FAIR TOTAL DOMINATION NUMBER IN CACTUS GRAPHS

Majid Hajian
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
e-mail: majid_hajian2000@yahoo.com
AND
Nader Jafari Rad
Department of Mathematics
Shahed University
Tehran, Iran
e-mail: n.jafarirad@gmail.com

Abstract

For $k \geq 1$, a k-fair total dominating set (or just kFTD-set) in a graph G is a total dominating set S such that $|N(v) \cap S|=k$ for every vertex $v \in V \backslash S$. The k-fair total domination number of G, denoted by $\operatorname{ftd}_{k}(G)$, is the minimum cardinality of a kFTD-set. A fair total dominating set, abbreviated FTD-set, is a kFTD-set for some integer $k \geq 1$. The fair total domination number of a nonempty graph G, denoted by $\operatorname{ftd}(G)$, of G is the minimum cardinality of an FTD-set in G. In this paper, we present upper bounds for the 1-fair total domination number of cactus graphs, and characterize cactus graphs achieving equality for the upper bounds.

Keywords: fair total domination, cactus graph.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

For notation and graph theory terminology not given here, we follow [12]. Specifically, let G be a graph with vertex set $V(G)=V$ of order $|V|=n$ and let v be a vertex in V. The open neighborhood of v is $N_{G}(v)=\{u \in V \mid u v \in E(G)\}$ and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N_{G}(v)$. If the graph G is clear from
the context, we simply write $N(v)$ rather than $N_{G}(v)$. The degree of a vertex v, is $\operatorname{deg}(v)=|N(v)|$. A vertex of degree one is called a leaf and its neighbor a support vertex. We denote the set of leaves and support vertices of a graph G by $L(G)$ and $S(G)$, respectively. A strong support vertex is a support vertex adjacent to at least two leaves, and a weak support vertex is a support vertex adjacent to precisely one leaf. For a set $S \subseteq V$, its open neighborhood is the set $N(S)=\bigcup_{v \in S} N(v)$, and its closed neighborhood is the set $N[S]=N(S) \cup S$. The 2-corona 2 -cor (G) of a graph G is a graph obtained from G by adding a path P_{2} for every vertex v and joining v to a leaf of P_{2}. Note that 2 - $\operatorname{cor}(G)$ has order $3|V(G)|$. The distance $d(u, v)$ between two vertices u and v in a graph G is the minimum number of edges of a path from u to v. For a subset S of vertices of a graph G, we denote by $G[S]$ the subgraph of G induced by S. A cactus graph is a graph such that no pair of cycles have a common edge.

A subset $S \subseteq V$ is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A dominating set S in a graph G with no isolated vertex, is a total dominating set of G if every vertex in S is adjacent to a vertex in S.

Caro et al. [1] studied the concept of fair domination in graphs. For $k \geq 1$, a k-fair dominating set, abbreviated kFD-set, in G is a dominating set S such that $|N(v) \cap D|=k$ for every vertex $v \in V \backslash D$. The k-fair domination number of G, denoted by $f d_{k}(G)$, is the minimum cardinality of a kFD-set. A kFD-set of G of cardinality $f d_{k}(G)$ is called a $f d_{k}(G)$-set. A fair dominating set, abbreviated FD-set, in G is a kFD-set for some integer $k \geq 1$. The fair domination number, denoted by $f d(G)$, of a graph G that is not the empty graph is the minimum cardinality of an FD-set in G. An FD-set of G of cardinality $f d(G)$ is called a $f d(G)$-set. A perfect dominating set in a graph G is a dominating set S such that every vertex in $V(G) \backslash S$ is adjacent to exactly one vertex in S. Hence a 1 FD -set is precisely a perfect dominating set. The concept of perfect domination was introduced by Cockayne et al. in [4], and Fellows et al. [7] with a different terminology which they called semiperfect domination. This concept was further studied in, for example, $[2,3,5,6,8,9,11]$.

Maravilla et al. [13] introduced the concept of fair total domination in graphs. For an integer $k \geq 1$ and a graph G with no isolated vertex, a k-fair total dominating set, abbreviated kFTD-set, is a total dominating set $S \subseteq V(G)$ such that $|N(u) \cap S|=k$ for every $u \in V(G) \backslash S$. The k-fair total domination number of G, denoted by $f t d_{k}(G)$, is the minimum cardinality of a kFTD-set. A kFTD-set of G of cardinality $f t d_{k}(G)$ is called an $f t d_{k}(G)$-set. A fair total dominating set, abbreviated FTD-set, in G is a kFTD-set for some integer $k \geq 1$. Thus, a fair total dominating set S of a graph G is a total dominating set S of G such that for every two distinct vertices u and v of $V(G) \backslash S,|N(u) \in S|=|N(v) \cap S|$; that
is, S is both a fair dominating set and a total dominating set of G. The fair total domination number of G, denoted by $f t d(G)$, is the minimum cardinality of an FTD-set. A fair total dominating set of cardinality $f t d(G)$ is called a minimum fair total dominating set or an $f t d$-set of G.

In [10], Volkmann and we studied fair total domination in trees and unicyclic graphs. In this paper, we study 1 -fair total domination in cactus graphs. We present upper bounds for the 1 -fair total domination number of cactus graphs, and characterize cactus graphs achieving equality for the upper bounds. The techniques used in this paper are similar to those presented in [9]. The following observations are easily verified.

Observation 1. Any support vertex in a graph G with no isolated vertex belongs to every $k F T D$-set for each integer k.

Observation 2. Let S be a 1FTD-set in a graph G, and v be a vertex of degree at least two such that v is adjacent to a weak support vertex v^{\prime}. If S contains a vertex $u \in N_{G}(v) \backslash\left\{v^{\prime}\right\}$, then $v \in S$.

2. Unicyclic Graphs

A vertex v of a graph is a special vertex if $\operatorname{deg}_{G}(v)=2$ and v belongs to a cycle of G. Let \mathcal{H}_{1} be the class of all graphs G that can be obtained from the 2-corona 2-cor (C) of a cycle C by removing precisely one support vertex v and the leaf adjacent to v. Let \mathcal{G}_{1} be the class of all graphs G that can be obtained from a sequence $G_{1}, G_{2}, \ldots, G_{s}=G$, where $G_{1} \in \mathcal{H}_{1}$, and if $s \geq 2$, then G_{j+1} is obtained from G_{j} by one of the following Operations \mathcal{O}_{1} or \mathcal{O}_{2}, for $j=1,2, \ldots, s-1$.

Operation \mathcal{O}_{1}. Let v be a vertex of G_{j} with $\operatorname{deg}(v) \geq 2$ such that v is not a special vertex. Then G_{j+1} is obtained from G_{j} by adding a path P_{3} and joining v to a leaf of P_{3} by means of an edge.

Operation \mathcal{O}_{2}. Let v be a support vertex of G_{j} and let u be a leaf adjacent to v. Then G_{j+1} is obtained from G_{j} by adding a vertex u^{\prime} and a path P_{2}, and joining u to u^{\prime} and v to a leaf of P_{2}.

Observation 3. If $H \in \mathcal{H}_{1}$, then H has precisely one special vertex.
Observation 4 [10]. If $G \in \mathcal{G}_{1}$ has order n, and C is the cycle of G, then we have the following.
(1) G has precisely one special vertex.
(2) G has $(n-1) / 3$ leaves.
(3) No vertex of C is a support vertex.
(4) Any vertex of C is adjacent to at most one weak support vertex of degree two.

Lemma 5 [10]. If $G \in \mathcal{G}_{1}$, then every 1FTD-set in G contains every vertex of G of degree at least two.
Theorem 6 [10]. If G is a unicyclic graph of order n, then $\operatorname{ftd}_{1}(G) \leq(2 n+1) / 3$, with equality if and only if $G=C_{7}$ or $G \in \mathcal{G}_{1}$.

3. Main Result

Our aim in this paper is to give an upper bound for the fair total domination number of a cactus graph G in terms of the number of cycles of G, and then characterize all cactus graphs achieving equality for the proposed bound. For this purpose we first introduce some families of graphs. Let \mathcal{H}_{1} and \mathcal{G}_{1} be the families of unicyclic graphs described in Section 2 . For $i=2, \ldots, k$, we construct a family \mathcal{H}_{i} from \mathcal{G}_{i-1}, and a family \mathcal{G}_{i} from \mathcal{H}_{i} as follows.

- Family \mathcal{H}_{i}. Let \mathcal{H}_{i} be the family of all graphs H_{i} such that H_{i} can be obtained from a graph $H_{1} \in \mathcal{H}_{1}$ and a graph $G \in \mathcal{G}_{i-1}$, by the following procedure.
Procedure A. Let $w_{0} \in V\left(H_{1}\right)$ be a vertex of degree at least two of H_{1} such that w_{0} is adjacent to a weak support vertex w_{0}^{\prime}, and $w \in V\left(G_{i-1}\right)$ be a vertex of degree at least two of G_{i-1} such that w is adjacent to a weak support vertex w^{\prime} of degree two. We remove w_{0}^{\prime}, the leaf adjacent to $w_{0}^{\prime}, w^{\prime}$ and the leaf adjacent to w^{\prime}, and then identify the vertices w_{0} and w.
- Family \mathcal{G}_{i}. Let \mathcal{G}_{i} be the family of all graphs G that can be obtained from a sequence $G_{1}, G_{2}, \ldots, G_{s}=G$, where $G_{1} \in \mathcal{H}_{i}$, and if $s \geq 2$, then G_{j+1} is obtained from G_{j} by one of the Operations \mathcal{O}_{1} or \mathcal{O}_{2}, described in Section 2, for $j=1,2, \ldots, s-1$.

Note that $\mathcal{H}_{i} \subseteq \mathcal{G}_{i}$, for $i=1,2, \ldots, k$. Figure 1 demonstrates the construction of the family \mathcal{G}_{k}.

Figure 1. Construction of the family \mathcal{G}_{k}.
We will prove the following.
Theorem 7. If G is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $f t d_{1}(G) \leq(2(n+k)-1) / 3$, with equality if and only if $G=C_{7}$ or $G \in \mathcal{G}_{k}$.

4. Preliminary Results and Observations

4.1. Notation

We call a vertex w in a cycle C of a cactus graph G a special cut-vertex if w belongs to a shortest path from C to a cycle $C^{\prime} \neq C$. We call a cycle C in G, a leaf-cycle if C contains exactly one special cut-vertex. In the cactus graph presented in Figure 2, v_{i} is a special cut-vertex, for $i=1,2, \ldots, 8$. Moreover, C_{j} is a leaf-cycle for $j=1,2,3$.

Figure $2 . C_{i}$ is a leaf-cycle for $i=1,2,3$ and v_{j} is a special cut-vertex for $j=1,2, \ldots, 8$.
Observation 8. Every cactus graph with at least two cycles contains at least two leaf-cycles.

