NEIGHBOR PRODUCT DISTINGUISHING TOTAL COLORINGS OF PLANAR GRAPHS WITH MAXIMUM DEGREE AT LEAST TEN ${ }^{1}$

Aisun Dong
School of Data and Computer Science Shandong Women's University
Jinan, 250300, P.R. China
e-mail: dongaijun@mail.sdu.edu.cn

AND
Tong Li
School of Mathematics
Shandong University
Jinan 250100, P.R. China
e-mail: tli@sdu.edu.cn

Abstract

A proper [k]-total coloring c of a graph G is a proper total coloring c of G using colors of the set $[k]=\{1,2, \ldots, k\}$. Let $p(u)$ denote the product of the color on a vertex u and colors on all the edges incident with u. For each edge $u v \in E(G)$, if $p(u) \neq p(v)$, then we say the coloring c distinguishes adjacent vertices by product and call it a neighbor product distinguishing k-total coloring of G. By $\chi^{\prime \prime} \Pi^{(G)}$, we denote the smallest value of k in such a coloring of G. It has been conjectured by Li et al. that $\Delta(G)+3$ colors enable the existence of a neighbor product distinguishing total coloring. In this paper, by applying the Combinatorial Nullstellensatz, we obtain that the conjecture holds for planar graph with $\Delta(G) \geq 10$. Moreover, for planar graph G with $\Delta(G) \geq 11$, it is neighbor product distinguishing $(\Delta(G)+2)$ total colorable, and the upper bound $\Delta(G)+2$ is tight.

Keywords: total coloring, neighbor product distinguishing coloring, planar graph.
2010 Mathematics Subject Classification: 05C15.

[^0]
1. Introduction

The terminology and notation used but undefined in this paper can be found in [2]. Let $G=(V, E)$ be a graph. We use $V(G), E(G), \Delta(G)$ and $\delta(G)$ to denote the vertex set, edge set, maximum degree and minimum degree of G, respectively. Let $d_{G}(v)$ or simply $d(v)$ denote the degree of a vertex v in G. If $d(x)=k, d(x) \geq k$ and $d(x) \leq k$, then the vertex x is called a k-vertex, $k^{+}{ }_{-}$ vertex and k^{-}-vertex, respectively. Let $N_{G}(u)$ be the set of neighbors of u in the graph G. We use $n_{i}(u)$ to denote the number of i-neighbors of u.

Let $[k]$ be a set of colors where $[k]=\{1,2, \ldots, k\}$ and let c be a total coloring of G for which $c: E(G) \cup V(G) \rightarrow[k]$. By $p(v)$ (respectively, $s(v)$), we denote the product (respectively, set) of colors taken on the edges incident to v and the color on the vertex v, i.e., $p(v)=c(v) \prod_{u v \in E(G)} c(u v)$ (respectively, $s(v)=\{c(u v) \mid u v \in E(G)\} \cup\{c(v)\})$. If the coloring c is proper, then we call the coloring c such that $p(v) \neq p(u)$ (respectively, $s(u) \neq s(v)$) for each edge $u v \in E(G)$ a neighbor product distinguishing $[k]$-total coloring (respectively, adjacent vertex distinguishing $[k]$-total coloring) of G, or a tnpd- k-coloring (respectively, tndi-k-coloring) for simplicity. By $\chi^{\prime \prime} \Pi^{(G)}$ (respectively, (tndi $\left.(G)\right)$), we denote the smallest value k such that G has a neighbor product (respectively, vertex) distinguishing [k]-total coloring of G. It is easy to observe that if two vertices are distinguished by product, then they are also distinguished by sets, but not necessarily conversely. That is to say $\operatorname{tndi}(G) \leq \chi^{\prime \prime} \Pi(G)$.

In 2005, Zhang et al. introduced the notion of adjacent vertex distinguishing k-total coloring and brought forward the following conjecture.

Conjecture 1.1 [25]. Let G be a connected graph with at least two vertices, then tndi $(G) \leq \Delta(G)+3$.

Zhang et al. proved the conjecture for graphs which are cliques, paths, cycles, fans, wheels, stars, complete graphs, bipartite complete graphs and trees. Wang and Chen confirmed the conjecture for graphs with $\Delta(G)=3[3,18]$. Recently, Lu et al. verified the conjecture for all graphs with maximum degree 4 [13]. Wang proved that if G is 1-tree, then $\operatorname{tndi}(G) \leq \Delta(G)+2$ [19]. Wang et al. investigated some planar graphs such as outerplanars and series-parallel graphs and confirmed the conjecture $[20,21]$. In 2008 , Wang et al. showed that if G is a graph with $\operatorname{mad}(G)<3$, then $\operatorname{tndi}(G) \leq \Delta(G)+2[22]$. In 2012, Huang et al. proved that if G is a planar graph with $\Delta(G) \geq 11$, then $\operatorname{tndi}(G) \leq \Delta(G)+3$ [9]. Recently, Cheng et al. verified the conjecture for planar graphs with $\Delta(G) \geq 10$ [4]. In 2014, Wang et al. obtained that if G is a planar graph with $\Delta(G) \geq 14$, then $\Delta(G)+1 \leq \operatorname{tndi}(G) \leq \Delta(G)+2[23]$. Recently, Sun et al. confirmed the Conjecture 1.1 for the planar graph with $\Delta(G) \geq 8$ and without adjacent 4cycles [17]. More related results can be seen in $[6-8,11,12,14-16,24]$.

Recently, Li et al. completely determined the neighbor product distinguishing total coloring index for complete graphs, trees, cycles, bipartite graphs, subcubic graphs and K_{4}-minor free graphs. Based on these examples, they proposed the following conjecture.
Conjecture 1.2 [10]. If G is a graph with at least two vertices, then $\chi^{\prime \prime} \Pi(G) \leq$ $\Delta(G)+3$.

As for the sparse graph G with $\Delta(G) \leq 3$, Li et al. proved that $\chi^{\prime \prime} \Pi(G)=5$ if G is an odd cycle, $\chi^{\prime \prime} \Pi(G)=4$ if G is an even cycle and $\chi^{\prime \prime} \Pi(G) \leq \Delta(G)+3$ if G is a subcubic graph [10]. In 2017, Ding et al. confirmed the Conjecture 1.2 for sparse graph G with bounded maximum degree [6]. In this paper, we consider the planar graph G with $\Delta(G) \geq 10$ and obtain the following result.
Theorem 1.3. Let G be a planar graph such that $\Delta(G) \geq 10$. Then $\chi^{\prime \prime} \Pi(G) \leq$ $\Delta(G)+3$.

For $\Delta(G) \geq 11$, we prove the following tight upper bound.
Theorem 1.4. If G is a planar graph G with $\Delta(G) \geq 11$, then $\chi^{\prime \prime} \Pi(G) \leq$ $\Delta(G)+2$.

Since tndi $(G) \leq \chi^{\prime \prime} \Pi^{(G)}$, Theorem 1.4 implies the following result in [23].
Theorem 1.5. If G is a planar graph G with $\Delta(G) \geq 11$, then $\operatorname{tndi}(G) \leq$ $\Delta(G)+2$.

2. Some Important Lemmas

Lemma 2.1 [1]. Let L_{i} be the set of real numbers, where $\left|L_{i}\right|=l_{i}$ for $1 \leq i \leq t$, and $l_{1} \geq l_{2} \geq \cdots \geq l_{t}$. Let $L=\left\{\sum_{i=1}^{t} x_{i} \mid x_{i} \in L_{i}, \prod_{1 \leq i<j \leq t}\left(x_{i}-x_{j}\right) \neq 0\right\}$. Define $l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{t}^{\prime}$ by $l_{1}^{\prime}=l_{1}$ and $l_{i}^{\prime}=\min \left\{l_{i-1}^{\prime}-1, l_{i}\right\}$ for $2 \leq i \leq t$. If $l_{t}^{\prime}>0$, then $|L| \geq \sum_{i=1}^{t} l_{i}^{\prime}-\frac{1}{2} t(t+1)+1$.

