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Abstract

For a graph G an edge-covering of G is a family of subgraphs H1, H2, . . . ,

Ht such that each edge of E(G) belongs to at least one of the subgraphs Hi,
i = 1, 2, . . . , t. In this case we say that G admits an (H1, H2, . . . , Ht)-(edge)
covering. An H-covering of graph G is an (H1, H2, . . . , Ht)-(edge) covering

in which every subgraph Hi is isomorphic to a given graph H.
Let G be a graph admitting H-covering. An edge k-labeling α : E(G) →

{1, 2, . . . , k} is called an H-irregular edge k-labeling of the graph G if for
every two different subgraphs H ′ and H ′′ isomorphic to H their weights
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wtα(H ′) and wtα(H ′′) are distinct. The weight of a subgraph H under an
edge k-labeling α is the sum of labels of edges belonging to H. The edge

H-irregularity strength of a graph G, denoted by ehs(G,H), is the smallest
integer k such that G has an H-irregular edge k-labeling.

In this paper we determine the exact values of ehs(G,H) for prisms,
antiprisms, triangular ladders, diagonal ladders, wheels and gear graphs.
Moreover the subgraph H is isomorphic to only C4, C3 and K4.

Keywords: H-irregular edge labeling, edge H-irregularity strength, prism,
antiprism, triangular ladder, diagonal ladder, wheel, gear graph.
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1. Introduction

Consider a simple and finite graph G = (V,E) of order at least 2. An edge
k-labeling is a function α : E(G) → {1, 2, . . . , k}, where k is a positive integer.
Then the associated weight of a vertex x ∈ V (G) is wα(x) =

∑

xy∈E(G) α(xy),
where the sum is taken over all edges incident to x. Such a labeling α is called
irregular if the obtained weights of all vertices are different. The smallest positive
integer k for which there exists an irregular labeling of G is called the irregularity

strength of G and is denoted by s(G). If it does not exist, then we write s(G) = ∞.
One can easily see that s(G) < ∞ if and only if G contains no isolated edges and
has at most one isolated vertex.

The notion of the irregularity strength was firstly introduced by Chartrand
et al. in [7]. Some results on the irregularity strength can be found in [2, 3, 5, 6,
8, 9, 11–14].

A vertex k-labeling β : V (G) → {1, 2, . . . , k} is called an edge irregular k-

labeling of the graph G if the weights wβ(xy) 6= wβ(x′y′) for every two distinct
edges xy and x′y′, where the weight of an edge xy ∈ E(G) is wβ(xy) = β(x)+β(y).
The minimum k for which a graph G admits an edge irregular k-labeling is called
the edge irregularity strength of G, denoted by es(G). The notion of the edge
irregularity strength was defined by Ahmad et al. in [1].

A family of subgraphs H1, H2, . . . , Ht is said to be an edge-covering of G if
each edge of E(G) belongs to at least one of the subgraphs Hi, i = 1, 2, . . . , t.
In this case we say that G admits an (H1, H2, . . . , Ht)-(edge) covering. If every
subgraph Hi, i = 1, 2, . . . , t, is isomorphic to a given graph H, then the graph G

admits an H-covering.

Motivated by the irregularity strength and the edge irregularity strength of
a graph G Ashraf et al. in [4] introduced a new parameter, edge H-irregularity
strength, as a natural extension of the parameters s(G) and es(G). Let G be
a graph admitting H-covering. An edge k-labeling α is called an H-irregular
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edge k-labeling of the graph G if for every two different subgraphs H ′ and H ′′

isomorphic to H we have

wtα(H ′) =
∑

e∈E(H′)

α(e) 6=
∑

e∈E(H′′)

α(e) = wtα(H ′′).

The edge H-irregularity strength of a graph G, denoted by ehs(G,H), is the
smallest integer k for which G has an H-irregular edge k-labeling.

Next theorem proved in [4] gives the lower bound of the edge H-irregularity
strength of a graph G.

Theorem 1 [4]. Let G be a graph admitting an H-covering and t is the number

of all the subgraphs isomorphic to H. Then

ehs(G,H) ≥

⌈

1 +
t− 1

|E(H)|

⌉

.