4.2. Properties of the family \mathcal{G}_{k}

The following observation can be proved by a simple induction on k.
Observation 9. If $G \in \mathcal{G}_{k}$ is a cactus graph of order n, then we have the following.
(1) No cycle of G contains a support vertex. Furthermore, any cycle of G contains precisely one special vertex.
(2) If a vertex v of G belongs to a cycle of G, then v is adjacent to at most one weak support vertex of degree two.
(3) $|L(G)|=(n+1) / 3-2 k / 3$.
(4) If a vertex v of G belongs to at least two cycles of G, then v is not adjacent to a weak support vertex, and v belongs to precisely two cycles of G.

Proof. Let $G \in \mathcal{G}_{k}$ be a cactus graph of order n. To show (1), (2) or (3), we prove by an induction on k, that we call first-induction. For the base step, if $k=1$, then $G \in \mathcal{G}_{1}$, and the result follows by Observation 4. Assume the result
holds for all graphs $G^{\prime} \in \mathcal{G}_{k^{\prime}}$ with $k^{\prime}<k$. Now consider the graph $G \in \mathcal{G}_{k}$, where $k>1$. Clearly, G is obtained from a sequence $G_{1}, G_{2}, \ldots, G_{l}=G$, of cactus graphs such that $G_{1} \in \mathcal{H}_{k}$, and if $l \geq 2$, then G_{i+1} is obtained from G_{i} by one of the Operations \mathcal{O}_{1} or \mathcal{O}_{2} for $i=1,2, \ldots, l-1$. We prove by an induction on l, that we call second-induction. For the base step of the second-induction, let $l=1$. Thus $G \in \mathcal{H}_{k}$. By the construction of graphs in the family \mathcal{H}_{k}, there are graphs $H \in \mathcal{H}_{1}$ and $G^{\prime} \in \mathcal{G}_{k-1}$ such that G is obtained from H and G^{\prime} by Procedure A. It is easy see that the base step of the second-induction holds. Assume that the result (for the second-induction) holds for $2 \leq l^{\prime}<l$. Now let $G=G_{l}$. Clearly, G is obtained from G_{l-1} by applying one of the Operations \mathcal{O}_{1} or \mathcal{O}_{2}. It is easy see that the result holds.

The proof for (4) is similarly verified.
Observation 10. Let $G \in \mathcal{G}_{k}$ be obtained from a sequence $G_{1}, G_{2}, \ldots, G_{s}=G$ ($s \geq 2$) such that $G_{1} \in \mathcal{H}_{1}$ and G_{j+1} is obtained from G_{j} by one of the Operations O_{1} or O_{2} or Procedure A, for $j=1,2, \ldots, s-1$. If v is a vertex of G belonging to two cycles of G, then there is an integer $i \in\{2,3, \ldots, s\}$ such that G_{i} is obtained from G_{i-1} by applying Procedure A on the vertex v using a graph $H \in \mathcal{H}_{1}$, such that v belongs to a cycle of G_{i-1}.
Observation 11. Assume that $G \in \mathcal{G}_{k}$ and $v \in V(G)$ is a vertex of degree four belonging to two cycles. Let D_{1} and D_{2} be the components of $G-v, G_{1}^{*}$ be the graph obtained from $G\left[D_{1} \cup\{v\}\right]$ by joining v to a leaf of a path P_{2}, and G_{2}^{*} be the graph obtained from $G\left[D_{2} \cup\{v\}\right]$ by joining v to a leaf of a path P_{2}. Then there exists an integer $k^{\prime}<k$ such that $G_{1}^{*} \in \mathcal{G}_{k^{\prime}}$ or $G_{2}^{*} \in \mathcal{G}_{k^{\prime}}$.
Proof. Let $G \in \mathcal{G}_{k}$. Then G is obtained from a sequence $G_{1}, G_{2}, \ldots, G_{s}=G$ $(s \geq 2)$ such that $G_{1} \in \mathcal{H}_{1}$ and G_{j+1} is obtained from G_{j} by one of the Operations O_{1} or O_{2} or procedure A, for $j=1,2, \ldots, s-1$. Note that $s \geq k$. We define the j-th Procedure-Operation or just $P O_{j}$ as one of the Operation O_{1}, Operation O_{2}, or Procedure A that can be applied to obtain G_{j+1} from G_{j}. Thus G is obtained from G_{1} by Procedure-Operations $P O_{1}, P O_{2}, \ldots, P O_{s-1}$.

Let v be a vertex of G of degree four belonging to two cycles of G, and D_{1} and D_{2} be the components of $G-v$. By Observation 10, there is an integer $i \in\{2,3, \ldots, s\}$ such that G_{i} is obtained from G_{i-1} by applying Procedure A on the vertex v using a graph $H \in \mathcal{H}_{1}$. Note that v is adjacent to a weak support vertex v^{\prime} of G_{i-1}. Let $v^{\prime \prime}$ be the leaf of v^{\prime} in G_{i-1} that is removed in Procedure A. Clearly, either $V\left(G_{i-1}\right) \cap D_{1} \neq \emptyset$ or $V\left(G_{i-1}\right) \cap D_{2} \neq \emptyset$. Without loss of generality, assume that $V\left(G_{i-1}\right) \cap D_{1} \neq \emptyset$. Among $P O_{i}, P O_{i+1}, \ldots, P O_{s-1}$, let $P O_{r_{1}}, P O_{r_{2}}, \ldots, P O_{r_{t}}$, be those procedure-operations applied on a vertex of D_{1}. Note that $i \leq t \leq s-1$. Let $G_{r_{0}}=G_{i-1}$ and $G_{r_{l+1}}$ be obtained from $G_{r_{l}}$ by $P O_{l+1}$, for $l=0,1,2, \ldots, t-1$. Clearly, by an induction on t, we can deduce that there is an integer $k^{*}<k$ such that $G_{r_{t}} \in \mathcal{G}_{k^{*}}$. Note that $G_{r_{t}}=G_{1}^{*}$.

Lemma 12. If $G \in \mathcal{G}_{k}$, then every 1FTD-set in G contains each vertex of G of degree at least two.

Proof. Let $G \in \mathcal{G}_{k}$, and S be a 1FTD-set in G. We prove by an induction on k, that we call first-induction, that S contains every vertex of G of degree at least two. For the base step, if $k=1$, then $G \in \mathcal{G}_{1}$, and the result follows by Lemma 5. Assume the result holds for all graphs $G^{\prime} \in \mathcal{G}_{k^{\prime}}$ with $k^{\prime}<k$. Now consider the graph $G \in \mathcal{G}_{k}$, where $k>1$. Clearly, G is obtained from a sequence $G_{1}, G_{2}, \ldots, G_{l}=G$, of cactus graphs such that $G_{1} \in \mathcal{H}_{k}$, and if $l \geq 2$, then G_{i+1} is obtained from G_{i} by one of the Operations \mathcal{O}_{1} or \mathcal{O}_{2} for $i=1,2, \ldots, l-1$.

We prove by an induction on l, that we call second-induction, that S contains every vertex of G of degree at least two.

For the base step of the second-induction, let $l=1$. Thus $G \in \mathcal{H}_{k}$. By the construction of graphs in the family \mathcal{H}_{k}, there are graphs $H \in \mathcal{H}_{1}$ and $G^{\prime} \in \mathcal{G}_{k-1}$ such that G is obtained from H and G^{\prime} by Procedure A. Clearly, H is obtained from the 2-corona 2 -cor (C) of a cycle C, by removing precisely one support vertex v and the leaf adjacent to v of $2-\operatorname{cor}(C)$.

Let $C=c_{0} c_{1} \cdots c_{r} c_{0}$ be the cycle of H, where c_{0} is a vertex of degree at least two of H that is adjacent to a weak support vertex c_{0}^{\prime}, and let c_{0}^{\prime} and its leaf (that we call $c_{0}^{\prime \prime}$) be removed according to Procedure A. By Observation 3, H has precisely one special vertex. Let c_{t} be the special vertex of H. Let $w \in V\left(G^{\prime}\right)$ be a vertex of degree at least two of G^{\prime} that is adjacent to a weak support vertex w^{\prime}, and let w^{\prime} and its leaf (that we call $w^{\prime \prime}$) be removed according to Procedure A.

First we show that $\left\{c_{1}, c_{r}\right\} \cap S \neq \emptyset$. Clearly, $S \cap\left\{c_{t-1}, c_{t}, c_{t+1}\right\} \neq \emptyset$, since $\operatorname{deg}_{G}\left(c_{t}\right)=2$. Assume that $c_{t} \in S$. Since at least one of c_{t-1} or c_{t+1} is adjacent to a weak support vertex, by Observation $2,\left\{c_{t-1}, c_{t+1}\right\} \cap S \neq \emptyset$. By applying Observation 2, we obtain that $\left\{c_{1}, c_{r}\right\} \cap S \neq \emptyset$, since any vertex of $\left\{c_{1}, \ldots, c_{r}\right\} \backslash\left\{c_{t}\right\}$ is adjacent to a weak support vertex of G. Thus assume that $c_{t} \notin S$. Then $\left\{c_{t-1}, c_{t+1}\right\} \cap S \neq \emptyset$, and so $\left\{c_{1}, c_{r}\right\} \cap S \neq \emptyset$, since any vertex of $\left\{c_{1}, \ldots, c_{r}\right\} \backslash\left\{c_{t}\right\}$ is adjacent to a weak support vertex of G. Hence, $\left\{c_{1}, c_{r}\right\} \cap S \neq \emptyset$. If $c_{0} \notin S$, then $S \cup\left\{w^{\prime}, w^{\prime \prime}\right\}$ is a 1FTD-set for G^{\prime}, and thus by the first-inductive hypothesis, S^{\prime} contains $w=c_{0}$, a contradiction. Thus $c_{0} \in S$. By Observation $2, V(C) \subseteq S$, since any vertex of $\left\{c_{1}, \ldots, c_{r}\right\}-\backslash\left\{c_{t}\right\}$ is adjacent to a weak support vertex of G. Thus $S \cap V\left(G^{\prime}\right)$ is a 1FTD-set for G^{\prime}. By the first-inductive hypothesis, $(S \cap$ $\left.V\left(G^{\prime}\right)\right) \cup\left\{w^{\prime}, w^{\prime \prime}\right\}$ contains every vertex of G^{\prime} of degree at least two. Consequently, S contains every vertex of G of degree at least two. We conclude that the base step of the second-induction holds.

Assume that the result (for the second-induction) holds for $2 \leq l^{\prime}<l$. Now let $G=G_{l}$. Clearly, G is obtained from G_{l-1} by applying one of the Operations \mathcal{O}_{1} or \mathcal{O}_{2}.

