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Abstract

A total k-coloring of a graph G is a coloring of vertices and edges of G
using colors of the set {1, . . . , k}. These colors can be used to distinguish
adjacent vertices of G. There are many possibilities of such a distinction.
In this paper, we focus on the one by the full sum of colors of a vertex, i.e.,
the sum of the color of the vertex, the colors on its incident edges and the
colors on its adjacent vertices.

This way of distinguishing vertices has similar properties to the method
when we only use incident edge colors and to the corresponding 1-2-3 Con-
jecture.

Keywords: neighbor sum distinguishing total coloring, general edge color-
ing, total coloring, neighbor-distinguishing index, neighbor full sum distin-
guishing total k-coloring.

2010 Mathematics Subject Classification: 05C15.

1We acknowledge the support by CNRS-PICS Project no. 6367 “GraphPar”. The fifth author
was supported by the National Science Centre, Poland, grant no. 2014/13/B/ST1/01855. The
third, fourth, fifth and sixth authors were also partly supported by the Polish Ministry of Science
and Higher Education. The sixth author was supported by the National Science Centre, Poland,
grant no. DEC-2013/09/B/ST1/01772.

http://dx.doi.org/10.7151/dmgt.2223


1176 O. Baudon, H. Hocquard, A. Marczyk, M. Pilśniak, J. Przyby lo ...

1. Introduction and Terminology

Let G = (V,E) be a finite, undirected simple graph.

Karoński,  Luczak and Thomason introduced and investigated a coloring of
the edges of a graph with positive integers so that adjacent vertices have different
sums of incident edge colors [10]. More precisely, let f : E → {1, 2, . . . , k} be an
edge coloring of G (such a coloring is also called a k-coloring of G). For x ∈ V ,
we define

σe(x) :=
∑

e∋x

f(e).

A k-coloring c of G is called neighbor sum distinguishing if σe(x) 6= σe(y)
whenever xy ∈ E. In other words, the vertex coloring σe induced by f in the
above described way must be proper.

The minimum integer k for which there is a neighbor sum distinguishing
coloring of a graph G will be denoted by χe(G). Clearly, such k does not exist
when G contains K2 as a component. Graphs without a connected component
isomorphic to K2 are called nice graphs.

The following elegant problem, known as the 1-2-3 Conjecture, was posed
in [10].

Conjecture 1 [10]. Let G be a nice graph. Then χe(G) ≤ 3.

So far it is known that χe(G) ≤ 5 for any nice graph G (see [9]).

If the initial coloring f is total i.e., f : V ∪ E → {1, 2, . . . , k} (we call f a
total k-coloring then), we have many possibilities to choose palette of colors, i.e.,
the distinguishing elements we take into account. For instance, cf. [12], for every
vertex v we denote

σve(v) := f(v) +
∑

u∈N(v)

f(uv) = f(v) + σe(v),

where N(v) = {y ∈ V | vy ∈ E} denotes (the open) neighborhood of v. Thus,
σve(v) is the sum of incident colors of v and the color of v. We say that f is a
neighbor sum distinguishing total coloring of G if σve(u) 6= σve(v) for all adjacent
vertices u, v in G.

Similarly as above, the minimum value of k for which there exists a neighbor
sum distinguishing total coloring of a graph G will be denoted by χve(G).

In [12] Przyby lo and Woźniak posed the following problem, known as the 1-2
Conjecture.

Conjecture 2 [12]. For every graph G, we have χve(G) ≤ 2.

In this context, the best upper bound is due to Kalkowski [8] and equals 3.
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Also another possibility was considered by Flandrin et al. in [7] where, for
x ∈ V , the authors consider the following sum

σen(x) =
∑

e∋x

f(e) +
∑

y∈N(x)

f(y),

where f is a total k-coloring of G.
The value σen(x) is called an expanded sum at x. A total k-coloring f of G

is called neighbor expanded sum distinguishing if

σen(x) 6= σen(y)

whenever xy ∈ E(G). The corresponding invariant, i.e., the minimum value of
k for which such a neighbor expanded sum distinguishing total k-coloring of G
exists is denoted by χen(G).

The following conjecture is stated in [7].

Conjecture 3 [7]. For every graph G, we have χen(G) ≤ 2.