From Lemma 2.1, it is easy to get the following lemma.
Lemma 2.2. Let S_{i} be the set of positive real numbers, where $\left|S_{i}\right|=s_{i}$ for $1 \leq i \leq$ t, and $s_{1} \geq s_{2} \geq \cdots \geq s_{t}$. Let $S=\left\{\prod_{i=1}^{t} x_{i} \mid x_{i} \in S_{i}, \prod_{1 \leq i<j \leq t}\left(x_{i}-x_{j}\right) \neq 0\right\}$. Define $s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{t}^{\prime}$ by $s_{1}^{\prime}=s_{1}$ and $s_{i}^{\prime}=\min \left\{s_{i-1}^{\prime}-1, s_{i}\right\}$ for $2 \leq i \leq t$. If s_{t}^{\prime} >0, then $|S| \geq \sum_{i=1}^{t} s_{i}^{\prime}-\frac{1}{2} t(t+1)+1$.
Proof. For convenience, let $S_{i}=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{s_{i}}}\right\}, L_{i}=\left\{\ln x_{i_{1}}, \ln x_{i_{2}}, \ldots\right.$, $\left.\ln x_{i_{s_{i}}}\right\}$ for $1 \leq i \leq t$. Let $L=\left\{\sum_{i=1}^{t} \ln x_{i} \mid \ln x_{i} \in L_{i}, \prod_{1 \leq i<j \leq t}\left(\ln x_{i}-\ln x_{j}\right) \neq 0\right\}$. From Lemma 2.1, we have $|L| \geq \sum_{i=1}^{t} s_{i}^{\prime}-\frac{1}{2} t(t+1)+1$. Clearly, $|S|=|L|$. Thus we have $|S| \geq \sum_{i=1}^{t} s_{i}^{\prime}-\frac{1}{2} t(t+1)+1$.

Let $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in n variables. By $c_{P}\left(x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}\right)$, we denote the coefficient of the monomial $x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}$ in the expansion of $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where k_{i} is a non-negative integer for $1 \leq i \leq n$.

Lemma 2.3 (Combinatorial Nullstellensatz [1]). Let \mathbb{F} be an arbitrary field, and let $P=P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in $\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Suppose the degree $\operatorname{deg}(P)$ of P equals $\sum_{i=1}^{n} k_{i}$, where each k_{i} is a nonnegative integer, and suppose the coefficient of $x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}$ in P is non-zero. If $S_{1}, S_{2}, \ldots, S_{n}$ are subsets of \mathbb{F} with $\left|S_{i}\right|>k_{i}$ for $1 \leq i \leq n$, then there are $s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}$ so that $P\left(s_{1}\right.$, $\left.s_{2}, \ldots, s_{n}\right) \neq 0$.

In the following, we will prove the main theorems. For convenience, for the coloring c of G, we use $p_{c}(v)$ to denote the product of the color on the vertex v and the colors taken on edges which are incident with v, i.e., $p_{c}(v)=$ $\prod_{v \in e} c(e) c(v)$. We use $S_{c}(x)$ to denote the set of colors available for each element $x \in E(G) \cup V(G)$ in the coloring c. In addition, the following configurations in Figure 1 will be used in the proof of the theorems.

Figure 1

H_{1}

H_{2}

H_{3}

Figure 2

3. Proof of Theorem 1.3

For any graph G, let $n_{i}(G)=\left|\left\{v \mid d_{G}(v)=i\right\}\right|$ for $i=1,2, \ldots, \Delta(G)$. A graph G^{\prime} is smaller than the graph G if any of the following is true.

- $\left|E\left(G^{\prime}\right)\right|<|E(G)|$;
- $\left|E\left(G^{\prime}\right)\right|=|E(G)|$ and $\left(n_{t}\left(G^{\prime}\right), n_{t-1}\left(G^{\prime}\right), \ldots, n_{2}\left(G^{\prime}\right), n_{1}\left(G^{\prime}\right)\right)$ precedes $\left(n_{t}(G)\right.$, $\left.n_{t-1}(G), \ldots, n_{2}(G), n_{1}(G)\right)$ with respect to the lexicographic order, where $t=\max \left\{\Delta(G), \Delta\left(G^{\prime}\right)\right\}$.

A graph G is minimal for the front property when no smaller graph satisfies it.

Suppose G is a minimal counterexample to Theorem 1.3. That is, the graph G does not admit any tnpd- k-coloring, and its smaller graph G^{\prime} constructed from G by deleting edge, contracting edge or splitting vertex which is shown in the following discussion admits a tnpd- k-coloring c^{\prime}.

Let H be the graph obtained by removing all the 2^{-}-vertices of G. In the following, we will discuss the structural property of G and H by extending the coloring c^{\prime} of G^{\prime} to the desired coloring c of G. And then apply the discharging method to obtain a contradiction to the planarity of graph G.

For each $v \in V(G)$ and each coloring c of G, if $d(v) \leq 4$, then it has at most 12 forbidden colors since v has at most four adjacent vertices, four incident edges, and we have to guarantee that $p_{c}(v) \neq p_{c}(u)$ for each edge $u v \in E(G)$. Since $k \geq 13$, we can recolor v if necessary to get a coloring as desired. So in the following discussion, we will omit the coloring of all 4^{-}-vertices.

For convenience, a 4 -face f is good if it is incident with at most one 5^{-}-vertex, otherwise, f is bad. A k-vertex v is called a bad k-neighbor of u if the edge $u v$ is incident with two 3 -faces. And v is called a special k-neighbor of u if the edge $u v$ is incident with a 3 -face and a bad 4 -face. We use $n_{k b}^{H}(u)$ and $n_{3 s}^{H}(u)$ to denote the number of bad k-neighbors and special 3 -neighbors of u in H, respectively.

Now, we give some structural properties of G.
Property 1. Every 6^{-}-vertex is not adjacent to any 4^{-}-vertex.
Proof. Suppose to the contrary that there exists a 6^{-}-vertex u which is adjacent to a 4^{-}-vertex v. We consider the smaller graph $G^{\prime}=G-u v$. By the minimality of G, we have G^{\prime} admits a tnpd- k-coloring c^{\prime}. Now, we delete the color of u. Let S_{1}, S_{2} be the sets of available colors for u, $u v$, respectively. It is easy to know that $\left|S_{1}\right| \geq 13-5-5=3,\left|S_{2}\right| \geq 13-5-3=5$. Let $B=\left\{x_{1} x_{2} \mid x_{1} \in\right.$ $\left.S_{1}, x_{2} \in S_{2}, x_{1} \neq x_{2}\right\}$. By Lemma 2.2, we have $|B| \geq 3+5-3+1=6>5$. Thus there exist $x_{1} \in S_{1}, x_{2} \in S_{2}$ for u and $u v$ such that u does not conflict with any adjacent vertex. Then we can color u and $u v$ with x_{1} and x_{2}, respectively, to get a tnpd- k-coloring, a contradiction.

Property 2. For any vertex $u \in V(G)$, we have $n_{2}(u) \leq 1$.
Proof. Suppose to the contrary that $n_{2}(u) \geq 2$, and let x, y be two 2 -neighbors of u. It is clear that x is not adjacent to y by Proposition 1. By analyzing whether the multiple edges appear or not when contracting the edges $u x$ and $u y$, G must contain one of configurations F_{1}, F_{2} and F_{3}. We divide the proof into the following three cases:

Case 1. There is a structure isomorphic to the configuration F_{1} in G, i.e., x and y are not incident with any 3 -face, and u, x and y are not incident with one
and the same 4 -face. Now we contract the edges $u x$ and $u y$ to get a smaller graph G^{\prime} (see H_{1} in Figure 2). By the minimality of G, we have G^{\prime} admits a tnpd- k coloring c^{\prime}. For convenience, let $c^{\prime}(u w)=a$ and $c^{\prime}(u v)=b$. In the following, we subdivide $u w, u v$ with x and y respectively. By coloring $u x, y v$ with b and $u y$, $x w$ with a, we get a tnpd- k-coloring of G, a contradiction.

Case 2. There is a structure isomorphic to the configuration F_{2} in G, i.e., u, x and y are incident with one and the same 4 -face. We split x and y into x_{1}, x_{2} and y_{1}, y_{2}, respectively, to obtain a smaller graph G^{\prime} (see H_{2} in Figure 2). By the minimality of G, we have G^{\prime} admits a tnpd- k-coloring c^{\prime}. For convenience, let $c^{\prime}\left(u x_{1}\right)=a, c^{\prime}\left(u y_{1}\right)=b, c^{\prime}\left(x_{2} v\right)=c$ and $c^{\prime}\left(y_{2} v\right)=d$. In the following, we can stick x_{1} and x_{2} together, and stick y_{1} and y_{2} together (if necessary exchange the colors of $u x_{1}$ and $u y_{1}$ to guarantee a proper total coloring) to get a tnpd- k coloring of G, a contradiction.

Case 3. There is a structure isomorphic to the configuration F_{3} in G, i.e., at least one 2-neighbor of u is incident with some 3 -face. We split x and y into x_{1}, x_{2} and y_{1}, y_{2}, respectively, to obtain a smaller graph G^{\prime} (see H_{3} in Figure 2). By the minimality of G, we have G^{\prime} admits a tnpd- k-coloring c^{\prime}. For convenience, let $c^{\prime}\left(u x_{1}\right)=a, c^{\prime}(u v)=b, c^{\prime}\left(u y_{1}\right)=c, c^{\prime}\left(x_{2} w\right)=d$ and $c^{\prime}\left(y_{2} v\right)=e$.