Note that the parameter t is the number of all subgraphs of G isomorphic to
H. In this paper we determine exact values of the edge H-irregularity strength for
prisms, antiprisms, triangular ladders, diagonal ladders, wheels and gear graphs
for some H. Moreover the subgraph H is isomorphic to only C4, C3 and K4.

2. Prism and Antiprism

The prism Dn can be defined as the Cartesian product Cn�P2 of a cycle on n

vertices with a path on 2 vertices. Let V (Cn�P2) = {xi, yi : 1 ≤ i ≤ n} be the
vertex set and E(Cn�P2) = {xixi+1, yiyi+1 : 1 ≤ i ≤ n} ∪ {xiyi : 1 ≤ i ≤ n} be
the edge set, where the indices are taken modulo n. Hence, the graph Dn has 2n
vertices and 3n edges.

Theorem 2. Let Dn = Cn�P2, n ≥ 3, n 6= 4, be a prism. Then

ehs(Dn, C4) =

⌈

n + 3

4

⌉

.

Proof. The prism Dn, n ≥ 3, n 6= 4, admits a C4-covering with exactly n cycles
C4. We denote these 4-cycles by the symbols Ci

4, i = 1, 2, . . . , n, such that the
vertex set of Ci

4 is V (Ci
4) = {xi, xi+1, yi, yi+1} and the edge set is E(Ci

4) =
{xixi+1, yiyi+1, xiyi, xi+1yi+1}.

From Theorem 1 it follows that ehs(Dn, C4) ≥
⌈

n+3
4

⌉

. To show that
⌈

n+3
4

⌉

is an upper bound for the edge C4-irregularity strength of Dn we define a C4-
irregular edge labeling α1 : E(Dn) →

{

1, 2, . . . ,
⌈

n+3
4

⌉}

, in the following way. We
distinguish to cases according to the parity of n.
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Case 1. When n is odd, then

α1(xixi+1) =

{

⌈

i
2

⌉

for 1 ≤ i ≤ n+1
2 ,

⌈

n+1−i
2

⌉

for n+1
2 + 1 ≤ i ≤ n,

α1(yiyi+1) =

{

⌈

i+1
2

⌉

for 1 ≤ i ≤ n+1
2 ,

⌈

n+2−i
2

⌉

for n+1
2 + 1 ≤ i ≤ n,

α1(xiyi) =

{

⌈

i
2

⌉

for 1 ≤ i ≤ n+1
2 ,

⌈

n+3−i
2

⌉

for n+1
2 + 1 ≤ i ≤ n.

Case 2. When n is even, then

α1(xixi+1) =

{

⌈

i
2

⌉

for 1 ≤ i ≤ n
2 ,

⌈

n+1−i
2

⌉

for n
2 + 1 ≤ i ≤ n,

α1(yiyi+1) =











⌈

i+1
2

⌉

for 1 ≤ i ≤ n
2 ,

⌈

n+3
4

⌉

for i = n
2 + 1,

⌈

n+2−i
2

⌉

for n
2 + 2 ≤ i ≤ n,

α1(xiyi) =























⌈

i
2

⌉

for 1 ≤ i ≤ n
2 ,

n
4 + 1 for i = n

2 + 1 and n ≡ 0 (mod 4),
n+2
4 for i = n

2 + 1 and n ≡ 2 (mod 4),
⌈

n+3−i
2

⌉

for n
2 + 2 ≤ i ≤ n.

It is easy to see that under the labeling α1 all edge labels are at most
⌈

n+3
4

⌉

.
The C4-weights of the cycles Ci

4, i = 1, 2, . . . , n, under the edge labeling α1, are
given by

wtα1
(Ci

4) =
∑

e∈E(Ci

4
)

α1(e) = α1(xixi+1) + α1(yiyi+1) + α1(xiyi) + α1(xi+1yi+1).

