Discussiones Mathematicae Graph Theory 41 (2021) 949–961 https://doi.org/10.7151/dmgt.2228

ON EDGE *H*-IRREGULARITY STRENGTHS OF SOME GRAPHS

Muhammad Naeem¹

Department of Mathematics, The University of Lahore Pakpattan Campus, 57400, Pakistan e-mail: naeempkn@gmail.com

Muhammad Kamran Siddiqui

Department of Mathematics, COMSATS University Islamabad Sahiwal Campus, 57000, Pakistan e-mail: kamransiddiqui75@gmail.com

MARTIN BAČA, ANDREA SEMANIČOVÁ-FEŇOVČÍKOVÁ

Department of Applied Mathematics and Informatics Technical University, Košice, Slovakia

e-mail: martin.baca@tuke.sk, andrea.fenovcikova@tuke.sk

AND

FARAHA ASHRAF

Abdus Salam School of Mathematical Sciences GC University, Lahore, Pakistan

e-mail: faraha27@gmail.com

Abstract

For a graph G an *edge-covering* of G is a family of subgraphs H_1, H_2, \ldots, H_t such that each edge of E(G) belongs to at least one of the subgraphs H_i , $i = 1, 2, \ldots, t$. In this case we say that G admits an (H_1, H_2, \ldots, H_t) -(*edge*) covering. An *H*-covering of graph G is an (H_1, H_2, \ldots, H_t) -(*edge*) covering in which every subgraph H_i is isomorphic to a given graph H.

Let G be a graph admitting H-covering. An edge k-labeling $\alpha : E(G) \rightarrow \{1, 2, \ldots, k\}$ is called an H-irregular edge k-labeling of the graph G if for every two different subgraphs H' and H'' isomorphic to H their weights

¹Corresponding author.

 $wt_{\alpha}(H')$ and $wt_{\alpha}(H'')$ are distinct. The weight of a subgraph H under an edge k-labeling α is the sum of labels of edges belonging to H. The edge H-irregularity strength of a graph G, denoted by ehs(G, H), is the smallest integer k such that G has an H-irregular edge k-labeling.

In this paper we determine the exact values of ehs(G, H) for prisms, antiprisms, triangular ladders, diagonal ladders, wheels and gear graphs. Moreover the subgraph H is isomorphic to only C_4 , C_3 and K_4 .

Keywords: *H*-irregular edge labeling, edge *H*-irregularity strength, prism, antiprism, triangular ladder, diagonal ladder, wheel, gear graph.

2010 Mathematics Subject Classification: 05C78, 05C70.

1. INTRODUCTION

Consider a simple and finite graph G = (V, E) of order at least 2. An edge k-labeling is a function $\alpha : E(G) \to \{1, 2, \ldots, k\}$, where k is a positive integer. Then the associated weight of a vertex $x \in V(G)$ is $w_{\alpha}(x) = \sum_{xy \in E(G)} \alpha(xy)$, where the sum is taken over all edges incident to x. Such a labeling α is called *irregular* if the obtained weights of all vertices are different. The smallest positive integer k for which there exists an irregular labeling of G is called the *irregularity strength* of G and is denoted by s(G). If it does not exist, then we write $s(G) = \infty$. One can easily see that $s(G) < \infty$ if and only if G contains no isolated edges and has at most one isolated vertex.

The notion of the irregularity strength was firstly introduced by Chartrand *et al.* in [7]. Some results on the irregularity strength can be found in [2,3,5,6, 8,9,11-14].

A vertex k-labeling $\beta : V(G) \to \{1, 2, \dots, k\}$ is called an *edge irregular* klabeling of the graph G if the weights $w_{\beta}(xy) \neq w_{\beta}(x'y')$ for every two distinct edges xy and x'y', where the weight of an edge $xy \in E(G)$ is $w_{\beta}(xy) = \beta(x) + \beta(y)$. The minimum k for which a graph G admits an edge irregular k-labeling is called the *edge irregularity strength* of G, denoted by es(G). The notion of the edge irregularity strength was defined by Ahmad *et al.* in [1].

A family of subgraphs H_1, H_2, \ldots, H_t is said to be an *edge-covering* of G if each edge of E(G) belongs to at least one of the subgraphs H_i , $i = 1, 2, \ldots, t$. In this case we say that G admits an (H_1, H_2, \ldots, H_t) -(*edge*) covering. If every subgraph H_i , $i = 1, 2, \ldots, t$, is isomorphic to a given graph H, then the graph Gadmits an H-covering.

Motivated by the irregularity strength and the edge irregularity strength of a graph G Ashraf *et al.* in [4] introduced a new parameter, edge H-irregularity strength, as a natural extension of the parameters s(G) and es(G). Let G be a graph admitting H-covering. An edge k-labeling α is called an H-irregular

950

edge k-labeling of the graph G if for every two different subgraphs H' and H'' isomorphic to H we have

$$wt_{\alpha}(H') = \sum_{e \in E(H')} \alpha(e) \neq \sum_{e \in E(H'')} \alpha(e) = wt_{\alpha}(H'').$$

The edge *H*-irregularity strength of a graph G, denoted by ehs(G, H), is the smallest integer k for which G has an *H*-irregular edge k-labeling.

Next theorem proved in [4] gives the lower bound of the edge H-irregularity strength of a graph G.

Theorem 1 [4]. Let G be a graph admitting an H-covering and t is the number of all the subgraphs isomorphic to H. Then

$$\operatorname{ehs}(G,H) \ge \left\lceil 1 + \frac{t-1}{|E(H)|} \right\rceil$$

Note that the parameter t is the number of all subgraphs of G isomorphic to H. In this paper we determine exact values of the edge H-irregularity strength for prisms, antiprisms, triangular ladders, diagonal ladders, wheels and gear graphs for some H. Moreover the subgraph H is isomorphic to only C_4 , C_3 and K_4 .