If $e=d \notin\{a, c\}$ or $d \neq e$, then we can stick x_{1} and x_{2}, y_{1} and y_{2} together (if necessary exchange the colors of $u x_{1}$ and $u y_{1}$ to guarantee a proper total coloring) to get a tnpd- k-coloring of G, a contradiction.

If $d=e=a$, then we recolor $u x_{1}$ with b, recolor $u v$ with a and recolor $v y_{2}$ with b. Now we can stick x_{1} and x_{2}, y_{1} and y_{2} together, a contradiction.

If $d=e=c$, then we recolor $u x_{1}$ with b, recolor $u v$ with c, recolor $v y_{2}$ with b and recolor $u y_{1}$ with a. Now we can stick x_{1} and x_{2}, y_{1} and y_{2} together, a contradiction.

Property 3. For any vertex $u \in V(G)$, let x, y be bad 3-neighbors of u, then any 3-face which is incident with x is not adjacent to any 3-face which is incident with y.

Proof. By the contrary, G contains a structure isomorphic to the configuration F_{4}. We split the bad 3-neighbors x and y of u into x_{1}, x_{2}, y_{1} and y_{2}, respectively to get a smaller graph G^{\prime} (see H_{4} in Figure 2). By the minimality of G, we have G^{\prime} admits a tnpd- k-coloring c^{\prime}. For convenience, let $c^{\prime}\left(v x_{1}\right)=a, c^{\prime}\left(w x_{1}\right)=b$, $c^{\prime}(u v)=c, c^{\prime}(u z)=d, c^{\prime}(u w)=e, c^{\prime}\left(u y_{2}\right)=f, c^{\prime}\left(w y_{1}\right)=g, c^{\prime}\left(z y_{1}\right)=h$ and $c^{\prime}\left(u x_{2}\right)=i$. Next, we try to stick x_{1}, y_{1} with x_{2}, y_{2} together, respectively. If x_{1}, y_{1} can be stuck with x_{2}, y_{2} to get a proper total coloring, then we get a tnpd- k-coloring of G, a contradiction. Otherwise, we consider the following cases.

Case 1. If only one pair of the vertices x_{i} and y_{i} for $i=1,2$ cannot be stuck properly, without loss of generality, we say x_{2} cannot be stuck properly with x_{1}.

Then $i \in\{a, b\}$. Without loss of generality, let $i=a$.
If $a \notin\{g, h\}$, then $f=b$ (otherwise, we exchange the colors of $u x_{2}$ and $u y_{2}$ so that we can stick y_{1}, y_{2} and x_{1}, x_{2} together to get a tnpd- k-coloring of G, a contradiction). We exchange the colors of $u x_{2}$ and $u y_{2}$, and meanwhile exchange the colors of $w x_{1}$ and $w y_{1}$. Now, we can stick x_{1}, x_{2} with y_{1}, y_{2} together, respectively, to get a tnpd- k-coloring of G, a contradiction.

If $g=a$, then we consider the following subcases.

- If $h \neq e$, then exchange the colors $u x_{2}$ and $u w$, recolor $w y_{1}$ with e. Now we can stick x_{1}, x_{2} with y_{1}, y_{2} together, respectively, a contradiction.
- If $h=e$ and $d \neq b$, then first, exchange the colors of $z u$ and $z y_{1}$, and meanwhile exchange the colors of $w u$ and $w y_{1}$. Then recolor $u x_{2}$ with d. Now we can stick x_{1}, x_{2} with y_{1}, y_{2} together, respectively, a contradiction.
- If $h=e$ and $d=b$, then first, exchange the colors of $v u$ and $v x_{1}$. And then recolor $u x_{2}$ with f, recolor $u y_{2}$ with c. Now we can stick x_{1}, x_{2} with y_{1}, y_{2} together, respectively, a contradiction.

If $h=a$, then we consider the following subcases.

- If $g \neq d$ and $d \neq b$, then exchange the colors $u x_{2}$ and $u z$, recolor $z y_{1}$ with d. Now we can stick y_{1}, y_{2} and x_{1}, x_{2} together properly, a contradiction.
- If $g \neq d$ and $d=b$, then first, exchange the colors of $z u$ and $z y_{1}$, and meanwhile exchange the colors of $w u$ and $w x_{1}$. Then recolor $u x_{2}$ with f and recolor $u y_{2}$ with e. Now we can stick x_{1}, x_{2} and y_{1}, y_{2} together properly, a contradiction.
- If $g=d$, then first, exchange the colors of $z u$ and $z y_{1}$ and meanwhile exchange the colors of $w y_{1}$ and $w u$. And then recolor $u x_{2}$ with e. Now we can stick x_{1}, x_{2} and y_{1}, y_{2} together properly, a contradiction.

Case 2. x_{2} and y_{2} cannot be properly stuck with x_{1} and y_{1}, respectively. Without loss of generality, let $c^{\prime}\left(u x_{2}\right)=g=a$ and $h=f=b$. Now we exchange the colors of $u v$ and $v x_{1}$, and exchange the colors of $u z$ and $y_{1} z$. Next, recolor $u x_{2}$ with d and recolor $u y_{2}$ with c. Now, we can stick x_{1}, x_{2} and y_{1}, y_{2} together properly, a contradiction.

Property 4. Every 5^{-}-vertex is not adjacent to any 5^{-}-vertex.
Proof. Suppose to the contrary that there exists a 5^{-}-vertex u which is adjacent to a 5^{-}-vertex v. Without loss of generality, we assume $d_{G}(u)=d_{G}(v)=5$, and let $N_{G}(u)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, v\right\}$, and $N_{G}(v)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, u\right\}$. We consider the smaller graph $G^{\prime}=G-u v$. By the minimality of G, we have G^{\prime} admits a tnpd-k-coloring c^{\prime}. Now, we delete the colors of u and v. For convenience, we use φ to denote the current coloring of G^{\prime}. Let S_{1}, S_{2} and S_{3} be the sets of available colors for u, $u v$ and v, respectively. It is easy to know that $\left|S_{i}\right| \geq 5$ for $1 \leq i \leq 3$. We
associate $u, u v, v$ with the variables x_{1}, x_{2} and x_{3}, respectively, and let $\ln x_{i}=y_{i}$ for $1 \leq i \leq 3$. For convenience, let $S_{i}^{\prime}=\left\{y_{i} \mid \ln x_{i}=y_{i}, x_{i} \in S_{i}\right\}$ for $1 \leq i \leq 3$. Obviously, $\left|S_{i}^{\prime}\right| \geq 5$ for $1 \leq i \leq 3$. Now we consider the following polynomial.

$$
\begin{aligned}
P\left(y_{1}, y_{2}, y_{3}\right)= & \prod_{1 \leq k<l \leq 3}\left(y_{k}-y_{l}\right) \prod_{i=1}^{4}\left(y_{1}+y_{2}+\ln P_{\varphi}(u)-\ln P_{\varphi}\left(u_{i}\right)\right) \\
& \prod_{j=1}^{4}\left(y_{2}+y_{3}+\ln P_{\varphi}(v)-\ln P_{\varphi}\left(v_{j}\right)\right) \\
& \left(y_{1}+y_{2}+\ln P_{\varphi}(u)-\left(y_{2}+y_{3}+\ln P_{\varphi}(v)\right)\right)
\end{aligned}
$$

where $P_{\varphi}(x)$ denotes the product of colors which are used for x and the elements which are incident with x in G^{\prime} in the coloring φ. It is not difficult to obtain that $c_{P}\left(y_{1}^{4} y_{2}^{4} y_{3}^{4}\right)=20 \neq 0$ by MATLAB. Since $\operatorname{deg}(P)=12=4+4+4$, by Lemma 2.3, there is $s_{i} \in S_{i}^{\prime}$ for $1 \leq i \leq 3$ such that $P\left(s_{1}, s_{2}, s_{3}\right) \neq 0$. Finally, from the above discussion, we can color $u, u v$ and v with $e^{s_{1}}, e^{s_{2}}$ and $e^{s_{3}}$, respectively, to obtain a tnpd- k-coloring of G, a contradiction.

Note that the coefficient of the monomial $y_{1}^{4} y_{2}^{4} y_{3}^{4}$ in the expansion of $P\left(y_{1} y_{2} y_{3}\right)$ is equal to that of the same monomial in the polynomial $\prod_{1 \leq k<l \leq 3}\left(y_{k}-y_{l}\right)\left(y_{1}+\right.$ $\left.y_{2}\right)^{4}\left(y_{2}+y_{3}\right)^{4}\left(y_{1}-y_{3}\right)$ in Property 4. Thus in the following proofs when discussing the coefficient of some monomial in the expansion of the polynomial, if its degree is equal to the degree of the polynomial, we will omit the constant term in the polynomial.

