right)=w t_{\alpha_{4}}\left(K_{4}^{i}\right)+1$ for $i=1,2, \ldots, n-1$. Therefore, α_{4} is an edge K_{4}-irregular labeling of $D L_{n}$. Thus ehs $\left(D L_{n}, K_{4}\right) \leq\left\lceil\frac{n+4}{6}\right\rceil$. This concludes the proof.

4. Wheel and Gear Graph

A wheel $W_{n}, n \geq 3$, is a graph obtained by joining all vertices of cycle C_{n} to a further vertex c, called the center. Thus W_{n} contains $n+1$ vertices, say, $c, x_{1}, x_{2}, \ldots, x_{n}$ and $2 n$ edges, say, $c x_{i}, x_{i} x_{i+1}, 1 \leq i \leq n$, where the indices are taken modulo n.

Theorem 6. Let $W_{n}, n \geq 4$, be a wheel. Then

$$
\operatorname{ehs}\left(W_{n}, C_{3}\right)=\left\lceil\frac{n+2}{3}\right\rceil
$$

Proof. The wheel $W_{n}, n \geq 4$, admits a C_{3}-covering with exactly n cycles C_{3}. Every cycle C_{3} in W_{n} is of the form $C_{3}^{i}=c x_{i} x_{i+1}$, where $i=1,2, \ldots, n$ with indices taken modulo n.

According to Theorem 1 we have that ehs $\left(W_{n}, C_{3}\right) \geq\left\lceil\frac{n+2}{3}\right\rceil$. To show that $\left\lceil\frac{n+2}{3}\right\rceil$ is an upper bound for the edge C_{3}-irregularity strength of W_{n} we define a C_{3}-irregular edge labeling $\alpha_{5}: E\left(W_{n}\right) \rightarrow\left\{1,2, \ldots,\left\lceil\frac{n+2}{3}\right\rceil\right\}$ as follows.

$$
\begin{aligned}
& \alpha_{5}\left(x_{i} x_{i+1}\right)= \begin{cases}i & \text { for } i=1,2, \\
i-\left\lfloor\frac{i}{3}\right\rfloor & \text { for } 3 \leq i \leq\left\lceil\frac{n+1}{2}\right\rceil-1, \\
\left\lceil\frac{n+2}{3}\right\rceil & \text { for } i=\left\lceil\frac{n+1}{2}\right\rceil, \\
n-i+1-\left\lfloor\frac{n-i}{3}\right\rfloor & \text { for }\left\lceil\frac{n+1}{2}\right\rceil+1 \leq i \leq n,\end{cases} \\
& \alpha_{5}\left(c x_{i}\right)= \begin{cases}1 & \text { for } i=1, \\
i-1-\left\lfloor\frac{i-2}{3}\right\rfloor & \text { for } 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, \\
\left\lceil\frac{n+2}{3}\right\rceil & \text { for } i=\left\lceil\frac{n}{2}\right\rceil+1 \text { and } n \equiv 0,1(\bmod 3), \\
\left\lceil\frac{n+2}{3}\right\rceil-1 & \text { for } i=\left\lceil\frac{n}{2}\right\rceil+1 \text { and } n \equiv 2(\bmod 3), \\
n-i+1-\left\lfloor\frac{n-i-1}{3}\right\rfloor & \text { for }\left\lceil\frac{n}{2}\right\rceil+2 \leq i \leq n-1, \\
2 & \text { for } i=n .\end{cases}
\end{aligned}
$$

It is a matter of routine checking that under the labeling α_{5} all edge labels are at most $\left\lceil\frac{n+2}{3}\right\rceil$. For the C_{3}-weight of the cycle C_{3}^{i} we get

$$
\begin{aligned}
w t_{\alpha_{5}}\left(C_{3}^{i}\right) & =\alpha_{5}\left(c x_{i}\right)+\alpha_{5}\left(c x_{i+1}\right)+\alpha_{5}\left(x_{i} x_{i+1}\right) \\
& = \begin{cases}2 i+1 & \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
2(n+2-i) & \text { for }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n\end{cases}
\end{aligned}
$$

Clearly, the weights of C_{3}^{i} for $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$ are odd and increasing. On the other hand the weights of C_{3}^{i} for $\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n$ are even and decreasing. So, it concludes that all the weights of C_{3}^{i} are different. Thus α_{5} is an edge C_{3}-irregular labeling of W_{n} and ehs $\left(W_{n}, C_{3}\right) \leq\left\lceil\frac{n+2}{3}\right\rceil$. This completes the proof.

A gear graph G_{n} is obtained from W_{n} by inserting a vertex to each edge on the cycle C_{n}. Then the vertex set of G_{n} is $V\left(G_{n}\right)=\left\{c, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and the edge set is $E\left(W_{n}\right)=\left\{x_{i} y_{i}, y_{i} x_{i+1}, c x_{i}: 1 \leq i \leq n\right\}$ with indices taken modulo n.