Case 1. When n is odd, then

wtα1
(Ci

4) =
⌈

i
2

⌉

+
⌈

i+1
2

⌉

+
⌈

i
2

⌉

+
⌈

i+1
2

⌉

= 2i + 2 for 1 ≤ i ≤ n−1
2 ,

wtα1

(

C
n+1
2

4

)

=
⌈

n+1
4

⌉

+
⌈

n+3
4

⌉

+
⌈

n+1
4

⌉

+
⌈

n+3
4

⌉

= n + 3,

wtα1
(Ci

4) =
⌈

n+1−i
2

⌉

+
⌈

n+2−i
2

⌉

+
⌈

n+3−i
2

⌉

+
⌈

n+2−i
2

⌉

= 2n + 5 − 2i

for n+1
2 + 1 ≤ i ≤ n− 1,

wtα1
(Cn

4 ) =
⌈

1
2

⌉

+
⌈

2
2

⌉

+
⌈

3
2

⌉

+
⌈

1
2

⌉

= 5.
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Case 2. When n is even, then

wtα1
(Ci

4) =
⌈

i
2

⌉

+
⌈

i+1
2

⌉

+
⌈

i
2

⌉

+
⌈

i+1
2

⌉

= 2i + 2 for 1 ≤ i ≤ n
2 − 1,

wtα1

(

C
n
2
4

)

=
⌈

n
4

⌉

+
⌈

n+2
4

⌉

+
⌈

n
4

⌉

+ n
4 + 1 = n + 2 for n ≡ 0 (mod 4),

wtα1

(

C
n
2
4

)

=
⌈

n
4

⌉

+
⌈

n+2
4

⌉

+
⌈

n
4

⌉

+ n+2
4 = n + 2 for n ≡ 2 (mod 4),

wtα1

(

C
n
2 +1

4

)

=
⌈

n
4

⌉

+
⌈

n+3
4

⌉

+
⌈

n
4

⌉

+ 1 + n
4 + 1 = n + 3 for n ≡ 0 (mod 4),

wtα1

(

C
n
2 +1

4

)

=
⌈

n
4

⌉

+
⌈

n+3
4

⌉

+
⌈

n+2
4

⌉

+ n+2
4 = n + 3 for n ≡ 2 (mod 4),

wtα1
(Ci

4) =
⌈

n+1−i
2

⌉

+
⌈

n+2−i
2

⌉

+
⌈

n+3−i
2

⌉

+
⌈

n+2−i
2

⌉

= 2n + 5 − 2i

for n
2 + 2 ≤ i ≤ n− 1,

wtα1
(Cn

4 ) =
⌈

1
2

⌉

+
⌈

2
2

⌉

+
⌈

3
2

⌉

+
⌈

1
2

⌉

= 5.

Combining the previous we get that

wtα1
(Ci

4) =

{

2(1 + i) for 1 ≤ i ≤
⌈

n
2

⌉

,

1 + 2(n + 2 − i) for
⌈

n
2

⌉

+ 1 ≤ i ≤ n.

One can see that the weights of cycles Ci
4, for i = 1, 2, . . . ,

⌈

n
2

⌉

, are even and in

increasing order, therefore wtα1

(

Ci+1
4

)

> wtα1

(

Ci
4

)

.

On the other hand, the weights of cycles Ci
4, for i =

⌈

n
2

⌉

+ 1, . . . , n, are odd

and in decreasing order, therefore wtα1

(

Ci+1
4

)

< wtα1

(

Ci
4

)

.

Thus the edge weights are distinct numbers from the set {4, 5, . . . , n + 3}.
This shows that ehs(Dn, C4) ≤

⌈

n+3
4

⌉

. Hence the proof is concluded.

The antiprism An [10], n ≥ 3, is a 4-regular graph (Archimedean convex
polytope), consisting of 2n vertices and 4n edges. The vertex and edge set of
An are defined as: V (An) = {xi, yi : 1 ≤ i ≤ n}, E(An) = {xiyi : 1 ≤ i ≤
n} ∪ {xixi+1 : 1 ≤ i ≤ n} ∪ {yixi+1 : 1 ≤ i ≤ n} ∪ {yiyi+1 : 1 ≤ i ≤ n}, with
indices taken modulo n.

Theorem 3. Let An, n ≥ 4, be an antiprism. Then

ehs(An, C3) =

⌈

2n + 2

3

⌉

.