In this paper we consider the seemingly last remaining extension of the con-
cept of Karoński,  Luczak and Thomason towards total colorings, namely, we
would like to distinguish vertices by full sums, defined for a vertex x by

σven(x) := f(x) +
∑

e∋x

f(e) +
∑

y∈N(x)

f(y),

where f is a total k-coloring of G. We call f a neighbor full sum distinguishing
total k-coloring of G.

The corresponding parameter, expressing the minimum k admitting existence
of such a coloring is denoted by χven(G). It is easy to see that no such desired
distinguishing coloring exists if a graph is not nice.

In the following sections, we provide some arguments in favor of the following
conjecture.

Conjecture 4. Let G be a nice graph. Then χven(G) ≤ 3.

Remark 5. It is easy to observe some similarities between 1-2-3 Conjecture
(Conjecture 1) and just formulated Conjecture 4.

Firstly, it is easy to see that χe(K3) = χven(K3) = 3. Thus, in general, we
need three colors in order to distinguish adjacent vertices in both cases. Secondly,
the notion of “nice” is the same for the two variants (i.e., neither the parameter
χe nor the parameter χven exist for graphs which are not nice).

On the other hand, there are also similarities between 1-2 Conjecture (Con-
jecture 2) and Conjecture 3. In particular, the both corresponding parameters
are well defined for all graphs.



1178 O. Baudon, H. Hocquard, A. Marczyk, M. Pilśniak, J. Przyby lo ...

Remark 6. In all of the above problems, we considered general colorings and
color sums. The problems differed in the considered palettes, i.e., elements of the
graph, which we took into account. If we limit ourselves to the elements “close”
to the given vertex, we have three options: the vertex itself, incident edges and
neighboring vertices.

By denoting (symbolically) these three options by v (vertex), e (edges) and n

(neighbors) we have the following seven options when it comes to palettes. Denote
the palette by P. If P = {v}, then the coloring corresponds to the usual proper
coloring of the vertices of a graph and has been intensively studied since the
beginning of the graph theory. The cases P = {e}, P = {v, e} and P = {e, n} are
discussed above. The case P = {n} corresponds to the so-called lucky labellings
and was introduced in [4]. In turn the case of P = {v, n} is studied in [1].

Therefore, the case that we are considering in this paper (P = {v, e, n}) is
the last, natural and not yet studied case. This is an additional motivation for
our research.

Remark 7. The four problems described above are only a modest part of a
family of problems concerning distinguishing vertices of a graph by coloring the
edges, or vertices. In addition to the consideration of different palettes, one can
consider different types of colorings (proper or general), one can distinguish all
or only neighboring vertices, and the distinction can take into account not only
the sums of colors but also multisets or sets. Sometimes, the notation taking
into account all these elements is used. In this notation, parameters described
above would be denoted by gndiΣ, tgndiΣ, egndiΣ, fgndiΣ, respectively. Because
all colorings we consider are general, we distinguish only neighboring vertices and
we always do this by means of sums, we apply somewhat simpler notation. See
Seamone [13] for a survey.

2. Paths and Cycles

We use Bondy and Murty’s book [2] for terminology and notation not defined
here.

Proposition 8. Let Pn denote the path of order n. If n ≥ 4, then χven(Pn) = 2,
and χven(P3) = 1.

Proof. Denote by x1, . . . , xn the consecutive vertices of the path Pn, n ≥ 4. By
odd (even) vertices we mean the vertices with odd (even) indices, respectively.
Let us put f(x1) = f(x3) = · · · = 1 on odd vertices, and f(x2) = f(x4) = · · · = 2
on even vertices, and f(xixi+1) = 1 for i = 1, . . . , n − 1. Then, it is easy to see
that σven(x1) = σven(xn) = 4, σven(x) = 7 for all inner odd vertices, σven(x) = 6



On a Total Version of 1-2-3 Conjecture 1179

for all inner even vertices. Thus, all adjacent vertices are distinguished. Clearly,
in the case of P3, one color is enough.

Proposition 9. Let Cn denote the cycle of order n. For n ≥ 4, χven(Cn) = 2
and χven(C3) = 3.

Proof. If n is even then coloring vertices and edges of the cycle as in the case of
paths, we get a coloring distinguishing neighbors by full sums. So, let n be odd
and denote by x0, x1, . . . , xn−1 the consecutive vertices of the cycle Cn, n ≥ 5.