Assume that G is obtained from G_{l-1} by applying Operation \mathcal{O}_{2}. Let x be a support vertex of G_{l-1} and let x^{\prime} be a leaf adjacent to x. Let G be obtained from
G_{l-1} by adding a vertex u^{\prime} and a path $P_{2}=y_{1} y_{2}$, joining x^{\prime} to u^{\prime} and joining x to y_{1}, according to Operation \mathcal{O}_{2}. By Observation 1, $x^{\prime}, y_{1} \in S$ and so $x \in S$. Thus $S \backslash\left\{y_{1}\right\}$ is a 1FTD-set for G_{l-1}. By the second-inductive hypothesis, S contains all vertices of G_{l-1} of degree at least two. Consequently, S contains every vertex of G_{k} of degree at least two.

Next assume that G is obtained from G_{l-1} by applying Operation \mathcal{O}_{1}. Let $P_{3}=x_{1} x_{2} x_{3}$ be a path and x_{1} be joined to $y \in V\left(G_{l-1}\right)$, where $\operatorname{deg}_{G_{l-1}}(y) \geq 2$ and y is not a special vertex of G_{l-1}, according to Operation \mathcal{O}_{2}. By Observation $1, x_{2} \in S$. Observe that $\left\{x_{1}, x_{3}\right\} \cap S \neq \emptyset$. If $x_{1} \notin S$, then $x_{3} \in S$ and $y \notin S$. Then $S \backslash\left\{x_{2}, x_{3}\right\}$ is a 1FTD-set for G_{l-1} that does not contains y, a contradiction by the second-inductive hypothesis. Thus assume that $x_{1} \in S$. Suppose that $y \notin S$. Clearly, $N_{G_{l-1}}(y) \cap S=\emptyset$. Assume that there exists a component G_{1}^{\prime} of $G_{l-1}-y$ such that $\left|V\left(G_{1}^{\prime}\right) \cap N_{G_{l-1}}(y)\right|=1$. Then clearly $S^{\prime}=\left(S \cap V\left(G_{l-1}\right)\right) \cup V\left(G_{1}^{\prime}\right)$ is a 1FTD-set for G_{l-1}, and by the second-inductive hypothesis, S^{\prime} contains every vertex of G_{l-1} of degree at least two. Thus $y \in S^{\prime}$, and so $y \in S$, a contradiction. Next assume that every component of $G_{l-1}-y$ has at least two vertices in $N_{G_{l-1}}(y)$. Since y is a non-special vertex of G_{l-1}, y belongs to at least two cycles of G_{l-1}. By Observation 9(4), y belongs to exactly two cycles of G_{l-1}. Thus $\operatorname{deg}_{G_{l-1}}(y)=4$. By Observation 11, $G_{l-1}-y$ has exactly two components D_{1} and D_{2}. Let G^{*} be a graph obtained from $D_{1} \cup\{y\}$ or $D_{2} \cup\{y\}$ by adding a path $P_{2}=y^{\prime} y^{\prime \prime}$ to y. Then there exists $k^{\prime} \leq k$ such that $G^{*} \in \mathcal{G}_{k^{\prime}}$. Evidently, $S^{*}=\left(S \cap V\left(G^{*}\right)\right) \cup\left\{y^{\prime}, y^{\prime \prime}\right\}$ is a 1 FTD-set for G^{*}, and so by the firstinductive hypothesis, S^{*} contains every vertex of G^{*} of degree at least two (since $G^{*} \in \mathcal{G}_{k^{\prime}}$). Thus $y \in S^{*}$, and so $y \in S$, a contradiction. We conclude that $y \in S$. Observe that $S \cap V\left(G_{l-1}\right)$ is a 1FTD-set for G_{l-1}, and so by the second-inductive hypothesis, $S \cap V\left(G_{l-1}\right)$ contains every vertex of G_{l-1} of degree at least two. Consequently, S contains every vertex of G of degree at least two.

As a consequence of Observation 9(3) and Lemma 12, we obtain the following.
Corollary 13. If $G \in \mathcal{G}_{k}$ is a cactus graph of order n, then $V(G) \backslash L(G)$ is the unique $f t d_{1}(G)$-set.

In what follows, we present an upper bound for the 1-fair domination number of a cactus graph in terms of the order and the number of cycles.

Theorem 14. If G is a cactus graph of order $n \geq 4$ with $k \geq 1$ cycles, then $f t d_{1}(G) \leq(2(n+k)-1) / 3$.

Proof. The result follows by Theorem 6 if $k=1$. Thus assume that $k \geq 2$. Suppose to the contrary that $f t d_{1}(G)>(2(n(G)+k)-1) / 3$. Assume that G has the minimum order, and among all such graphs, we may assume that the size of G is minimum. Let $C_{1}, C_{2}, \ldots, C_{k}$ be the k cycles of G. Let C_{i}
be a leaf-cycle of G, where $i \in\{1,2, \ldots, k\}$. Let $C_{i}=c_{0} c_{1} \cdots c_{r} c_{0}$, where c_{0} is the special cut-vertex of G. Suppose that G has a strong support vertex u, and u_{1}, u_{2} are leaves adjacent to u. Let $G_{0}=G-u_{1}$. By the choice of $G, f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3=(2(n+k)-1) / 3-2 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, u \in S^{\prime}$. Clearly, S^{\prime} is a 1FTD-set in G and so $f t d_{1}(G) \leq(2(n+k)-1) / 3-2 / 3$, a contradiction. We deduce that every support vertex of G is adjacent to precisely one leaf.

Assume that $\operatorname{deg}_{G}\left(u_{j}\right)=2$ for each $j=1,2, \ldots, r$. Let $G^{\prime}=G-c_{2}$. Then by the choice of $G, \operatorname{ftd}_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k-1\right)-1\right) / 3=(2(n+k)-1) / 3-4 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, c_{0} \in S^{\prime}$. If $\left|S^{\prime} \cap\left\{c_{1}, c_{3}\right\}\right|=1$, then S^{\prime} is a 1FTD-set for G cardinality at most $(2(n+k)-1) / 3-4 / 3$, a contradiction. Thus assume that $\left|S^{\prime} \cap\left\{c_{1}, c_{3}\right\}\right|=2$. Then $\left\{c_{2}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction. Thus assume that $\left|S^{\prime} \cap\left\{c_{1}, c_{3}\right\}\right|=0$. Now $\left\{c_{1}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction. We deduce that $\operatorname{deg}_{G}\left(c_{i}\right) \geq 3$ for some $i \in\{1,2, \ldots, r\}$.

Let v_{d} be a leaf of G such that $d\left(v_{d}, C_{i}-c_{0}\right)$ is as maximum as possible, the shortest path from v_{d} to C_{i} does not contain c_{0} and $\operatorname{deg}\left(v_{d-1}\right)$ is as maximum as possible, where v_{d-1} is the neighbor of v_{d} on the shortest path from v_{d} to a vertex $v_{0} \in C_{i}$.

Assume that $d \geq 3$. Observe that $\operatorname{deg}_{G}\left(v_{d-1}\right)=2$, since G has no strong support vertex. Assume that $\operatorname{deg}_{G}\left(v_{d-2}\right)=2$. Let $G^{\prime}=G-\left\{v_{d}, v_{d-1}, v_{d-2}\right\}$. By the choice of $G, f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3=(2(n+k)-1) / 3-2$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. If $v_{d-3} \in S^{\prime}$, then $\left\{v_{v-1}, v_{d-2}\right\} \cup S^{\prime}$ is a 1FTDset in G and so $f t d_{1}(G) \leq(2(n+k)-1) / 3$, a contradiction. If $v_{d-3} \notin S^{\prime}$, then $\left\{v_{v-1}, v_{d}\right\} \cup S^{\prime}$ is a 1FTD-set in G and so $f t d_{1}(G) \leq(2(n+k)-1) / 3$, a contradiction. Thus assume that $\operatorname{deg}_{G}\left(v_{d-2}\right) \geq 3$. Assume that v_{d-2} is a support vertex. Let $G^{\prime}=G-\left\{v_{d-1}, v_{d}\right\}$. By the choice of G, $f t d_{1}\left(G^{\prime}\right) \leq$ $\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3=(2(n+k)-1) / 3-4 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation 1, $v_{d-2} \in S^{\prime}$. Then $\left\{v_{d-1}\right\} \cup S^{\prime}$ is a 1FTD-set in G and so $\operatorname{ftd}_{1}(G) \leq(2(n+k)-1) / 3-1 / 3$, a contradiction. Thus assume that v_{d-2} is not a support vertex of G. Let $x \neq v_{d-1}, v_{d-3}$ be a support vertex of G such that $x \in N\left(v_{d-2}\right)$. By the choice of the path $v_{0} v_{1} \cdots v_{d}$, (the part $" \operatorname{deg}\left(v_{d-1}\right)$ is as maximum as possible"), $\operatorname{deg}_{G}(x)=2$. Let y be the leaf adjacent to x and $G^{\prime}=G-\left\{v_{d}, v_{d-1}, y\right\}$. By the choice of $G, f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3=$ $(2(n+k)-1) / 3-2$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, v_{d-2} \in S^{\prime}$, since v_{d-2} is a support vertex of G^{\prime}. Thus $\left\{v_{d-1}, x\right\} \cup S^{\prime}$ is a 1 FTD-set in G and so $f t d_{1}(G) \leq(2(n+k)-1) / 3$, a contradiction.

