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Abstract

A self-complementary graph is a graph isomorphic to its complement. A
set S of vertices in a graph G is a restrained dominating set if every ver-
tex in V(G) \ S is adjacent to a vertex in S and to a vertex in V(G) \ S.
The restrained domination number of a graph G is the minimum cardinal-
ity of a restrained dominating set of G. In this paper, we study restrained
domination in self-complementary graphs. In particular, we characterize the
self-complementary graphs having equal domination and restrained domina-
tion numbers.
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1. INTRODUCTION

A self-complementary graph G is a graph isomorphic to its complement G. The
structure of self-complementary graphs has been well-studied in the literature,
including [1, 9, 19, 20]. In this paper, we characterize the self-complementary
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graphs having equal domination and restrained domination numbers.

A set S of vertices in a graph G is a dominating set of G if every vertex
in V(G) \ S is adjacent to a vertex in S. The domination number v(G) of G
is the minimum cardinality of a dominating set of G. We call a dominating set
of cardinality v(G) a 7-set of G. The notion of domination and its variations
in graphs and has been studied a great deal. For a more thorough treatment of
domination parameters, see the books [14, 15, 17].

A set S is a restrained dominating set, abbreviated RD-set, of G if every
vertex of V(G) \ S is adjacent to a vertex in S and to a vertex in V(G) \ S.
Equivalently, a restrained dominating set of GG is a dominating set S of G such that
the subgraph G[V(G) \ S| induced by the complement of S in G has no isolated
vertex. The restrained domination number v,(G) is the minimum cardinality of
a RD-set of G. We call a RD-set of cardinality 7, (G) a 7,-set of G.

The concept of restrained domination was introduced by Telle [26] in his
1994 PhD thesis, albeit as a vertex partitioning problem, and the first paper on
the concept was published by Telle and Proskurowski in their 1997 paper [27].
However, the parameter was formally defined by Domke, Hattingh, Hedetniemi,
Laskar, and Markus in their 1999 paper [5] on restrained domination in graphs,
and also studied by Henning in his 1999 paper [16]. Subsequently over the past
twenty or so years, the restrained domination number has been extensively stud-
ied in the literature; a rough estimate says that it occurs in more than 100 papers
to date. For a small sample of recent papers on the restrained domination we
refer the reader to [12, 13, 21, 24, 28|.

As explained in the introductory 1999 paper [5], the restrained domination
is application driven. Omne application given is that of prisoners and guards.
Here, each vertex not in the restrained dominating set corresponds to a position
of a prisoner, and every vertex in the restrained dominating set corresponds
to a position of a guard. Note that each prisoner’s position is observed by a
guard’s position (to effect security) while each prisoner’s position is seen by at
least one other prisoner’s position (to protect the rights of prisoners). To be cost
effective, it is desirable to place as few guards as possible (in the sense above). The
associated optimal placement of guards corresponds to a restrained dominating
set of minimum cardinality.

Since every RD-set of a graph G is a dominating set of G, it follows that
v(G) < v-(G). Determining when equality is achieved in such an inequality is a
frequently studied problem in graph theory. For examples, see [3, 7, 10, 11, 22].
Here we characterize the self-complementary graphs G having v(G) = .(G).
The result is stated formally in Section 3.

1.1. Terminology and notation

For notation and graph theory terminology, we in general follow [17]. Specifically,
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let G = (V,E) be a graph with vertex set V' = V(G) of order n(G) = |V| and
edge set E = E(G) of size m(G) = |E|, and let v be a vertex in V. We denote the
degree of v in G by dg(v). The minimum degree (respectively, maximum degree)
among the vertices of G is denoted by §(G) (respectively, A(G)). An end-vertex
in G is a vertex of degree 1 in G. The open neighborhood of v is the set Ng(v) =
{u € V|uv € E} and the closed neighborhood of v is Ng[v] = {v} U Ng(v). For a
set S C V, its open neighborhood is the set Ng(S) = U,cg Na(v), and its closed
neighborhood is the set Ng[S] = Ng(S) U S. If the graph G is clear from the
context, we omit it in the above expressions. For example, we write n, m, d(u),
N(v) and N [v] rather than n(G), m(G), dg(u), Ng(v) and Ng[v], respectively.

