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Abstract

For k ≥ 1, a k-fair total dominating set (or just kFTD-set) in a graph
G is a total dominating set S such that |N(v) ∩ S| = k for every vertex
v ∈ V \S. The k-fair total domination number of G, denoted by ftdk(G),
is the minimum cardinality of a kFTD-set. A fair total dominating set,
abbreviated FTD-set, is a kFTD-set for some integer k ≥ 1. The fair total
domination number of a nonempty graph G, denoted by ftd(G), of G is
the minimum cardinality of an FTD-set in G. In this paper, we present
upper bounds for the 1-fair total domination number of cactus graphs, and
characterize cactus graphs achieving equality for the upper bounds.
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1. Introduction

For notation and graph theory terminology not given here, we follow [12]. Specif-
ically, let G be a graph with vertex set V (G) = V of order |V | = n and let v be
a vertex in V . The open neighborhood of v is NG(v) = {u ∈ V |uv ∈ E(G)} and
the closed neighborhood of v is NG[v] = {v}∪NG(v). If the graph G is clear from
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the context, we simply write N(v) rather than NG(v). The degree of a vertex
v, is deg(v) = |N(v)|. A vertex of degree one is called a leaf and its neighbor
a support vertex. We denote the set of leaves and support vertices of a graph
G by L(G) and S(G), respectively. A strong support vertex is a support vertex
adjacent to at least two leaves, and a weak support vertex is a support vertex
adjacent to precisely one leaf. For a set S ⊆ V , its open neighborhood is the set
N(S) =

⋃

v∈S N(v), and its closed neighborhood is the set N [S] = N(S)∪S. The
2-corona 2-cor(G) of a graph G is a graph obtained from G by adding a path P2

for every vertex v and joining v to a leaf of P2. Note that 2-cor(G) has order
3|V (G)|. The distance d(u, v) between two vertices u and v in a graph G is the
minimum number of edges of a path from u to v. For a subset S of vertices of a
graph G, we denote by G[S] the subgraph of G induced by S. A cactus graph is
a graph such that no pair of cycles have a common edge.

A subset S ⊆ V is a dominating set of G if every vertex not in S is adjacent
to a vertex in S. The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set of G. A dominating set S in a graph G with no
isolated vertex, is a total dominating set of G if every vertex in S is adjacent to
a vertex in S.

Caro et al. [1] studied the concept of fair domination in graphs. For k ≥ 1, a
k-fair dominating set, abbreviated kFD-set, in G is a dominating set S such that
|N(v) ∩D| = k for every vertex v ∈ V \D. The k-fair domination number of G,
denoted by fdk(G), is the minimum cardinality of a kFD-set. A kFD-set of G
of cardinality fdk(G) is called a fdk(G)-set. A fair dominating set, abbreviated
FD-set, in G is a kFD-set for some integer k ≥ 1. The fair domination number,
denoted by fd(G), of a graph G that is not the empty graph is the minimum
cardinality of an FD-set in G. An FD-set of G of cardinality fd(G) is called a
fd(G)-set. A perfect dominating set in a graph G is a dominating set S such
that every vertex in V (G)\S is adjacent to exactly one vertex in S. Hence a
1FD-set is precisely a perfect dominating set. The concept of perfect domination
was introduced by Cockayne et al. in [4], and Fellows et al. [7] with a different
terminology which they called semiperfect domination. This concept was further
studied in, for example, [2, 3, 5, 6, 8, 9, 11].

Maravilla et al. [13] introduced the concept of fair total domination in graphs.
For an integer k ≥ 1 and a graph G with no isolated vertex, a k-fair total

dominating set, abbreviated kFTD-set, is a total dominating set S ⊆ V (G) such
that |N(u)∩S| = k for every u ∈ V (G)\S. The k-fair total domination number of
G, denoted by ftdk(G), is the minimum cardinality of a kFTD-set. A kFTD-set
of G of cardinality ftdk(G) is called an ftdk(G)-set. A fair total dominating set,
abbreviated FTD-set, in G is a kFTD-set for some integer k ≥ 1. Thus, a fair
total dominating set S of a graph G is a total dominating set S of G such that
for every two distinct vertices u and v of V (G)\S, |N(u) ∈ S| = |N(v)∩ S|; that
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is, S is both a fair dominating set and a total dominating set of G. The fair total
domination number of G, denoted by ftd(G), is the minimum cardinality of an
FTD-set. A fair total dominating set of cardinality ftd(G) is called a minimum
fair total dominating set or an ftd-set of G.

In [10], Volkmann and we studied fair total domination in trees and unicyclic
graphs. In this paper, we study 1-fair total domination in cactus graphs. We
present upper bounds for the 1-fair total domination number of cactus graphs,
and characterize cactus graphs achieving equality for the upper bounds. The
techniques used in this paper are similar to those presented in [9]. The following
observations are easily verified.

Observation 1. Any support vertex in a graph G with no isolated vertex belongs

to every kFTD-set for each integer k.

Observation 2. Let S be a 1FTD-set in a graph G, and v be a vertex of degree

at least two such that v is adjacent to a weak support vertex v′. If S contains a

vertex u ∈ NG(v)\{v
′}, then v ∈ S.

2. Unicyclic Graphs

A vertex v of a graph is a special vertex if degG(v) = 2 and v belongs to a cycle
of G. Let H1 be the class of all graphs G that can be obtained from the 2-corona
2-cor(C) of a cycle C by removing precisely one support vertex v and the leaf
adjacent to v. Let G1 be the class of all graphs G that can be obtained from a
sequence G1, G2, . . . , Gs = G, where G1 ∈ H1, and if s ≥ 2, then Gj+1 is obtained
from Gj by one of the following Operations O1 or O2, for j = 1, 2, . . . , s− 1.

Operation O1. Let v be a vertex of Gj with deg(v) ≥ 2 such that v is not a
special vertex. Then Gj+1 is obtained from Gj by adding a path P3 and joining
v to a leaf of P3 by means of an edge.

Operation O2. Let v be a support vertex of Gj and let u be a leaf adjacent to v.
Then Gj+1 is obtained from Gj by adding a vertex u′ and a path P2, and joining
u to u′ and v to a leaf of P2.

Observation 3. If H ∈ H1, then H has precisely one special vertex.

Observation 4 [10]. If G ∈ G1 has order n, and C is the cycle of G, then we

have the following.

(1) G has precisely one special vertex.

(2) G has (n− 1)/3 leaves.

(3) No vertex of C is a support vertex.
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(4) Any vertex of C is adjacent to at most one weak support vertex of degree

two.

Lemma 5 [10]. If G ∈ G1, then every 1FTD-set in G contains every vertex of G
of degree at least two.

Theorem 6 [10]. If G is a unicyclic graph of order n, then ftd1(G) ≤ (2n+1)/3,
with equality if and only if G = C7 or G ∈ G1.

3. Main Result

Our aim in this paper is to give an upper bound for the fair total domination
number of a cactus graph G in terms of the number of cycles of G, and then
characterize all cactus graphs achieving equality for the proposed bound. For
this purpose we first introduce some families of graphs. Let H1 and G1 be the
families of unicyclic graphs described in Section 2. For i = 2, . . . , k, we construct
a family Hi from Gi−1, and a family Gi from Hi as follows.

• Family Hi. Let Hi be the family of all graphs Hi such that Hi can be obtained
from a graph H1 ∈ H1 and a graph G ∈ Gi−1, by the following procedure.

Procedure A. Let w0 ∈ V (H1) be a vertex of degree at least two of H1 such
that w0 is adjacent to a weak support vertex w′

0, and w ∈ V (Gi−1) be a vertex of
degree at least two of Gi−1 such that w is adjacent to a weak support vertex w′

of degree two. We remove w′

0, the leaf adjacent to w′

0, w
′ and the leaf adjacent

to w′, and then identify the vertices w0 and w.

• Family Gi. Let Gi be the family of all graphs G that can be obtained from
a sequence G1, G2, . . . , Gs = G, where G1 ∈ Hi, and if s ≥ 2, then Gj+1 is
obtained from Gj by one of the Operations O1 or O2, described in Section 2, for
j = 1, 2, . . . , s− 1.

Note thatHi ⊆ Gi, for i = 1, 2, . . . , k. Figure 1 demonstrates the construction
of the family Gk.

O1, O2

Operations

O1, O2

Operations

O1, O2

Operations

A

Procedure

A

Procedure

G1 G2 GkH1 H2

Figure 1. Construction of the family Gk.

We will prove the following.