Property 5. There exists no $\left(5^{-}, 6^{-}, 6^{-}\right)$-cycle.
Proof. Suppose to the contrary that there exists a ($5^{-}, 6^{-}, 6^{-}$)-cycle uvw. Without loss of generality, we assume $d_{G}(u)=5, d_{G}(v)=d_{G}(w)=6$. We consider the smaller graph $G^{\prime}=G-u v-u w-v w$. By the minimality of G, we have G^{\prime} admits a tnpd- k-coloring c^{\prime}. Now, we delete the colors of u, v and w. Let S_{1}, $S_{2}, S_{3}, S_{4}, S_{5}$ and S_{6} be the sets of available colors for $v, w, u, v w, v u$ and $u w$, respectively. It is easy to know that $\left|S_{1}\right| \geq 13-8=5>3,\left|S_{2}\right| \geq 13-8=5>4$, $\left|S_{3}\right| \geq 13-6=7>6,\left|S_{4}\right| \geq 13-8=5>4,\left|S_{5}\right| \geq 13-7=6>5$ and $\left|S_{6}\right| \geq 13-7=6>4$. We associate $v, w, u, v w, v u$ and $u w$ with the variables $x_{1}, x_{2}, \ldots, x_{6}$, respectively, and let $\ln x_{i}=y_{i}$ for $1 \leq i \leq 6$. For convenience, let $S_{i}^{\prime}=\left\{y_{i} \mid \ln x_{i}=y_{i}, x_{i} \in S_{i}\right\}$ for $1 \leq i \leq 6$. Obviously, $\left|S_{1}^{\prime}\right| \geq 5>3,\left|S_{2}^{\prime}\right| \geq 5>4$, $\left|S_{3}^{\prime}\right| \geq 7>6,\left|S_{4}^{\prime}\right| \geq 5>4,\left|S_{5}^{\prime}\right| \geq 6>5$ and $\left|S_{6}^{\prime}\right| \geq 6>4$. Now we consider the following polynomial.

$$
\begin{aligned}
P\left(y_{1}, y_{2}, \ldots, y_{6}\right)= & \prod_{\substack{1 \leq k<l \leq 3}}\left(y_{k}-y_{l}\right) \prod_{4 \leq i<j \leq 6}\left(y_{i}-y_{j}\right)\left(y_{1}-y_{4}\right)\left(y_{2}-y_{4}\right) \\
& \left(y_{1}-y_{5}\right)\left(y_{3}-y_{5}\right)\left(y_{2}-y_{6}\right)\left(y_{3}-y_{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(y_{1}+y_{5}-y_{2}-y_{6}\right)\left(y_{2}+y_{4}-y_{3}-y_{5}\right) \\
& \left(y_{1}+y_{4}-y_{3}-y_{6}\right)\left(y_{2}+y_{4}+y_{6}\right)^{4}\left(y_{3}+y_{5}+y_{6}\right)^{3} \\
& \left(y_{1}+y_{4}+y_{5}\right)^{4} .
\end{aligned}
$$

It is not difficult to obtain that $c_{P}\left(y_{1}^{3} y_{2}^{4} y_{3}^{6} y_{4}^{4} y_{5}^{5} y_{6}^{4}\right)=346 \neq 0$ by MATLAB. Since $\operatorname{deg}(P)=26=3+4+6+4+5+4$, by Lemma 2.3, there is $s_{i} \in S_{i}^{\prime}$ for $1 \leq i \leq 6$ such that $P\left(s_{1}, s_{2}, \ldots, s_{6}\right) \neq 0$. Finally, we can color v, w, u, $v w$, $v u$ and $u w$ with $e^{s_{1}}, e^{s_{2}}, \ldots, e^{s_{6}}$, respectively, to obtain a tnpd- k-coloring of G, a contradiction.

Property 6. For any non-zero integer t, if each $(t+1)$-vertex in G can be recolored, then for any vertex $u \in V(G)$ with $n_{1}(u) \geq t$, we have $n_{d}(u)=0$ where $2 \leq d \leq t+1$.

Proof. Suppose to the contrary that there exists a vertex u with $n_{1}(u) \geq t$ and $n_{d}(u) \neq 0$. Let $v_{1}, v_{2}, \ldots, v_{t}$ be some 1 -neighbors of u, and v_{0} be a d-neighbor of u where $2 \leq d \leq t+1$. Since v_{0} can be recolored, then we split the vertex v_{0} into v_{00} and v_{01} to obtain a smaller graph G^{\prime} where $d_{G^{\prime}}\left(v_{00}\right)=1$ and $d_{G^{\prime}}\left(v_{01}\right)=d-1$. By the minimality of G, G^{\prime} has a tnpd- k-coloring. Now, we stick v_{00} and v_{01} together properly (if necessary, we can exchange the color of $u v_{00}$ with some $u v_{i}$ for $1 \leq i \leq t$) to obtain a tnpd- k-coloring of G, a contradiction.

In the following, we give some structural properties of H.
Fact 1. For each $u \in V(H)$, if $d_{H}(u) \leq 5$, then $d_{H}(u)=d_{G}(u)$.
Proof. Suppose to the contrary that there exists a vertex $u \in V(H)$ such that $d_{H}(u) \leq 5$ and $n_{2^{-}}^{G}(u) \geq 1$. Without loss of generality, we assume that $d_{H}(u)=5$.

First, we assume that $n_{1}^{G}(u) \geq 1$. By Property 6 , we have $n_{2}^{G}(u)=0$. Clearly, $n_{1}^{G}(u)=d_{G}(u)-5$. If $n_{1}^{G}(u)=1$, then $d_{G}(u)=6$, a contradiction by Property 1 . So we have $n_{1}^{G}(u) \geq 2$. Let $u u_{1}, u u_{2}, \ldots, u u_{d-5}$ be the 1 -neighbors of u where $d=$ $d_{G}(u)$. Now, we consider the smaller graph $G^{\prime}=G-\left\{u u_{1}, u u_{2}, \ldots, u u_{d-5}\right\}$. By the minimality of G, we have G^{\prime} admits a tnpd- k-coloring c^{\prime}. Let $S_{1}, S_{2}, \ldots, S_{d-5}$ be the sets of available colors for $u u_{1}, u u_{2}, \ldots, u u_{d-5}$, respectively. It is easy to know that $\left|S_{i}\right| \geq(\Delta(G)+2)-6=\Delta(G)-4$ for $1 \leq i \leq d-5$. Let $B=\left\{x_{1}\right.$ $\left.x_{2} \cdots x_{d-5} \mid x_{k} \in S_{k}, 1 \leq k \leq d-5, \prod_{1 \leq i<j \leq d-5}\left(x_{i}-x_{j}\right) \neq 0\right\}$. By Lemma 2.2, we have $|B| \geq(\Delta(G)-4)+(\Delta(G)-5)+\cdots+(\Delta(G)+2-d)-\frac{1}{2}(d-5)(d-4)+1=$ $\frac{1}{2}(2 \Delta(G)-d-2)(d-5)-\frac{1}{2}(d-5)(d-4)+1=\frac{1}{2}(d-5)(2 \Delta(G)-2 d+2)+1=$ $(d-5)(\Delta(G)-d+1)+1$.

Clearly, if $d=7,8,9$ and 10 , since $\Delta(G) \geq 11$, we have $|B| \geq(7-5)(11-7+$ 1) $+1=11>5,|B| \geq(8-5)(11-8+1)+1=13>5,|B| \geq(9-5)(11-9+1)+1=$ $13>5$ and $|B| \geq(10-5)(11-10+1)+1=11>5$, respectively. In each of
the above-mentioned three situations, we can choose $\alpha_{i} \in S_{i}$ to color $u u_{i}$ for $1 \leq i \leq d-5$ to obtain a tnpd- k-coloring of G, a contradiction. If $d \geq 11$, then we have $|B| \geq(11-5)(\Delta(G)-d+1)+1 \geq 6+1=7>5$. Now, we can choose $\alpha_{i} \in S_{i}$ to color $u u_{i}$ for $1 \leq i \leq d-5$ to obtain a tnpd- k-coloring of G, a contradiction.

Now, we assume that $n_{1}^{G}(u)=0$. Then by Property $2, n_{2}^{G}(u)=1$. Thus $d_{G}(u)=6$, a contradiction by Property 1 .

By Fact 1, it is easy to obtain the following fact.
Fact 2. $\delta(H) \geq 3$.
Fact 3. For each $u \in V(H)$ with $d_{H}(u)=6$, if $d_{H}(u)<d_{G}(u)$, then u is not adjacent to any 5^{-}-vertex in H.