We define f as follows:
f(x0) = 1,
f(x1) = 2,
f(xi) = 1 for i odd, i 6= 1,
f(xi) = 2 for i even, 2 ≤ i ≤ n− 1,
f(xixi+1) = 2 if i ∈ {0, 1},
f(xixi+1) = 1 for all remaining edges.
It can be verified that σven(x0) = 8, σven(x1) = 9, σven(x2) = 8, σven(xi) = 7

for all remaining odd vertices, and σven(xi) = 6 for all remaining even vertices.
Thus, the above defined function is a neighbor full sum distinguishing total 2-
coloring of Cn. For n = 3, it is easy to see that two colors do not suffice to
get such a coloring, while three are enough. Indeed, it is sufficient to put 1 on
vertices and 1,2,3 on edges of C3.

3. Bipartite Graphs

Observe that if we color all edges and vertices with 1, then for every vertex v we
obtain σven(v) = 2×d(v)+1. If there are no adjacent vertices of the same degree
in G, then χven(G) = 1.

Theorem 10. If G is a connected bipartite graph of order n ≥ 3, then χven(G)
≤ 2.

Proof. Let x be a vertex of the maximum degree ∆ of the graph G = (V,E). By
Propositions 8 and 9, we may assume that d(x) ≥ 3. We consider a spanning tree
T of a graph G obtained by the BFS-algorithm (breadth-first search) rooted at
x. First, we define a total coloring f for all vertices and edges of G except these
edges which belong to T , and only just then choose colors for these remaining
edges. At the end we might also be forced to make some alterations concerning
x and its incident edges.

We thus start by setting f(v) = 1 for every vertex v ∈ V \N(x) and f(v) = 2
whenever v ∈ N(x). Moreover, we put f(e) = 1 for every edge e ∈ E\E(T ).
Note that all edges incident with x belong to E(T ).
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Next, we will be consecutively assigning colors to edges of T in such a way
that all vertices on spheres of even radius (greater than 0) centered in x will have
even full sums (in G) and all vertices on spheres of odd radius centered in x will
have odd full sums (note that the distances of any vertex v ∈ V from x are the
same in G and T ). For this goal, we will be analyzing consecutive vertices of T
from subsequent spheres centered in x with decreasing radiuses. We thus start
from (all) vertices on the sphere with the largest radius (each such vertex is a
leaf of T ).

In general, suppose y (y 6= x) is a consecutive vertex we are about to process,
and that it belongs to Sk(x), the sphere of radius k centered in x i.e., the set of
vertices of G distant by k from x. Observe that the facts that T is a BFS-tree
and G is bipartite imply that every edge e ∈ E joins two consecutive spheres
centered in x i.e., the vertices of each sphere are independent. Then all edges
yu ∈ E(G) with u ∈ Sk+1(x), if there are any, are already colored. Let v be the
unique predecessor of y in T , hence v ∈ Sk−1(x) and yv is the only yet uncolored
edge incident with y. Then, we color the edge yv with either 1 or 2 in such a way
that σven(y) (in G) is even if k is even, or odd otherwise.

We continue in the manner described above until we have colored all edges of
T . Note that afterwards, the only possible conflicts between full sums of adjacent
vertices in G are between x and some of its neighbors. Then either f already
meets our requirements, or we have the same full sum in x and in some y′ ∈ N(x)
(possibly in more than one). In the latter case however, by our construction, we
have

(1)

σven(x) = f(x) +
∑

u∈N(x)

f(u) +
∑

e∋x

f(e)

≥ f(x) + f(y′) + 2(∆ − 1) + (∆ − 1) + f(xy′)

= f(y′) + f(x) + (∆ − 1) + 2(∆ − 1) + f(xy′)

≥ f(y′) +
∑

u∈N(y′)

f(u) +
∑

e∋y′

f(e) = σven(y′),

and hence σven(x) = σven(y′) implies that all edges incident with x, except pos-
sibly for xy′, must be colored with 1. Then, we change colors of the vertex x and
all its incident edges from 1 to 2 and vice versa. As a result, the parity of the
full sum at every neighbor of x will not change, while the full sum of x will get
larger than the ones corresponding to its neighbors, since afterwards x (of degree
∆ ≥ 3) will have all neighbors colored with 2 and at most one incident edge col-
ored with 1, hence the obtained f : V ∪ E → {1, 2} will distinguish neighboring
vertices of G by full sums.