2. Prism and Antiprism

The prism D_n can be defined as the Cartesian product $C_n \Box P_2$ of a cycle on n vertices with a path on 2 vertices. Let $V(C_n \Box P_2) = \{x_i, y_i : 1 \le i \le n\}$ be the vertex set and $E(C_n \Box P_2) = \{x_i x_{i+1}, y_i y_{i+1} : 1 \le i \le n\} \cup \{x_i y_i : 1 \le i \le n\}$ be the edge set, where the indices are taken modulo n. Hence, the graph D_n has 2n vertices and 3n edges.

Theorem 2. Let $D_n = C_n \Box P_2$, $n \ge 3$, $n \ne 4$, be a prism. Then

$$\operatorname{ehs}(D_n, C_4) = \left\lceil \frac{n+3}{4} \right\rceil.$$

Proof. The prism D_n , $n \ge 3$, $n \ne 4$, admits a C_4 -covering with exactly n cycles C_4 . We denote these 4-cycles by the symbols C_4^i , i = 1, 2, ..., n, such that the vertex set of C_4^i is $V(C_4^i) = \{x_i, x_{i+1}, y_i, y_{i+1}\}$ and the edge set is $E(C_4^i) = \{x_i x_{i+1}, y_i y_{i+1}, x_i y_i, x_{i+1} y_{i+1}\}$.

From Theorem 1 it follows that $\operatorname{ehs}(D_n, C_4) \geq \left\lceil \frac{n+3}{4} \right\rceil$. To show that $\left\lceil \frac{n+3}{4} \right\rceil$ is an upper bound for the edge C_4 -irregularity strength of D_n we define a C_4 -irregular edge labeling $\alpha_1 : E(D_n) \to \{1, 2, \ldots, \left\lceil \frac{n+3}{4} \right\rceil\}$, in the following way. We distinguish to cases according to the parity of n.

Case 1. When n is odd, then

$$\alpha_1(x_i x_{i+1}) = \begin{cases} \left\lceil \frac{i}{2} \right\rceil & \text{for } 1 \le i \le \frac{n+1}{2}, \\ \left\lceil \frac{n+1-i}{2} \right\rceil & \text{for } \frac{n+1}{2} + 1 \le i \le n, \\ \alpha_1(y_i y_{i+1}) = \begin{cases} \left\lceil \frac{i+1}{2} \right\rceil & \text{for } 1 \le i \le \frac{n+1}{2}, \\ \left\lceil \frac{n+2-i}{2} \right\rceil & \text{for } \frac{n+1}{2} + 1 \le i \le n, \\ \alpha_1(x_i y_i) = \begin{cases} \left\lceil \frac{i}{2} \right\rceil & \text{for } 1 \le i \le \frac{n+1}{2}, \\ \left\lceil \frac{n+3-i}{2} \right\rceil & \text{for } \frac{n+1}{2} + 1 \le i \le n. \end{cases}$$

Case 2. When n is even, then

$$\alpha_{1}(x_{i}x_{i+1}) = \begin{cases} \left\lceil \frac{i}{2} \right\rceil & \text{for } 1 \leq i \leq \frac{n}{2}, \\ \left\lceil \frac{n+1-i}{2} \right\rceil & \text{for } \frac{n}{2}+1 \leq i \leq n, \end{cases}$$

$$\alpha_{1}(y_{i}y_{i+1}) = \begin{cases} \left\lceil \frac{i+1}{2} \right\rceil & \text{for } 1 \leq i \leq \frac{n}{2}, \\ \left\lceil \frac{n+3}{4} \right\rceil & \text{for } i = \frac{n}{2}+1, \\ \left\lceil \frac{n+2-i}{2} \right\rceil & \text{for } \frac{n}{2}+2 \leq i \leq n, \end{cases}$$

$$\alpha_{1}(x_{i}y_{i}) = \begin{cases} \left\lceil \frac{i}{2} \right\rceil & \text{for } 1 \leq i \leq \frac{n}{2}, \\ \frac{n}{4}+1 & \text{for } i = \frac{n}{2}+1 \text{ and } n \equiv 0 \pmod{4}, \\ \frac{n+2}{4} & \text{for } i = \frac{n}{2}+1 \text{ and } n \equiv 2 \pmod{4}, \\ \left\lceil \frac{n+3-i}{2} \right\rceil & \text{for } \frac{n}{2}+2 \leq i \leq n. \end{cases}$$

It is easy to see that under the labeling α_1 all edge labels are at most $\lceil \frac{n+3}{4} \rceil$. The C_4 -weights of the cycles C_4^i , i = 1, 2, ..., n, under the edge labeling α_1 , are given by

$$wt_{\alpha_1}(C_4^i) = \sum_{e \in E(C_4^i)} \alpha_1(e) = \alpha_1(x_i x_{i+1}) + \alpha_1(y_i y_{i+1}) + \alpha_1(x_i y_i) + \alpha_1(x_{i+1} y_{i+1}).$$

Case 1. When n is odd, then

$$\begin{split} wt_{\alpha_1}(C_4^i) &= \left\lceil \frac{i}{2} \right\rceil + \left\lceil \frac{i+1}{2} \right\rceil + \left\lceil \frac{i}{2} \right\rceil + \left\lceil \frac{i+1}{2} \right\rceil = 2i+2 \quad \text{for } 1 \le i \le \frac{n-1}{2}, \\ wt_{\alpha_1}\left(C_4^{\frac{n+1}{2}}\right) &= \left\lceil \frac{n+1}{4} \right\rceil + \left\lceil \frac{n+3}{4} \right\rceil + \left\lceil \frac{n+1}{4} \right\rceil + \left\lceil \frac{n+3}{4} \right\rceil = n+3, \\ wt_{\alpha_1}(C_4^i) &= \left\lceil \frac{n+1-i}{2} \right\rceil + \left\lceil \frac{n+2-i}{2} \right\rceil + \left\lceil \frac{n+3-i}{2} \right\rceil + \left\lceil \frac{n+2-i}{2} \right\rceil = 2n+5-2i \\ \text{for } \frac{n+1}{2} + 1 \le i \le n-1, \\ wt_{\alpha_1}(C_4^n) &= \left\lceil \frac{1}{2} \right\rceil + \left\lceil \frac{2}{2} \right\rceil + \left\lceil \frac{3}{2} \right\rceil + \left\lceil \frac{1}{2} \right\rceil = 5. \end{split}$$