Given a subset S C V(G) and a vertex v € S, the S-external private neigh-
borhood of v in G is the set epng(v,S) ={w € V\S | Nw)NnS = {v}}. We
call each vertex in epng(v, S) an S-external private neighbor, or just an external
private neighbor, of v.

The term end-vertex (as in Theorem 7) is not standard.

The distance between two vertices v and v in a connected graph G, denoted
by dg(u,v), is the length of a shortest (u,v)-path in G. The maximum distance
among all pairs of vertices of G is the diameter of G, denoted by diam(G).

The Cartesian product G H of graphs G and H is the graph with the vertex
set V(G) x V(H), vertices (g, h) and (¢’, h’) being adjacent if either ¢ = ¢’ and
hh' € E(H), or h =h' and g¢' € E(G).

2. SPECIAL GRAPH FAMILIES

In this section, we discuss some special graph families. Let P, and C,, denote
the path and cycle, respectively, on n vertices. A bull graph consists of a triangle
with two disjoint pendant edges as illustrated in Figure 1.

Figure 1. The bull graph.

2.1. The family F

Let F be the family of self-complementary graphs G such that G is the cycle
Cs or G can be constructed from the disjoint union of a path P, and a self-
complementary graph H, by adding all possible edges between the two support
vertices of the path P, and the vertices of H. We note that if H is the trivial
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graph K7, then G is the bull graph. Hence, the two self-complementary graphs
of order 5, namely, the cycle C5 and the bull graph are in F.

Suppose that G € F. If G = C5, then 7(G) = 2 < 3 = % (G). If G
is constructed from the union of a path vivovgvs on four vertices and a self-
complementary graph H, by adding all possible edges joining vertices in {vy, v3}
and V(H), then {ve, v3} is a dominating set of G and {v1, v, v4} is a RD-set of G,
implying that v(G) < 2 and v,(G) < 3. In order to dominate the vertices v; and
vg4, We note that at least one of the vertices v; and vy along with at least one of
v3 and vy are in every dominating set. It follows that v(G) > 2 and every RD-set
of G contains both v; and v4. But {v1,v4} is not a RD-set of G, so v,(G) > 3.
Consequently, v(G) = 2 < 3 = v,(G). We state this formally as follows.

Observation 1. If G € F, then G is a self-complementary graph and v(G) <
7 (G).

2.2. Paley graphs

Recall that a prime power is a positive integer power of a single prime number.
Let ¢ be a prime power such that ¢ = 1 (mod4); that is, ¢ is either an arbitrary
power of a Pythagorean prime (a prime congruent to 1 (mod4)) or an even power
of an odd non-Pythagorean prime. This choice of ¢ implies that in the unique
finite field F, of order ¢, the element —1 has a square root. The Paley graph G
of order ¢ is defined as follows. The vertex set of G is the field F,, while two
vertices of G are adjacent if their difference is a square in the field F,. We note
that Paley graphs exist for order 5, 9, 13, 25, 29, 37, 41, 49, 53, 61 (for a more
comprehensive list, we refer the reader to http://oeis.org/A085759). Paley graphs
were introduced independently by Sachs in his 1962 paper [23] and Erdés and
Rényi in their 1963 paper [8]. Sachs [23] established the following fundamental
property of Paley graphs.

Theorem 2 [23]. The Paley graphs are self-complementary.

The Paley graph G of order 5 is the 5-cycle which belongs to the family F and
satisfies v(G) = 2 < 3 = v,(G). The Paley graph G of order 9 is the Cartesian
product K3 K3 of two complete graphs K3 (also known in the literature as a
3 x 3 rook’s graph). The Paley graph of order 13 is the circulant graph C13(1,3,4)
shown in Figure 2(a), while the Paley graph of order 17 is the circulant graph
C17(1,2,4,8) of order 17 shown in Figure 2(b) (used to show that the Ramsey
number R(4,4) > 18).

Recall that a strongly regular graph G with parameters (v, k, A\, u) is a k-
regular graph of order v, in which every two adjacent vertices in G have A common
neighbors and every two non-adjacent vertices have p common neighbors. The
Paley graph G of order g is a strongly regular graph with parameters (q, %(q —
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(a) The Paley graph of order 13. (b) The Paley graph of order 17.

Figure 2. The Paley graphs of order 13 and 17.