Proof. Suppose to the contrary that there exists a vertex $u \in V(H)$ with $d_{H}(u)=6$ and $n_{5^{-}}^{H}(u) \geq 1$. By Fact 1 , we have $n_{5^{-}}^{G}(u) \geq 1$.

First, we assume $d_{G}(u)=7$. Let w be the 2^{-}-neighbor and v be some 5^{-}neighbor of u, respectively. Without loss of generality, we assume $d_{G}(w)=2$ and $d_{G}(v)=5$. Now, we consider the smaller graph $G^{\prime}=G-\{u v, u w\}$. By the minimality of G, we have G^{\prime} admits a tnpd- k-coloring c^{\prime}. We delete the colors of u and v. Let S_{1}, S_{2}, S_{3} and S_{4} be the sets of available colors for u, $u v$, $u w$ and v, respectively. It is easy to know that $\left|S_{1}\right| \geq 13-10=3>2$, $\left|S_{2}\right| \geq 13-5-4=4>3,\left|S_{3}\right| \geq 13-6=7>6$ and $\left|S_{4}\right| \geq 13-8=5>4$. We associate $u, u v, u w$ and v with the variables x_{1}, x_{2}, x_{3} and x_{4}, respectively, and let $\ln x_{i}=y_{i}$ for $1 \leq i \leq 4$. For convenience, let $S_{i}^{\prime}=\left\{y_{i} \mid \ln x_{i}=y_{i}, x_{i} \in S_{i}\right\}$ for $1 \leq i \leq 4$. Obviously, $\left|S_{1}^{\prime}\right| \geq 3>2,\left|S_{2}^{\prime}\right| \geq 4>3,\left|S_{3}^{\prime}\right| \geq 7>6$ and $\left|S_{4}^{\prime}\right| \geq 5>4$. Now we consider the following polynomial.

$$
\begin{aligned}
P\left(y_{1}, y_{2}, y_{3}, y_{4}\right)= & \prod_{1 \leq k<j \leq 3}\left(y_{k}-y_{j}\right)\left(y_{1}-y_{4}\right)\left(y_{2}-y_{4}\right) \\
& \left(y_{1}+y_{3}-y_{4}\right)\left(y_{1}+y_{2}+y_{3}\right)^{5}\left(y_{2}+y_{4}\right)^{4}
\end{aligned}
$$

It is not difficult to obtain that $c_{P}\left(y_{1}^{2} y_{2}^{3} y_{3}^{6} y_{4}^{4}\right)=50 \neq 0$ by MATLAB. Since $\operatorname{deg}(P)=15=2+3+6+4$, by Lemma 2.3, there is $s_{i} \in S_{i}^{\prime}$ for $1 \leq i \leq 4$ such that $P\left(s_{1}, s_{2}, s_{3}, s_{4}\right) \neq 0$. Finally, we can color $u, u v, u w$ and v with $e^{s_{1}}$, $e^{s_{2}}, \ldots, e^{s_{4}}$, respectively, to obtain a tnpd- k-coloring of G, a contradiction.

Now, we assume $d_{G}(u) \geq 8$. Then $n_{2^{-}}^{G}(u) \geq 2$. By Property 2 and Property 6 , we have $n_{1}^{G}(u)=d_{G}(u)-d_{H}(u)$. Let $u u_{1}, u u_{2}, \ldots, u u_{d-6}$ be the 1 neighbors of u where $d=d_{G}(u)$. Now, we consider the smaller graph $G^{\prime}=$ $G-\left\{u u_{1}, u u_{2}, \ldots, u u_{d-6}\right\}$. By the minimality of G, we have G^{\prime} admits a tnpd-k-coloring c^{\prime}. Let $S_{1}, S_{2}, \ldots, S_{d-6}$ be the sets of available colors for $u u_{1}, u u_{2}, \ldots$, $u u_{d-6}$, respectively. It is easy to know that $\left|S_{i}\right| \geq(\Delta(G)+2)-7=\Delta(G)-5$ for
$1 \leq i \leq d-6$. Let $B=\left\{x_{1} x_{2} \cdots x_{d-6} \mid x_{k} \in S_{k}, 1 \leq k \leq d-6, \prod_{1 \leq i<j \leq d-6}\left(x_{i}-\right.\right.$ $\left.\left.x_{j}\right) \neq 0\right\}$. By Lemma 2.2, we have $|B| \geq(\Delta(G)-5)+(\Delta(G)-6)+\cdots+(\Delta(G)+$ $2-d)-\frac{1}{2}(d-6)(d-5)+1=\frac{1}{2}(2 \Delta(G)-d-3)(d-6)-\frac{1}{2}(d-6)(d-5)+1=$ $\frac{1}{2}(d-6)(2 \Delta(G)-2 d+2)+1=(d-6)(\Delta(G)-d+1)+1$.

Clearly, if $d=8,9$, and 10 , since $\Delta(G) \geq 11$, we have $|B| \geq(8-6)(11-$ $8+1)+1=9>6,|B| \geq(9-6)(11-9+1)+1=10>6$, and $|B| \geq$ $(10-6)(11-10+1)+1=9>6$, respectively. In each of the above-mentioned three situations, we can choose $\alpha_{i} \in S_{i}$ to color $u u_{i}$ for $1 \leq i \leq d-6$ to obtain a tnpd- k-coloring of G, a contradiction.

If $d=11$, then we consider the following subcases.

- If $\Delta(G)=11$, then the color set which is used in the coloring is $\{1,2, \ldots, 13\}$. Let v be some 5^{-}-neighbor of u. Without loss of generality, we assume $d_{G}(v)=5$. Clearly, in any coloring of $G, p(u) \geq 1 \times 2 \times \cdots \times 12, p(v) \leq$ $13 \times 12 \times \cdots \times 8$. Thus $\frac{p(u)}{p(v)}=\frac{7!}{13}>1$. So we have $p(u) \neq p(v)$ in any coloring. Since $|B| \geq(11-6)(11-11+1)+1=6>5$, we can choose $\alpha_{i} \in S_{i}$ to color $u u_{i}$ for $1 \leq i \leq 5$ to obtain a tnpd- k-coloring of G, a contradiction.
- If $\Delta(G) \geq 12$, then we have $|B| \geq(11-6)(12-11+1)+1=11>6$. Now, we can choose $\alpha_{i} \in S_{i}$ to color $u u_{i}$ for $1 \leq i \leq d-6$ to obtain a tnpd- k-coloring of G, a contradiction.

If $d \geq 12$, then we have $|B| \geq(12-6)(\Delta(G)-d+1)+1 \geq 6+1=7>6$. Now, we can choose $\alpha_{i} \in S_{i}$ to color $u u_{i}$ for $1 \leq i \leq d-6$ to obtain a tnpd- k-coloring of G, a contradiction.

Fact 4. For each $u \in V(H)$ with $d_{H}(u)=7$, if $d_{H}(u)<d_{G}(u)$, then u is not adjacent to any 4^{-}-vertex in H.
Proof. Suppose to the contrary that there exists a vertex $u \in V(H)$ with $d_{H}(u)=7$ and $n_{4^{-}}^{H}(u) \geq 1$. By Fact 1 , we have $n_{4^{-}}^{G}(u) \geq 1$.

If $d_{G}(u)=8$, then let v be the 2^{-}-neighbor and w be some 4^{-}-neighbor of u, respectively. Now, we consider the smaller graph $G^{\prime}=G-\{u v, u w\}$. By the minimality of G, we have G^{\prime} admits a tnpd- k-coloring c^{\prime}. Let S_{1}, S_{2} be the sets of available colors for $u v$ and $u w$, respectively. It is easy to know that $\left|S_{1}\right| \geq 13-8=5,\left|S_{2}\right| \geq 13-10=3$. Let $B=\left\{x_{1} x_{2} \mid x_{k} \in S_{k}, k=1,2, x_{1} \neq x_{2}\right\}$. By Lemma 2.2, we have $|B| \geq 5+3-3+1=6>5$. Thus there exist $x_{1} \in S_{1}$, $x_{2} \in S_{2}$ for $u v$ and $u w$ such that u does not conflict with any adjacent vertex. Now we can color $u v$ and $u w$ with x_{1} and x_{2}, respectively, to get a tnpd- k-coloring, a contradiction.

If $d_{G}(u)=9$, then $n_{2^{-}}^{G}(u)=2$. By Property 2 and Property 6 , we have $n_{1}^{G}(u)=2$. Let v, w be the 1 -neighbors. Now, we consider the smaller graph $G^{\prime}=G-\{u v, u w\}$. By the minimality of G, we have G^{\prime} admits a tnpd- k-coloring c^{\prime}. Let S_{1}, S_{2} be the sets of available colors for $u v$ and $u w$, respectively. It is
easy to know that $\left|S_{1}\right| \geq 13-8=5,\left|S_{2}\right| \geq 13-8=5$. Let $B=\left\{x_{1} x_{2} \mid x_{k} \in\right.$ $\left.S_{k}, k=1,2, x_{1} \neq x_{2}\right\}$. By Lemma 2.2, we have $|B| \geq 5+4-3+1=7>5$. Thus there exist $x_{1} \in S_{1}, x_{2} \in S_{2}$ for $u v$ and $u w$ such that u does not conflict with any adjacent vertex. Now we can color $u v$ and $u w$ with x_{1} and x_{2}, respectively, to get a tnpd- k-coloring, a contradiction.