Theorem 7. If G is a cactus graph of order n ≥ 5 with k ≥ 1 cycles, then

ftd1(G) ≤ (2(n+ k)− 1)/3, with equality if and only if G = C7 or G ∈ Gk.
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4. Preliminary Results and Observations

4.1. Notation

We call a vertex w in a cycle C of a cactus graph G a special cut-vertex if w
belongs to a shortest path from C to a cycle C ′ 6= C. We call a cycle C in
G, a leaf-cycle if C contains exactly one special cut-vertex. In the cactus graph
presented in Figure 2, vi is a special cut-vertex, for i = 1, 2, . . . , 8. Moreover, Cj

is a leaf-cycle for j = 1, 2, 3.

v1

v2

v3 v4

v5

v6 v7 v8
C1

C2

C3

Figure 2. Ci is a leaf-cycle for i = 1, 2, 3 and vj is a special cut-vertex for j = 1, 2, . . . , 8.

Observation 8. Every cactus graph with at least two cycles contains at least two

leaf-cycles.

4.2. Properties of the family Gk

The following observation can be proved by a simple induction on k.

Observation 9. If G ∈ Gk is a cactus graph of order n, then we have the follow-

ing.

(1) No cycle of G contains a support vertex. Furthermore, any cycle of G con-

tains precisely one special vertex.

(2) If a vertex v of G belongs to a cycle of G, then v is adjacent to at most one

weak support vertex of degree two.

(3) |L(G)| = (n+ 1)/3− 2k/3.

(4) If a vertex v of G belongs to at least two cycles of G, then v is not adjacent

to a weak support vertex, and v belongs to precisely two cycles of G.

Proof. Let G ∈ Gk be a cactus graph of order n. To show (1), (2) or (3), we
prove by an induction on k, that we call first-induction. For the base step, if
k = 1, then G ∈ G1, and the result follows by Observation 4. Assume the result
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holds for all graphs G′ ∈ Gk′ with k′ < k. Now consider the graph G ∈ Gk, where
k > 1. Clearly, G is obtained from a sequence G1, G2, . . . , Gl = G, of cactus
graphs such that G1 ∈ Hk, and if l ≥ 2, then Gi+1 is obtained from Gi by one of
the Operations O1 or O2 for i = 1, 2, . . . , l − 1. We prove by an induction on l,
that we call second-induction. For the base step of the second-induction, let l = 1.
Thus G ∈ Hk. By the construction of graphs in the family Hk, there are graphs
H ∈ H1 and G′ ∈ Gk−1 such that G is obtained from H and G′ by Procedure A.
It is easy see that the base step of the second-induction holds. Assume that the
result (for the second-induction) holds for 2 ≤ l′ < l. Now let G = Gl. Clearly,
G is obtained from Gl−1 by applying one of the Operations O1 or O2. It is easy
see that the result holds.

The proof for (4) is similarly verified.

Observation 10. Let G ∈ Gk be obtained from a sequence G1, G2, . . . , Gs = G
(s ≥ 2) such that G1 ∈ H1 and Gj+1 is obtained from Gj by one of the Operations

O1 or O2 or Procedure A, for j = 1, 2, . . . , s−1. If v is a vertex of G belonging to

two cycles of G, then there is an integer i ∈ {2, 3, . . . , s} such that Gi is obtained

from Gi−1 by applying Procedure A on the vertex v using a graph H ∈ H1, such

that v belongs to a cycle of Gi−1.

Observation 11. Assume that G ∈ Gk and v ∈ V (G) is a vertex of degree four

belonging to two cycles. Let D1 and D2 be the components of G − v, G∗

1 be the

graph obtained from G[D1 ∪ {v}] by joining v to a leaf of a path P2, and G∗

2 be

the graph obtained from G[D2 ∪ {v}] by joining v to a leaf of a path P2. Then

there exists an integer k′ < k such that G∗

1 ∈ Gk′ or G∗

2 ∈ Gk′ .

Proof. Let G ∈ Gk. Then G is obtained from a sequence G1, G2, . . . , Gs = G
(s ≥ 2) such that G1 ∈ H1 and Gj+1 is obtained from Gj by one of the Operations
O1 or O2 or procedure A, for j = 1, 2, . . . , s− 1. Note that s ≥ k. We define the
j-th Procedure-Operation or just POj as one of the Operation O1, Operation O2,
or Procedure A that can be applied to obtain Gj+1 from Gj . Thus G is obtained
from G1 by Procedure-Operations PO1, PO2, . . . , POs−1.

Let v be a vertex of G of degree four belonging to two cycles of G, and D1

and D2 be the components of G − v. By Observation 10, there is an integer
i ∈ {2, 3, . . . , s} such that Gi is obtained from Gi−1 by applying Procedure A on
the vertex v using a graph H ∈ H1. Note that v is adjacent to a weak support
vertex v′ of Gi−1. Let v′′ be the leaf of v′ in Gi−1 that is removed in Procedure
A. Clearly, either V (Gi−1) ∩ D1 6= ∅ or V (Gi−1) ∩ D2 6= ∅. Without loss of
generality, assume that V (Gi−1) ∩ D1 6= ∅. Among POi, POi+1, . . . , POs−1, let
POr1 , POr2 , . . . , POrt , be those procedure-operations applied on a vertex of D1.
Note that i ≤ t ≤ s − 1. Let Gr0 = Gi−1 and Grl+1

be obtained from Grl by
POl+1, for l = 0, 1, 2, . . . , t−1. Clearly, by an induction on t, we can deduce that
there is an integer k∗ < k such that Grt ∈ Gk∗ . Note that Grt = G∗

1.
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Lemma 12. If G ∈ Gk, then every 1FTD-set in G contains each vertex of G of

degree at least two.

Proof. Let G ∈ Gk, and S be a 1FTD-set in G. We prove by an induction on
k, that we call first-induction, that S contains every vertex of G of degree at
least two. For the base step, if k = 1, then G ∈ G1, and the result follows by
Lemma 5. Assume the result holds for all graphs G′ ∈ Gk′ with k′ < k. Now
consider the graph G ∈ Gk, where k > 1. Clearly, G is obtained from a sequence
G1, G2, . . . , Gl = G, of cactus graphs such that G1 ∈ Hk, and if l ≥ 2, then Gi+1

is obtained from Gi by one of the Operations O1 or O2 for i = 1, 2, . . . , l − 1.
We prove by an induction on l, that we call second-induction, that S contains

every vertex of G of degree at least two.
For the base step of the second-induction, let l = 1. Thus G ∈ Hk. By the

construction of graphs in the family Hk, there are graphs H ∈ H1 and G′ ∈ Gk−1

such that G is obtained from H and G′ by Procedure A. Clearly, H is obtained
from the 2-corona 2-cor(C) of a cycle C, by removing precisely one support vertex
v and the leaf adjacent to v of 2-cor(C).

Let C = c0c1 · · · crc0 be the cycle of H, where c0 is a vertex of degree at least
two of H that is adjacent to a weak support vertex c′0, and let c′0 and its leaf
(that we call c′′0) be removed according to Procedure A. By Observation 3, H has
precisely one special vertex. Let ct be the special vertex of H. Let w ∈ V (G′) be
a vertex of degree at least two of G′ that is adjacent to a weak support vertex w′,
and let w′ and its leaf (that we call w′′) be removed according to Procedure A.

First we show that {c1, cr} ∩ S 6= ∅. Clearly, S ∩ {ct−1, ct, ct+1} 6= ∅, since
degG(ct) = 2. Assume that ct ∈ S. Since at least one of ct−1 or ct+1 is adjacent
to a weak support vertex, by Observation 2, {ct−1, ct+1} ∩ S 6= ∅. By applying
Observation 2, we obtain that {c1, cr}∩S 6= ∅, since any vertex of {c1, . . . , cr}\{ct}
is adjacent to a weak support vertex of G. Thus assume that ct /∈ S. Then
{ct−1, ct+1} ∩S 6= ∅, and so {c1, cr} ∩S 6= ∅, since any vertex of {c1, . . . , cr}\{ct}
is adjacent to a weak support vertex of G. Hence, {c1, cr}∩S 6= ∅. If c0 /∈ S, then
S ∪ {w′, w′′} is a 1FTD-set for G′, and thus by the first-inductive hypothesis, S′

contains w = c0, a contradiction. Thus c0 ∈ S. By Observation 2, V (C) ⊆ S,
since any vertex of {c1, . . . , cr} − \{ct} is adjacent to a weak support vertex of
G. Thus S ∩ V (G′) is a 1FTD-set for G′. By the first-inductive hypothesis, (S ∩
V (G′))∪{w′, w′′} contains every vertex of G′ of degree at least two. Consequently,
S contains every vertex of G of degree at least two. We conclude that the base
step of the second-induction holds.