1), i(q —5), %(q — 1)) For example, the Paley graph of order ¢ = 13 is a strongly
regular graph with parameters (13, 6,2,3). The Paley graphs G of order 9, 13, 17
and 25 all satisfy 7(G) = 3 = 7,(G). The Paley graphs G of orders between 29 and
81 (that is, of orders 29, 37, 41, 49, 53, 61, 73 and 81) all satisfy v(G) = 4 = v, (G).
The Paley graphs G of orders between 89 and 373 all satisfy v(G) = 5 = 7,.(G)
(see, for example, https://www.win.tue.nl/ aeb/graphs/Paley.html).

By using a greedy algorithm where one selects a vertex that dominates the
maximum number of yet undominated vertices at each step one can show (or see
[18]) that if G is a Paley graph of order ¢, then v(G) < 1+1ny(q). Every v-set in
a Paley graph G of order g where g > 9 is therefore a RD-set of G noting that G
is a (qgl )-regular graph and therefore every vertex outside the ~y-set has at least
one neighbor outside the set. We state this formally as follows.

Theorem 3. If G is a Paley graph different from the 5-cycle, then G is a self-
complementary graph and v(G) = v,(G).

3. MAIN RESuULT

The simplest example of a self-complementary graphs G with v(G) = ~,.(G) is
the path G = P, which satisfies v(G) = 2 = ~,(G). As shown in Theorem 3,
every Paley graph different from the 5-cycle has equal domination and restrained
domination numbers. Hence, there are infinitely many self-complementary graphs
G for which 7(G) = v,(G). Our aim in this paper is to characterize the self-
complementary graphs G having v(G) = v,.(G). We shall prove the following
result, a proof of which is given in Section 4.
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Theorem 4. Let G be a self-complementary graph. Then v(G) = v.(G) if and
only if G ¢ F.

3.1. Known results

We will use the following result due to Bollobas and Cockayne [2].

Theorem 5 [2]. If G is a graph without isolated vertices, then G has a ~y-set S
such that for all v € S, epn(v,S) # 0.

Our next two results are well-known.
Theorem 6 [14]. If G is a graph with diam(G) = 2, then v(G) < §(G).
Theorem 7 [14]. If G is a graph with diam(G) = 3, then v(G) < 2.
Another useful result was proven in [4].

Theorem 8 [4]. If a graph G has v(G) > 4, then every v(G)-set is a v,(G)-set.
In particular, v(G) = v (G).

The remaining results in this section pertain to self-complementary graphs.
Theorem 9 [23, 25]. If G is a self-complementary graph, then diam(G) € {2, 3}.

Theorem 10 [1]. If G is a self-complementary graph with an end-vertex, then
G contains exactly two end-vertices and two cut-vertices.

It is well-known that if G is a self-complementary graph of order n, then n =
0,1 (mod4). We present next a straightforward observation concerning the order
of self-complementary graphs in the literature. Let G be a self-complementary
graph of order n, and let v be a vertex of G having maximum degree A(G). In
the complement G of G, the vertex v has degree 6(G) =n — 1 — A(G). Since G
is self-complementary, §(G) = 6(G), and so, n = A(G) + 6(G) + 1. We state this
formally as follows.

Observation 11. If G is a self-complementary graph G of order n, then n =
14+ 46(G) + A(G).

4. PROOF OF THEOREM 4

In this section, we prove Theorem 4. We begin with two lemmas and a corollary,
which apply to general graphs.

Lemma 12. Let G be a graph with v(G) < v(G). If §(G) > 4, then v(G) =
(@)
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Proof. Assume that v,(G) > 7(G). Theorem 8 implies that v(G) < 7y(G) <
3. Let S be any 7-set of G. Since §(G) > 4, it follows that every vertex in
V(G)\ S has a neighbor in V(G)\ S. Thus, S is a RD-set with cardinality v(G),
a contradiction to our assumption. [

Lemma 13. Let G be a graph with no isolated vertices. If v.(G) > v(G) + 2,

then v-(G) <~(G) + 1.