Case 2. When n is even, then

$$wt_{\alpha_{1}}(C_{4}^{i}) = \left\lceil \frac{i}{2} \right\rceil + \left\lceil \frac{i+1}{2} \right\rceil + \left\lceil \frac{i}{2} \right\rceil + \left\lceil \frac{i+1}{2} \right\rceil = 2i+2 \quad \text{for } 1 \le i \le \frac{n}{2} - 1,$$

$$wt_{\alpha_{1}}\left(C_{4}^{\frac{n}{2}}\right) = \left\lceil \frac{n}{4} \right\rceil + \left\lceil \frac{n+2}{4} \right\rceil + \left\lceil \frac{n}{4} \right\rceil + \frac{n}{4} + 1 = n+2 \quad \text{for } n \equiv 0 \pmod{4},$$

$$wt_{\alpha_{1}}\left(C_{4}^{\frac{n}{2}}\right) = \left\lceil \frac{n}{4} \right\rceil + \left\lceil \frac{n+2}{4} \right\rceil + \left\lceil \frac{n}{4} \right\rceil + \frac{n+2}{4} = n+2 \quad \text{for } n \equiv 2 \pmod{4},$$

$$wt_{\alpha_{1}}\left(C_{4}^{\frac{n}{2}+1}\right) = \left\lceil \frac{n}{4} \right\rceil + \left\lceil \frac{n+3}{4} \right\rceil + \left\lceil \frac{n+2}{4} \right\rceil + \frac{n+2}{4} = n+3 \quad \text{for } n \equiv 0 \pmod{4},$$

$$wt_{\alpha_{1}}\left(C_{4}^{\frac{n}{2}+1}\right) = \left\lceil \frac{n}{4} \right\rceil + \left\lceil \frac{n+3}{4} \right\rceil + \left\lceil \frac{n+2}{4} \right\rceil + \frac{n+2}{4} = n+3 \quad \text{for } n \equiv 2 \pmod{4},$$

$$wt_{\alpha_{1}}(C_{4}^{i}) = \left\lceil \frac{n+1-i}{2} \right\rceil + \left\lceil \frac{n+2-i}{2} \right\rceil + \left\lceil \frac{n+3-i}{2} \right\rceil + \left\lceil \frac{n+2-i}{2} \right\rceil = 2n+5-2i$$

$$for \quad \frac{n}{2}+2 \le i \le n-1,$$

$$wt_{\alpha_{1}}(C_{4}^{n}) = \left\lceil \frac{1}{2} \right\rceil + \left\lceil \frac{2}{2} \right\rceil + \left\lceil \frac{3}{2} \right\rceil + \left\lceil \frac{1}{2} \right\rceil = 5.$$

Combining the previous we get that

$$wt_{\alpha_1}(C_4^i) = \begin{cases} 2(1+i) & \text{for } 1 \le i \le \left\lceil \frac{n}{2} \right\rceil, \\ 1+2(n+2-i) & \text{for } \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n \end{cases}$$

One can see that the weights of cycles C_4^i , for $i = 1, 2, \ldots, \lfloor \frac{n}{2} \rfloor$, are even and in increasing order, therefore $wt_{\alpha_1}(C_4^{i+1}) > wt_{\alpha_1}(C_4^i)$. On the other hand, the weights of cycles C_4^i , for $i = \lfloor \frac{n}{2} \rfloor + 1, \ldots, n$, are odd

and in decreasing order, therefore $wt_{\alpha_1}(C_4^{i+1}) < wt_{\alpha_1}(C_4^{i})$.

Thus the edge weights are distinct numbers from the set $\{4, 5, \ldots, n+3\}$. This shows that $ehs(D_n, C_4) \leq \lfloor \frac{n+3}{4} \rfloor$. Hence the proof is concluded.

The antiprism A_n [10], $n \geq 3$, is a 4-regular graph (Archimedean convex polytope), consisting of 2n vertices and 4n edges. The vertex and edge set of A_n are defined as: $V(A_n) = \{x_i, y_i : 1 \le i \le n\}, E(A_n) = \{x_iy_i : 1 \le i \le n\}$ $n \} \cup \{x_i x_{i+1} : 1 \le i \le n\} \cup \{y_i x_{i+1} : 1 \le i \le n\} \cup \{y_i y_{i+1} : 1 \le i \le n\}, \text{ with }$ indices taken modulo n.

Theorem 3. Let A_n , $n \ge 4$, be an antiprism. Then

$$\operatorname{ehs}(A_n, C_3) = \left\lceil \frac{2n+2}{3} \right\rceil.$$

Proof. The antiprism A_n , $n \ge 4$, admits a C_3 -covering with exactly 2n cycles C_3 . The first type of the cycle C_3 has the vertex set $V(C_3^i) = \{x_i, x_{i+1}, y_i : 1 \le i \le n\}$ and the edge set $E(C_3^i) = \{x_i x_{i+1}, x_i y_i, y_i x_{i+1} : 1 \leq i \leq n\}$. The second type of the cycle C_3 has the vertex set $V(\mathcal{C}_3^i) = \{y_i, y_{i+1}, x_{i+1} : 1 \leq i \leq n\}$ and the edge set $E(\mathcal{C}_3^i) = \{y_i y_{i+1}, y_i x_{i+1}, y_{i+1} x_{i+1} : 1 \leq i \leq n\}$. Note that the indices are taken modulo n.