Assume that the result (for the second-induction) holds for 2 ≤ l′ < l. Now
let G = Gl. Clearly, G is obtained from Gl−1 by applying one of the Operations
O1 or O2.

Assume that G is obtained from Gl−1 by applying Operation O2. Let x be a
support vertex of Gl−1 and let x′ be a leaf adjacent to x. Let G be obtained from
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Gl−1 by adding a vertex u′ and a path P2 = y1y2, joining x′ to u′ and joining x to
y1, according to Operation O2. By Observation 1, x′, y1 ∈ S and so x ∈ S. Thus
S\{y1} is a 1FTD-set for Gl−1. By the second-inductive hypothesis, S contains
all vertices of Gl−1 of degree at least two. Consequently, S contains every vertex
of Gk of degree at least two.

Next assume that G is obtained from Gl−1 by applying Operation O1. Let
P3 = x1x2x3 be a path and x1 be joined to y ∈ V (Gl−1), where degGl−1

(y) ≥ 2
and y is not a special vertex of Gl−1, according to Operation O2. By Observation
1, x2 ∈ S. Observe that {x1, x3}∩S 6= ∅. If x1 6∈ S, then x3 ∈ S and y 6∈ S. Then
S\{x2, x3} is a 1FTD-set for Gl−1 that does not contains y, a contradiction by
the second-inductive hypothesis. Thus assume that x1 ∈ S. Suppose that y 6∈ S.
Clearly, NGl−1

(y)∩S = ∅. Assume that there exists a component G′

1 of Gl−1− y
such that |V (G′

1) ∩ NGl−1
(y)| = 1. Then clearly S′ = (S ∩ V (Gl−1)) ∪ V (G′

1)
is a 1FTD-set for Gl−1, and by the second-inductive hypothesis, S′ contains
every vertex of Gl−1 of degree at least two. Thus y ∈ S′, and so y ∈ S, a
contradiction. Next assume that every component of Gl−1 − y has at least two
vertices in NGl−1

(y). Since y is a non-special vertex of Gl−1, y belongs to at
least two cycles of Gl−1. By Observation 9(4), y belongs to exactly two cycles
of Gl−1. Thus degGl−1

(y) = 4. By Observation 11, Gl−1 − y has exactly two
components D1 and D2. Let G

∗ be a graph obtained from D1 ∪ {y} or D2 ∪ {y}
by adding a path P2 = y′y′′ to y. Then there exists k′ ≤ k such that G∗ ∈ Gk′ .
Evidently, S∗ = (S ∩ V (G∗)) ∪ {y′, y′′} is a 1FTD-set for G∗, and so by the first-
inductive hypothesis, S∗ contains every vertex of G∗ of degree at least two (since
G∗ ∈ Gk′). Thus y ∈ S∗, and so y ∈ S, a contradiction. We conclude that y ∈ S.
Observe that S∩V (Gl−1) is a 1FTD-set for Gl−1, and so by the second-inductive
hypothesis, S ∩ V (Gl−1) contains every vertex of Gl−1 of degree at least two.
Consequently, S contains every vertex of G of degree at least two.

As a consequence of Observation 9(3) and Lemma 12, we obtain the following.

Corollary 13. If G ∈ Gk is a cactus graph of order n, then V (G)\L(G) is the

unique ftd1(G)-set.

In what follows, we present an upper bound for the 1-fair domination number
of a cactus graph in terms of the order and the number of cycles.

Theorem 14. If G is a cactus graph of order n ≥ 4 with k ≥ 1 cycles, then

ftd1(G) ≤ (2(n+ k)− 1)/3.

Proof. The result follows by Theorem 6 if k = 1. Thus assume that k ≥ 2.
Suppose to the contrary that ftd1(G) > (2(n(G) + k) − 1)/3. Assume that
G has the minimum order, and among all such graphs, we may assume that
the size of G is minimum. Let C1, C2, . . . , Ck be the k cycles of G. Let Ci
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be a leaf-cycle of G, where i ∈ {1, 2, . . . , k}. Let Ci = c0c1 · · · crc0, where c0
is the special cut-vertex of G. Suppose that G has a strong support vertex
u, and u1, u2 are leaves adjacent to u. Let G0 = G − u1. By the choice of
G, ftd1(G

′) ≤ (2(n(G′) + k) − 1)/3 = (2(n + k) − 1)/3 − 2/3. Let S′ be an
ftd1(G

′)-set. By Observation 1, u ∈ S′. Clearly, S′ is a 1FTD-set in G and so
ftd1(G) ≤ (2(n+k)−1)/3−2/3, a contradiction. We deduce that every support
vertex of G is adjacent to precisely one leaf.

Assume that degG(uj) = 2 for each j = 1, 2, . . . , r. Let G′ = G−c2. Then by
the choice of G, ftd1(G

′) ≤ (2(n(G′)+k−1)−1)/3 = (2(n+k)−1)/3−4/3. Let
S′ be an ftd1(G

′)-set. By Observation 1, c0 ∈ S′. If |S′ ∩{c1, c3}| = 1, then S′ is
a 1FTD-set for G cardinality at most (2(n+k)−1)/3−4/3, a contradiction. Thus
assume that |S′∩{c1, c3}| = 2. Then {c2}∪S

′ is a 1FTD-set in G of cardinality at
most (2(n+k)−1)/3−1/3, a contradiction. Thus assume that |S′∩{c1, c3}| = 0.
Now {c1} ∪ S′ is a 1FTD-set in G of cardinality at most (2(n+ k)− 1)/3− 1/3,
a contradiction. We deduce that degG(ci) ≥ 3 for some i ∈ {1, 2, . . . , r}.

Let vd be a leaf of G such that d(vd, Ci − c0) is as maximum as possible, the
shortest path from vd to Ci does not contain c0 and deg(vd−1) is as maximum
as possible, where vd−1 is the neighbor of vd on the shortest path from vd to a
vertex v0 ∈ Ci.

Assume that d ≥ 3. Observe that degG(vd−1) = 2, since G has no strong
support vertex. Assume that degG(vd−2) = 2. Let G′ = G − {vd, vd−1, vd−2}.
By the choice of G, ftd1(G

′) ≤ (2(n(G′) + k) − 1)/3 = (2(n + k) − 1)/3 − 2.
Let S′ be an ftd1(G

′)-set. If vd−3 ∈ S′, then {vv−1, vd−2} ∪ S′ is a 1FTD-
set in G and so ftd1(G) ≤ (2(n + k) − 1)/3, a contradiction. If vd−3 /∈ S′,
then {vv−1, vd} ∪ S′ is a 1FTD-set in G and so ftd1(G) ≤ (2(n + k) − 1)/3,
a contradiction. Thus assume that degG(vd−2) ≥ 3. Assume that vd−2 is a
support vertex. Let G′ = G − {vd−1, vd}. By the choice of G, ftd1(G

′) ≤
(2(n(G′) + k) − 1)/3 = (2(n + k) − 1)/3 − 4/3. Let S′ be an ftd1(G

′)-set.
By Observation 1, vd−2 ∈ S′. Then {vd−1} ∪ S′ is a 1FTD-set in G and so
ftd1(G) ≤ (2(n + k) − 1)/3 − 1/3, a contradiction. Thus assume that vd−2 is
not a support vertex of G. Let x 6= vd−1, vd−3 be a support vertex of G such
that x ∈ N(vd−2). By the choice of the path v0v1 · · · vd, (the part “deg(vd−1) is
as maximum as possible”), degG(x) = 2. Let y be the leaf adjacent to x and
G′ = G − {vd, vd−1, y}. By the choice of G, ftd1(G

′) ≤ (2(n(G′) + k) − 1)/3 =
(2(n + k) − 1)/3 − 2. Let S′ be an ftd1(G

′)-set. By Observation 1, vd−2 ∈ S′,
since vd−2 is a support vertex of G′. Thus {vd−1, x} ∪ S′ is a 1FTD-set in G and
so ftd1(G) ≤ (2(n+ k)− 1)/3, a contradiction.