Next assume that $d=2$. Assume that $\operatorname{deg}_{G}\left(c_{i}\right)=2$ for some $i \in\{1,2, \ldots, r\}$. Let $\operatorname{deg}_{G}\left(c_{j}\right)=2$. Assume that $\operatorname{deg}_{G}\left(c_{j+1}\right)=2$. Let $G^{\prime}=G-c_{j}$. Then by the choice of $G, f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k-1\right)-1\right) / 3=(2(n+k)-1) / 3-4 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, c_{j+2} \in S^{\prime}$. If $\left|S^{\prime} \cap\left\{c_{j-1}, c_{j+1}\right\}\right|=1$,
then S^{\prime} is a 1FTD-set for G of cardinality at most $(2(n+k)-1) / 3-4 / 3$, a contradiction. Thus assume that $\left|S^{\prime} \cap\left\{c_{j-1}, c_{j+1}\right\}\right|=2$. Then $\left\{c_{j}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction. Thus assume that $\left|S^{\prime} \cap\left\{c_{j-1}, c_{j+1}\right\}\right|=0$ and so $\left\{c_{j+1}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction. Thus $\operatorname{deg}_{G}\left(c_{j+1}\right) \geq 3$. Similarly $\operatorname{deg}_{G}\left(c_{j-1}\right) \geq 3$. Clearly, $c_{j+1} \neq c_{0}$ or $c_{j-1} \neq c_{0}$. Assume, without loss of generality, that $c_{j+1} \neq c_{0}$. Let c_{j+1} be a support vertex of G, and $G^{\prime}=G-c_{j}$. Then by the choice of $G, f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k-1\right)-1\right) / 3=(2(n+k)-$ $1) / 3-4 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, c_{j+1} \in S^{\prime}$. If $c_{j-1} \notin S^{\prime}$, then S^{\prime} is a 1 FTD-set for G of cardinality at most $(2(n+k)-1) / 3-4 / 3$, a contradiction. Thus assume that $c_{j-1} \in S^{\prime}$ and so $\left\{c_{j}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction. Thus c_{j+1} is not a support vertex of G. Let $c_{j+1}^{\prime} \in N\left(c_{j+1}\right) \backslash V\left(C_{i}\right)$. Clearly, c_{j+1}^{\prime} is a support vertex, since $d=2$. Observe that $\operatorname{deg}_{G}\left(c_{j+1}^{\prime}\right)=2$, since G has no strong support vertex. Let $c_{j+1}^{\prime \prime}$ be the leaf of c_{j+1}^{\prime}. Let $G^{\prime}=G-c_{j}-c_{j+1}^{\prime \prime}$. By the choice of G, $f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k-1\right)-1\right) / 3=(2(n+k)-1) / 3-2$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)-$ set. By Observation $1, c_{j+1} \in S^{\prime}$, since c_{j+1} is a support vertex in G^{\prime}. If $c_{j-1} \notin S^{\prime}$, then $S^{\prime} \cup\left\{c_{j+1}^{\prime}\right\}$ is a 1 FTD-set for G of cardinality at most $(2(n+k)-1) / 3-1$, a contradiction. Thus assume that $c_{j-1} \in S^{\prime}$. Then $\left\{c_{j}, c_{j+1}^{\prime}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3$, a contradiction. Thus $\operatorname{deg}\left(c_{i}\right) \geq 3$ for $1 \leq i \leq r$. Let $G^{*}=G-c_{0} c_{1}-c_{0} c_{r}$. Let G_{1}^{*} be the component of G^{*} containing c_{r}, and G_{2}^{*} be the component of G^{*} containing c_{0}. Let $D=S\left(G_{1}^{*}\right) \backslash V\left(C_{i}\right)$. Clearly, $S^{\prime}=D \cup\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is a 1FTD-set for G_{1}^{*} of cardinality at most $2 n\left(G_{1}^{*}\right) / 3$. Let $G_{3}^{*}=G\left[V\left(G_{2}^{*}\right) \cup\left\{c_{1}\right\}\right]$. By the choice of G, ftd $_{1}\left(G_{3}^{*}\right) \leq\left(2\left(n\left(G_{3}^{*}\right)+k-1\right)-1\right) / 3$. Let $S^{\prime \prime}$ be an $f t d_{1}\left(G_{3}^{*}\right)$-set. By Observation $1, c_{0} \in S^{\prime \prime}$. Clearly, $S^{\prime} \cup S^{\prime \prime}$ is a 1FTDset for G and so $f t d_{1}(G) \leq\left(2\left(n\left(G_{3}^{*}\right)+k-1\right)-1\right) / 3+2 n\left(G_{1}^{*}\right) / 3=(2(n+k)-1) / 3$, a contradiction.

Now assume that $d=1$. Assume that $\operatorname{deg}_{G}\left(c_{i}\right)=2$ for some $i \in\{1,2, \ldots, r\}$. Let $\operatorname{deg}_{G}\left(c_{j}\right)=2$. Assume that $\operatorname{deg}_{G}\left(c_{j+1}\right)=2$. Let $G^{\prime}=G-c_{j}$. By the choice of $G, f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k-1\right)-1\right) / 3=(2(n+k)-1) / 3-4 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, c_{j+2} \in S^{\prime}$. If $\left|S^{\prime} \cap\left\{c_{j-1}, c_{j+1}\right\}\right|=1$, then S^{\prime} is a 1FTD-set for G of cardinality at most $(2(n+k)-1) / 3-4 / 3$, a contradiction. Thus assume that $\left|S^{\prime} \cap\left\{c_{j-1}, c_{j+1}\right\}\right|=2$. Then $\left\{c_{j}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction. Thus assume that $\left|S^{\prime} \cap\left\{c_{j-1}, c_{j+1}\right\}\right|=0$. Then $\left\{c_{j+1}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction. Thus $\operatorname{deg}_{G}\left(c_{j+1}\right) \geq 3$. Similarly, $\operatorname{deg}_{G}\left(c_{j-1}\right) \geq 3$. Clearly, $c_{j+1} \neq c_{0}$ or $c_{j-1} \neq c_{0}$. Assume, without loss of generality, that $c_{j+1} \neq c_{0}$. Thus c_{j+1} is a support vertex of G. Let $G^{\prime}=G-c_{j}$. Then by the choice of $G, f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k-1\right)-1\right) / 3=(2(n+k)-1) / 3-4 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, c_{j+1} \in S^{\prime}$. If $c_{j-1} \notin S^{\prime}$, then S^{\prime} is a 1 FTD-set for G, a contradiction. Thus assume that $c_{j-1} \in S^{\prime}$. Then $\left\{c_{j}\right\} \cup S^{\prime}$ is a

1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction. We thus obtain that $\operatorname{deg}\left(c_{i}\right) \geq 3$ for $1 \leq i \leq r$. Let $G^{*}=G-c_{0} c_{1}-c_{0} c_{r}$. Let G_{1}^{*} be the component of G^{*} containing c_{r}, and G_{2}^{*} be the component of G^{*} containing c_{0}. Clearly, $S^{\prime}=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is a 1 FTD-set for G_{1}^{*} of cardinality at most $n\left(G_{1}^{*}\right) / 2$. Let $G_{3}^{*}=G\left[V\left(G_{2}^{*}\right) \cup\left\{c_{1}\right\}\right]$. By the choice of $G, f t d_{1}\left(G_{3}^{*}\right) \leq\left(2\left(n\left(G_{3}^{*}\right)+k-1\right)-1\right) / 3$. Let $S^{\prime \prime}$ be an $f t d_{1}\left(G_{3}^{*}\right)$-set. By Observation $1, c_{0} \in S^{\prime \prime}$. Clearly, $S^{\prime} \cup S^{\prime \prime}$ is a 1 FTDset for G and so $f t d_{1}(G) \leq\left(2\left(n\left(G_{3}^{*}\right)+k-1\right)-1\right) / 3+n\left(G_{1}^{*}\right) / 2<(2(n+k)-1) / 3$, a contradiction.

It is evident that for the cycle C_{7} the equality of the bound given in Theorem 14 holds.

Theorem 15. If $G \neq C_{7}$ is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $\operatorname{ftd}_{1}(G)=(2(n+k)-1) / 3$ if and only if $G \in \mathcal{G}_{k}$.

Proof. We prove by an induction on k to show that any cactus graph $G \neq C_{7}$ of order $n \geq 5$ with $k \geq 1$ cycles and $f t d_{1}(G)=(2(n+k)-1) / 3$ belongs to \mathcal{G}_{k}. The base step of the induction follows by Theorem 6 . Assume the result holds for all cactus graphs $G^{\prime} \neq C_{7}$ with $k^{\prime}<k$ cycles. Now let $G \neq C_{7}$ be a cactus graph of order n with $k \geq 2$ cycles and $f t d_{1}(G)=(2(n+k)-1) / 3$. Suppose to the contrary that $G \notin \mathcal{G}_{k}$. Assume that G has the minimum order, and among all such graphs, assume that the size of G is minimum.

Claim 1. Every support vertex of G is weak support vertex.
Proof. Suppose that G has a strong support vertex u, and assume that u_{1} and u_{2} are two leaves adjacent to u. Let $G^{\prime}=G-u_{1}$, and S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$ set. By Observation $1, u \in S^{\prime}$. By Theorem 14, $\left|S^{\prime}\right| \leq\left(2\left(n\left(G^{\prime}\right)+2\right)-1\right) / 3=$ $(2(n+k)-1) / 3-2 / 3$. Clearly, S^{\prime} is a 1FTD-set for G of cardinality at most $(2(n+k)-1) / 3-2 / 3$, a contradiction.

By Observation $8, G$ has at least two leaf-cycles. Let $C_{1}=c_{0} c_{1} \cdots c_{r} c_{0}$ be a leaf-cycle of G, where c_{0} is a special cut-vertex of G. Let G_{1}^{\prime} be the component of $G-c_{0} c_{1}-c_{0} c_{r}$ containing c_{1}.

Claim 2. $V\left(G_{1}^{\prime}\right) \neq\left\{c_{1}, \ldots, c_{r}\right\}$.
Proof. Suppose that $V\left(G_{1}^{\prime}\right)=\left\{c_{1}, \ldots, c_{r}\right\}$. Then $\operatorname{deg}_{G}\left(c_{i}\right)=2$, for each $i=$ $1,2, \ldots, r$. Let $G^{\prime}=G-c_{2}$. By Theorem 14, $f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k-1\right)-\right.$ $1) / 3=(2(n+k)-1) / 3-4 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation 1 , $c_{0} \in S^{\prime}$. If $\left|S^{\prime} \cap\left\{c_{1}, c_{3}\right\}\right|=1$, then S^{\prime} is a 1FTD-set for G of cardinality at most $(2(n+k)-1) / 3-4 / 3$, a contradiction. Thus assume that $\left|S^{\prime} \cap\left\{c_{1}, c_{3}\right\}\right|=2$. Then $\left\{c_{2}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction. Thus assume that $\left|S^{\prime} \cap\left\{c_{1}, c_{3}\right\}\right|=0$. Then $\left\{c_{1}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction.

Let $v_{d} \in V\left(G_{1}^{\prime}\right) \backslash\left\{c_{1}, \ldots, c_{r}\right\}$ be a leaf of G_{1}^{\prime} at maximum distance from $\left\{c_{1}, \ldots, c_{r}\right\}$, and assume that $\operatorname{deg}\left(v_{d-1}\right)$ is as maximum as possible, $\operatorname{deg}_{G}\left(v_{0}\right)$ is as maximum as possible, and $\operatorname{deg}_{G}\left(v_{1}\right)$ is as maximum as possible, where $v_{0} \in\left\{c_{1}, \ldots, c_{r}\right\}$ and $v_{0} v_{1} \cdots v_{d}$ is the shortest path from v_{d} to $\left\{c_{1}, \ldots, c_{r}\right\}$.