From Theorem 1 it follows that $\operatorname{ehs}(A_n, C_3) \geq \left\lceil \frac{2n+2}{3} \right\rceil$. To show that $\left\lceil \frac{2n+2}{3} \right\rceil$ is an upper bound for the edge C_3 -irregularity strength of A_n we define a C_3 -irregular edge labeling $\alpha_2 : E(A_n) \to \left\{1, 2, \ldots, \left\lceil \frac{2n+2}{3} \right\rceil\right\}$, in the following way. We distinguish two cases.

Case 1. When $n \equiv 0, 4, 5 \pmod{6}$, then

$$\alpha_2(x_i x_{i+1}) = \begin{cases} i & \text{for } i = 1, 2, \\ i + \lfloor \frac{i}{3} \rfloor & \text{for } 3 \le i \le t - 1, \\ \lceil \frac{2n+2}{3} \rceil & \text{for } i = t, \\ n - i + 3 + \lfloor \frac{n-i-2}{3} \rfloor & \text{for } t + 1 \le i \le n - 2, \\ n - i + 2 & \text{for } i = n - 1, n, \end{cases}$$

where
$$t = \begin{cases} \frac{n+1}{2} & \text{if } n \equiv 5 \pmod{6}, \\ \frac{n}{2} + 1 & \text{if } n \equiv 0, 4 \pmod{6}. \end{cases}$$

$$\alpha_{2}(y_{i}y_{i+1}) = \begin{cases} i+1+\lfloor \frac{i-1}{3} \rfloor & \text{for } 1 \leq i \leq \lceil \frac{n}{2} \rceil - 1, \\ \lceil \frac{2n+2}{3} \rceil & \text{for } i = \lceil \frac{n}{2} \rceil \text{ and } n \equiv 5 \pmod{6}, \\ \lceil \frac{2n+2}{3} \rceil - 1 & \text{for } i = \lceil \frac{n}{2} \rceil \text{ and } n \equiv 0, 4 \pmod{6}, \\ n-i+2+\lfloor \frac{n-i-1}{3} \rfloor & \text{for } \lceil \frac{n}{2} \rceil + 1 \leq i \leq n-1, \\ 1 & \text{for } i = n, \end{cases}$$

$$\alpha_{2}(x_{i}y_{i}) = \begin{cases} i+\lfloor \frac{i-1}{3} \rfloor & \text{for } 1 \leq i \leq \lceil \frac{n}{2} \rceil, \\ \lceil \frac{2n+2}{3} \rceil & \text{for } 1 \leq i \leq \lceil \frac{n}{2} \rceil + 1 \text{ and } n \equiv 0, 5 \pmod{6}, \\ \lceil \frac{2n+2}{3} \rceil & \text{for } i = \lceil \frac{n}{2} \rceil + 1 \text{ and } n \equiv 0, 5 \pmod{6}, \\ \lceil \frac{2n+2}{3} \rceil - 1 & \text{for } i = \lceil \frac{n}{2} \rceil + 1 \text{ and } n \equiv 4 \pmod{6}, \\ n-i+3+\lfloor \frac{n-i-1}{3} \rfloor & \text{for } \lceil \frac{n}{2} \rceil + 2 \leq i \leq n-1, \\ 2 & \text{for } i = n, \end{cases}$$

$$\alpha_{2}(y_{i}x_{i+1}) = \begin{cases} 1 & \text{for } i = 1, \\ i+1+\lfloor \frac{i-2}{3} \rfloor & \text{for } 2 \leq i \leq \lceil \frac{n}{2} \rceil - 1, \\ \lceil \frac{2n+2}{3} \rceil - 1 & \text{for } i = \lceil \frac{n}{2} \rceil \text{ and } n \equiv 0, 4 \pmod{6}, \\ \lceil \frac{2n+2}{3} \rceil & \text{for } i = \lceil \frac{n}{2} \rceil \text{ and } n \equiv 5 \pmod{6}, \\ n-i+2+\lfloor \frac{n-i}{3} \rfloor & \text{for } \lceil \frac{n}{2} \rceil + 1 \leq i \leq n. \end{cases}$$

Case 2. When $n \equiv 1, 2, 3 \pmod{6}$, then

$$\alpha_{2}(x_{i}x_{i+1}) = \begin{cases} i & \text{for } i = 1, 2, \\ i + \lfloor \frac{i}{3} \rfloor & \text{for } 3 \le i \le t - 1, \\ \lceil \frac{2n+2}{3} \rceil & \text{for } i = t \text{ and } n \equiv 2 \pmod{6}, \\ \lceil \frac{2n+2}{3} \rceil - 1 & \text{for } i = t \text{ and } n \equiv 1, 3 \pmod{6}, \\ n - i + 3 + \lfloor \frac{n - i - 2}{3} \rfloor & \text{for } t + 1 \le i \le n - 2, \\ n - i + 2 & \text{for } i = n - 1, n, \end{cases}$$

where
$$t = \begin{cases} \frac{n+1}{2} & \text{if } n \equiv 1,3 \pmod{6}, \\ \frac{n}{2} + 1 & \text{if } n \equiv 2 \pmod{6}. \end{cases}$$

$$\alpha_{2}(y_{i}y_{i+1}) = \begin{cases} i+1+\lfloor \frac{i-1}{3} \rfloor & \text{for } 1 \leq i \leq \lceil \frac{n}{2} \rceil - 1, \\ \lceil \frac{2n+2}{3} \rceil & \text{for } i = \lceil \frac{n}{2} \rceil, \\ n-i+2+\lfloor \frac{n-i-1}{3} \rfloor & \text{for } \lceil \frac{n}{2} \rceil + 1 \leq i \leq n-1, \\ 1 & \text{for } i = n, \end{cases}$$