Next assume that d = 2. Assume that degG(ci) = 2 for some i ∈ {1, 2, . . . , r}.
Let degG(cj) = 2. Assume that degG(cj+1) = 2. Let G′ = G − cj . Then by the

choice of G, ftd1(G
′) ≤ (2(n(G′) + k − 1) − 1)/3 = (2(n + k) − 1)/3 − 4/3. Let

S′ be an ftd1(G
′)-set. By Observation 1, cj+2 ∈ S′. If |S′ ∩ {cj−1, cj+1}| = 1,
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then S′ is a 1FTD-set for G of cardinality at most (2(n + k) − 1)/3 − 4/3, a

contradiction. Thus assume that |S′ ∩ {cj−1, cj+1}| = 2. Then {cj} ∪ S′ is a

1FTD-set in G of cardinality at most (2(n + k) − 1)/3 − 1/3, a contradiction.

Thus assume that |S′∩{cj−1, cj+1}| = 0 and so {cj+1}∪S′ is a 1FTD-set in G of

cardinality at most (2(n+k)−1)/3−1/3, a contradiction. Thus degG(cj+1) ≥ 3.

Similarly degG(cj−1) ≥ 3. Clearly, cj+1 6= c0 or cj−1 6= c0. Assume, without loss

of generality, that cj+1 6= c0. Let cj+1 be a support vertex of G, and G′ = G− cj .

Then by the choice of G, ftd1(G
′) ≤ (2(n(G′) + k − 1) − 1)/3 = (2(n + k) −

1)/3− 4/3. Let S′ be an ftd1(G
′)-set. By Observation 1, cj+1 ∈ S′. If cj−1 /∈ S′,

then S′ is a 1FTD-set for G of cardinality at most (2(n + k) − 1)/3 − 4/3, a

contradiction. Thus assume that cj−1 ∈ S′ and so {cj} ∪ S′ is a 1FTD-set in G

of cardinality at most (2(n + k) − 1)/3 − 1/3, a contradiction. Thus cj+1 is not

a support vertex of G. Let c′j+1 ∈ N(cj+1)\V (Ci). Clearly, c′j+1 is a support

vertex, since d = 2. Observe that degG(c
′

j+1) = 2, since G has no strong support

vertex. Let c′′j+1 be the leaf of c′j+1. Let G
′ = G− cj − c′′j+1. By the choice of G,

ftd1(G
′) ≤ (2(n(G′)+k−1)−1)/3 = (2(n+k)−1)/3−2. Let S′ be an ftd1(G

′)-

set. By Observation 1, cj+1 ∈ S′, since cj+1 is a support vertex in G′. If cj−1 /∈ S′,

then S′∪{c′j+1} is a 1FTD-set for G of cardinality at most (2(n+k)−1)/3−1, a

contradiction. Thus assume that cj−1 ∈ S′. Then {cj , c
′

j+1}∪S′ is a 1FTD-set in

G of cardinality at most (2(n+ k)− 1)/3, a contradiction. Thus deg(ci) ≥ 3 for

1 ≤ i ≤ r. Let G∗ = G−c0c1−c0cr. Let G
∗

1 be the component of G∗ containing cr,

and G∗

2 be the component of G∗ containing c0. Let D = S(G∗

1)\V (Ci). Clearly,

S′ = D∪{c1, c2, . . . , cr} is a 1FTD-set for G∗

1 of cardinality at most 2n(G∗

1)/3. Let

G∗

3 = G[V (G∗

2)∪{c1}]. By the choice of G, ftd1(G
∗

3) ≤ (2(n(G∗

3)+ k− 1)− 1)/3.

Let S′′ be an ftd1(G
∗

3)-set. By Observation 1, c0 ∈ S′′. Clearly, S′∪S′′ is a 1FTD-

set for G and so ftd1(G) ≤ (2(n(G∗

3)+k−1)−1)/3+2n(G∗

1)/3 = (2(n+k)−1)/3,

a contradiction.

Now assume that d = 1. Assume that degG(ci) = 2 for some i ∈ {1, 2, . . . , r}.
Let degG(cj) = 2. Assume that degG(cj+1) = 2. Let G′ = G− cj . By the choice
of G, ftd1(G

′) ≤ (2(n(G′) + k− 1)− 1)/3 = (2(n+ k)− 1)/3− 4/3. Let S′ be an
ftd1(G

′)-set. By Observation 1, cj+2 ∈ S′. If |S′ ∩ {cj−1, cj+1}| = 1, then S′ is
a 1FTD-set for G of cardinality at most (2(n+ k)− 1)/3− 4/3, a contradiction.
Thus assume that |S′ ∩ {cj−1, cj+1}| = 2. Then {cj} ∪ S′ is a 1FTD-set in G of
cardinality at most (2(n + k) − 1)/3 − 1/3, a contradiction. Thus assume that
|S′ ∩ {cj−1, cj+1}| = 0. Then {cj+1} ∪ S′ is a 1FTD-set in G of cardinality at
most (2(n + k) − 1)/3 − 1/3, a contradiction. Thus degG(cj+1) ≥ 3. Similarly,
degG(cj−1) ≥ 3. Clearly, cj+1 6= c0 or cj−1 6= c0. Assume, without loss of general-
ity, that cj+1 6= c0. Thus cj+1 is a support vertex of G. Let G′ = G − cj . Then
by the choice of G, ftd1(G

′) ≤ (2(n(G′)+ k− 1)− 1)/3 = (2(n+ k)− 1)/3− 4/3.
Let S′ be an ftd1(G

′)-set. By Observation 1, cj+1 ∈ S′. If cj−1 /∈ S′, then S′ is a
1FTD-set for G, a contradiction. Thus assume that cj−1 ∈ S′. Then {cj}∪S′ is a
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1FTD-set in G of cardinality at most (2(n+k)− 1)/3− 1/3, a contradiction. We
thus obtain that deg(ci) ≥ 3 for 1 ≤ i ≤ r. Let G∗ = G− c0c1 − c0cr. Let G

∗

1 be
the component of G∗ containing cr, and G∗

2 be the component of G∗ containing c0.
Clearly, S′ = {c1, c2, . . . , cr} is a 1FTD-set for G∗

1 of cardinality at most n(G∗

1)/2.
LetG∗

3 = G[V (G∗

2)∪{c1}]. By the choice ofG, ftd1(G
∗

3) ≤ (2(n(G∗

3)+k−1)−1)/3.
Let S′′ be an ftd1(G

∗

3)-set. By Observation 1, c0 ∈ S′′. Clearly, S′∪S′′ is a 1FTD-
set for G and so ftd1(G) ≤ (2(n(G∗

3)+k−1)−1)/3+n(G∗

1)/2 < (2(n+k)−1)/3,
a contradiction.

It is evident that for the cycle C7 the equality of the bound given in Theorem
14 holds.

Theorem 15. If G 6= C7 is a cactus graph of order n ≥ 5 with k ≥ 1 cycles,

then ftd1(G) = (2(n+ k)− 1)/3 if and only if G ∈ Gk.

Proof. We prove by an induction on k to show that any cactus graph G 6= C7

of order n ≥ 5 with k ≥ 1 cycles and ftd1(G) = (2(n+ k)− 1)/3 belongs to Gk.
The base step of the induction follows by Theorem 6. Assume the result holds
for all cactus graphs G′ 6= C7 with k′ < k cycles. Now let G 6= C7 be a cactus
graph of order n with k ≥ 2 cycles and ftd1(G) = (2(n+ k)− 1)/3. Suppose to
the contrary that G /∈ Gk. Assume that G has the minimum order, and among
all such graphs, assume that the size of G is minimum.

Claim 1. Every support vertex of G is weak support vertex.

Proof. Suppose that G has a strong support vertex u, and assume that u1
and u2 are two leaves adjacent to u. Let G′ = G − u1, and S′ be an ftd1(G

′)-
set. By Observation 1, u ∈ S′. By Theorem 14, |S′| ≤ (2(n(G′) + 2) − 1)/3 =
(2(n + k) − 1)/3 − 2/3. Clearly, S′ is a 1FTD-set for G of cardinality at most
(2(n+ k)− 1)/3− 2/3, a contradiction. �

By Observation 8, G has at least two leaf-cycles. Let C1 = c0c1 · · · crc0 be a
leaf-cycle of G, where c0 is a special cut-vertex of G. Let G′

1 be the component
of G− c0c1 − c0cr containing c1.

Claim 2. V (G′

1) 6= {c1, . . . , cr}.