Suppose that $d=1$. Assume that $\operatorname{deg}_{G}\left(c_{j}\right)=2$, for some $j \in\{1,2, \ldots, r\}$. Assume that $\operatorname{deg}_{G}\left(c_{j+1}\right)=2$. Let $G^{\prime}=G-c_{j}$. By Theorem 14, $f t d_{1}\left(G^{\prime}\right) \leq$ $\left(2\left(n\left(G^{\prime}\right)+k-1\right)-1\right) / 3=(2(n+k)-1) / 3-4 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation 1, $c_{j+2} \in S^{\prime}$. If $\left|S^{\prime} \cap\left\{c_{j-1}, c_{j+1}\right\}\right|=1$, then S^{\prime} is a 1FTD-set for G of cardinality at most $(2(n+k)-1) / 3-4 / 3$, a contradiction. Thus assume that $\left|S^{\prime} \cap\left\{c_{j-1}, c_{j+1}\right\}\right|=2$. Then $\left\{c_{j}\right\} \cup S^{\prime}$ is a 1 FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction. Thus assume that $\left|S^{\prime} \cap\left\{c_{j-1}, c_{j+1}\right\}\right|=0$. Then $\left\{c_{j+1}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction. Thus $\operatorname{deg}_{G}\left(c_{j+1}\right) \geq 3$. Similarly, $\operatorname{deg}_{G}\left(c_{j-1}\right) \geq 3$. Clearly, $c_{j+1} \neq c_{0}$ or $c_{j-1} \neq c_{0}$. Assume, without loss of generality, that $c_{j+1} \neq c_{0}$. Then c_{j+1} is a support vertex of G. Let $G^{\prime}=G-c_{j}$. Then by Theorem 14, $f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k-1\right)-1\right) / 3=(2(n+k)-1) / 3-4 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, c_{j+1} \in S^{\prime}$. If $c_{j-1} \notin S^{\prime}$, then S^{\prime} is a 1FTDset for G of cardinality at most $(2(n+k)-1) / 3-4 / 3$, a contradiction. Thus assume that $c_{j-1} \in S^{\prime}$. Then $\left\{c_{j}\right\} \cup S^{\prime}$ is a 1 FTD -set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$, a contradiction. We thus obtain that $\operatorname{deg}\left(c_{j}\right) \geq 3$, for $1 \leq j \leq r$. Let $G^{*}=G-c_{0} c_{1}-c_{0} c_{r}$. Let G_{1}^{*} be the component of G^{*} containing c_{r}, and G_{2}^{*} be the component of G^{*} containing c_{0}. Clearly, $S^{\prime}=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is a 1 FTD-set for G_{1}^{*} of cardinality at most $n\left(G_{1}^{*}\right) / 2$. Let $G_{3}^{*}=G\left[V\left(G_{2}^{*}\right) \cup\left\{c_{1}\right\}\right]$. By Theorem 14, $\operatorname{ftd}_{1}\left(G_{3}^{*}\right) \leq\left(2\left(n\left(G_{3}^{*}\right)+k-1\right)-1\right) / 3$. Let $S^{\prime \prime}$ be an $f t d_{1}\left(G_{3}^{*}\right)-$ set. By Observation $1, c_{0} \in S^{\prime \prime}$. Clearly, $S^{\prime} \cup S^{\prime \prime}$ is a 1FTD-set for G and so $f t d_{1}(G) \leq\left(2\left(n\left(G_{3}^{*}\right)+k-1\right)-1\right) / 3+n\left(G_{1}^{*}\right) / 2<(2(n+k)-1) / 3$, a contradiction.

Thus assume that $d \geq 2$.
Claim 3. If $d \geq 3$, then $G \in \mathcal{G}_{k}$.
Proof. Assume that $d \geq 3$. By Claim 1, $\operatorname{deg}_{G}\left(v_{d-1}\right)=2$. Assume first that $\operatorname{deg}_{G}\left(v_{d-2}\right) \geq 3$. Assume that v_{d-2} is a support vertex. Let $G^{\prime}=G-\left\{v_{d-1}, v_{d}\right\}$. By Theorem 14, $f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3=(2(n+k)-1) / 3-4 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, v_{d-2} \in S^{\prime}$. Then $\left\{v_{d-1}\right\} \cup S^{\prime}$ is a 1FTD-set in G, and so $f t d_{1}(G) \leq(2(n+k)-1) / 3-1 / 3$, a contradiction. Thus assume that v_{d-2} is not a support vertex of G. Let $x \neq v_{d-1}, v_{d-3}$ be a support vertex of G such that $x \in N\left(v_{d-2}\right)$. By the choice of the path $v_{0} v_{1} \cdots v_{d}$, (the part "deg $\left(v_{d-1}\right)$ is as maximum as possible"), $\operatorname{deg}_{G}(x)=2$. Let y be the leaf adjacent to x, and $G^{\prime}=G-\left\{v_{d}, v_{d-1}, y\right\}$. By Theorem 14, ftd $\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3=$ $(2(n+k)-1) / 3-2$. Assume that $f t d_{1}\left(G^{\prime}\right)<\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, v_{d-2} \in S^{\prime}$, since v_{d-2} is a support vertex of G^{\prime}. Then $\left\{v_{d-1}, x\right\} \cup S^{\prime}$ is a 1FTD-set in G and so $\operatorname{ftd}_{1}(G)<(2(n+k)-1) / 3$, a
contradiction.Thus $f t d_{1}\left(G^{\prime}\right)=\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3=(2(n+k)-1) / 3-2$. By the choice of $G, G^{\prime} \in \mathcal{G}_{k}$. Thus G is obtained from G^{\prime} by Operation \mathcal{O}_{2}, and so $G \in \mathcal{G}_{k}$.

Assume that $\operatorname{deg}_{G}\left(v_{d-2}\right)=2$. We consider the following cases.
Case 1. $d \geq 4$. Suppose that $\operatorname{deg}_{G}\left(v_{d-3}\right)=2$. Let $G^{\prime}=G-\left\{v_{d}, v_{d-1}, v_{d-2}\right.$, $\left.v_{d-3}\right\}$. By Theorem 14, ftd $\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3=(2(n+k)-1) / 3-8 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. If $v_{d-4} \in S^{\prime}$, then $\left\{v_{v-1}, v_{d}\right\} \cup S^{\prime}$ is a 1FTD-set in G and so $f t d_{1}(G) \leq(2(n+k)-1) / 3-2 / 3$, a contradiction. Thus $v_{d-4} \notin S^{\prime}$. Then $\left\{v_{v-2}, v_{d-1}\right\} \cup S^{\prime}$ is a 1 FTD-set in G and so $\operatorname{ftd}_{1}(G) \leq(2(n+k)-1) / 3-2 / 3$, a contradiction. We deduce that $\operatorname{deg}_{G}\left(v_{d-3}\right) \geq 3$. Let $G^{\prime}=G-\left\{v_{d}, v_{d-1}, v_{d-2}\right\}$. By Theorem 14, $\mathrm{ftd}_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3$. Assume that $f t d_{1}\left(G^{\prime}\right)<$ $\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3=(2(n+k)-1) / 3-2$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. If $v_{d-3} \in S^{\prime}$, then $\left\{v_{v-1}, v_{d-2}\right\} \cup S^{\prime}$ is a 1FTD-set in G and so $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Thus $v_{d-3} \notin S^{\prime}$. Then $\left\{v_{v-1}, v_{d}\right\} \cup S^{\prime}$ is a 1FTD-set in G and so $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction. We thus obtain that $f t d_{1}\left(G^{\prime}\right)=$ $\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3$. By the choice of $G, G^{\prime} \in \mathcal{G}_{k}$. Since $d \geq 4, v_{d-3}$ is not a special vertex of G^{\prime}. Thus G is obtained from G^{\prime} by Operation \mathcal{O}_{1}, and so $G \in \mathcal{G}_{k}$.

Case 2. $d=3$. Clearly, $\operatorname{deg}\left(v_{0}\right) \geq 3$. We show that $\operatorname{deg}\left(v_{0}\right) \geq 4$. Suppose that $\operatorname{deg}\left(v_{0}\right)=3$. Let $G^{\prime}=G-\left\{v_{1}, v_{2}, v_{3}\right\}$. By Theorem 14, ftd $d_{1}\left(G^{\prime}\right) \leq$ $\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3$. Assume that $f t d_{1}\left(G^{\prime}\right)=\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3$. By the choice of $G, G^{\prime} \in \mathcal{G}_{k}$. By Observation $9(1), v_{0}$ is the unique special vertex of G^{\prime}, since $\operatorname{deg}_{G^{\prime}}\left(v_{0}\right)=2$. We show that $\operatorname{deg}_{G^{\prime}}(x)=3$ for each $x \in\left\{c_{1}, \ldots, c_{r}\right\} \backslash\left\{v_{0}\right\}$. Assume that $\operatorname{deg}_{G^{\prime}}\left(c_{j}\right) \geq 4$ for some $c_{j} \in\left\{c_{1}, \ldots, c_{r}\right\} \backslash\left\{v_{0}\right\}$. If there is a vertex $w \in V(G) \backslash V\left(C_{1}\right)$ such that $d\left(w, C_{1}\right)=d\left(w, c_{j}\right)=3$, then w can plays the same role of v_{d}, and thus $\operatorname{deg}\left(u_{j}\right)=3$, a contradiction. Thus there is no vertex $w \in$ $V(G) \backslash V\left(C_{1}\right)$ such that $d\left(w, C_{1}\right)=d\left(w, c_{j}\right)=3$. Thus any vertex of $N\left(u_{j}\right) \backslash V\left(C_{1}\right)$ is a leaf or a weak support vertex. Assume that $N\left(c_{j}\right) \backslash V\left(C_{1}\right)$ contains t_{1} leaves and t_{2} support vertices, where $t_{1}+t_{2} \geq 2$. By Observation $9(1), t_{1}=0$, since $G^{\prime} \in$ \mathcal{G}_{k}. Thus $t_{2} \geq 2$. Let z_{1} and z_{2} be two weak support vertices in $N\left(c_{j}\right) \backslash V\left(C_{1}\right)$. Let z_{1}^{\prime} and z_{2}^{\prime} be the leaves adjacent to z_{1} and z_{2}, respectively. (We switch for a while to G). Let $G^{\prime \prime}=G-\left\{z_{1}, z_{1}^{\prime}, z_{2}^{\prime}\right\}$. By Theorem $14, f t d_{1}\left(G^{\prime \prime}\right) \leq\left(2\left(n\left(G^{\prime \prime}\right)+k\right)-1\right) / 3$. Suppose that $f t d_{1}\left(G^{\prime \prime}\right)=\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3$. By the choice of $G, G^{\prime \prime} \in \mathcal{G}_{k}$. Clearly, $\operatorname{deg}_{G^{\prime \prime}}\left(c_{i}\right) \geq 3$, since v_{0} is the unique special vertex of G^{\prime}, a contradiction (by Observation $9(1))$. Thus $f t d_{1}\left(G^{\prime \prime}\right)<\left(2\left(n\left(G^{\prime \prime}\right)+k\right)-1\right) / 3=(2(n+k)-1) / 3-$ 2. Let $S^{\prime \prime}$ be a 1FTD-set of $G^{\prime \prime}$. By Observation $1, c_{j} \in S^{\prime \prime}$. Then $S^{\prime \prime} \cup\left\{z_{1}, z_{2}\right\}$ is a 1FTD-set of G. Thus $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction. We deduce that $\operatorname{deg}_{G^{\prime}}\left(c_{i}\right)=3$ for each $c_{i} \in\left\{c_{1}, \ldots, c_{r}\right\} \backslash\left\{v_{0}\right\}$. Thus $\operatorname{deg}_{G}\left(c_{i}\right)=3$ for each $1 \leq i \leq r$. Note that by Observation $9(1), c_{i}$ is not a support vertex, for each i with $1 \leq i \leq r$ in G^{\prime}, since $G^{\prime} \in \mathcal{G}_{k}$. (We switch for a while to G). Let $F=\bigcup_{i=1}^{r}\left(N\left[c_{i}\right]\right) \backslash\left\{c_{0}, \ldots, c_{r}\right\}$. Clearly, $|F|=r$, since $\operatorname{deg}_{G^{\prime}}\left(c_{i}\right)=3$ for each $c_{i} \in\left\{c_{1}, \ldots, c_{r}\right\} \backslash\left\{v_{0}\right\}$ and $\operatorname{deg}_{G}\left(v_{0}\right)=3$. Let $F=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$. Clearly deg_{G}
$\left(u_{i}\right) \geq 2$, for each i with $1 \leq i \leq r$, since c_{i} is not a support vertex for $1 \leq i \leq r$ in G^{\prime}. By Claim 2, u_{i} is not a strong support vertex of G, for $1 \leq i \leq r$. If u_{i} is adjacent to a support vertex $u_{i}^{\prime} \in V(G) \backslash V\left(C_{1}\right)$, for some integer i, then since the leaf of u_{i}^{\prime} can play the role of v_{3}, we obtain that $\operatorname{deg}\left(u_{i}\right)=2$. Since $\operatorname{deg}_{G}\left(u_{i}\right) \geq 2$ for each i with $1 \leq i \leq r$, we find that $\operatorname{deg}_{G}\left(u_{i}\right)=2$ for each i with $1 \leq i \leq r$.