$$\alpha_{2}(x_{i}y_{i}) = \begin{cases} i+\lfloor \frac{i-1}{3} \rfloor & \text{for } 1 \leq i \leq \lceil \frac{n}{2} \rceil, \\ \lceil \frac{2n+2}{3} \rceil & \text{for } i = \lceil \frac{n}{2} \rceil + 1 \text{ and } n \equiv 2 \pmod{6}, \\ \lceil \frac{2n+2}{3} \rceil - 1 & \text{for } i = \lceil \frac{n}{2} \rceil + 1 \text{ and } n \equiv 1, 3 \pmod{6}, \\ n-i+3+\lfloor \frac{n-i-1}{3} \rfloor & \text{for } \lceil \frac{n}{2} \rceil + 2 \leq i \leq n-1, \\ 2 & \text{for } i = n, \end{cases}$$

$$\alpha_{2}(y_{i}x_{i+1}) = \begin{cases} 1 & \text{for } i = 1, \\ i+1+\lfloor \frac{i-2}{3} \rfloor & \text{for } 2 \leq i \leq \lceil \frac{n}{2} \rceil - 1, \\ \lceil \frac{2n+2}{3} \rceil - 1 & \text{for } i = \lceil \frac{n}{2} \rceil \text{ and } n \equiv 1, 2 \pmod{6}, \\ \lceil \frac{2n+2}{3} \rceil & \text{for } i = \lceil \frac{n}{2} \rceil \text{ and } n \equiv 3 \pmod{6}, \\ n-i+2+\lfloor \frac{n-i}{3} \rfloor & \text{for } \lceil \frac{n}{2} \rceil + 1 \leq i \leq n. \end{cases}$$

Now we compute the C_3 -weights under the edge labeling α_2 as follows. For the weights of 3-cycles of the first type we get

$$wt_{\alpha_2}(C_3^i) = \sum_{e \in E(C_3^i)} \alpha_2(e) = \alpha_2(x_i x_{i+1}) + \alpha_2(x_i y_i) + \alpha_2(y_i x_{i+1})$$
$$= \begin{cases} 4i - 1 & \text{for } 1 \le i \le \lceil \frac{n}{2} \rceil, \\ 4n - 4i + 6 & \text{for } \lceil \frac{n}{2} \rceil + 1 \le i \le n, \end{cases}$$

6),

and for the weights of 3-cycles of the second type we have

$$wt_{\alpha_2}(\mathcal{C}_3^i) = \sum_{e \in E(\mathcal{C}_3^i)} \alpha_2(e) = \alpha_2(y_i y_{i+1}) + \alpha_2(y_i x_{i+1}) + \alpha_2(y_{i+1} x_{i+1})$$
$$= \begin{cases} 4i+1 & \text{for } 1 \le i \le \left\lceil \frac{n+1}{2} \right\rceil - 1, \\ 4n-4i+4 & \text{for } \left\lceil \frac{n+1}{2} \right\rceil \le i \le n. \end{cases}$$

Combining these two cases one can see that the weights of the cycles C_3^i are different to the weights of the cycles \mathcal{C}_3^i . This shows that α_2 is an edge C_3 -irregular labeling of A_n . Therefore, $\operatorname{ehs}(A_n, C_4) \leq \left\lceil \frac{2n+2}{3} \right\rceil$ and we arrive at the desired result.

3. TRIANGULAR LADDER AND DIAGONAL LADDER

Let $L_n \cong P_n \Box P_2$, $n \ge 2$, be a ladder with the vertex set $V(L_n) = \{x_i, y_i : i = 1, 2, ..., n\}$ and the edge set $E(L_n) = \{x_i x_{i+1}, y_i y_{i+1} : i = 1, 2, ..., n-1\} \cup \{x_i y_i : i = 1, 2, ..., n\}$. The triangular ladder TL_n , $n \ge 2$, is obtained from a ladder L_n by adding the edges $y_i x_{i+1}$ for i = 1, 2, ..., n-1.

Theorem 4. Let TL_n , $n \ge 2$, be a triangular ladder. Then

$$\operatorname{ehs}(TL_n, C_3) = \left\lceil \frac{2n}{3} \right\rceil.$$

Proof. The triangular ladder TL_n , $n \ge 2$, admits a C_3 -covering with exactly 2(n-1) cycles C_3 . There are two types of cycles C_3 that cover TL_n . The first type of cycles C_3 has the vertex set $V(C_3^i) = \{x_i, x_{i+1}, y_i : 1 \le i \le n-1\}$ and the edge set $E(C_3^i) = \{x_ix_{i+1}, x_iy_i, y_ix_{i+1} : 1 \le i \le n-1\}$. The second type of cycles C_3 has the vertex set $V(C_3^i) = \{y_i, y_{i+1}, x_{i+1} : 1 \le i \le n-1\}$ and the edge set $E(C_3^i) = \{y_iy_{i+1}, y_{i+1}x_{i+1} : 1 \le i \le n-1\}$ and the edge set $E(C_3^i) = \{y_iy_{i+1}, y_{i+1}x_{i+1} : 1 \le i \le n-1\}$ and the edge set $E(C_3^i) = \{y_iy_{i+1}, y_{i+1}x_{i+1} : 1 \le i \le n-1\}$.

According to Theorem 1 it follows that $\operatorname{ehs}(TL_n, C_3) \geq \left\lceil \frac{2n}{3} \right\rceil$. To show that $\left\lceil \frac{2n}{3} \right\rceil$ is an upper bound for the edge C_3 -irregularity strength of TL_n we define a C_3 -irregular edge labeling $\alpha_3 : E(TL_n) \to \left\{1, 2, \ldots, \left\lceil \frac{2n}{3} \right\rceil\right\}$ as follows. Let us consider three cases.