If $d_{G}(u) \geq 10$, then $n_{2^{-}}^{G}(u) \geq 3$. By Property 2 and Property 6 , we have $n_{1}^{G}(u) \geq 3$. By Property 6 , we have $n_{d}^{G}(u)=0$ for $2 \leq d \leq 4$. Thus $n_{4^{-}}^{H}(u)=0$ by Fact 1 .

Fact 5. For each $u \in V(H)$ with $d_{H}(u)=7$, u is adjacent to at most one 4^{-}-vertex in H.

Proof. Suppose to the contrary that there exists a vertex $u \in V(H)$ with $d_{H}(u)=7$ and $n_{4^{-}}^{H}(u) \geq 2$. By Fact 1 , we have $n_{4^{-}}^{G}(u) \geq 2$.

If $d_{G}(u)=d_{H}(u)=7$, then let v, w be the 4^{-}-neighbors of u. Without loss of generality, we assume that $d_{G}(v)=d_{G}(w)=4$. Now, we consider the smaller graph $G^{\prime}=G-\{u v, u w\}$. By the minimality of G, we have G^{\prime} admits a tnpd- k coloring c^{\prime}. We delete the color of u. Let S_{1}, S_{2} and S_{3} be the sets of available colors for u, $u v$ and $u w$, respectively. It is easy to know that $\left|S_{1}\right| \geq 13-10=3$, $\left|S_{2}\right| \geq 13-8=5$ and $\left|S_{3}\right| \geq 13-8=5$. Let $B=\left\{x_{1} x_{2} x_{3} \mid x_{k} \in S_{k}, 1 \leq k \leq 3\right.$, $\left.\prod_{1 \leq i<j \leq 3}\left(x_{i}-x_{j}\right) \neq 0\right\}$. By Lemma 2.2 , we have $|B| \geq 3+4+5-6+1=7>5$. Thus there exist $x_{1} \in S_{1}, x_{2} \in S_{2}$ and $x_{3} \in S_{3}$ for u, $u v$ and $u w$ such that u does not conflict with any adjacent vertex. Now we can color $u, u v$ and $u w$ with x_{1}, x_{2} and x_{3}, respectively, to get a tnpd- k-coloring, a contradiction.

If $d_{G}(u) \geq 8$, then $n_{4^{-}}(u)=0$ by Fact 4.
For convenience, for each $u \in V(H)$ with $d_{H}(u)=7$, if $n_{3}^{H}(u)=1$, then we call it a bad 7-vertex. Otherwise, it is called a good 7-vertex.

Fact 6. There is no $(5,6,7)$-cycle or $(5,7,7)$-cycle such that the 7 -vertices are bad 7-vertices in H.

Proof. Without loss of generality, suppose to the contrary that there exists a (u, v, w)-cycle such that $d_{H}(u)=d_{H}(w)=7, d_{H}(v)=5$ and u, w are bad 7 vertices, or $d_{H}(u)=7, d_{H}(w)=6, d_{H}(v)=5$ and u is a bad 7-vertex. By Fact 1, Fact 3 and Fact 4, we have $d_{H}(x)=d_{G}(x)$ where x is u, w or v. For convenience, let $u u_{1} \in E(H)$ with $d_{H}\left(u_{1}\right)=3$. Now, we consider the smaller graph $G^{\prime}=G-\left\{u u_{1}, u v, u w, v w\right\}$. By the minimality of G, we have G^{\prime} admits a tnpd- k-coloring c^{\prime}. Now, we delete the colors of u, v and w. Let S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6} and S_{7} be the sets of available colors for $u, v, w, u v, u w, w v$ and $u u_{1}$, respectively. It is easy to know that $\left|S_{1}\right| \geq 13-8=5>4,\left|S_{2}\right| \geq 13-6=7>6$, $\left|S_{3}\right| \geq 13-10=3>2,\left|S_{4}\right| \geq 13-7=6>5,\left|S_{5}\right| \geq 13-9=4>3$, $\left|S_{6}\right| \geq 13-8=5>4$ and $\left|S_{7}\right| \geq 13-6=7>6$. We associate $u, v, w, u v$,
$u w, w v$ and $u u_{1}$ with the variables $x_{1}, x_{2}, \ldots, x_{7}$, respectively, and let $\ln x_{i}=y_{i}$ for $1 \leq i \leq 7$. For convenience, let $S_{i}^{\prime}=\left\{y_{i} \mid \ln x_{i}=y_{i}, x_{i} \in S_{i}\right\}$ for $1 \leq i \leq 7$. Obviously, $\left|S_{1}^{\prime}\right| \geq 5>4$, $\left|S_{2}^{\prime}\right| \geq 7>6,\left|S_{3}^{\prime}\right| \geq 3>2,\left|S_{4}^{\prime}\right| \geq 6>5,\left|S_{5}^{\prime}\right| \geq 4>3$, $\left|S_{6}^{\prime}\right| \geq 5>4$ and $\left|S_{7}^{\prime}\right| \geq 7>6$. Now we consider the following polynomial.

$$
\begin{aligned}
P\left(y_{1}, y_{2}, \ldots, y_{7}\right)= & \prod_{1 \leq k<j \leq 3}\left(y_{k}-y_{j}\right) \prod_{4 \leq i<j \leq 6}\left(y_{i}-y_{j}\right)\left(y_{1}-y_{4}\right)\left(y_{2}-y_{4}\right) \\
& \left(y_{1}-y_{5}\right)\left(y_{3}-y_{5}\right)\left(y_{2}-y_{6}\right)\left(y_{3}-y_{6}\right)\left(y_{1}-y_{7}\right)\left(y_{4}-y_{7}\right) \\
& \left(y_{5}-y_{7}\right)\left(y_{1}+y_{5}+y_{7}-y_{2}-y_{6}\right)\left(y_{2}+y_{4}-y_{3}-y_{5}\right) \\
& \left(y_{1}+y_{4}+y_{7}-y_{3}-y_{6}\right)\left(y_{2}+y_{4}+y_{6}\right)^{3}\left(y_{3}+y_{5}+y_{6}\right)^{5} \\
& \left(y_{1}+y_{4}+y_{5}+y_{7}\right)^{4} .
\end{aligned}
$$

It is not difficult to obtain that $c_{P}\left(y_{1}^{4} y_{2}^{6} y_{3}^{2} y_{4}^{5} y_{5}^{3} y_{6}^{4} y_{7}^{6}\right)=200 \neq 0$ by MATLAB. Since $\operatorname{deg}(P)=30=4+6+2+5+3+4+6$, by Lemma 2.3, there is $s_{i} \in S_{i}^{\prime}$ for $1 \leq i \leq 7$ such that $P\left(s_{1}, s_{2}, \ldots, s_{7}\right) \neq 0$. Finally, we can color $u, v, w, u v, u w$, $w v$ and $u u_{1}$ with $e^{s_{1}}, e^{s_{2}}, \ldots, e^{s_{7}}$, respectively, to obtain a tnpd- k-coloring of G, a contradiction.

Fact 7. For each $u \in V(H)$ with $d_{H}(u)=7$, if $n_{4^{-}}^{H}(u)=1$, then u is adjacent to at most one 5-vertex in H.

Proof. Suppose to the contrary that there exists a vertex $u \in V(H)$ with $d_{H}(u)=7, n_{4^{-}}^{H}(u)=1$ and $n_{5}^{H}(u) \geq 2$. By Fact 1 , we have $n_{4^{-}}^{G}(u)=1$ and $n_{5}^{G}(u) \geq 2$. Let u_{1} be the 4^{-}-neighbor of u, u_{2} and u_{3} be the 5 -neighbors of u.