The proof above provides an algorithm in which the parities of full sums in
the independent sets making up a bipartition of G are different, with one possible
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exception — a root of a BFS-tree. We can observe that such exception might be
unavoidable, as indeed there are bipartite graphs for which there does not exist
a total coloring f inducing odd full sums in one set of the bipartition and even
full sums in the other one. Namely, let G = (X,Y ;E) be a bipartite graph with
both sets X and Y of odd orders. And let every vertex of G have odd degree.
Then, the sum of all full sums in G is even since

∑

v∈X∪Y

σven(v) = 2
∑

e∈E

f(e) +
∑

v∈X∪Y

(d(v) + 1)f(v).

On the other hand however, the sum of all full sums in G must be odd, if we
assume that all full sums are even in X and odd in Y , or vice versa.

An analogous algorithm works even more simply in the case of χen.

Theorem 11. If G is a bipartite graph, then χen(G) ≤ 2.

Proof. For n ≤ 2, the thesis is straightforward. Otherwise, we use the same
initial coloring of the vertices, and then the same algorithm of coloring the edges
as in the proof of Theorem 10, but taking into account the parities of σen(y)
instead of σven(y) for every y ∈ V (G)\{x} (we do not have to assume that
∆(G) ≥ 3 either). Then, by similar estimations as in (1), the sum at x is larger
than the sums at its neighbors, and thus all adjacent vertices are distinguished
by expanded sums in G.

Remark 12. Note that in the case of bipartite graphs, there is a significant
difference between the χven parameter and the simplest χe parameter. Namely,
in the case of bipartite graphs, we know that χe is not more than three. The
problem of characterization of graphs for which χe = 2 was discussed, among
others in the papers ([5, 11]) and was finally resolved at work ([14]).

4. Regular Graphs and Graphs with χ = 3

In [3] Chartrand et al. considered a general coloring of the edges of a graph with
the elements of [k] := {1, 2, . . . , k}. Such a coloring is an irregular assignment
if, for any two vertices x, y of G, the sum of colors of edges incident to x differs
from the sum of colors of edges incident to y. The irregularity strength of a graph
G, denoted by s(G), is the minimum number k such that G has an irregular
assignment from the set [k]. Let Kn denote the complete graph on n vertices. In
this case, there is no difference if we distinguish all or only neighboring vertices.
Therefore, s(Kn) = χe(Kn). In [3] the authors showed that s(Kn) = 3, for n ≥ 3.
So, if we start with the appropriate coloring for edges of Kn, and then put 1
on each vertex of this graph, we obtain a neighbor full sum distinguishing total



1182 O. Baudon, H. Hocquard, A. Marczyk, M. Pilśniak, J. Przyby lo ...

3-coloring of Kn. Since the sum of colors of the vertices belonging to the closed
neighborhood of any vertex of Kn is the same and equals n. Hence, we cannot
color the vertices and the edges in a desired manner using just two colors (such a
coloring would imply the existence of an irregular assignment of Kn). Thus, the
following proposition holds.

Proposition 13. For n ≥ 3, χven(Kn) = 3.

Let Kr(t) denote a complete r-partite graph with t vertices in each class (r,
t ≥ 1). Faudree et al. [6] proved that if G = Kr(t), r > 2 and t ≥ 1, then
s(Kr(t)) = 3. Since G is regular, it follows that G admits a neighbor full sum
distinguishing total 3-coloring.

Proposition 14. If r ≥ 3 and t ≥ 1, then χven(Kr(t)) ≤ 3.

In [10] the authors studied a coloring of the edges of the graph with the
elements of an abelian group.

Theorem 15 [10]. Let (Γ,+) be a finite abelian group of odd order and G be
a connected graph of order at least 3. If G is |Γ| colorable, then there exists a
neighbor sum distinguishing coloring of the edges of G with the elements of Γ.

Corollary 16. Let G be a connected graph of order at least 3. If G is (2k + 1)-
colorable for k ≥ 1, then χven(G) ≤ 2k + 1.