Proof. Suppose that V (G′

1) = {c1, . . . , cr}. Then degG(ci) = 2, for each i =
1, 2, . . . , r. Let G′ = G − c2. By Theorem 14, ftd1(G

′) ≤ (2(n(G′) + k − 1) −
1)/3 = (2(n + k) − 1)/3 − 4/3. Let S′ be an ftd1(G

′)-set. By Observation 1,
c0 ∈ S′. If |S′ ∩ {c1, c3}| = 1, then S′ is a 1FTD-set for G of cardinality at most
(2(n + k) − 1)/3 − 4/3, a contradiction. Thus assume that |S′ ∩ {c1, c3}| = 2.
Then {c2}∪S′ is a 1FTD-set in G of cardinality at most (2(n+k)−1)/3−1/3, a
contradiction. Thus assume that |S′∩{c1, c3}| = 0. Then {c1}∪S′ is a 1FTD-set
in G of cardinality at most (2(n+ k)− 1)/3− 1/3, a contradiction. �
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Let vd ∈ V (G′

1)\{c1, . . . , cr} be a leaf of G′

1 at maximum distance from
{c1, . . . , cr}, and assume that deg(vd−1) is as maximum as possible, degG(v0)
is as maximum as possible, and degG(v1) is as maximum as possible, where
v0 ∈ {c1, . . . , cr} and v0v1 · · · vd is the shortest path from vd to {c1, . . . , cr}.

Suppose that d = 1. Assume that degG(cj) = 2, for some j ∈ {1, 2, . . . , r}.
Assume that degG(cj+1) = 2. Let G′ = G − cj . By Theorem 14, ftd1(G

′) ≤
(2(n(G′) + k− 1)− 1)/3 = (2(n+ k)− 1)/3− 4/3. Let S′ be an ftd1(G

′)-set. By
Observation 1, cj+2 ∈ S′. If |S′ ∩ {cj−1, cj+1}| = 1, then S′ is a 1FTD-set for G
of cardinality at most (2(n+ k)− 1)/3− 4/3, a contradiction. Thus assume that
|S′ ∩ {cj−1, cj+1}| = 2. Then {cj} ∪ S′ is a 1FTD-set in G of cardinality at most
(2(n+ k)− 1)/3− 1/3, a contradiction. Thus assume that |S′ ∩{cj−1, cj+1}| = 0.
Then {cj+1}∪S′ is a 1FTD-set in G of cardinality at most (2(n+k)−1)/3−1/3,
a contradiction. Thus degG(cj+1) ≥ 3. Similarly, degG(cj−1) ≥ 3. Clearly,
cj+1 6= c0 or cj−1 6= c0. Assume, without loss of generality, that cj+1 6= c0.
Then cj+1 is a support vertex of G. Let G′ = G − cj . Then by Theorem 14,
ftd1(G

′) ≤ (2(n(G′) + k − 1) − 1)/3 = (2(n + k) − 1)/3 − 4/3. Let S′ be an
ftd1(G

′)-set. By Observation 1, cj+1 ∈ S′. If cj−1 /∈ S′, then S′ is a 1FTD-
set for G of cardinality at most (2(n + k) − 1)/3 − 4/3, a contradiction. Thus
assume that cj−1 ∈ S′. Then {cj} ∪ S′ is a 1FTD-set in G of cardinality at most
(2(n + k) − 1)/3 − 1/3, a contradiction. We thus obtain that deg(cj) ≥ 3, for
1 ≤ j ≤ r. Let G∗ = G− c0c1 − c0cr. Let G

∗

1 be the component of G∗ containing
cr, and G∗

2 be the component of G∗ containing c0. Clearly, S′ = {c1, c2, . . . , cr}
is a 1FTD-set for G∗

1 of cardinality at most n(G∗

1)/2. Let G
∗

3 = G[V (G∗

2)∪ {c1}].
By Theorem 14, ftd1(G

∗

3) ≤ (2(n(G∗

3) + k − 1) − 1)/3. Let S′′ be an ftd1(G
∗

3)-
set. By Observation 1, c0 ∈ S′′. Clearly, S′ ∪ S′′ is a 1FTD-set for G and so
ftd1(G) ≤ (2(n(G∗

3)+k−1)−1)/3+n(G∗

1)/2 < (2(n+k)−1)/3, a contradiction.

Thus assume that d ≥ 2.

Claim 3. If d ≥ 3, then G ∈ Gk.

Proof. Assume that d ≥ 3. By Claim 1, degG(vd−1) = 2. Assume first that
degG(vd−2) ≥ 3. Assume that vd−2 is a support vertex. Let G′ = G− {vd−1, vd}.
By Theorem 14, ftd1(G

′) ≤ (2(n(G′)+k)−1)/3 = (2(n+k)−1)/3−4/3. Let S′

be an ftd1(G
′)-set. By Observation 1, vd−2 ∈ S′. Then {vd−1}∪S′ is a 1FTD-set

in G, and so ftd1(G) ≤ (2(n+k)−1)/3−1/3, a contradiction. Thus assume that
vd−2 is not a support vertex of G. Let x 6= vd−1, vd−3 be a support vertex of G
such that x ∈ N(vd−2). By the choice of the path v0v1 · · · vd, (the part “deg(vd−1)
is as maximum as possible”), degG(x) = 2. Let y be the leaf adjacent to x, and
G′ = G − {vd, vd−1, y}. By Theorem 14, ftd1(G

′) ≤ (2(n(G′) + k) − 1)/3 =
(2(n + k) − 1)/3 − 2. Assume that ftd1(G

′) < (2(n(G′) + k) − 1)/3. Let S′ be
an ftd1(G

′)-set. By Observation 1, vd−2 ∈ S′, since vd−2 is a support vertex of
G′. Then {vd−1, x} ∪S′ is a 1FTD-set in G and so ftd1(G) < (2(n+ k)− 1)/3, a
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contradiction.Thus ftd1(G
′) = (2(n(G′) + k) − 1)/3 = (2(n + k) − 1)/3 − 2. By

the choice of G, G′ ∈ Gk. Thus G is obtained from G′ by Operation O2, and so
G ∈ Gk.

Assume that degG(vd−2) = 2. We consider the following cases.

Case 1. d ≥ 4. Suppose that degG(vd−3) = 2. Let G′ = G − {vd, vd−1, vd−2,
vd−3}. By Theorem 14, ftd1(G

′) ≤ (2(n(G′)+k)−1)/3 = (2(n+k)−1)/3−8/3.
Let S′ be an ftd1(G

′)-set. If vd−4 ∈ S′, then {vv−1, vd} ∪ S′ is a 1FTD-set in G
and so ftd1(G) ≤ (2(n+ k)− 1)/3− 2/3, a contradiction. Thus vd−4 /∈ S′. Then
{vv−2, vd−1} ∪ S′ is a 1FTD-set in G and so ftd1(G) ≤ (2(n + k) − 1)/3 − 2/3,
a contradiction. We deduce that degG(vd−3) ≥ 3. Let G′ = G− {vd, vd−1, vd−2}.
By Theorem 14, ftd1(G

′) ≤ (2(n(G′) + k) − 1)/3. Assume that ftd1(G
′) <

(2(n(G′)+k)−1)/3 = (2(n+k)−1)/3−2. Let S′ be an ftd1(G
′)-set. If vd−3 ∈ S′,

then {vv−1, vd−2} ∪ S′ is a 1FTD-set in G and so ftd1(G) < (2(n + k) − 1)/3,
a contradiction. Thus vd−3 /∈ S′. Then {vv−1, vd} ∪ S′ is a 1FTD-set in G and
so ftd1(G) < (2(n+ k)− 1)/3, a contradiction. We thus obtain that ftd1(G

′) =
(2(n(G′) + k) − 1)/3. By the choice of G, G′ ∈ Gk. Since d ≥ 4, vd−3 is not a
special vertex of G′. Thus G is obtained from G′ by Operation O1, and so G ∈ Gk.

Case 2. d = 3. Clearly, deg(v0) ≥ 3. We show that deg(v0) ≥ 4. Suppose
that deg(v0) = 3. Let G′ = G − {v1, v2, v3}. By Theorem 14, ftd1(G

′) ≤
(2(n(G′)+ k) − 1)/3. Assume that ftd1(G

′) = (2(n(G′) + k) − 1)/3. By the
choice of G, G′ ∈ Gk. By Observation 9(1), v0 is the unique special vertex of G′,
since degG′(v0) = 2. We show that degG′(x) = 3 for each x ∈ {c1, . . . , cr}\{v0}.
Assume that degG′(cj) ≥ 4 for some cj ∈ {c1, . . . , cr}\{v0}. If there is a vertex
w ∈ V (G) \ V (C1) such that d(w,C1) = d(w, cj) = 3, then w can plays the same
role of vd, and thus deg(uj) = 3, a contradiction. Thus there is no vertex w ∈
V (G)\V (C1) such that d(w,C1) = d(w, cj) = 3. Thus any vertex of N(uj)\V (C1)
is a leaf or a weak support vertex. Assume that N(cj)\V (C1) contains t1 leaves
and t2 support vertices, where t1+t2 ≥ 2. By Observation 9(1), t1 = 0, since G′ ∈
Gk. Thus t2 ≥ 2. Let z1 and z2 be two weak support vertices in N(cj)\V (C1). Let
z′1 and z′2 be the leaves adjacent to z1 and z2, respectively. (We switch for a while
toG). LetG′′ = G−{z1, z

′

1, z
′

2}. By Theorem 14, ftd1(G
′′) ≤ (2(n(G′′)+k)−1)/3.