Case 1. When $i \equiv 0 \pmod{3}$, then

$$\alpha_3(x_i x_{i+1}) = \alpha_3(y_i y_{i+1}) = \frac{2i}{3} \qquad \text{for } i = 3, 6, \dots, n-1,$$

$$\alpha_3(y_i x_{i+1}) = \frac{2i+3}{3} \qquad \text{for } i = 3, 6, \dots, n-1,$$

$$\alpha_3(x_i y_i) = \frac{2i}{3} \qquad \text{for } i = 3, 6, \dots, n.$$

Case 2. When $i \equiv 1 \pmod{3}$, then

$$\alpha_3(x_i x_{i+1}) = \alpha_3(y_i y_{i+1}) = \alpha_3(y_i x_{i+1}) = \frac{2i+1}{3} \quad \text{for } i = 1, 4, \dots, n-1,$$

$$\alpha_3(x_i y_i) = \frac{2i+1}{3} \quad \text{for } i = 1, 4, \dots, n.$$

Case 3. When $i \equiv 2 \pmod{3}$, then

$$\alpha_3(x_i x_{i+1}) = \frac{2i-1}{3} \qquad \text{for } i = 2, 5, \dots, n-1,$$

$$\alpha_3(y_i y_{i+1}) = \alpha_3(y_i x_{i+1}) = \frac{2i+2}{3} \qquad \text{for } i = 2, 5, \dots, n-1,$$

$$\alpha_3(x_i y_i) = \frac{2i+2}{3} \qquad \text{for } i = 2, 5, \dots, n.$$

It is a routine matter to verify that under the labeling α_3 all edge labels are at most $\lceil \frac{2n}{3} \rceil$. It is not difficult to see that under the edge labeling α_3 the weights of the cycles C_3^i , $1 \le i \le n-1$, are of the form

$$wt_{\alpha_3}(C_3^i) = \alpha_3(x_i x_{i+1}) + \alpha_3(x_i y_i) + \alpha_3(y_i x_{i+1}) = 2i + 1.$$

The weights of the cycles C_3^i , $1 \le i \le n-1$, are of the form

$$wt_{\alpha_3}(\mathcal{C}_3^i) = \alpha_3(y_iy_{i+1}) + \alpha_3(x_{i+1}y_{i+1}) + \alpha_3(y_ix_{i+1}) = 2(i+1).$$

Combining these two cases we obtained that the weights are different for any two distinct cycles C_3 . Thus $ehs(TL_n, C_3) \leq \left\lceil \frac{2n}{3} \right\rceil$. This completes the proof.

The diagonal ladder DL_n is obtained from a ladder L_n by adding the edges $\{x_iy_{i+1}, x_{i+1}y_i : 1 \le i \le n-1\}$. So the diagonal ladder DL_n contains 2n vertices and 5n-4 edges.

Theorem 5. Let DL_n , $n \ge 2$, be a diagonal ladder. Then

$$\operatorname{ehs}(DL_n, K_4) = \left\lceil \frac{n+4}{6} \right\rceil.$$

Proof. The diagonal ladder DL_n , $n \ge 2$, admits a K_4 -covering with exactly (n-1) complete graphs K_4 . The K_4^i has the vertex set $V(K_4^i) = \{x_i, y_i, x_{i+1}, y_{i+1} : 1 \le i \le n-1\}$ and the edge set $E(K_4^i) = \{x_i x_{i+1}, x_i y_i, x_i y_{i+1}, y_i y_{i+1}, y_i x_{i+1}, x_{i+1} y_{i+1} : 1 \le i \le n-1\}$.

With respect to Theorem 1 it follows that $\operatorname{ehs}(DL_n, K_4) \geq \lceil \frac{n+4}{6} \rceil$. To show that $\operatorname{ehs}(DL_n, K_4) \leq \lceil \frac{n+4}{6} \rceil$ we define a K_4 -irregular edge labeling α_4 :

 $E(DL_n) \to \{1, 2, \dots, \left\lceil \frac{n+4}{6} \right\rceil\}$, in the following way.

$$\begin{aligned} \alpha_4(y_i y_{i+1}) &= \left\lceil \frac{i}{6} \right\rceil & \text{for } 1 \le i \le n-1, \\ \alpha_4(x_i x_{i+1}) &= \begin{cases} \left\lceil \frac{i}{6} \right\rceil & \text{for } 1 \le i \le 5, \\ \left\lceil \frac{i+1}{6} \right\rceil & \text{for } 6 \le i \le n-1, \end{cases} \\ \alpha_4(x_i y_i) &= \begin{cases} \left\lceil \frac{i}{6} \right\rceil & \text{for } 1 \le i \le 4, \\ \left\lceil \frac{i+2}{6} \right\rceil & \text{for } 5 \le i \le n, \end{cases} \\ \alpha_4(x_i y_{i+1}) &= \begin{cases} 1 & \text{for } i = 1, \\ \left\lceil \frac{i+5}{6} \right\rceil & \text{for } 2 \le i \le n-1, \end{cases} \\ \alpha_4(x_{i+1} y_i) &= \begin{cases} 1 & \text{for } i = 1, 2, \\ \left\lceil \frac{i+4}{6} \right\rceil & \text{for } 3 \le i \le n-1. \end{cases} \end{aligned}$$

One can verify that under the labeling α_4 all edge labels are at least 1 and at most $\left\lceil \frac{n+4}{6} \right\rceil$. To show that α_4 is edge K_4 -irregular labeling it will be enough to show that $wt_{\alpha_4}(K_4^i) < wt_{\alpha_4}(K_4^{i+1})$. It is a simple mathematical exercise that the weights of the subgraphs K_4^i , i = 1, 2, 3, 4, 5 are $wt_{\alpha_4}(K_4^i) = 5 + i$.