Proof. Suppose that G is (2k + 1)-colorable. By Theorem 15, there exists a
neighbor sum distinguishing coloring of the edges of G with the elements of the
group Z2k+1. Afterwards, put 0 on every vertex of G. It can be easily seen that
a total coloring with the elements of Z2k+1 obtained in this manner distinguishes
neighbors by full sums. It suffices now to replace 0 by 2k + 1 and apply the
addition in N in order to obtain the desired total coloring.

Remark 17. Since we showed that χven(G) = 2 for a connected bipartite graph
G having at least three vertices and we will prove that this index is less than or
equal to 5 for any connected graph G of order at least 3, the above corollary is
interesting only for the class of graphs with chromatic number 3.

5. Split Graphs

Let G = (S ∪ K,E) be a split graph, i.e., a graph such that S is a stable set
(possibly empty) and K is a clique on k ≥ 1 vertices. We assume that K is
maximal, i.e., every vertex in S is not adjacent with at least one vertex in K.

Proposition 18. If G is a split graph of order n ≥ 3, then χven(G) ≤ 3.
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Proof. First of all, we may always suppose that |K| ≥ 2 and every vertex of S
has degree at least 1.

We also assume that K is maximal, i.e., every vertex in S is not connected
to at least one vertex in K.

If |K| = 2, i.e., K = {u, v} with uv ∈ E(G), then |S| ≥ 1 and each vertex of
S is adjacent either with u or with v exclusively. Without loss of generality, we
suppose that d(u) ≤ d(v). Then we color all the edges incident to v, except uv,
by 2, every vertex and all the edges incident to u by 1. Then,

σven(v) = 3(d(v) − 1) + 3,
σven(u) = 2(d(u) − 1) + 3.

Thus, σven(v) > σven(u) and χven(G) ≤ 2.
Now, we suppose that |K| ≥ 3. If |S| = 0, then G is a complete graph with

at least 3 vertices. Then, by Proposition 13, χven(G) = 3.
Now, suppose that |S| ≥ 1. First, we order the vertices v1, . . . , vk of K in

such a way that i > j implies that d(vi) ≥ d(vj). Then, we color the edges and
vertices of GK , the subgraph induced by K, in such a way that χven(GK) = 3
and that i > j implies σven(vi) > σven(vj) (in GK). Finally, we put 1 on the
vertices of S and the edges between S and K. It is easy to see that if x ∈ S

and y ∈ K, σven(x) < σven(y). Therefore, this coloring is a neighbor full sum
distinguishing 3-coloring.

Remark 19. It is easy to find split graphs which admit a neighbor full sum
distinguishing total 2-coloring.

For example, let G be the graph formed by adding a pendant edge to K3.
Then, χven(G) = 2. Note that χven(K3) = 3, as well as, for the remaining
complete graphs Kn, n > 3.

Question 20. Does there exist a simple characterization of split graphs which
admit a neighbor full sum distinguishing total 2-coloring?

6. χven ≤ 5

As already mentioned, in [9], Kalkowski et al. showed that for every graph G

without components isomorphic to K2 there exists a coloring of the edges of G
with the elements of {1, . . . , 5} such that the resulting vertex coloring σe of G is
proper. This implies at once the following corollary.

Corollary 21. If G is a connected regular graph of order at least 3, then χven(G)
≤ 5.

Using the approach from [9] we will show that the same holds for all connected
graphs of order at least 3. As one may start constructing a total coloring e.g.
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by choosing first arbitrary admissible vertex colors, this follows by the following
lemma, within which f denotes a total coloring of G.

Lemma 22. Given any connected graph G = (V,E) of order at least 3 and any set
{f(v) : v ∈ V } of integers assigned to its vertices, there exist f(e) ∈ {1, 2, 3, 4, 5}
for e ∈ E such that f is a neighbor sum distinguishing total coloring of G.