Proof. The antiprism An, n ≥ 4, admits a C3-covering with exactly 2n cycles C3.
The first type of the cycle C3 has the vertex set V (Ci

3) = {xi, xi+1, yi : 1 ≤ i ≤ n}
and the edge set E(Ci

3) = {xixi+1, xiyi, yixi+1 : 1 ≤ i ≤ n}. The second type
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of the cycle C3 has the vertex set V (Ci
3) = {yi, yi+1, xi+1 : 1 ≤ i ≤ n} and the

edge set E(Ci
3) = {yiyi+1, yixi+1, yi+1xi+1 : 1 ≤ i ≤ n}. Note that the indices are

taken modulo n.

From Theorem 1 it follows that ehs(An, C3) ≥
⌈

2n+2
3

⌉

. To show that
⌈

2n+2
3

⌉

is an upper bound for the edge C3-irregularity strength of An we define a C3-
irregular edge labeling α2 : E(An) →

{

1, 2, . . . ,
⌈

2n+2
3

⌉}

, in the following way.
We distinguish two cases.

Case 1. When n ≡ 0, 4, 5 (mod 6), then

α2(xixi+1) =































i for i = 1, 2,

i +
⌊

i
3

⌋

for 3 ≤ i ≤ t− 1,
⌈

2n+2
3

⌉

for i = t,

n− i + 3 +
⌊

n−i−2
3

⌋

for t + 1 ≤ i ≤ n− 2,

n− i + 2 for i = n− 1, n,

where t =

{

n+1
2 if n ≡ 5 (mod 6),

n
2 + 1 if n ≡ 0, 4 (mod 6).

α2(yiyi+1) =































i + 1 +
⌊

i−1
3

⌋

for 1 ≤ i ≤ ⌈n2 ⌉ − 1,
⌈

2n+2
3

⌉

for i = ⌈n2 ⌉ and n ≡ 5 (mod 6),
⌈

2n+2
3

⌉

− 1 for i = ⌈n2 ⌉ and n ≡ 0, 4 (mod 6),

n− i + 2 +
⌊

n−i−1
3

⌋

for ⌈n2 ⌉ + 1 ≤ i ≤ n− 1,

1 for i = n,

α2(xiyi) =































i +
⌊

i−1
3

⌋

for 1 ≤ i ≤ ⌈n2 ⌉,
⌈

2n+2
3

⌉

for i = ⌈n2 ⌉ + 1 and n ≡ 0, 5 (mod 6),
⌈

2n+2
3

⌉

− 1 for i = ⌈n2 ⌉ + 1 and n ≡ 4 (mod 6),

n− i + 3 +
⌊

n−i−1
3

⌋

for ⌈n2 ⌉ + 2 ≤ i ≤ n− 1,

2 for i = n,

α2(yixi+1) =































1 for i = 1,

i + 1 +
⌊

i−2
3

⌋

for 2 ≤ i ≤ ⌈n2 ⌉ − 1,
⌈

2n+2
3

⌉

− 1 for i = ⌈n2 ⌉ and n ≡ 0, 4 (mod 6),
⌈

2n+2
3

⌉

for i = ⌈n2 ⌉ and n ≡ 5 (mod 6),

n− i + 2 +
⌊

n−i
3

⌋

for ⌈n2 ⌉ + 1 ≤ i ≤ n.
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Case 2. When n ≡ 1, 2, 3 (mod 6), then

α2(xixi+1) =











































i for i = 1, 2,

i +
⌊

i
3

⌋

for 3 ≤ i ≤ t− 1,
⌈

2n+2
3

⌉

for i = t and n ≡ 2 (mod 6),
⌈

2n+2
3

⌉

− 1 for i = t and n ≡ 1, 3 (mod 6),

n− i + 3 +
⌊

n−i−2
3

⌋

for t + 1 ≤ i ≤ n− 2,

n− i + 2 for i = n− 1, n,

where t =

{

n+1
2 if n ≡ 1, 3 (mod 6),

n
2 + 1 if n ≡ 2 (mod 6).