Suppose that ftd1(G
′′) = (2(n(G′) + k) − 1)/3. By the choice of G, G′′ ∈ Gk.

Clearly, degG′′(ci) ≥ 3, since v0 is the unique special vertex of G′, a contradiction
(by Observation 9(1)). Thus ftd1(G

′′) < (2(n(G′′)+k)−1)/3 = (2(n+k)−1)/3−
2. Let S′′ be a 1FTD-set of G′′. By Observation 1, cj ∈ S′′. Then S′′ ∪ {z1, z2}
is a 1FTD-set of G. Thus ftd1(G) < (2(n + k) − 1)/3, a contradiction. We
deduce that degG′(ci) = 3 for each ci ∈ {c1, . . . , cr}\{v0}. Thus degG(ci) = 3
for each 1 ≤ i ≤ r. Note that by Observation 9(1), ci is not a support vertex,
for each i with 1 ≤ i ≤ r in G′, since G′ ∈ Gk. (We switch for a while to G).
Let F =

⋃r
i=1

(N [ci])\{c0, . . . , cr}. Clearly, |F | = r, since degG′(ci) = 3 for each
ci ∈ {c1, . . . , cr}\{v0} and degG(v0) = 3. Let F = {u1, u2, . . . , ur}. Clearly degG
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(ui) ≥ 2, for each i with 1 ≤ i ≤ r, since ci is not a support vertex for 1 ≤ i ≤ r
in G′. By Claim 2, ui is not a strong support vertex of G, for 1 ≤ i ≤ r. If ui is
adjacent to a support vertex u′i ∈ V (G)\V (C1), for some integer i, then since the
leaf of u′i can play the role of v3, we obtain that deg(ui) = 2. Since degG(ui) ≥ 2
for each i with 1 ≤ i ≤ r, we find that degG(ui) = 2 for each i with 1 ≤ i ≤ r.

Let F ′ =
⋃r

i=1
N(ui)\{c0, . . . , cr}. Clearly, |F ′| = r, since degG(ui) = 2,

for each ui ∈ {u1, . . . , ur}. Let F ′ = {u′1, u
′

2, . . . , u
′

r}. By the choice of the
path v0v1 · · · vd, (the part “deg(vd−1) is as maximum as possible”), deg(u′i) ≤ 2,
for 1 ≤ i ≤ r. Let F ′

1 = {u′i ∈ F ′| degG(u
′

i) = 1} and F ′

2 = F ′ − F ′

1. Then
every vertex of F ′

2 is a weak support vertex. Since v1 ∈ F ′

2, we have |F ′

2| ≥ 1.
Let G∗ = G − c0c1 − c0cr, and G∗

1 and G∗

2 be the components of G∗, where
c1 ∈ V (G∗

1). By Theorem 14, ftd1(G
∗

2) ≤ (2(n(G∗

2) + k − 1) − 1)/3. Clearly,
n(G∗

2) = n(G)−3r−|F ′

2|. Let S
∗

2 be an ftd1(G
∗

2)-set. If c0 /∈ S∗

2 , then S∗

2 ∪F ∪F ′

is a 1FTD-set for G. Thus ftd1(G) ≤ (2(n(G∗

2) + k− 1)− 1)/3+ 2r = (2(n(G)−
3r− |F ′

2|+ k− 1)− 1)/3+2r and so ftd1(G) < (2(n+ k)− 1)/3, a contradiction.
Thus c0 ∈ S∗

2 . If |F ′

2| = 1, then S∗

2 ∪ V (C1) ∪ F ∪ {v2} is a 1FTD-set for G and
thus ftd1(G) ≤ (2(n(G∗

2)+k−1)−1)/3+2r+1 = (2(n(G)−3r−|F ′

2|+k−1)−
1)/3 + 2r + 1 < (2(n + k) − 1)/3, a contradiction. Thus assume that |F ′

2| ≥ 2.
Let {u′t, u

′

t′} ⊆ F ′

2 (assume without loss of generality that t < t′) such that
degG(u

′

i) = 1, for 1 ≤ i < t and t′ < i ≤ r. Let u′′t and u′′t′ be the leaves of ut and
ut′ , respectively. Clearly, S∗

2 ∪ {c1, . . . , ct−1} ∪ {u1, . . . , ut−1} ∪ {ct′+1, . . . , cr} ∪
{ut′+1, . . . , ur} ∪ {ut+1, . . . , ut′−1} ∪ {u′t+1, . . . , u

′

t′−1
} ∪ {u′t, u

′

t′} ∪ {u′′t , u
′′

t′} is a
1FTD-set for G and thus ftd1(G) ≤ (2(n(G∗

2) + k − 1)− 1)/3 + 2r = (2(n(G)−
3r−|F ′

2|+k−1)−1)/3+2r+1 < (2(n+k)−1)/3, a contradiction. We deduce that
ftd1(G

′) < (2(n(G′)+k)−1)/3 = (2(n+k)−1)/3−2. Let S′ be an ftd1(G
′)-set.

If v0 ∈ S′, then S′∪{v1, v2} is a 1FTD-set in G, and so ftd1(G) < (2(n+k)−1)/3,
a contradiction. Thus assume that v0 /∈ S′. Then S′ ∪ {v2, v3} is a 1FTD-set
in G and thus ftd1(G) < (2(n + k) − 1)/3, a contradiction. Thus deg(v0) ≥ 4.
Let G′ = G − {v3, v2, v1}. By Theorem 14, ftd1(G

′) ≤ (2(n(G′) + k) − 1)/3.
Assume that ftd1(G

′) < (2(n(G′) + k) − 1)/3 = (2(n + k) − 1)/3 − 2. Let S′

be an ftd1(G
′)-set. If v0 ∈ S′, then S = S′ ∪ {v1, v2} is a 1FTD-set for G and

thus ftd1(G) < (2(n + k) − 1)/3, a contradiction. Thus assume that v0 /∈ S′.
Then S = S′ ∪{v2, v3} is a 1FTD-set for G and thus ftd1(G) < (2(n+ k)− 1)/3,
a contradiction. Hence, ftd1(G

′) = (2(n(G′) + k) − 1)/3. By the inductive
hypothesis, G′ ∈ Gk−1. Since deg(v0) ≥ 4, v0 is not a special vertex of G′. Thus
G is obtained from G′ by Operation O1 and so G ∈ Gk. �

By Claim 3, we assume that d = 2. We show that degG(v0) = 3. Suppose
that degG(v0) ≥ 4. Assume that v0 is a support vertex. Let G′ = G − {v1, v2}.
By Theorem 14, ftd1(G

′) ≤ (2(n(G′) + k)− 1)/3. Let S′ be an ftd1(G
′)-set. By

Observation 1, v0 ∈ S′. Then S′ ∪ {vd−1} is a 1FTD-set in G, and so ftd1(G) <
(2(n + k) − 1)/3, a contradiction. Thus assume that v0 is not a support vertex
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of G. Let x 6= v1 be a support vertex of G such that x ∈ N(v0)\V (C1). By the
choice of the path v0v1 · · · vd, (the part “deg(vd−1) is as maximum as possible”),
degG(x) = 2. Let y be the leaf adjacent to x. Let G′ = G − {v2, v1, y}. By
Theorem 14, ftd1(G

′) ≤ (2(n(G′)+k)−1)/3. Let ftd1(G
′) < (2(n(G′)+k)−1)/3.

Let S′ be an ftd1(G
′)-set. By Observation 1, v0 ∈ S′, since v0 is a support vertex

of G′. Then {v1, x}∪S′ is a 1FTD-set in G and so ftd1(G
′) < (2(n+k)−1)/3, a

contradiction. Thus ftd1(G
′) = (2(n(G′)+k)−1)/3. By the inductive hypothesis,

G′ ∈ Gk, a contradiction by Observation 9(1), since v0 is a support vertex of G′.
Thus degG(v0) = 3. Observe that G has no strong support vertex. If ci is adjacent
to a support vertex c′i of N(ci)\V (C1) for some i, then the leaf of c′i can play the
role of v2, and thus deg(ci) = 3. Thus we may assume that degG(ci) ≤ 3 for each
i with i = 1, 2, . . . , r. Assume that degG(ci) = 3 for each i with 1 ≤ i ≤ r.