Theorem 7. Let $G_{n}, n \geq 3$, be a gear graph. Then

$$
\operatorname{ehs}\left(G_{n}, C_{4}\right)=\left\lceil\frac{n+3}{4}\right\rceil .
$$

Proof. The gear $G_{n}, n \geq 3$, admits a C_{4}-covering with exactly n cycles C_{4}. According to Theorem 1 we obtain that ehs $\left(G_{n}, C_{4}\right) \geq\left\lceil\frac{n+3}{4}\right\rceil$. To show that
$\left\lceil\frac{n+3}{4}\right\rceil$ is an upper bound for the edge C_{4}-irregularity strength of G_{n} we define a C_{4}-irregular edge labeling $\alpha_{6}: E\left(G_{n}\right) \rightarrow\left\{1,2, \ldots,\left\lceil\frac{n+3}{4}\right\rceil\right\}$, in the following way.

$$
\begin{aligned}
\alpha_{6}\left(x_{i} y_{i}\right) & = \begin{cases}\left\lceil\frac{i}{2}\right\rceil & \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1, \\
\left\lceil\frac{n}{4}\right\rceil & \text { for } i=\left\lceil\frac{n}{2}\right\rceil \text { and } n \not \equiv 2(\bmod 4), \\
\frac{n-2}{4} & \text { for } i=\frac{n}{2} \text { and } n \equiv 2(\bmod 4), \\
\left\lceil\frac{n-i+2}{2}\right\rceil & \text { for }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n,\end{cases} \\
\alpha_{6}\left(y_{i} x_{i+1}\right) & = \begin{cases}\left\lceil\frac{i+1}{2}\right\rceil & \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, \\
\left\lceil\frac{n-i+1}{2}\right\rceil & \text { for }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n,\end{cases} \\
\alpha_{6}\left(c x_{i}\right) & = \begin{cases}\left\lceil\frac{i}{2}\right\rceil & \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, \\
\left\lceil\frac{n-i+3}{2}\right\rceil & \text { for }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n .\end{cases}
\end{aligned}
$$

It is easy to verify that under the labeling α_{6} all edge labels are at most $\left\lceil\frac{n+3}{4}\right\rceil$. For the C_{4}-weight of the cycle $C_{4}^{i}, i=1,2, \ldots, n$, under the edge labeling α_{6}, we get

$$
\begin{aligned}
w t_{\alpha_{6}}\left(C_{4}^{i}\right) & =\sum_{e \in E\left(C_{4}^{i}\right)} \alpha_{6}(e)=\alpha_{6}\left(c x_{i}\right)+\alpha_{6}\left(c x_{i+1}\right)+\alpha_{6}\left(x_{i} y_{i}\right)+\alpha_{6}\left(y_{i} x_{i+1}\right) \\
& = \begin{cases}2 i+2 & \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
2 n+5-2 i & \text { for }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n\end{cases}
\end{aligned}
$$

Clearly, the weights of C_{4}^{i} for $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$ are even and increasing. On the other hand the weights of C_{4}^{i} for $\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n$ are odd and decreasing. So, it concluded that all the weights of C_{4}^{i} are different. Thus α_{6} is an edge $C_{4^{-}}$ irregular labeling of G_{n}. Hence $\operatorname{ehs}\left(G_{n}, C_{4}\right) \leq\left\lceil\frac{n+2}{3}\right\rceil$. This completes the proof of theorem.

5. Conclusion

In this paper we have investigated the edge H-irregularity strength of some graphs. We have found the exact values of this parameter for several families of graphs namely, prisms, antiprisms, triangular ladders, diagonal ladders, wheels and gear graphs.

Acknowledgement

This work was supported by the Slovak Science and Technology Assistance Agency under the contract No. APVV-15-0116 and by VEGA 1/0233/18.

References

[1] A. Ahmad, O.B.S. Al-Mushayt and M. Bača, On edge irregularity strength of graphs, Appl. Math. Comput. 243 (2014) 607-610. https://doi.org/10.1016/j.amc.2014.06.028
[2] M. Aigner and E. Triesch, Irregular assignments of trees and forests, SIAM J. Discrete Math. 3 (1990) 439-449.
https://doi.org/10.1137/0403038
[3] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15-38.
https://doi.org/10.1016/S0012-365X(98)00112-5
[4] F. Ashraf, M. Bača, Z. Kimáková and A. Semaničová-Feňovčíková, On vertex and edge H-irregularity strengths of graphs, Discrete Math. Algorithms Appl. 8 (2016) 1650070.
https://doi.org/10.1142/S1793830916500701
[5] M. Anholcer and C. Palmer, Irregular labellings of circulant graphs, Discrete Math. 312 (2012) 3461-3466.
https://doi.org/10.1016/j.disc.2012.06.017
[6] T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004) 241-254. https://doi.org/10.1002/jgt. 10158
[7] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
[8] R.J. Faudree and J. Lehel, Bound on the irregularity strength of regular graphs, Colloq. Math. Soc. János Bolyai, 52, Combinatorics, Eger North Holland, Amsterdam (1987) 247-256.
[9] A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002) 120-137. https://doi.org/10.1002/jgt. 10056
[10] M. Imran, M. Naeem and A.Q. Baig, On vertex covering number of rotationallysymmetric graphs, Util. Math. 97 (2015) 295-307.
[11] M. Kalkowski, M. Karoński and F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011) 1319-1321. https://doi.org/10.1137/090774112
[12] P. Majerski and J. Przybyło, On the irregularity strength of dense graphs, SIAM J. Discrete Math. 28 (2014) 197-205. https://doi.org/10.1137/120886650
[13] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000) 313-323.
https://doi.org/10.1137/S0895480196314291
[14] J. Przybyło, Irregularity strength of regular graphs, Electron. J. Combin. 15 (2008) \#R82.
https://doi.org/10.37236/806

[^0]: ${ }^{1}$ Corresponding author.