α2(yiyi+1) =























i + 1 +
⌊

i−1
3

⌋

for 1 ≤ i ≤ ⌈n2 ⌉ − 1,
⌈

2n+2
3

⌉

for i = ⌈n2 ⌉,

n− i + 2 +
⌊

n−i−1
3

⌋

for ⌈n2 ⌉ + 1 ≤ i ≤ n− 1,

1 for i = n,

α2(xiyi) =































i +
⌊

i−1
3

⌋

for 1 ≤ i ≤ ⌈n2 ⌉,
⌈

2n+2
3

⌉

for i = ⌈n2 ⌉ + 1 and n ≡ 2 (mod 6),
⌈

2n+2
3

⌉

− 1 for i = ⌈n2 ⌉ + 1 and n ≡ 1, 3 (mod 6),

n− i + 3 +
⌊

n−i−1
3

⌋

for ⌈n2 ⌉ + 2 ≤ i ≤ n− 1,

2 for i = n,

α2(yixi+1) =































1 for i = 1,

i + 1 +
⌊

i−2
3

⌋

for 2 ≤ i ≤
⌈

n
2

⌉

− 1,
⌈

2n+2
3

⌉

− 1 for i =
⌈

n
2

⌉

and n ≡ 1, 2 (mod 6),
⌈

2n+2
3

⌉

for i =
⌈

n
2

⌉

and n ≡ 3 (mod 6),

n− i + 2 +
⌊

n−i
3

⌋

for
⌈

n
2

⌉

+ 1 ≤ i ≤ n.

Now we compute the C3-weights under the edge labeling α2 as follows. For
the weights of 3-cycles of the first type we get

wtα2
(Ci

3) =
∑

e∈E(Ci

3
)

α2(e) = α2(xixi+1) + α2(xiyi) + α2(yixi+1)

=

{

4i− 1 for 1 ≤ i ≤
⌈

n
2

⌉

,

4n− 4i + 6 for ⌈n2 ⌉ + 1 ≤ i ≤ n,
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and for the weights of 3-cycles of the second type we have

wtα2
(Ci

3) =
∑

e∈E(Ci

3
)

α2(e) = α2(yiyi+1) + α2(yixi+1) + α2(yi+1xi+1)

=

{

4i + 1 for 1 ≤ i ≤
⌈

n+1
2

⌉

− 1,

4n− 4i + 4 for ⌈n+1
2 ⌉ ≤ i ≤ n.

Combining these two cases one can see that the weights of the cycles Ci
3

are different to the weights of the cycles Ci
3. This shows that α2 is an edge C3-

irregular labeling of An. Therefore, ehs(An, C4) ≤
⌈

2n+2
3

⌉

and we arrive at the
desired result.

3. Triangular Ladder and Diagonal Ladder

Let Ln
∼= Pn�P2, n ≥ 2, be a ladder with the vertex set V (Ln) = {xi, yi : i =

1, 2, . . . , n} and the edge set E(Ln) = {xixi+1, yiyi+1 : i = 1, 2, . . . , n−1}∪{xiyi :
i = 1, 2, . . . , n}. The triangular ladder TLn, n ≥ 2, is obtained from a ladder Ln

by adding the edges yixi+1 for i = 1, 2, . . . , n− 1.

Theorem 4. Let TLn, n ≥ 2, be a triangular ladder. Then

ehs(TLn, C3) =

⌈

2n

3

⌉

.

Proof. The triangular ladder TLn, n ≥ 2, admits a C3-covering with exactly
2(n − 1) cycles C3. There are two types of cycles C3 that cover TLn. The first
type of cycles C3 has the vertex set V (Ci

3) = {xi, xi+1, yi : 1 ≤ i ≤ n − 1} and
the edge set E(Ci

3) = {xixi+1, xiyi, yixi+1 : 1 ≤ i ≤ n − 1}. The second type of
cycles C3 has the vertex set V (Ci

3) = {yi, yi+1, xi+1 : 1 ≤ i ≤ n− 1} and the edge
set E(Ci

3) = {yiyi+1, yixi+1, yi+1xi+1 : 1 ≤ i ≤ n− 1}.

According to Theorem 1 it follows that ehs(TLn, C3) ≥
⌈

2n
3

⌉

. To show that
⌈

2n
3

⌉

is an upper bound for the edge C3-irregularity strength of TLn we define
a C3-irregular edge labeling α3 : E(TLn) →

{

1, 2, . . . ,
⌈

2n
3

⌉}

as follows. Let us
consider three cases.