By Fact 4, we only consider the situation $d_{G}(u)=d_{H}(u)$. Without loss of generality, we assume $d_{G}\left(u_{1}\right)=4$. Now, we consider the smaller graph $G^{\prime}=$ $G-\left\{u u_{1}, u u_{2}, u u_{3}\right\}$. By the minimality of G, we have G^{\prime} admits a tnpd- k coloring c^{\prime}. Now, we delete the colors of u, u_{2} and u_{3}. Let $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ and S_{6} be the sets of available colors for u, $u u_{1}, u u_{2}, u u_{3}, u_{2}$ and u_{3}, respectively. It is easy to know that $\left|S_{1}\right| \geq 13-8=5>4,\left|S_{2}\right| \geq 13-4-3=6>5$, $\left|S_{3}\right| \geq 13-8=5>3,\left|S_{4}\right| \geq 13-8=5>4,\left|S_{5}\right| \geq 13-8=5>4$ and $\left|S_{6}\right| \geq 13-8=5>4$. We associate $u, u u_{1}, u u_{2}, u u_{3}, u_{2}$ and u_{3} with the variables $x_{1}, x_{2}, \ldots, x_{6}$, respectively, and let $\ln x_{i}=y_{i}$ for $1 \leq i \leq 6$. For convenience, let $S_{i}^{\prime}=\left\{y_{i} \mid \ln x_{i}=y_{i}, x_{i} \in S_{i}\right\}$ for $1 \leq i \leq 6$. Obviously, $\left|S_{1}^{\prime}\right| \geq 5>4,\left|S_{2}^{\prime}\right| \geq 6>5$, $\left|S_{3}^{\prime}\right| \geq 5>3,\left|S_{4}^{\prime}\right| \geq 5>4,\left|S_{5}^{\prime}\right| \geq 5>4$ and $\left|S_{6}^{\prime}\right| \geq 5>4$. Now we consider the following polynomial.

$$
\begin{aligned}
P\left(y_{1}, y_{2}, \ldots, y_{6}\right)= & \prod_{2 \leq k \leq 6}\left(y_{1}-y_{k}\right) \prod_{2 \leq i<j \leq 4}\left(y_{i}-y_{j}\right)\left(y_{3}-y_{5}\right)\left(y_{4}-y_{6}\right) \\
& \left(y_{1}+y_{2}+y_{4}-y_{5}\right)\left(y_{1}+y_{2}+y_{3}-y_{6}\right)\left(y_{3}+y_{5}\right)^{4} \\
& \left(y_{4}+y_{6}\right)^{4}\left(y_{1}+y_{2}+y_{3}+y_{4}\right)^{4}
\end{aligned}
$$

It is not difficult to obtain that $c_{P}\left(y_{1}^{4} y_{2}^{5} y_{3}^{3} y_{4}^{4} y_{5}^{4} y_{6}^{4}\right)=176 \neq 0$ by MATLAB. Since $\operatorname{deg}(P)=24=4+5+3+4+4+4$, by Lemma 2.3, there is $s_{i} \in S_{i}^{\prime}$ for $1 \leq i \leq 6$ such that $P\left(s_{1}, s_{2}, \ldots, s_{6}\right) \neq 0$. Finally, we can color $u, u u_{1}, u u_{2}, u u_{3}$, u_{2} and u_{3} with $e^{s_{1}}, e^{s_{2}}, \ldots, e^{s_{6}}$, respectively, to obtain a tnpd- k-coloring of G, a contradiction.

Fact 8. For each $u \in V(H)$ with $d_{H}(u)=8$, if $n_{3}^{H}(u) \geq 1$ and $n_{4^{-}}^{H}(u) \geq 2$, then $n_{5^{-}}^{H}(u)=2$.

Proof. Suppose to the contrary that there exists a vertex $u \in V(H)$ with $d_{H}(u)=8$ such that $n_{3}^{H}(u) \geq 1, n_{4^{-}}^{H}(u) \geq 2$ and $n_{5^{-}}^{H}(u) \geq 3$. By Fact 1 , we have $n_{3}^{G}(u) \geq 1, n_{4^{-}}^{G}(u) \geq 2$ and $n_{5^{-}}^{G}(u) \geq 3$.

If $d_{G}(u)=d_{H}(u)=8$, then let u_{1}, u_{2} and u_{3} be the 5^{-}-neighbor of u. Without loss of generality, we assume $d_{G}\left(u_{1}\right)=3, d_{G}\left(u_{2}\right)=4$ and $d_{G}\left(u_{3}\right)=5$. Now, we consider the smaller graph $G^{\prime}=G-\left\{u u_{1}, u u_{2}, u u_{3}\right\}$. By the minimality of G, we have G^{\prime} admits a tnpd- k-coloring c^{\prime}. Now, we delete the colors of u and u_{3}. Let $S_{1}, S_{2}, S_{3}, S_{4}$ and S_{5} be the sets of available colors for $u, u u_{1}$, $u u_{2}, u u_{3}$ and u_{3}, respectively. It is easy to know that $\left|S_{1}\right| \geq 13-10=3>2$, $\left|S_{2}\right| \geq 13-5-2=6>5,\left|S_{3}\right| \geq 13-8=5>4,\left|S_{4}\right| \geq 13-9=4>3$ and $\left|S_{5}\right| \geq 13-8=5>4$. We associate $u, u u_{1}, u u_{2}, u u_{3}$ and u_{3} with the variables $x_{1}, x_{2}, \ldots, x_{5}$, respectively, and let $\ln x_{i}=y_{i}$ for $1 \leq i \leq 5$. For convenience, let $S_{i}^{\prime}=\left\{y_{i} \mid \ln x_{i}=y_{i}, x_{i} \in S_{i}\right\}$ for $1 \leq i \leq 5$. Obviously, $\left|S_{1}^{\prime}\right| \geq 3>2,\left|S_{2}^{\prime}\right| \geq 6>5$, $\left|S_{3}^{\prime}\right| \geq 5>4,\left|S_{4}^{\prime}\right| \geq 4>3$ and $\left|S_{5}^{\prime}\right| \geq 5>4$. Now we consider the following polynomial.

$$
\begin{aligned}
P\left(y_{1}, y_{2}, \ldots, y_{5}\right)= & \prod_{1 \leq k<l \leq 4}\left(y_{k}-y_{l}\right)\left(y_{1}-y_{5}\right)\left(y_{4}-y_{5}\right)\left(y_{1}+y_{2}+y_{3}-y_{5}\right) \\
& \left(y_{4}+y_{5}\right)^{4}\left(y_{1}+y_{2}+y_{3}+y_{4}\right)^{5}
\end{aligned}
$$

It is not difficult to obtain that $c_{P}\left(y_{1}^{2} y_{2}^{5} y_{3}^{4} y_{4}^{3} y_{5}^{5}\right)=45 \neq 0$ by MATLAB. Since $\operatorname{deg}(P)=18=2+5+4+3+4$, by Lemma 2.3, there is $s_{i} \in S_{i}^{\prime}$ for $1 \leq i \leq 5$ such that $P\left(s_{1}, s_{2}, \ldots, s_{5}\right) \neq 0$. Finally, we can color $u, u u_{1}, u u_{2}, u u_{3}$ and u_{3} with $e^{s_{1}}, e^{s_{2}}, \ldots, e^{s_{5}}$, respectively, to obtain a tnpd- k-coloring of G, a contradiction.

If $d_{G}(u)=9$, then $n_{2^{-}}(u)=1$. Let u_{1}, u_{2} and u_{3} be the 4^{-}-neighbor of u. Without loss of generality, we assume $d_{G}\left(u_{1}\right)=2, d_{G}\left(u_{2}\right)=3$ and $d_{G}\left(u_{3}\right)=4$. Now, we consider the smaller graph $G^{\prime}=G-\left\{u u_{1}, u u_{2}, u u_{3}\right\}$. By the minimality of G, we have G^{\prime} admits a tnpd- k-coloring c^{\prime}. Now, we delete the colors of u. Let S_{1}, S_{2}, S_{3} and S_{4} be the sets of available colors for $u, u u_{1}, u u_{2}$ and $u u_{3}$, respectively. It is easy to know that $\left|S_{1}\right| \geq 13-12=1,\left|S_{2}\right| \geq 13-7=6$, $\left|S_{3}\right| \geq 13-8=5$ and $\left|S_{4}\right| \geq 13-9=4$. Let $B=\left\{x_{1} x_{2} x_{3} x_{4} \mid x_{k} \in S_{k}, 1 \leq k \leq 4\right.$, $\left.\prod_{1 \leq i<j \leq 4}\left(x_{i}-x_{j}\right) \neq 0\right\}$. By Lemma 2.2, we have $|B| \geq 1+4+5+6-10+1=7>6$. Thus there exist $x_{1} \in S_{1}, x_{2} \in S_{2}, x_{3} \in S_{3}$ and $x_{4} \in S_{4}$ for u, $u u_{1}, u u_{2}$ and $u u_{3}$
such that u does not conflict with any adjacent vertex. Now we can color u, $u u_{1}, u u_{2}$ and $u u_{3}$ with x_{1}, x_{2}, x_{3} and x_{4}, respectively, to get a tnpd- k-coloring, a contradiction.