Proof. Suppose that v,.(G) > v(G) + 2. By Theorem 5, the graph G contains
a y-set S such that every vertex of S has an S-external private neighbor. Since
7 (G) > v(G) + 2, it follows there exist two vertices u,v € V(G) \ S such that
Ng(u) € S and Ng(v) € S. Suppose that V(G) \ (S U {u,v}) = (. In this
case, our choice of S implies that |S| = 2. It follows that G € {Py,2K5}. If
G = Py, then 7, (G) = 2 = v(G), a contradiction. Hence, G = 2K>, in which case
G = Cy and 7,.(G) = 2 = v(G) < 3 = v(G) + 1. Hence, we may assume that
V(G)\ (SU{u,v}) # 0, for otherwise the desired result follows. In this case, each
of u and v dominate V(G) \ S in G. Hence, S U {u} is a RD-set of G, and so,

7(G) <7(G) + 1. u
This results in the following corollary.

Corollary 14. If G is a self-complementary graph, then v(G) < v(G) < v(G)
+1.

We are now ready to prove Theorem 4. Recall its statement.

Theorem 4. Let G be a self-complementary graph. Then v(G) = v.(G) if and
only if G ¢ F.

Proof. First assume that G € F. Then G is self-complementary and v(G) =
2 < 3 =7,(G). This proves the necessity.

For the sufficiency, we again prove the contrapositive. Assume that G is a
self-complementary graph with 7,(G) > v(G). We show that G € F. From
Theorem 9, we have that diam(G) € {2,3}. By Theorem 8, if 7(G) > 4, then
v(G) = 7 (G), a contradiction. Hence, we need only consider graphs G with
v(G) < 3. Since G is self-complementary, if 7(G) = 1, then G is the trivial graph
K, and v(G) = v-(G) = 1, a contradiction. Thus, 7(G) € {2,3}. Corollary 14
implies that v,.(G) = v(G) + 1, so v.(G) € {3,4}. Moreover, by Lemma 12, if
d(G) > 4, then v(G) = v(G), a contradiction. Hence, 6(G) < 3. We proceed
further by proving two claims.

Claim 15. y(G) = 2.
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Proof. By our previous discussion, v(G) € {2,3}. Suppose, to the contrary, that
v(G) = 3. Since G is self-complementary, Theorem 7 implies that diam(G) = 2.
It follows from Theorem 6 that 3 = v(G) < §(G) < 3, and so, §(G) = 3. Let
S = {u,v,w} be ay-set of G. Since v,(G) # v(G), there exists some z € V(G)\ S
such that Ng(x) C S. Since §(G) = 3, it follows that dg(x) = 3 and Ng(z) = S.
If there is an isolated vertex, say u, in G[S], then {z,u} is a dominating set of G,
and so, 7(G) < 2 < 3 = v(G), a contradiction. Hence, there is no isolated vertex
in G[S]. In other words, G[9] is the path P3 or the complete graph K3. Since
S is an arbitrary ~y-set of G, every 7-set of G induces a path Ps or a complete
graph K3. This in turn implies that if D is an arbitrary y-set of G, then every
vertex in D has a D-external private neighbor.

We now consider the y-set S = {u,v,w} of G. Let v/, v" and w’ be S-external
private neighbors of u, v, and w, respectively. We note that = ¢ {u’,v",w'} and
S" = {x,u',w'} dominates G. Since G is self-complementary, ,(G) # 7(G) and
6(G) = 3, there exists some vertex y € V(G) \ S such that Ng(y) = S’. But
then Ng(y) = V(G)\ S’. We note that y # 2z and y ¢ S.

If v and w’ are adjacent in G, then S" = {y, v/, v} is a y-set of G. However,
the vertex v’ is an isolated vertex in G[S'], a contradiction. Thus, v’ and w’ are
not adjacent in G. Since diam(G) = 2, v’ and w’ have a common neighbor, say
a, in G. We note that a ¢ S and a ¢ {x,y}. Thus, S” = {z,y,a} is a y-set of G.

However, the vertex x is an isolated vertex in G[S”], a contradiction. 0

By Claim 15, v(G) = 2, and so, v,(G) = 3. Let S be an arbitrary ~y-set of
G, and so |S| = 2. As observed earlier, §(G) < 3. If §(G) = 3, then every vertex
in V(G) \ S has a neighbor in both S and V(G) \ S, implying that S is a RD-set
with cardinality v(G), a contradiction. Hence, 6(G) € {1, 2}.

Claim 16. If diam(G) = 2, then G = C5 € F.