Case 1. When i ≡ 0 (mod 3), then

α3(xixi+1) = α3(yiyi+1) = 2i
3 for i = 3, 6, . . . , n− 1,

α3(yixi+1) = 2i+3
3 for i = 3, 6, . . . , n− 1,

α3(xiyi) = 2i
3 for i = 3, 6, . . . , n.
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Case 2. When i ≡ 1 (mod 3), then

α3(xixi+1) = α3(yiyi+1) = α3(yixi+1) = 2i+1
3 for i = 1, 4, . . . , n− 1,

α3(xiyi) = 2i+1
3 for i = 1, 4, . . . , n.

Case 3. When i ≡ 2 (mod 3), then

α3(xixi+1) = 2i−1
3 for i = 2, 5, . . . , n− 1,

α3(yiyi+1) = α3(yixi+1) = 2i+2
3 for i = 2, 5, . . . , n− 1,

α3(xiyi) = 2i+2
3 for i = 2, 5, . . . , n.

It is a routine matter to verify that under the labeling α3 all edge labels are
at most

⌈

2n
3

⌉

. It is not difficult to see that under the edge labeling α3 the weights
of the cycles Ci

3, 1 ≤ i ≤ n− 1, are of the form

wtα3
(Ci

3) = α3(xixi+1) + α3(xiyi) + α3(yixi+1) = 2i + 1.

The weights of the cycles Ci
3, 1 ≤ i ≤ n− 1, are of the form

wtα3
(Ci

3) = α3(yiyi+1) + α3(xi+1yi+1) + α3(yixi+1) = 2(i + 1).

Combining these two cases we obtained that the weights are different for any
two distinct cycles C3. Thus ehs(TLn, C3) ≤

⌈

2n
3

⌉

. This completes the proof.

The diagonal ladder DLn is obtained from a ladder Ln by adding the edges
{xiyi+1, xi+1yi : 1 ≤ i ≤ n− 1}. So the diagonal ladder DLn contains 2n vertices
and 5n− 4 edges.

Theorem 5. Let DLn, n ≥ 2, be a diagonal ladder. Then

ehs(DLn,K4) =

⌈

n + 4

6

⌉

.

Proof. The diagonal ladder DLn, n ≥ 2, admits a K4-covering with exactly (n−
1) complete graphs K4. The Ki

4 has the vertex set V (Ki
4) = {xi, yi, xi+1, yi+1 :

1 ≤ i ≤ n − 1} and the edge set E(Ki
4) = {xixi+1, xiyi, xiyi+1, yiyi+1, yixi+1,

xi+1yi+1 : 1 ≤ i ≤ n− 1}.

With respect to Theorem 1 it follows that ehs(DLn,K4) ≥
⌈

n+4
6

⌉

. To
show that ehs(DLn,K4) ≤

⌈

n+4
6

⌉

we define a K4-irregular edge labeling α4 :
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E(DLn) → {1, 2, . . . ,
⌈

n+4
6

⌉

}, in the following way.

α4(yiyi+1) =
⌈

i
6

⌉

for 1 ≤ i ≤ n− 1,

α4(xixi+1) =

{

⌈

i
6

⌉

for 1 ≤ i ≤ 5,
⌈

i+1
6

⌉

for 6 ≤ i ≤ n− 1,

α4(xiyi) =

{

⌈

i
6

⌉

for 1 ≤ i ≤ 4,
⌈

i+2
6

⌉

for 5 ≤ i ≤ n,

α4(xiyi+1) =

{

1 for i = 1,
⌈

i+5
6

⌉

for 2 ≤ i ≤ n− 1,

α4(xi+1yi) =

{

1 for i = 1, 2,
⌈

i+4
6

⌉

for 3 ≤ i ≤ n− 1.

One can verify that under the labeling α4 all edge labels are at least 1 and
at most

⌈

n+4
6

⌉

. To show that α4 is edge K4-irregular labeling it will be enough

to show that wtα4
(Ki

4) < wtα4
(Ki+1

4 ). It is a simple mathematical exercise that
the weights of the subgraphs Ki

4, i = 1, 2, 3, 4, 5 are wtα4
(Ki

4) = 5 + i.
For i = 6, 7, . . . , n− 1 we get

wtα4
(Ki

4) =
∑

e∈E(Ki

4
)

α4(e) = α4(xixi+1) + α4(yiyi+1) + α4(xiyi) + α4(xi+1yi+1)

+ α4(xiyi+1) + α4(xi+1yi) =
⌈

i+1
6

⌉

+
⌈

i
6

⌉

+
⌈

i+2
6

⌉

+
⌈

i+3
6

⌉

+
⌈

i+5
6

⌉

+
⌈

i+4
6

⌉

= 5 + i.