Let F =
⋃r

i=1
(N(ci)\{c0, . . . , cr}. Clearly, |F | = r, since degG(ci) = 3, for

each ci ∈ {c1, . . . , cr}. Let F = {u1, u2, . . . , ur}. Clearly, degG(ui) ≤ 2, for
1 ≤ i ≤ r, since G has no strong support vertex. Let F ′ = {ui| degG(ui) = 2}.
Clearly, v1 ∈ F ′. Let F ′′ be the set of leaves of F ′. Clearly, v2 ∈ F ′′. Let
G∗ = G−c0c1−c0cr. Let G

∗

1 be the component of G∗ containing cr and G∗

2 be the
component ofG∗ containing c0. Assume that F = F ′. Thus n(G∗

1) = 3r, since d =
2. Further, n(G∗

2) = n−3r. By Theorem 14, ftd1(G
∗

2) ≤ (2(n(G∗

2)+k−1)−1)/3.
Let S′′ be an ftd1(G

∗

2)-set. If c0 ∈ S′′, then S′′ ∪ V (C1) ∪ F is a 1FTD-set
for G and so ftd1(G) ≤ (2(n(G∗

2) + k − 1) − 1)/3 + 2r = (2(n − 3r + k −
1) − 1)/3 + 2r = (2(n + k − 1) − 1)/3, a contradiction. Thus c0 ∈ S′′. Then
S′′∪F ′′∪F is a 1FTD-set for G and so ftd1(G) ≤ (2(n(G∗

2)+k−1)−1)/3+2r =
(2(n − 3r + k − 1) − 1)/3 + 2r = (2(n + k − 1) − 1)/3, a contradiction. We
conclude that F 6= F ′. Let |F ′| = r′. Clearly, 1 ≤ r′ < r, since v1 ∈ F ′. Thus
n(G∗

1) = 2r + r′. Then n(G∗

2) = n− (2r + r′). Let G∗

3 = G[V (G∗

2) ∪ {c1}]. Then
n(G∗

3) = n− (2r+ r′) + 1. By Theorem 14, ftd1(G
∗

3) ≤ (2(n(G∗

3) + k− 1)− 1)/3.
Let S′′ be an ftd1(G

∗

3)-set. By Observation 1, c0 ∈ S′′ and so S′′ ∪ V (C1) ∪ F ′

is a 1FTD-set for G. Thus ftd1(G) ≤ (2(n(G∗

2) + k − 1) − 1)/3 + r + r′ =
(2(n−(2r+r′)+1+k−1)−1)/3+r+r′ = (2(n+k)−1+r′−r)/3 < (2(n+k)−1)/3,
a contradiction. Therefore degG(ct) = 2 for some 1 ≤ t ≤ r.

Claim 4. No vertex of C1 − c0 is a support vertex.

Proof. Let cj be a support vertex of G. Assume that cj+1 is a special vertex.
Let G′ = G− cj+1. Then by Theorem 14, ftd1(G

′) ≤ (2(n(G′) + k− 1)− 1)/3 =
(2(n+ k)− 1)/3− 4/3. Let S′ be an ftd1(G

′)-set. By Observation 1, cj ∈ S′. If
cj+2 /∈ S′, then S′ is a 1FTD-set for G of cardinality at most (2(n+k)−1)/3−4/3
and so ftd1(G) < (2(n + k) − 1)/3, a contradiction. Thus cj+2 ∈ S′. Then
{

cj+1

}

∪S′ is a 1FTD-set in G of cardinality at most (2(n+ k)− 1)/3− 1/3 and
so ftd1(G) < (2(n+ k)− 1)/3, a contradiction. Thus degG(cj+1) 6= 2. Note that
ct is a special vertex of G. Assume without loss of generality that j < t. Let cj′ be
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a support vertex of G and ct′ be a special vertex of G, where j ≤ j′ < t′ ≤ t, and
among such vertices choose cj′ and ct′ such that ci is neither a support vertex
nor a special vertex of G for each i with j′ < i < t′. Let ui ∈ N(ci)\V (C1)
for j′ < i < t′. Clearly, degG(ui = 2 for j′ < i < t′, since G has no strong
support vertex. Let G∗ = G − cj′cj′+1 − ct′ct′+1. Let G∗

1 be the component
of G∗ containing cj′ and G∗

2 be the component of G∗ containing ct′ . Clearly,
n(G∗

2) = 3(t′ − j′ − 1) + 1. Thus n(G∗

1) = n− (3(t′ − j′ − 1) + 1).
By Theorem 14, ftd1(G

∗

1) ≤ (2(n(G∗

1)+k−1)−1)/3. Let S′ be an ftd1(G
∗

1)-
set. By Observation 1, cj′ ∈ S′. Assume that ct′+1 /∈ S′. Then S′ ∪

{

cj′+1, cj′+2,
. . . , ct′−1

}

∪
{

uj′+1, uj′+2, . . . , ut′−1

}

is a 1FTD-set in G of cardinality at most
(2(n(G∗

1)+k−1)−1)/3+2(t′−j′−1) = (2(n−(3(t′−j′−1)+1)+k−1)−1)/3+
2(t′−j′−1) = (2(n+k)−1)/3−4/3 and so ftd1(G) < (2(n+k)−1)/3, a contradic-
tion. Thus ct′+1 ∈ S′. Then S′∪

{

cj′+1, cj′+2, . . . , ct′
}

∪
{

uj′+1, uj′+2, . . . , ut′−1

}

is
a 1FTD-set in G of cardinality at most (2(n(G∗

1)+k−1)−1)/3+2(t′−j′−1)+1 =
(2(n− (3(t′ − j′ − 1)+ 1)+ k− 1)− 1)/3+ 2(t′ − j′ − 1) = (2(n+ k)− 1)/3− 1/3
and so ftd1(G) < (2(n+ k)− 1)/3, a contradiction. �

Claim 5. If degG(cj) = 2 for some j with 1 ≤ j ≤ r, then degG(cj+1) = 3 and

degG(cj−1) = 3.

Proof. Assume that degG(cj) = degG(cj+1) = 2, for some j with 1 ≤ j ≤ r, and
among such vertices choose cj such that degG(cj−1) = 3. Let G′ = G− cj . Then
by Theorem 14, ftd1(G

′) ≤ (2(n(G′) + k − 1) − 1)/3 = (2(n + k) − 1)/3 − 4/3.
Let S′ be an ftd1(G

′)-set. By Observation 1, cj+2 ∈ S′. If
∣

∣S′ ∩
{

cj−1, cj+1

}
∣

∣ =
1, then S′ is a 1FTD-set for G of cardinality at most (2(n + k) − 1)/3 − 4/3
and so ftd1(G) < (2(n + k) − 1)/3, a contradiction. Thus assume that

∣

∣S′ ∩
{

cj−1, cj+1

}∣

∣ = 2. Then
{

cj
}

∪ S′ is a 1FTD-set in G of cardinality at most
(2(n+ k)− 1)/3− 1/3 and so ftd1(G) < (2(n+ k)− 1)/3, a contradiction. Thus
assume that

∣

∣S′ ∩
{

cj−1, cj+1

}
∣

∣ = 0. Then
{

cj+1

}

∪ S′ is a 1FTD-set in G of
cardinality at most (2(n+ k)− 1)/3− 1/3 and so ftd1(G) < (2(n+ k)− 1)/3, a
contradiction. Thus degG(cj+1) ≥ 3. Similarly degG(cj−1) ≥ 3. �

Claim 6. C1 has precisely one special vertex.