Proof. Assume that diam(G) = 2. We claim that every v-set of G is indepen-
dent. To see this, let S = {z,y} be a y-set of G, and suppose, to the contrary, that
ry € E(G). Thus, z and y are not adjacent in G. Since diam(G) = diam(G) = 2,
the vertices  and y have a common neighbor, say z, in G. But then the ver-
tex z is not dominated by S = {z,y} in G, contradicting the fact that S is a
dominating set of G. Therefore, every y-set of G is independent. Since G is a
self-complementary, this implies that every y-set of G is independent.

We note that since diam(G) = 2, the neighborhood of any vertex is a dom-
inating set of G. Thus if §(G) = 1, then 7(G) = 1, contradicting our earlier
observation that v(G) = 2. Hence, 6(G) > 2. As observed earlier, §(G) < 2.
Consequently, 6(G) = 2.

Let v be a vertex of degree 2 in G, and let Ng(v) = {v1,v2}. Since {v1, v}
is a y-set of G, the vertices v; and vy are not adjacent in G. We note that the set
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{v,v1} is a y-set of G. Since {v,v1} is not a RD-set of G, there exists a vertex
ug that is adjacent only to v and v1 in G. We note that us ¢ {v,v1,v2} and that
ug is adjacent to every vertex of G except for v and v;. Thus, the set {v,us} is a
~-set of G. Since the vertex vs is the only common neighbor of v and us in G and
since {v,us} is not a RD-set of G, this implies that the vertex vy has degree 2 in
G, and so Ng(v2) = {v,u2}. Analogously, the vertex v; has degree 2 in G. Let
u1 be the neighbor of v; different from v in G, and so Ng(vi) = {v,u1}. Since
{v1,v2} is a dominating set of G and since §(G) = 2, we deduce that G is the
5-cycle vviujusvev. Thus, G = Cs € F. 0

Recall that by Claim 15, we have v(G) = 2, and so 7,(G) = 3. By Claim
16, we may assume that diam(G) = 3, for otherwise the result holds. Since G
is self-complementary, diam(G) = 3. Let x and y be two vertices at distance 3
from each other in G, and let 2’ and 3’ be two vertices at distance 3 from each
other in G. We note that the vertices x and y are adjacent in G and the set
S = {x,y} is a y-set of G, while the vertices 2’ and y' are adjacent in G and the
set S' = {2',y'} is a y-set of G. We note further that since  and y are adjacent
vertices in G and the set S = {z,y} is a dominating set of G, each of x and y
is within distance 2 from every vertex in G. Since x’ and 3y’ are at distance 3
from each other in G, this implies that = ¢ {2/,vy'} and y ¢ {2/,y'}. Hence, the
vertices x, 7/, y and vy’ are distinct vertices.

By our earlier observations, neither z’ nor 3’ belongs to the vy-set S of G. If
x’ is adjacent to both x and y in G, then x or y would be a common neighbor
in G of ' and ¢/, implying that dg(2',y') = 2, a contradiction. Hence, 2’ is
adjacent to exactly one of z and y in G. Renaming vertices if necessary, we may
assume that 2/ is adjacent to z in G, and so 2’ € epng(z,S). If ¢ is adjacent to
x in G, then dg(2',y') = 2, a contradiction. Hence, ¢y € epng(y,S). Since S is
not a RD-set of GG, there exists a vertex, say w, that does not belong to .S and is
adjacent to no vertex outside S; that is, w € V(G) \ S and Ng(w) C S.

Claim 17. If w ¢ {2',y'}, then G is the bull graph, and so G € F.

Proof. Assume that w ¢ {2/,y'}. Thus, the vertices z, 2/, y, v and w are
distinct vertices. We show firstly that Ng(w) = S. Suppose, to the contrary,
that w has degree 1 in G. Renaming vertices if necessary, we may assume that
x and w are adjacent. We note that w is adjacent to every vertex in G except
for the vertex . Thus, S* = {z,w} is a v-set of G. Since 7,.(G) = 3, the set
S* is not a RD-set of G, implying that there exists a vertex z ¢ S* that is only
adjacent in G to z or w or to both x and w; that is, Ng(z) C S*. Since the
vertices 2’ and y' are adjacent in G, we note that z ¢ S’ = {2/,y'}. The vertex
z is therefore not dominated by S’ in G, contradicting the fact that S’ is a y-set
of G. Hence, Ng(w) = S.
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Let F = G[{2/, z,y,y’, w}] be the subgraph of G induced by the set {z’, z,y,
y',w}. By our earlier observations, the graph F' is a bull graph, where z’xzyy’ is
an induced path in G and where Ng(w) = {x,y}. Further, recall that the set
S = {x,y} is a y-set of G and the set S’ = {z’,%'} is a y-set of G. Since G is a self-
complementary, the graph G therefore contains a bull graph H = G[{d’, a,b, V', c}]
as an induced subgraph, where a’abb’ is an induced path in G, Ng(c) = {a, b},
the set {a,b} is a y-set of G, and the set {a’,b'} is a -set of G.