This proves that wtα4
(Ki+1

4 ) = wtα4
(Ki

4) + 1 for i = 1, 2, . . . , n − 1. Therefore,
α4 is an edge K4-irregular labeling of DLn. Thus ehs(DLn,K4) ≤

⌈

n+4
6

⌉

. This
concludes the proof.

4. Wheel and Gear Graph

A wheel Wn, n ≥ 3, is a graph obtained by joining all vertices of cycle Cn to
a further vertex c, called the center. Thus Wn contains n + 1 vertices, say,
c, x1, x2, . . . , xn and 2n edges, say, cxi, xixi+1, 1 ≤ i ≤ n, where the indices are
taken modulo n.

Theorem 6. Let Wn, n ≥ 4, be a wheel. Then

ehs(Wn, C3) =

⌈

n + 2

3

⌉

.
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Proof. The wheel Wn, n ≥ 4, admits a C3-covering with exactly n cycles C3.
Every cycle C3 in Wn is of the form Ci

3 = cxixi+1, where i = 1, 2, . . . , n with
indices taken modulo n.

According to Theorem 1 we have that ehs(Wn, C3) ≥
⌈

n+2
3

⌉

. To show that
⌈

n+2
3

⌉

is an upper bound for the edge C3-irregularity strength of Wn we define a
C3-irregular edge labeling α5 : E(Wn) →

{

1, 2, . . . ,
⌈

n+2
3

⌉}

as follows.

α5(xixi+1) =























i for i = 1, 2,

i−
⌊

i
3

⌋

for 3 ≤ i ≤
⌈

n+1
2

⌉

− 1,
⌈

n+2
3

⌉

for i =
⌈

n+1
2

⌉

,

n− i + 1 −
⌊

n−i
3

⌋

for
⌈

n+1
2

⌉

+ 1 ≤ i ≤ n,

α5(cxi) =











































1 for i = 1,

i− 1 −
⌊

i−2
3

⌋

for 2 ≤ i ≤ ⌈n2 ⌉,
⌈

n+2
3

⌉

for i = ⌈n2 ⌉ + 1 and n ≡ 0, 1 (mod 3),
⌈

n+2
3

⌉

− 1 for i = ⌈n2 ⌉ + 1 and n ≡ 2 (mod 3),

n− i + 1 −
⌊

n−i−1
3

⌋

for ⌈n2 ⌉ + 2 ≤ i ≤ n− 1,

2 for i = n.

It is a matter of routine checking that under the labeling α5 all edge labels
are at most

⌈

n+2
3

⌉

. For the C3-weight of the cycle Ci
3 we get

wtα5
(Ci

3) = α5(cxi) + α5(cxi+1) + α5(xixi+1)

=

{

2i + 1 for 1 ≤ i ≤ ⌈n2 ⌉,

2(n + 2 − i) for ⌈n2 ⌉ + 1 ≤ i ≤ n.

Clearly, the weights of Ci
3 for 1 ≤ i ≤ ⌈n2 ⌉ are odd and increasing. On the other

hand the weights of Ci
3 for ⌈n2 ⌉ + 1 ≤ i ≤ n are even and decreasing. So, it

concludes that all the weights of Ci
3 are different. Thus α5 is an edge C3-irregular

labeling of Wn and ehs(Wn, C3) ≤
⌈

n+2
3

⌉

. This completes the proof.

A gear graph Gn is obtained from Wn by inserting a vertex to each edge on
the cycle Cn. Then the vertex set of Gn is V (Gn) = {c, xi, yi : 1 ≤ i ≤ n} and the
edge set is E(Wn) = {xiyi, yixi+1, cxi : 1 ≤ i ≤ n} with indices taken modulo n.