Let $F^{\prime}=\bigcup_{i=1}^{r} N\left(u_{i}\right) \backslash\left\{c_{0}, \ldots, c_{r}\right\}$. Clearly, $\left|F^{\prime}\right|=r$, since $\operatorname{deg}_{G}\left(u_{i}\right)=2$, for each $u_{i} \in\left\{u_{1}, \ldots, u_{r}\right\}$. Let $F^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{r}^{\prime}\right\}$. By the choice of the path $v_{0} v_{1} \cdots v_{d}$, (the part " $\operatorname{deg}\left(v_{d-1}\right)$ is as maximum as possible"), $\operatorname{deg}\left(u_{i}^{\prime}\right) \leq 2$, for $1 \leq i \leq r$. Let $F_{1}^{\prime}=\left\{u_{i}^{\prime} \in F^{\prime} \mid \operatorname{deg}_{G}\left(u_{i}^{\prime}\right)=1\right\}$ and $F_{2}^{\prime}=F^{\prime}-F_{1}^{\prime}$. Then every vertex of F_{2}^{\prime} is a weak support vertex. Since $v_{1} \in F_{2}^{\prime}$, we have $\left|F_{2}^{\prime}\right| \geq 1$. Let $G^{*}=G-c_{0} c_{1}-c_{0} c_{r}$, and G_{1}^{*} and G_{2}^{*} be the components of G^{*}, where $c_{1} \in V\left(G_{1}^{*}\right)$. By Theorem 14, $f t d_{1}\left(G_{2}^{*}\right) \leq\left(2\left(n\left(G_{2}^{*}\right)+k-1\right)-1\right) / 3$. Clearly, $n\left(G_{2}^{*}\right)=n(G)-3 r-\left|F_{2}^{\prime}\right|$. Let S_{2}^{*} be an $f t d_{1}\left(G_{2}^{*}\right)$-set. If $c_{0} \notin S_{2}^{*}$, then $S_{2}^{*} \cup F \cup F^{\prime}$ is a 1 FTD-set for G. Thus $f t d_{1}(G) \leq\left(2\left(n\left(G_{2}^{*}\right)+k-1\right)-1\right) / 3+2 r=(2(n(G)-$ $\left.\left.3 r-\left|F_{2}^{\prime}\right|+k-1\right)-1\right) / 3+2 r$ and so $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Thus $c_{0} \in S_{2}^{*}$. If $\left|F_{2}^{\prime}\right|=1$, then $S_{2}^{*} \cup V\left(C_{1}\right) \cup F \cup\left\{v_{2}\right\}$ is a 1 FTD-set for G and thus $\operatorname{ftd}_{1}(G) \leq\left(2\left(n\left(G_{2}^{*}\right)+k-1\right)-1\right) / 3+2 r+1=\left(2\left(n(G)-3 r-\left|F_{2}^{\prime}\right|+k-1\right)-\right.$ $1) / 3+2 r+1<(2(n+k)-1) / 3$, a contradiction. Thus assume that $\left|F_{2}^{\prime}\right| \geq 2$. Let $\left\{u_{t}^{\prime}, u_{t^{\prime}}^{\prime}\right\} \subseteq F_{2}^{\prime}$ (assume without loss of generality that $t<t^{\prime}$) such that $\operatorname{deg}_{G}\left(u_{i}^{\prime}\right)=1$, for $1 \leq i<t$ and $t^{\prime}<i \leq r$. Let $u_{t}^{\prime \prime}$ and $u_{t^{\prime}}^{\prime \prime}$ be the leaves of u_{t} and $u_{t^{\prime}}$, respectively. Clearly, $S_{2}^{*} \cup\left\{c_{1}, \ldots, c_{t-1}\right\} \cup\left\{u_{1}, \ldots, u_{t-1}\right\} \cup\left\{c_{t^{\prime}+1}, \ldots, c_{r}\right\} \cup$ $\left\{u_{t^{\prime}+1}, \ldots, u_{r}\right\} \cup\left\{u_{t+1}, \ldots, u_{t^{\prime}-1}\right\} \cup\left\{u_{t+1}^{\prime}, \ldots, u_{t^{\prime}-1}^{\prime}\right\} \cup\left\{u_{t}^{\prime}, u_{t^{\prime}}^{\prime}\right\} \cup\left\{u_{t}^{\prime \prime}, u_{t^{\prime}}^{\prime \prime}\right\}$ is a 1FTD-set for G and thus $\operatorname{ftd}_{1}(G) \leq\left(2\left(n\left(G_{2}^{*}\right)+k-1\right)-1\right) / 3+2 r=(2(n(G)-$ $\left.\left.3 r-\left|F_{2}^{\prime}\right|+k-1\right)-1\right) / 3+2 r+1<(2(n+k)-1) / 3$, a contradiction. We deduce that $f t d_{1}\left(G^{\prime}\right)<\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3=(2(n+k)-1) / 3-2$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. If $v_{0} \in S^{\prime}$, then $S^{\prime} \cup\left\{v_{1}, v_{2}\right\}$ is a 1FTD-set in G, and so $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Thus assume that $v_{0} \notin S^{\prime}$. Then $S^{\prime} \cup\left\{v_{2}, v_{3}\right\}$ is a 1FTD-set in G and thus $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Thus $\operatorname{deg}\left(v_{0}\right) \geq 4$. Let $G^{\prime}=G-\left\{v_{3}, v_{2}, v_{1}\right\}$. By Theorem 14, $f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3$. Assume that $f t d_{1}\left(G^{\prime}\right)<\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3=(2(n+k)-1) / 3-2$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. If $v_{0} \in S^{\prime}$, then $S=S^{\prime} \cup\left\{v_{1}, v_{2}\right\}$ is a 1 FTD-set for G and thus $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Thus assume that $v_{0} \notin S^{\prime \prime}$. Then $S=S^{\prime} \cup\left\{v_{2}, v_{3}\right\}$ is a 1FTD-set for G and thus $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Hence, $f t d_{1}\left(G^{\prime}\right)=\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3$. By the inductive hypothesis, $G^{\prime} \in \mathcal{G}_{k-1}$. Since $\operatorname{deg}\left(v_{0}\right) \geq 4, v_{0}$ is not a special vertex of G^{\prime}. Thus G is obtained from G^{\prime} by Operation \mathcal{O}_{1} and so $G \in \mathcal{G}_{k}$.

By Claim 3, we assume that $d=2$. We show that $\operatorname{deg}_{G}\left(v_{0}\right)=3$. Suppose that $\operatorname{deg}_{G}\left(v_{0}\right) \geq 4$. Assume that v_{0} is a support vertex. Let $G^{\prime}=G-\left\{v_{1}, v_{2}\right\}$. By Theorem $14, f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation 1, $v_{0} \in S^{\prime}$. Then $S^{\prime} \cup\left\{v_{d-1}\right\}$ is a 1FTD-set in G, and so $f t d_{1}(G)<$ $(2(n+k)-1) / 3$, a contradiction. Thus assume that v_{0} is not a support vertex
of G. Let $x \neq v_{1}$ be a support vertex of G such that $x \in N\left(v_{0}\right) \backslash V\left(C_{1}\right)$. By the choice of the path $v_{0} v_{1} \cdots v_{d}$, (the part " $\operatorname{deg}\left(v_{d-1}\right)$ is as maximum as possible"), $\operatorname{deg}_{G}(x)=2$. Let y be the leaf adjacent to x. Let $G^{\prime}=G-\left\{v_{2}, v_{1}, y\right\}$. By Theorem 14, $f t d_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3$. Let $f t d_{1}\left(G^{\prime}\right)<\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, v_{0} \in S^{\prime}$, since v_{0} is a support vertex of G^{\prime}. Then $\left\{v_{1}, x\right\} \cup S^{\prime}$ is a 1FTD-set in G and so $f t d_{1}\left(G^{\prime}\right)<(2(n+k)-1) / 3$, a contradiction. Thus $f t d_{1}\left(G^{\prime}\right)=\left(2\left(n\left(G^{\prime}\right)+k\right)-1\right) / 3$. By the inductive hypothesis, $G^{\prime} \in \mathcal{G}_{k}$, a contradiction by Observation $9(1)$, since v_{0} is a support vertex of G^{\prime}. Thus $\operatorname{deg}_{G}\left(v_{0}\right)=3$. Observe that G has no strong support vertex. If c_{i} is adjacent to a support vertex c_{i}^{\prime} of $N\left(c_{i}\right) \backslash V\left(C_{1}\right)$ for some i, then the leaf of c_{i}^{\prime} can play the role of v_{2}, and thus $\operatorname{deg}\left(c_{i}\right)=3$. Thus we may assume that $\operatorname{deg}_{G}\left(c_{i}\right) \leq 3$ for each i with $i=1,2, \ldots, r$. Assume that $\operatorname{deg}_{G}\left(c_{i}\right)=3$ for each i with $1 \leq i \leq r$.