For i = 6, 7, ..., n - 1 we get

$$wt_{\alpha_4}(K_4^i) = \sum_{e \in E(K_4^i)} \alpha_4(e) = \alpha_4(x_i x_{i+1}) + \alpha_4(y_i y_{i+1}) + \alpha_4(x_i y_i) + \alpha_4(x_{i+1} y_{i+1}) \\ + \alpha_4(x_i y_{i+1}) + \alpha_4(x_{i+1} y_i) = \left\lceil \frac{i+1}{6} \right\rceil + \left\lceil \frac{i}{6} \right\rceil + \left\lceil \frac{i+3}{6} \right\rceil + \left\lceil \frac{i+5}{6} \right\rceil \\ + \left\lceil \frac{i+4}{6} \right\rceil = 5 + i.$$

This proves that $wt_{\alpha_4}(K_4^{i+1}) = wt_{\alpha_4}(K_4^i) + 1$ for i = 1, 2, ..., n-1. Therefore, α_4 is an edge K_4 -irregular labeling of DL_n . Thus $ehs(DL_n, K_4) \leq \left\lceil \frac{n+4}{6} \right\rceil$. This concludes the proof.

4. Wheel and Gear Graph

A wheel W_n , $n \ge 3$, is a graph obtained by joining all vertices of cycle C_n to a further vertex c, called the *center*. Thus W_n contains n + 1 vertices, say, c, x_1, x_2, \ldots, x_n and 2n edges, say, $cx_i, x_ix_{i+1}, 1 \le i \le n$, where the indices are taken modulo n.

Theorem 6. Let W_n , $n \ge 4$, be a wheel. Then

$$\operatorname{ehs}(W_n, C_3) = \left\lceil \frac{n+2}{3} \right\rceil.$$

Proof. The wheel W_n , $n \ge 4$, admits a C_3 -covering with exactly n cycles C_3 . Every cycle C_3 in W_n is of the form $C_3^i = cx_ix_{i+1}$, where i = 1, 2, ..., n with indices taken modulo n.

According to Theorem 1 we have that $\operatorname{ehs}(W_n, C_3) \geq \left\lceil \frac{n+2}{3} \right\rceil$. To show that $\left\lceil \frac{n+2}{3} \right\rceil$ is an upper bound for the edge C_3 -irregularity strength of W_n we define a C_3 -irregular edge labeling $\alpha_5 : E(W_n) \to \left\{1, 2, \ldots, \left\lceil \frac{n+2}{3} \right\rceil\right\}$ as follows.

$$\alpha_{5}(x_{i}x_{i+1}) = \begin{cases} i & \text{for } i = 1, 2, \\ i - \left\lfloor \frac{i}{3} \right\rfloor & \text{for } 3 \le i \le \left\lceil \frac{n+1}{2} \right\rceil - 1, \\ \left\lceil \frac{n+2}{3} \right\rceil & \text{for } i = \left\lceil \frac{n+1}{2} \right\rceil, \\ n - i + 1 - \left\lfloor \frac{n-i}{3} \right\rfloor & \text{for } \left\lceil \frac{n+1}{2} \right\rceil + 1 \le i \le n, \end{cases}$$

$$\alpha_{5}(cx_{i}) = \begin{cases} 1 & \text{for } i = 1, \\ i - 1 - \left\lfloor \frac{i-2}{3} \right\rfloor & \text{for } 2 \le i \le \left\lceil \frac{n}{2} \right\rceil, \\ \left\lceil \frac{n+2}{3} \right\rceil & \text{for } i = \left\lceil \frac{n}{2} \right\rceil + 1 \text{ and } n \equiv 0, 1 \pmod{3}, \\ \left\lceil \frac{n+2}{3} \right\rceil - 1 & \text{for } i = \left\lceil \frac{n}{2} \right\rceil + 1 \text{ and } n \equiv 2 \pmod{3}, \\ n - i + 1 - \left\lfloor \frac{n-i-1}{3} \right\rfloor & \text{for } \left\lceil \frac{n}{2} \right\rceil + 2 \le i \le n - 1, \\ 2 & \text{for } i = n. \end{cases}$$

It is a matter of routine checking that under the labeling α_5 all edge labels are at most $\lceil \frac{n+2}{3} \rceil$. For the C_3 -weight of the cycle C_3^i we get

$$wt_{\alpha_{5}}(C_{3}^{i}) = \alpha_{5}(cx_{i}) + \alpha_{5}(cx_{i+1}) + \alpha_{5}(x_{i}x_{i+1})$$
$$= \begin{cases} 2i+1 & \text{for } 1 \le i \le \lceil \frac{n}{2} \rceil, \\ 2(n+2-i) & \text{for } \lceil \frac{n}{2} \rceil + 1 \le i \le n. \end{cases}$$

Clearly, the weights of C_3^i for $1 \le i \le \lceil \frac{n}{2} \rceil$ are odd and increasing. On the other hand the weights of C_3^i for $\lceil \frac{n}{2} \rceil + 1 \le i \le n$ are even and decreasing. So, it concludes that all the weights of C_3^i are different. Thus α_5 is an edge C_3 -irregular labeling of W_n and $\operatorname{ehs}(W_n, C_3) \le \lceil \frac{n+2}{3} \rceil$. This completes the proof.

A gear graph G_n is obtained from W_n by inserting a vertex to each edge on the cycle C_n . Then the vertex set of G_n is $V(G_n) = \{c, x_i, y_i : 1 \le i \le n\}$ and the edge set is $E(W_n) = \{x_i y_i, y_i x_{i+1}, cx_i : 1 \le i \le n\}$ with indices taken modulo n.

Theorem 7. Let G_n , $n \ge 3$, be a gear graph. Then

$$\operatorname{ehs}(G_n, C_4) = \left\lceil \frac{n+3}{4} \right\rceil.$$

Proof. The gear G_n , $n \ge 3$, admits a C_4 -covering with exactly n cycles C_4 . According to Theorem 1 we obtain that $ehs(G_n, C_4) \ge \left\lceil \frac{n+3}{4} \right\rceil$. To show that $\left\lceil \frac{n+3}{4} \right\rceil$ is an upper bound for the edge C_4 -irregularity strength of G_n we define a C_4 -irregular edge labeling $\alpha_6 : E(G_n) \to \left\{1, 2, \dots, \left\lceil \frac{n+3}{4} \right\rceil\right\}$, in the following way.