Theorem 7. Let Gn, n ≥ 3, be a gear graph. Then

ehs(Gn, C4) =

⌈

n + 3

4

⌉

.

Proof. The gear Gn, n ≥ 3, admits a C4-covering with exactly n cycles C4.
According to Theorem 1 we obtain that ehs(Gn, C4) ≥

⌈

n+3
4

⌉

. To show that
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⌈

n+3
4

⌉

is an upper bound for the edge C4-irregularity strength of Gn we define a
C4-irregular edge labeling α6 : E(Gn) →

{

1, 2, . . . ,
⌈

n+3
4

⌉}

, in the following way.

α6(xiyi) =























⌈

i
2

⌉

for 1 ≤ i ≤
⌈

n
2

⌉

− 1,
⌈

n
4

⌉

for i =
⌈

n
2

⌉

and n 6≡ 2 (mod 4),
n−2
4 for i = n

2 and n ≡ 2 (mod 4),
⌈

n−i+2
2

⌉

for
⌈

n
2

⌉

+ 1 ≤ i ≤ n,

α6(yixi+1) =

{

⌈

i+1
2

⌉

for 1 ≤ i ≤
⌈

n
2

⌉

,
⌈

n−i+1
2

⌉

for
⌈

n
2

⌉

+ 1 ≤ i ≤ n,

α6(cxi) =

{

⌈

i
2

⌉

for 1 ≤ i ≤
⌈

n
2

⌉

,
⌈

n−i+3
2

⌉

for
⌈

n
2

⌉

+ 1 ≤ i ≤ n.

It is easy to verify that under the labeling α6 all edge labels are at most
⌈

n+3
4

⌉

. For the C4-weight of the cycle Ci
4, i = 1, 2, . . . , n, under the edge labeling

α6, we get

wtα6
(Ci

4) =
∑

e∈E(Ci

4
)

α6(e) = α6(cxi) + α6(cxi+1) + α6(xiyi) + α6(yixi+1)

=

{

2i + 2 for 1 ≤ i ≤
⌈

n
2

⌉

,

2n + 5 − 2i for
⌈

n
2

⌉

+ 1 ≤ i ≤ n.

Clearly, the weights of Ci
4 for 1 ≤ i ≤ ⌈n2 ⌉ are even and increasing. On the

other hand the weights of Ci
4 for

⌈

n
2

⌉

+ 1 ≤ i ≤ n are odd and decreasing. So,
it concluded that all the weights of Ci

4 are different. Thus α6 is an edge C4-
irregular labeling of Gn. Hence ehs(Gn, C4) ≤

⌈

n+2
3

⌉

. This completes the proof
of theorem.

5. Conclusion

In this paper we have investigated the edge H-irregularity strength of some
graphs. We have found the exact values of this parameter for several families of
graphs namely, prisms, antiprisms, triangular ladders, diagonal ladders, wheels
and gear graphs.
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[11] M. Kalkowski, M. Karoński and F. Pfender, A new upper bound for the irregularity

strength of graphs , SIAM J. Discrete Math. 25 (2011) 1319–1321.
https://doi.org/10.1137/090774112

[12] P. Majerski and J. Przyby lo, On the irregularity strength of dense graphs , SIAM J.
Discrete Math. 28 (2014) 197–205.
https://doi.org/10.1137/120886650

[13] T. Nierhoff, A tight bound on the irregularity strength of graphs , SIAM J. Discrete
Math. 13 (2000) 313–323.
https://doi.org/10.1137/S0895480196314291

[14] J. Przyby lo, Irregularity strength of regular graphs , Electron. J. Combin. 15 (2008)
#R82.
https://doi.org/10.37236/806

Received 2 November 2018
Revised 25 March 2019

Accepted 25 March 2019

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1137/0403038
https://doi.org/10.1016/S0012-365X\(98\)00112-5
https://doi.org/10.1142/S1793830916500701
https://doi.org/10.1016/j.disc.2012.06.017
https://doi.org/10.1002/jgt.10158
https://doi.org/10.1002/jgt.10056
https://doi.org/10.1137/090774112
https://doi.org/10.1137/120886650
https://doi.org/10.1137/S0895480196314291
https://doi.org/10.37236/806
http://www.tcpdf.org