Let $F=\bigcup_{i=1}^{r}\left(N\left(c_{i}\right) \backslash\left\{c_{0}, \ldots, c_{r}\right\}\right.$. Clearly, $|F|=r$, since $\operatorname{deg}_{G}\left(c_{i}\right)=3$, for each $c_{i} \in\left\{c_{1}, \ldots, c_{r}\right\}$. Let $F=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$. Clearly, $\operatorname{deg}_{G}\left(u_{i}\right) \leq 2$, for $1 \leq i \leq r$, since G has no strong support vertex. Let $F^{\prime}=\left\{u_{i} \mid \operatorname{deg}_{G}\left(u_{i}\right)=2\right\}$. Clearly, $v_{1} \in F^{\prime}$. Let $F^{\prime \prime}$ be the set of leaves of F^{\prime}. Clearly, $v_{2} \in F^{\prime \prime}$. Let $G^{*}=G-c_{0} c_{1}-c_{0} c_{r}$. Let G_{1}^{*} be the component of G^{*} containing c_{r} and G_{2}^{*} be the component of G^{*} containing c_{0}. Assume that $F=F^{\prime}$. Thus $n\left(G_{1}^{*}\right)=3 r$, since $d=$ 2. Further, $n\left(G_{2}^{*}\right)=n-3 r$. By Theorem 14, $f t d_{1}\left(G_{2}^{*}\right) \leq\left(2\left(n\left(G_{2}^{*}\right)+k-1\right)-1\right) / 3$. Let $S^{\prime \prime}$ be an $f t d_{1}\left(G_{2}^{*}\right)$-set. If $c_{0} \in S^{\prime \prime}$, then $S^{\prime \prime} \cup V\left(C_{1}\right) \cup F$ is a 1FTD-set for G and so $f t d_{1}(G) \leq\left(2\left(n\left(G_{2}^{*}\right)+k-1\right)-1\right) / 3+2 r=(2(n-3 r+k-$ 1) -1$) / 3+2 r=(2(n+k-1)-1) / 3$, a contradiction. Thus $c_{0} \in S^{\prime \prime}$. Then $S^{\prime \prime} \cup F^{\prime \prime} \cup F$ is a 1FTD-set for G and so $f t d_{1}(G) \leq\left(2\left(n\left(G_{2}^{*}\right)+k-1\right)-1\right) / 3+2 r=$ $(2(n-3 r+k-1)-1) / 3+2 r=(2(n+k-1)-1) / 3$, a contradiction. We conclude that $F \neq F^{\prime}$. Let $\left|F^{\prime}\right|=r^{\prime}$. Clearly, $1 \leq r^{\prime}<r$, since $v_{1} \in F^{\prime}$. Thus $n\left(G_{1}^{*}\right)=2 r+r^{\prime}$. Then $n\left(G_{2}^{*}\right)=n-\left(2 r+r^{\prime}\right)$. Let $G_{3}^{*}=G\left[V\left(G_{2}^{*}\right) \cup\left\{c_{1}\right\}\right]$. Then $n\left(G_{3}^{*}\right)=n-\left(2 r+r^{\prime}\right)+1$. By Theorem 14, $f t d_{1}\left(G_{3}^{*}\right) \leq\left(2\left(n\left(G_{3}^{*}\right)+k-1\right)-1\right) / 3$. Let $S^{\prime \prime}$ be an $f t d_{1}\left(G_{3}^{*}\right)$-set. By Observation $1, c_{0} \in S^{\prime \prime}$ and so $S^{\prime \prime} \cup V\left(C_{1}\right) \cup F^{\prime}$ is a 1FTD-set for G. Thus $\operatorname{ftd}_{1}(G) \leq\left(2\left(n\left(G_{2}^{*}\right)+k-1\right)-1\right) / 3+r+r^{\prime}=$ $\left(2\left(n-\left(2 r+r^{\prime}\right)+1+k-1\right)-1\right) / 3+r+r^{\prime}=\left(2(n+k)-1+r^{\prime}-r\right) / 3<(2(n+k)-1) / 3$, a contradiction. Therefore $\operatorname{deg}_{G}\left(c_{t}\right)=2$ for some $1 \leq t \leq r$.

Claim 4. No vertex of $C_{1}-c_{0}$ is a support vertex.
Proof. Let c_{j} be a support vertex of G. Assume that c_{j+1} is a special vertex. Let $G^{\prime}=G-c_{j+1}$. Then by Theorem 14, $\operatorname{ftd}_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k-1\right)-1\right) / 3=$ $(2(n+k)-1) / 3-4 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, c_{j} \in S^{\prime}$. If $c_{j+2} \notin S^{\prime}$, then S^{\prime} is a 1FTD-set for G of cardinality at most $(2(n+k)-1) / 3-4 / 3$ and so $\operatorname{ftd}_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Thus $c_{j+2} \in S^{\prime}$. Then $\left\{c_{j+1}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$ and so $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Thus $\operatorname{deg}_{G}\left(c_{j+1}\right) \neq 2$. Note that c_{t} is a special vertex of G. Assume without loss of generality that $j<t$. Let $c_{j^{\prime}}$ be
a support vertex of G and $c_{t^{\prime}}$ be a special vertex of G, where $j \leq j^{\prime}<t^{\prime} \leq t$, and among such vertices choose $c_{j^{\prime}}$ and $c_{t^{\prime}}$ such that c_{i} is neither a support vertex nor a special vertex of G for each i with $j^{\prime}<i<t^{\prime}$. Let $u_{i} \in N\left(c_{i}\right) \backslash V\left(C_{1}\right)$ for $j^{\prime}<i<t^{\prime}$. Clearly, $\operatorname{deg}_{G}\left(u_{i}=2\right.$ for $j^{\prime}<i<t^{\prime}$, since G has no strong support vertex. Let $G^{*}=G-c_{j^{\prime}} c_{j^{\prime}+1}-c_{t^{\prime}} c_{t^{\prime}+1}$. Let G_{1}^{*} be the component of G^{*} containing $c_{j^{\prime}}$ and G_{2}^{*} be the component of G^{*} containing $c_{t^{\prime}}$. Clearly, $n\left(G_{2}^{*}\right)=3\left(t^{\prime}-j^{\prime}-1\right)+1$. Thus $n\left(G_{1}^{*}\right)=n-\left(3\left(t^{\prime}-j^{\prime}-1\right)+1\right)$.

By Theorem 14, $f t d_{1}\left(G_{1}^{*}\right) \leq\left(2\left(n\left(G_{1}^{*}\right)+k-1\right)-1\right) / 3$. Let S^{\prime} be an $f t d_{1}\left(G_{1}^{*}\right)$ set. By Observation $1, c_{j^{\prime}} \in S^{\prime}$. Assume that $c_{t^{\prime}+1} \notin S^{\prime}$. Then $S^{\prime} \cup\left\{c_{j^{\prime}+1}, c_{j^{\prime}+2}\right.$, $\left.\ldots, c_{t^{\prime}-1}\right\} \cup\left\{u_{j^{\prime}+1}, u_{j^{\prime}+2}, \ldots, u_{t^{\prime}-1}\right\}$ is a 1FTD-set in G of cardinality at most $\left(2\left(n\left(G_{1}^{*}\right)+k-1\right)-1\right) / 3+2\left(t^{\prime}-j^{\prime}-1\right)=\left(2\left(n-\left(3\left(t^{\prime}-j^{\prime}-1\right)+1\right)+k-1\right)-1\right) / 3+$ $2\left(t^{\prime}-j^{\prime}-1\right)=(2(n+k)-1) / 3-4 / 3$ and so $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Thus $c_{t^{\prime}+1} \in S^{\prime}$. Then $S^{\prime} \cup\left\{c_{j^{\prime}+1}, c_{j^{\prime}+2}, \ldots, c_{t^{\prime}}\right\} \cup\left\{u_{j^{\prime}+1}, u_{j^{\prime}+2}, \ldots, u_{t^{\prime}-1}\right\}$ is a 1FTD-set in G of cardinality at most $\left(2\left(n\left(G_{1}^{*}\right)+k-1\right)-1\right) / 3+2\left(t^{\prime}-j^{\prime}-1\right)+1=$ $\left(2\left(n-\left(3\left(t^{\prime}-j^{\prime}-1\right)+1\right)+k-1\right)-1\right) / 3+2\left(t^{\prime}-j^{\prime}-1\right)=(2(n+k)-1) / 3-1 / 3$ and so $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction.

Claim 5. If $\operatorname{deg}_{G}\left(c_{j}\right)=2$ for some j with $1 \leq j \leq r$, then $\operatorname{deg}_{G}\left(c_{j+1}\right)=3$ and $\operatorname{deg}_{G}\left(c_{j-1}\right)=3$.
Proof. Assume that $\operatorname{deg}_{G}\left(c_{j}\right)=\operatorname{deg}_{G}\left(c_{j+1}\right)=2$, for some j with $1 \leq j \leq r$, and among such vertices choose c_{j} such that $\operatorname{deg}_{G}\left(c_{j-1}\right)=3$. Let $G^{\prime}=G-c_{j}$. Then by Theorem 14, ftd $_{1}\left(G^{\prime}\right) \leq\left(2\left(n\left(G^{\prime}\right)+k-1\right)-1\right) / 3=(2(n+k)-1) / 3-4 / 3$. Let S^{\prime} be an $f t d_{1}\left(G^{\prime}\right)$-set. By Observation $1, c_{j+2} \in S^{\prime}$. If $\left|S^{\prime} \cap\left\{c_{j-1}, c_{j+1}\right\}\right|=$ 1, then S^{\prime} is a 1FTD-set for G of cardinality at most $(2(n+k)-1) / 3-4 / 3$ and so ftd $_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Thus assume that $\mid S^{\prime} \cap$ $\left\{c_{j-1}, c_{j+1}\right\} \mid=2$. Then $\left\{c_{j}\right\} \cup S^{\prime}$ is a 1 FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$ and so $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Thus assume that $\left|S^{\prime} \cap\left\{c_{j-1}, c_{j+1}\right\}\right|=0$. Then $\left\{c_{j+1}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-1 / 3$ and so $\operatorname{ftd}_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Thus $\operatorname{deg}_{G}\left(c_{j+1}\right) \geq 3$. Similarly $\operatorname{deg}_{G}\left(c_{j-1}\right) \geq 3$.

Claim 6. C_{1} has precisely one special vertex.
Proof. Let $c_{t_{1}}$ and $c_{t_{2}}$ be two special vertices of C_{1} and among such vertices choose $c_{t_{1}}$ and $c_{t_{2}}$ such that c_{i} is not a special vertex of C_{1} for $t_{1}<i<t_{2}$. By Claim $5, t_{1}+1<t_{2}$. By Claim 4, c_{i} is not a support vertex for $t_{1}<i<t_{2}$. Let $u_{i} \in N\left(c_{i}\right) \backslash V\left(C_{1}\right)$, for $t_{1}<i<t_{2}$. Clearly, $\operatorname{deg}_{G}\left(u_{i}\right)=2$, for $t_{1}<i<t_{2}$. Let u_{i}^{\prime} be the leaf adjacent to u_{i}, for $t_{1}<i<t_{2}$, and $G^{*}=G-c_{t_{1}} c_{t_{1}+1}-c_{t_{2}} c_{t_{2}+1}$. Let G_{1}^{*} be the component of G^{*} containing $c_{t_{1}}$, and G_{2}^{*} be the component of G^{*} containing $c_{t_{2}}$. Clearly, $n\left(G_{2}^{*}\right)=3\left(t_{2}-t_{1}-1\right)+1$. Then $n\left(G_{1}^{*}\right)=n-\left(3\left(t_{2}-\right.\right.$ $\left.\left.t_{1}-1\right)+1\right)$. By Theorem 14, ftd $\left(G_{1}^{*}\right) \leq\left(2\left(n\left(G_{1}^{*}\right)+k-1\right)-1\right) / 3$. Let S^{\prime} be an $f t d_{1}\left(G_{1}^{*}\right)$-set. By Observation $1, c_{t_{1}-1} \in S^{\prime}$. Assume that $\left\{c_{t_{1}}, c_{t_{2}+1}\right\} \cap S^{\prime}=\emptyset$.