Proof. Suppose we are given a connected graph G = (V,E) of order at least 3
and a set {f(v) : v ∈ V } of integers. Order the vertices of G into a sequence
v1, v2, . . . , vn so that d(vn) ≥ 2 and for every vertex vi with i < n there exists
an edge vivj ∈ E with j > i. Every such edge will be called a forward edge of
vi, while vj is a forward neighbor of vi, and the other way round, i.e., vivj and
vi will be referred to as a backward edge and a backward neighbor, respectively,
of vj . At every step of the coloring algorithm described below, we will denote by
fT (e) and σT (v) the up-to-date color of an edge e ∈ E and total sum of a vertex
v ∈ V , respectively. Initially we assign color 3 to every edge of G (i.e., initially
fT (e) = 3 for e ∈ E). With every consecutive vertex vi in the sequence we will
now subsequently associate a two element set

Wi ∈ W := {{a, a + 2} : a ≡ 0 (mod 4) or a ≡ 1 (mod 4)}

disjoint with the corresponding sets associated with its backward neighbors, and
make sure that ever since defining such set Wi, the total sum σT (vi) will always
belong to Wi for every vertex vi ∈ V (thus assuring its distinction from the total
sums of the backward neighbors of vi) — a possible exceptions to this rule will
only be admitted while analyzing the last vertex in the sequence (see details
below). To achieve this goal we will allow:

(i) subtracting or adding 2 (or doing nothing) to the color of every backward
edge vkvi of vi so that σT (vk) ∈ Wk afterwards,

(ii) subtracting or adding 1 to the color of the first forward edge of vi,

i.e., a forward edge vivj of vi with the least j. While applying the rules above
we will additionally require that after analyzing vi (and committing admissible
alterations of colors of the edges incident with vi) and choosing appropriate Wi:

(iii) if cT (vivj) = 2 then, σT (vi) = minWi, while if cT (vivj) = 4 then, σT (vi) =
maxWi, where vivj is the first forward edge of vi.

Note that the rules (i)–(iii) guarantee that the colors of all edges will belong to
the set {1, 2, 3, 4, 5} at the end of our algorithm.

Suppose we begin our algorithm. For the first vertex v1 we do not need to
introduce any alterations, hence we have σT (v1) = f(v1) + 3d(v1), and we choose
(the only) 2-element set from W to which σT (v1) belongs and set it as W1.
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Now, assume that we are about to analyze a vertex vi with 1 < i < n and so
far all our requirements are fulfilled and all rules have been obeyed. Denote the
number of backward neighbors of vi by d. Observe that since vi has at least one
forward neighbor, then via admissible alterations consistent with (i) and (ii), we
may obtain 2d + 3 distinct sums at vi, which are consecutive integers. At most
2 of these cannot be achieved consistently with (iii). Thus, we are left with a set
of at least 2d + 1 options for σT (vi), containing elements (not necessarily both)
from at least d + 1 2-element sets from W. At least one of these 2-element sets
is not associated with any of d backward neighbors of vi. We arbitrarily choose
one such set to be Wi, and perform alterations on the edges incident with vi
consistent with (i)–(iii) so that σT (vi) ∈ Wi afterwards. We continue in the same
manner until we reach the last vertex in the sequence.

Finally, we analyze vn. By (i) we may obtain d(vn) + 1 distinct sums at vn,
say a, a + 2, . . . , a + 2d(vn). If a ∈ {2, 3} (mod 4), we perform the admissible
alterations consistent with (i) so that σT (vn) = a. Then however, σT (u) ∈ {0, 1}
(mod 4) for every (backward) neighbor u of vn, which thus cannot be in conflict
with vn. Therefore, we may assume that a ∈ {0, 1} (mod 4), and that not all
neighbors of vn are associated with the same 2-element list (if the later was not
true, i.e., if the total sums of all neighbors of vn belonged to the same W ∈ W,
then as d(vn) ≥ 2, we would have at least 3 available options for σT (vn), at least
one of which would not belong to W , hence we could again distinguish vn from
all its neighbors). Let vl be a neighbor of vn with σT (vl) ∈ W ′ ∈ W such that
W ′ ∩ {a, a+ 2} = ∅. Then we apply (i) (if necessary) to all backward edges of vn
so that each of them except for vlvn has the smaller of the two admissible colors
and vlvn — the larger one. Then σT (vn) = a + 2 is distinct from all total sums
of the neighbors of vn. At the end, setting for all edges e ∈ E, f(e) = fT (e), we
obtain a desired total coloring f of G.

Corollary 23. If G is a connected graph of order at least 3, then χven(G) ≤ 5.
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