960

$$\alpha_6(x_i y_i) = \begin{cases} \left| \frac{i}{2} \right| & \text{for } 1 \le i \le \left| \frac{n}{2} \right| - 1, \\ \left\lceil \frac{n}{4} \right\rceil & \text{for } i = \left\lceil \frac{n}{2} \right\rceil \text{ and } n \not\equiv 2 \pmod{4}, \\ \frac{n-2}{4} & \text{for } i = \frac{n}{2} \text{ and } n \equiv 2 \pmod{4}, \\ \left\lceil \frac{n-i+2}{2} \right\rceil & \text{for } \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n, \end{cases}$$
$$\alpha_6(y_i x_{i+1}) = \begin{cases} \left\lceil \frac{i+1}{2} \right\rceil & \text{for } 1 \le i \le \left\lceil \frac{n}{2} \right\rceil, \\ \left\lceil \frac{n-i+1}{2} \right\rceil & \text{for } 1 \le i \le \left\lceil \frac{n}{2} \right\rceil, \\ \left\lceil \frac{n-i+1}{2} \right\rceil & \text{for } 1 \le i \le \left\lceil \frac{n}{2} \right\rceil, \end{cases}$$
$$\alpha_6(cx_i) = \begin{cases} \left\lceil \frac{i}{2} \right\rceil & \text{for } 1 \le i \le \left\lceil \frac{n}{2} \right\rceil, \\ \left\lceil \frac{n-i+3}{2} \right\rceil & \text{for } \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n. \end{cases}$$

It is easy to verify that under the labeling α_6 all edge labels are at most $\left\lceil \frac{n+3}{4} \right\rceil$. For the C_4 -weight of the cycle C_4^i , $i = 1, 2, \ldots, n$, under the edge labeling α_6 , we get

$$wt_{\alpha_{6}}(C_{4}^{i}) = \sum_{e \in E(C_{4}^{i})} \alpha_{6}(e) = \alpha_{6}(cx_{i}) + \alpha_{6}(cx_{i+1}) + \alpha_{6}(x_{i}y_{i}) + \alpha_{6}(y_{i}x_{i+1})$$
$$= \begin{cases} 2i+2 & \text{for } 1 \le i \le \left\lceil \frac{n}{2} \right\rceil, \\ 2n+5-2i & \text{for } \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n. \end{cases}$$

Clearly, the weights of C_4^i for $1 \le i \le \lceil \frac{n}{2} \rceil$ are even and increasing. On the other hand the weights of C_4^i for $\lceil \frac{n}{2} \rceil + 1 \le i \le n$ are odd and decreasing. So, it concluded that all the weights of C_4^i are different. Thus α_6 is an edge C_4 -irregular labeling of G_n . Hence $\operatorname{ehs}(G_n, C_4) \le \lceil \frac{n+2}{3} \rceil$. This completes the proof of theorem.

5. Conclusion

In this paper we have investigated the edge H-irregularity strength of some graphs. We have found the exact values of this parameter for several families of graphs namely, prisms, antiprisms, triangular ladders, diagonal ladders, wheels and gear graphs.

Acknowledgement

This work was supported by the Slovak Science and Technology Assistance Agency under the contract No. APVV-15-0116 and by VEGA 1/0233/18.

References

 A. Ahmad, O.B.S. Al-Mushayt and M. Bača, On edge irregularity strength of graphs, Appl. Math. Comput. 243 (2014) 607–610. https://doi.org/10.1016/j.amc.2014.06.028

- M. Aigner and E. Triesch, Irregular assignments of trees and forests, SIAM J. Discrete Math. 3 (1990) 439–449. https://doi.org/10.1137/0403038
- [3] D. Amar and O. Togni, *Irregularity strength of trees*, Discrete Math. **190** (1998) 15–38. https://doi.org/10.1016/S0012-365X(98)00112-5
- [4] F. Ashraf, M. Bača, Z. Kimáková and A. Semaničová-Feňovčíková, On vertex and edge H-irregularity strengths of graphs, Discrete Math. Algorithms Appl. 8 (2016) 1650070.

https://doi.org/10.1142/S1793830916500701

- M. Anholcer and C. Palmer, Irregular labellings of circulant graphs, Discrete Math. 312 (2012) 3461–3466. https://doi.org/10.1016/j.disc.2012.06.017
- T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004) 241–254. https://doi.org/10.1002/jgt.10158
- [7] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, *Irregular networks*, Congr. Numer. 64 (1988) 187–192.
- [8] R.J. Faudree and J. Lehel, Bound on the irregularity strength of regular graphs, Colloq. Math. Soc. János Bolyai, 52, Combinatorics, Eger North Holland, Amsterdam (1987) 247–256.
- [9] A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002) 120–137. https://doi.org/10.1002/jgt.10056
- [10] M. Imran, M. Naeem and A.Q. Baig, On vertex covering number of rotationallysymmetric graphs, Util. Math. 97 (2015) 295–307.
- [11] M. Kalkowski, M. Karoński and F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011) 1319–1321. https://doi.org/10.1137/090774112
- P. Majerski and J. Przybyło, On the irregularity strength of dense graphs, SIAM J. Discrete Math. 28 (2014) 197–205. https://doi.org/10.1137/120886650
- T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000) 313–323. https://doi.org/10.1137/S0895480196314291
- J. Przybyło, Irregularity strength of regular graphs, Electron. J. Combin. 15 (2008) #R82. https://doi.org/10.37236/806

Received 2 November 2018 Revised 25 March 2019 Accepted 25 March 2019