We note that both vertices 2’ and 3’ have degree at least 3 in G, while the
vertex ¢ has degree 2 in G. Thus, ¢ ¢ {2/,y'}. Since S' = {2/,9'} is a y-set of G
and the vertex c is only adjacent to a and b in G, we note that S’ N {a,b} # 0.
Analogous arguments show that SN {a’,b'} # (). Renaming vertices if necessary,
we may assume that a = 2’. Since {a, b} is a dominating set in G and the vertices
a and b are adjacent in G, this implies that b ¢ {z,w, y}.

We show that ¢ = w. Suppose, to the contrary, that ¢ # w. Recall that
a=1a'. If c ¢ {x,y}, then since the vertex w is adjacent in G to every vertex in
V(G) \ {z,y} this would imply that the vertices ¢ and w are adjacent in G. By
our earlier observations, w is distinct from a and b. Therefore, the vertex ¢ has
at least three neighbors in G, namely a, b and w, and so ¢ has degree at least 3 in
G, a contradiction. Hence, ¢ € {z,y}. Since z and 2’ are not adjacent in G and
a and c¢ are adjacent in G, we note that ¢ # x. Therefore, ¢ = y. In particular,
we note that y ¢ {a’,b'}. As observed earlier, {x,y} N{d’,b'} # (). Therefore, we
must have x € {a’,V'}. Since z and 2’ are not adjacent in G, and since a and o’
are adjacent in G, we note that x # a’. Hence, x = b’. Thus the vertex b is a
common neighbor of z and y in G, and therefore the vertex b is not dominated
by {z,y} in G, contradicting the fact that {x,y} is a dominating set of G. We
deduce, therefore, that ¢ = w.

Recall that dg(w) = 2 and dz(c) = 2. Since ¢ = w, we note that the vertex
w has degree 2 in both G and G. This implies that F = G; that is, G is the bull

graph. 0O

By Claim 17, we may assume that w € {a/,y'}, for otherwise G € F as
desired. Renaming vertices if necessary, we may assume that w = 2/, implying
that dg(z') = 1. By Theorem 10, the self-complementary G therefore has exactly
two vertices of degree 1. Let T'= V(G) \ {2/, z,v',y}. T = 0, then G = Py
and v,(G) = v(G) = 2, a contradiction. Hence, T' # ). If some vertex ¢ in T is
adjacent in G only to x or y or to both x and y, then as shown in Claim 17, G
is the bull graph, and so G € F as desired. Hence, we may assume that every
vertex in T is adjacent in G to at least one vertex in V(G) \ S, implying that
every vertex in T has degree at least 2 in G. This implies that the only possible
vertex of degree 1 different from z’ is the vertex /. As observed earlier, the graph
G has exactly two vertices of degree 1. Hence, 2’ and y’ are the two vertices of
degree 1 in G.
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Since G is self-complementary of order n, the graph G contains exactly two
vertices of degree 1 and therefore the graph G contains exactly two vertices of
degree n — 2. No vertex in T is adjacent in G to 2/ or ¢/, implying that every
vertex of T has degree at most n — 3 in G. Hence the two vertices of degree
n — 2 in G are necessarily the vertices  and y. Therefore, every vertex of T
is adjacent to the two support vertices of the Py induced by {y’,y,z,z'}. Since
G is self-complementary, it follows that G[T] is also self-complementary, and so,
G € F, as desired. This completes the proof of Theorem 4. [

5. CLOSING REMARK

As remarked in Section 3, there are infinitely many self-complementary graphs G
for which v(G) = 7(G). In this paper, we characterize the self-complementary
graphs G having v(G) = 7,(G), and show that such graphs are precisely the class
of self-complementary graphs that do not belong to the family F constructed in
Section 2.
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