Then $S^{\prime} \cup\left\{c_{t_{1}}, c_{t_{1}+1}, \ldots, c_{t_{2}-1}\right\} \cup\left\{u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{2}-1}\right\}$ is a 1FTD-set in G of cardinality at most $\left(2\left(n\left(G_{1}^{*}\right)+k-1\right)-1\right) / 3+2\left(t_{2}-t_{1}-1\right)+1=\left(2\left(n-\left(3\left(t_{2}-\right.\right.\right.\right.$ $\left.\left.\left.\left.t_{1}-1\right)+1\right)+k-1\right)-1\right) / 3+2\left(t_{2}-t_{1}-1\right)+1=(2(n+k)-1) / 3-1 / 3$ and so $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction.

Thus $\left\{c_{t_{1}}, c_{t_{2}+1}\right\} \cap S^{\prime} \neq \emptyset$. If $\left\{c_{t_{1}}, c_{t_{2}+1}\right\} \subseteq S^{\prime}$, then $S^{\prime} \cup\left\{c_{t_{1}+1}, c_{t_{1}+2}, \ldots, c_{t_{2}}\right\} \cup$ $\left\{u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{2}-1}\right\}$ is a 1FTD-set in G of cardinality at most $\left(2\left(n\left(G_{1}^{*}\right)+\right.\right.$ $k-1)-1) / 3+2\left(t_{2}-t_{1}-1\right)+1=\left(2\left(n-\left(3\left(t_{2}-t_{1}-1\right)+1\right)+k-1\right)-\right.$ $1) / 3+2\left(t_{2}-t_{1}-1\right)+1=(2(n+k)-1) / 3-1 / 3$. Thus $\operatorname{ftd}_{1}(G)<(2(n+$ $k)-1) / 3$, a contradiction. Thus $\left\{c_{t_{1}}, c_{t_{2}+1}\right\} \nsubseteq S^{\prime}$. If $c_{t_{1}} \in S^{\prime}$ and $c_{t_{2}+1} \notin S^{\prime}$, then $S^{\prime} \cup\left\{c_{t_{1}+1}, c_{t_{1}+2}, \ldots, c_{t_{2}-1}\right\} \cup\left\{u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{2}-1}\right\}$ is a 1FTD-set in G of cardinality at most $\left(2\left(n\left(G_{1}^{*}\right)+k-1\right)-1\right) / 3+2\left(t_{2}-t_{1}-1\right)=\left(2\left(n-\left(3\left(t_{2}-\right.\right.\right.\right.$ $\left.\left.\left.\left.t_{1}-1\right)+1\right)+k-1\right)-1\right) / 3+2\left(t_{2}-t_{1}-1\right)=(2(n+k)-1) / 3-4 / 3$ and so $f t d_{1}(G)<(2(n+k)-1) / 3$, a contradiction. Thus assume that $c_{t_{2}+1} \in S^{\prime}$ and $c_{t_{1}} \notin S^{\prime}$. Then $S^{\prime} \cup\left\{u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{2}-1}\right\} \cup\left\{u_{t_{1}+1}^{\prime}, u_{t_{1}+2}^{\prime}, \ldots, u_{t_{2}-1}^{\prime}\right\}$ is a 1FTD-set in G of cardinality at most $\left(2\left(n\left(G_{1}^{*}\right)+k-1\right)-1\right) / 3+2\left(t_{2}-t_{1}-1\right)=$ $\left(2\left(n-\left(3\left(t_{2}-t_{1}-1\right)+1\right)+k-1\right)-1\right) / 3+2\left(t_{2}-t_{1}-1\right)=(2(n+k)-1) / 3-4 / 3$ and so $\operatorname{ftd}_{1}(G)<(2(n+k)-1) / 3$, a contradiction.

By Claims 4 and $6, c_{i}$ is not a support vertex and is not a special vertex, for $i \in\{1,2, \ldots, t-1, t+1, \ldots, r\}$. Let $u_{i} \in N\left(c_{i}\right) \backslash V\left(C_{1}\right)$, for $i \in\{1,2, \ldots, t-1, t+$ $1, \ldots, r\}$. Clearly, $\operatorname{deg}_{G}\left(u_{i}\right)=2$, for $i \in\{1,2, \ldots, t-1, t+1, \ldots, r\}$.

Let $G_{1}^{\prime \prime}$ be the component of $G-c_{0} c_{1}-c_{0} c_{r}$ that contains $c_{1}, G_{2}^{\prime \prime}$ be the component of $G-c_{0} c_{1}-c_{0} c_{r}$ that contains c_{0}, and G^{*} be a graph obtained from $G_{2}^{\prime \prime}$ by adding a path $p_{2}=x_{1} x_{2}$ and joining c_{0} to x_{1}. Clearly, $n\left(G^{*}\right)=n-(3 r-2)+2$. By Theorem 14, $f t d_{1}\left(G^{*}\right) \leq\left(2\left(n\left(G^{*}\right)+k-1\right)-1\right) / 3$. Suppose that $f t d_{1}\left(G^{*}\right)<$ $\left(2\left(n\left(G^{*}\right)+k-1\right)-1\right) / 3$. Let S^{*} be an $f t d_{1}\left(G^{*}\right)$-set. By Observation $1, x_{1} \in S^{*}$. If $c_{0} \in S^{*}$, then $S^{*} \cup\left\{c_{1}, c_{2}, \ldots, c_{r}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{t-1}, u_{t+1}, \ldots, u_{r}\right\} \backslash\left\{x_{1}\right\}$ is a 1FTD-set in G. Thus $\operatorname{ftd}_{1}(G)<\left(2\left(n\left(G^{*}\right)+k-1\right)-1\right) / 3+2 r-1-1=(2(n-(3 r-$ $2)+2+k-1)-1) / 3+2 r-2=(2(n+k)-1) / 3$, a contradiction. Thus $c_{0} \notin S^{*}$. Then $x_{2} \in S^{*}$. If $t>1$, then $S^{*} \backslash\left\{x_{1}, x_{2}\right\} \cup\left\{c_{1}, \ldots, c_{t-1}\right\} \cup\left\{u_{1}, \ldots, u_{t-1}\right\} \cup$ $\left\{u_{t+1}, \ldots, u_{r}\right\} \cup\left\{u_{t+1}^{\prime}, \ldots, u_{r}^{\prime}\right\}$ is a 1FTD-set in G. Thus $\operatorname{ftd}_{1}(G)<\left(2\left(n\left(G^{*}\right)+\right.\right.$ $k-1)-1) / 3+2(r-1)-2=(2(n-(3 r-2)+2+k-1)-1) / 3+2 r-$ $4=(2(n+k)-1) / 3-2$, a contradiction. Thus assume that $t=1$. Then $S^{*} \backslash\left\{x_{1}, x_{2}\right\} \cup\left\{c_{2}, \ldots, c_{r}\right\} \cup\left\{u_{2}, \ldots, u_{r}\right\}$, is a 1FTD-set in G of cardinality at most $(2(n+k)-1) / 3-2$ and so $f t d_{1}(G)<(2(n+k)-1) / 3-2$, a contradiction. Thus $f t d_{1}\left(G^{*}\right)=\left(2 n\left(G^{*}+k-1\right)-1\right) / 3$. By the inductive hypothesis, $G^{*} \in \mathcal{G}_{k-1}$. Let G_{1}^{*} be the graph obtained from $G\left[G_{1}^{\prime \prime} \cup\left\{c_{0}\right\}\right]$ by adding a path $p_{2}=x_{1}^{\prime} x_{2}^{\prime}$ and joining c_{0} to x_{1}^{\prime}. Clearly, $G_{1}^{*} \in \mathcal{H}_{1}$. Thus G is obtained from $G^{*} \in \mathcal{G}_{k-1}$ and $G_{1}^{*} \in \mathcal{H}_{1}$ by Procedure A. Consequently, $G \in \mathcal{H}_{k} \subseteq \mathcal{G}_{k}$.

For the converse, by Corollary $13, V(G) \backslash L(G)$ is the unique $f t d_{1}(G)$-set. Now Observation 9 implies that $f t d_{1}(G)=(2(n+k)-1) / 3$.

Acknowledgements

We would like to thank the referee(s) for many helpful comments.

References

[1] Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math. 312 (2012) 2905-2914. doi:10.1016/j.disc.2012.05.006
[2] B. Chaluvaraju, M. Chellali and K.A. Vidya, Perfect k-domination in graphs, Australas. J. Combin. 48 (2010) 175-184.
[3] B. Chaluvaraju and K. Vidya, Perfect dominating set graph of a graph, Adv. Appl. Discrete Math. 2 (2008) 49-57.
[4] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination in graphs, J. Combin. Inform. System Sci. 18 (1993) 136-148.
[5] I.J. Dejter, Perfect domination in regular grid graphs, Australas. J. Combin. 42 (2008) 99-114.
[6] I.J. Dejter and A.A. Delgado, Perfect domination in rectangular grid graphs, J. Combin. Math. Combin. Comput. 70 (2009) 177-196.
[7] M.R. Fellows and M.N. Hoover, Perfect domination, Australas. J. Combin. 3 (1991) 141-150.
[8] M. Hajian and N. Jafari Rad, Trees and unicyclic graph with large fair domination number, Util. Math., to appear.
[9] M. Hajian and N. Jafari Rad, Fair domination number in cactus graphs, Discuss. Math. Graph Theory 39 (2019) 489-503. doi:10.7151/dmgt. 2088
[10] M. Hajian, N. Jafari Rad and L. Volkmann, Bounds on the fair total domination number in trees and unicyclic graphs, Australas. J. Combin. 74 (2019) 460-475.
[11] H. Hatami and P. Hatami, Perfect dominating sets in the Cartesian products of prime cycles, Electron. J. Combin. 14 (2007) \#N8. doi:10.37236/1009
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[13] E.C. Maravilla, R.T. Isla and S.R. Canoy Jr., Fair total domination in the join, corona, and composition of graphs, Int. J. Math. Anal. 8 (2014) 2677-2685. doi:10.12988/ijma.2014.49296