Proof. Let ct1 and ct2 be two special vertices of C1 and among such vertices
choose ct1 and ct2 such that ci is not a special vertex of C1 for t1 < i < t2. By
Claim 5, t1 + 1 < t2. By Claim 4, ci is not a support vertex for t1 < i < t2. Let
ui ∈ N(ci)\V (C1), for t1 < i < t2. Clearly, degG(ui) = 2, for t1 < i < t2. Let
u′i be the leaf adjacent to ui, for t1 < i < t2, and G∗ = G − ct1ct1+1 − ct2ct2+1.
Let G∗

1 be the component of G∗ containing ct1 , and G∗

2 be the component of G∗

containing ct2 . Clearly, n(G∗

2) = 3(t2 − t1 − 1) + 1. Then n(G∗

1) = n − (3(t2 −
t1 − 1) + 1). By Theorem 14, ftd1(G

∗

1) ≤ (2(n(G∗

1) + k− 1)− 1)/3. Let S′ be an
ftd1(G

∗

1)-set. By Observation 1, ct1−1 ∈ S′. Assume that
{

ct1 , ct2+1

}

∩ S′ = ∅.
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Then S′ ∪
{

ct1 , ct1+1, . . . , ct2−1

}

∪
{

ut1+1, ut1+2, . . . , ut2−1

}

is a 1FTD-set in G of
cardinality at most (2(n(G∗

1) + k− 1)− 1)/3+ 2(t2 − t1 − 1) + 1 = (2(n− (3(t2 −
t1 − 1) + 1) + k − 1)− 1)/3 + 2(t2 − t1 − 1) + 1 = (2(n+ k)− 1)/3− 1/3 and so
ftd1(G) < (2(n+ k)− 1)/3, a contradiction.

Thus {ct1 , ct2+1}∩S
′ 6= ∅. If {ct1 , ct2+1} ⊆ S′, then S′∪{ct1+1, ct1+2, . . . , ct2}∪

{ut1+1, ut1+2, . . . , ut2−1} is a 1FTD-set in G of cardinality at most (2(n(G∗

1) +
k − 1) − 1)/3 + 2(t2 − t1 − 1) + 1 = (2(n − (3(t2 − t1 − 1) + 1) + k − 1) −
1)/3 + 2(t2 − t1 − 1) + 1 = (2(n + k) − 1)/3 − 1/3. Thus ftd1(G) < (2(n +
k) − 1)/3, a contradiction. Thus {ct1 , ct2+1} 6⊆ S′. If ct1 ∈ S′ and ct2+1 /∈ S′,
then S′ ∪ {ct1+1, ct1+2, . . . , ct2−1} ∪ {ut1+1, ut1+2, . . . , ut2−1} is a 1FTD-set in G
of cardinality at most (2(n(G∗

1) + k − 1)− 1)/3 + 2(t2 − t1 − 1) = (2(n− (3(t2 −
t1 − 1) + 1) + k − 1) − 1)/3 + 2(t2 − t1 − 1) = (2(n + k) − 1)/3 − 4/3 and
so ftd1(G) < (2(n + k) − 1)/3, a contradiction. Thus assume that ct2+1 ∈ S′

and ct1 6∈ S′. Then S′ ∪ {ut1+1, ut1+2, . . . , ut2−1} ∪ {u′t1+1, u
′

t1+2, . . . , u
′

t2−1} is a
1FTD-set in G of cardinality at most (2(n(G∗

1) + k− 1)− 1)/3+ 2(t2 − t1 − 1) =
(2(n− (3(t2− t1− 1)+1)+ k− 1)− 1)/3+2(t2− t1− 1) = (2(n+ k)− 1)/3− 4/3
and so ftd1(G) < (2(n+ k)− 1)/3, a contradiction. �

By Claims 4 and 6, ci is not a support vertex and is not a special vertex, for
i ∈ {1, 2, . . . , t− 1, t+1, . . . , r}. Let ui ∈ N(ci)\V (C1), for i ∈ {1, 2, . . . , t− 1, t+
1, . . . , r}. Clearly, degG(ui) = 2, for i ∈ {1, 2, . . . , t− 1, t+ 1, . . . , r}.

Let G′′

1 be the component of G − c0c1 − c0cr that contains c1, G
′′

2 be the
component of G−c0c1−c0cr that contains c0, and G∗ be a graph obtained from G′′

2

by adding a path p2 = x1x2 and joining c0 to x1. Clearly, n(G
∗) = n−(3r−2)+2.

By Theorem 14, ftd1(G
∗) ≤ (2(n(G∗) + k− 1)− 1)/3. Suppose that ftd1(G

∗) <
(2(n(G∗)+ k− 1)− 1)/3. Let S∗ be an ftd1(G

∗)-set. By Observation 1, x1 ∈ S∗.
If c0 ∈ S∗, then S∗ ∪ {c1, c2, . . . , cr} ∪ {u1, u2, . . . , ut−1, ut+1, . . . , ur}\{x1} is a
1FTD-set in G. Thus ftd1(G) < (2(n(G∗)+k−1)−1)/3+2r−1−1 = (2(n−(3r−
2)+ 2+ k− 1)− 1)/3+ 2r− 2 = (2(n+ k)− 1)/3, a contradiction. Thus c0 /∈ S∗.
Then x2 ∈ S∗. If t > 1, then S∗\{x1, x2} ∪ {c1, . . . , ct−1} ∪ {u1, . . . , ut−1} ∪
{ut+1, . . . , ur} ∪ {u′t+1, . . . , u

′

r} is a 1FTD-set in G. Thus ftd1(G) < (2(n(G∗) +
k − 1) − 1)/3 + 2(r − 1) − 2 = (2(n − (3r − 2) + 2 + k − 1) − 1)/3 + 2r −
4 = (2(n + k) − 1)/3 − 2, a contradiction. Thus assume that t = 1. Then
S∗\{x1, x2} ∪ {c2, . . . , cr} ∪ {u2, . . . , ur}, is a 1FTD-set in G of cardinality at
most (2(n+ k)− 1)/3− 2 and so ftd1(G) < (2(n+ k)− 1)/3− 2, a contradiction.
Thus ftd1(G

∗) = (2n(G∗+k−1)−1)/3. By the inductive hypothesis, G∗ ∈ Gk−1.
Let G∗

1 be the graph obtained from G[G′′

1 ∪ {c0}] by adding a path p2 = x′1x
′

2

and joining c0 to x′1. Clearly, G
∗

1 ∈ H1. Thus G is obtained from G∗ ∈ Gk−1 and
G∗

1 ∈ H1 by Procedure A. Consequently, G ∈ Hk ⊆ Gk.

For the converse, by Corollary 13, V (G)\L(G) is the unique ftd1(G)-set.
Now Observation 9 implies that ftd1(G) = (2(n+ k)− 1)/3.



664 M. Hajian and N. Jafari Rad

Acknowledgements

We would like to thank the referee(s) for many helpful comments.

References

[1] Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math.
312 (2012) 2905–2914.
doi:10.1016/j.disc.2012.05.006

[2] B. Chaluvaraju, M. Chellali and K.A. Vidya, Perfect k-domination in graphs, Aus-
tralas. J. Combin. 48 (2010) 175–184.

[3] B. Chaluvaraju and K. Vidya, Perfect dominating set graph of a graph, Adv. Appl.
Discrete Math. 2 (2008) 49–57.

[4] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination

in graphs, J. Combin. Inform. System Sci. 18 (1993) 136–148.

[5] I.J. Dejter, Perfect domination in regular grid graphs, Australas. J. Combin. 42
(2008) 99–114.

[6] I.J. Dejter and A.A. Delgado, Perfect domination in rectangular grid graphs, J.
Combin. Math. Combin. Comput. 70 (2009) 177–196.

[7] M.R. Fellows and M.N. Hoover, Perfect domination, Australas. J. Combin. 3 (1991)
141–150.

[8] M. Hajian and N. Jafari Rad, Trees and unicyclic graph with large fair domination

number, Util. Math., to appear.

[9] M. Hajian and N. Jafari Rad, Fair domination number in cactus graphs, Discuss.
Math. Graph Theory 39 (2019) 489–503.
doi:10.7151/dmgt.2088

[10] M. Hajian, N. Jafari Rad and L. Volkmann, Bounds on the fair total domination

number in trees and unicyclic graphs , Australas. J. Combin. 74 (2019) 460–475.

[11] H. Hatami and P. Hatami, Perfect dominating sets in the Cartesian products of

prime cycles, Electron. J. Combin. 14 (2007) #N8.
doi:10.37236/1009

[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in
Graphs (Marcel Dekker, New York, 1998).

[13] E.C. Maravilla, R.T. Isla and S.R. Canoy Jr., Fair total domination in the join,

corona, and composition of graphs, Int. J. Math. Anal. 8 (2014) 2677–2685.
doi:10.12988/ijma.2014.49296

Received 29 August 2018
Revised 3 April 2019

Accepted 3 April 2019

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1016/j.disc.2012.05.006
http://dx.doi.org/10.7151/dmgt.2088
http://dx.doi.org/10.37236/1009
http://dx.doi.org/10.12988/ijma.2014.49296
http://www.tcpdf.org