If $d_{G}(u) \geq 10$, then $n_{2^{-}}^{G}(u) \geq 2$. By Property 2 and Property 6 , we have $n_{1}^{G}(u) \geq 2$. By Property 6 , we have $n_{d}^{G}(u)=0$ for $2 \leq d \leq 3$. Thus $n_{3}^{H}(u)=0$ by Fact 1 . A contradiction to $n_{3}^{H}(u) \geq 1$.

In order to complete the proof, we use the discharging method. By Euler's formula $|V(H)|-|E(H)|+|F(H)|=2$ and $\sum_{v \in V(H)} d_{H}(v)=\sum_{f \in F(H)} d_{H}(f)=$ $2|E(H)|$, thus
$\sum_{v \in V(H)}\left(d_{H}(v)-6\right)+\sum_{f \in F(H)}\left(2 d_{H}(f)-6\right)=-6(|V(H)|-|E(H)|+|F(H)|)=-12$.
Define an initial charge function w on $V(H) \cup F(H)$ by setting $w(v)=$ $d_{H}(v)-6$ if $v \in V(H)$ and $w(f)=2 d_{H}(f)-6$ if $f \in F(H)$. Clearly, we have $\sum_{x \in V(H) \cup F(H)} w(x)=-12$.

Now redistribute the charges according to the following discharging rules.
$D 1$. If v is a bad 3 -neighbor of u, then u gives 1 to v.
$D 2$. Assume that v is a special 3 -neighbor of u, then u gives $\frac{1}{2}$ to v.
$D 3$. If v is a bad 4-neighbor of u, then u gives $\frac{1}{2}$ to v.
$D 4$. For each $u \in V(H)$, if u is a good 7 -vertex and v is a bad 5 -neighbor of u, then u gives $\frac{1}{3}$ to v.
$D 5$. If v is a bad 5 -neighbor of u with $d_{H}(u) \geq 8$, then u gives $\frac{1}{3}$ to v.
$D 6$. Assume that f is a 4 -face. If f is bad, then f gives 1 to each of its incident 5^{-}-vertices. If f is good, then f gives 2 to each of its incident 5^{-}-vertices.
$D 7$. If f is a 5^{+}-face, then f gives 2 to each of its incident 5^{-}-vertices.
Let the new charge of each element $x \in V(H) \cup F(H)$ be $w^{\prime}(x)$. In the following, we will show that $\sum_{x \in V(H) \cup F(H)} w^{\prime}(x) \geq 0$, a contradiction to $\sum_{x \in V(H) \cup F(H)}$ $w(x)=-12$. This will complete the proof.

Consider any vertex $v \in V(H)$, suppose $d_{H}(v)=3$. Then $w(v)=-3$.
If v is incident with three 3 -faces, then $w^{\prime}(v)=w(v)+3 \times 1=0$ by $D 1$.
If v is incident with two 3 -faces and one bad 4 -face, then $w^{\prime}(v)=w(v)+1+$ $\frac{1}{2} \times 2+1=0$ by $D 1, D 2$ and $D 6$.

If v is incident with two 3 -faces and one good 4 -face (or 5^{+}-face), then $w^{\prime}(v)=$ $w(v)+1+2=0$ by $D 1$ and $D 6$ (or $D 7$).

If v is incident with one 3 -face and two bad 4 -face, then $w^{\prime}(v)=w(v)+\frac{1}{2} \times$ $2+1 \times 2=0$ by $D 2$ and $D 6$.

If v is incident with one 3 -face and at least one good 4 -face (or 5^{+}-face), then $w^{\prime}(v) \geq w(v)+\frac{1}{2}+1+2=\frac{1}{2}>0$ by $D 2$ and $D 6$ (or $D 7$).

Otherwise, v is incident with three 4^{+}-faces. Then $w^{\prime}(v) \geq w(v)+1 \times 3=0$ by $D 6$ and $D 7$.

Suppose $d_{H}(v)=4$. Then $w(v)=-2$.
If v is incident with four 3-faces, then $w^{\prime}(v)=w(v)+\frac{1}{2} \times 4=0$ by $D 3$.
Otherwise, v is incident with at least one 4^{+}-face. Then $w^{\prime}(v) \geq w(v)+1+$ $\frac{1}{2} \times 2=0$ by $D 6, D 7$ and $D 3$.

Suppose $d_{H}(v)=5$. Then $w(v)=-1$.
If v is incident with at least one 4^{+}-face, then $w^{\prime}(v) \geq w(v)+1=0$ by $D 6$. Otherwise, v is incident with five 3-faces. By Property 5 and Fact 3, v has at least three 7^{+}-neighbors in H. Furthermore, v is adjacent to at most two bad 7 -vertices by Fact 4 and Fact 6. For convenience, we divide the proof into the following cases.

- If v is not adjacent to any bad 7-vertex, then clearly we have $w^{\prime}(v) \geq w(v)+$ $\frac{1}{3} \times 3=0$ by $D 5$.
- If v is adjacent to one bad 7 -vertex, then we have $n_{7^{+}}^{H}(v) \geq 4$ by Fact 6 . We have $w^{\prime}(v) \geq w(v)+\frac{1}{3} \times 3=0$ by $D 4$ and $D 5$.
- If v is adjacent to two bad 7 -vertices, then we have $n_{7^{+}}^{H}(v)=5$ by Fact 6 . We have $w^{\prime}(v) \geq w(v)+\frac{1}{3} \times 3=0$ by $D 4$ and $D 5$.

Suppose $d_{H}(v)=6$. Then $w(v)=0$. By Property 1 and Fact 3, we have v is not adjacent to any 4^{-}-vertex in H. Thus we have $w^{\prime}(v)=w(v)=0$.

Suppose $d_{H}(v)=7$. Then $w(v)=1$. By Fact 5, we have $n_{4^{-}}^{H}(v) \leq 1$. If $n_{3}^{H}(v)=1$, i.e., v is a bad 7-vertex, then $n_{4}^{H}(v)=0$. We have $w^{\prime}(v) \geq w(v)-1=0$ by $D 1, D 2$ and $D 4$. If $n_{4}^{H}(v)=1$, then $n_{3}^{H}(v)=0$ and v is adjacent to at most one 5 -vertex by Fact 7 . We have $w^{\prime}(v) \geq w(v)-\frac{1}{2}-\frac{1}{3}=\frac{1}{6}>0$ by $D 3$ and $D 4$. Otherwise, $n_{4^{-}}(v)=0$, since v has at most three bad 5 -neighbors by Proposition 4 and Fact 1 , we have $w^{\prime}(v) \geq w(v)-\frac{1}{3} \times 3=0$ by $D 4$.

Suppose $d_{H}(v)=8$. Then $w(v)=2$. By Fact 8 , we have $n_{3}^{H}(v) \leq 2$.
If $n_{3}^{H}(v)=2$, then $n_{4}^{H}(v)=0$ and $n_{5}^{H}(v)=0$. Thus we have $w^{\prime}(v) \geq$ $w(v)-1 \times 2=0$ by $D 1$.

If $n_{3}^{H}(v)=1$, then $n_{4}^{H}(v) \leq 1$ by Fact 8.

- If $n_{4}^{H}(v)=1$, then $n_{5}^{H}(v)=0$ by Fact 8 . We have $w^{\prime}(v) \geq w(v)-1-\frac{1}{2}=\frac{1}{2}>0$ by $D 1$ and $D 2$.
- If $n_{4}^{H}(v)=0$, then $n_{5 b}^{H}(v) \leq 3$ by Property 4 and Fact 1 . We have $w^{\prime}(v) \geq$ $w(v)-1-\frac{1}{3} \times 3=0$ by $D 1$ and $D 5$.
Otherwise, $n_{3}^{H}(v)=0$. Then $n_{4 b}^{H}(v)+n_{5 b}^{H}(v) \leq 4$ by Property 4 and Fact 1 . We have $w^{\prime}(v) \geq w(v)-\frac{1}{2} \times 4=0$ by $D 3$ and $D 5$.

Suppose $d_{H}(v)=9$. Then $w(v)=3$. We have $n_{3 b}^{H}(v) \leq 3$ by Property 3 .

If $n_{3 b}^{H}(v)=3$, then $n_{4}^{H}(v)=0$ and $n_{5}^{H}(v)=0$ by Property 4 and Fact 1. Thus we have $w^{\prime}(v)=w(v)-1 \times 3=0$ by $D 1$.

If $n_{3 b}^{H}(v)=2$, then $n_{3 s}^{H}(v)+n_{4 b}^{H}(v)+n_{5 b}^{H}(v) \leq 2$ by Property 4 and Fact 1. Thus we have $w^{\prime}(v) \geq w(v)-1 \times 2-\frac{1}{2} \times 2=0$ by $D 1, D 2, D 3$ and $D 5$.

If $n_{3 b}^{H}(v)=1$, then $n_{3 s}^{H}(v)+n_{4 b}^{H}(v)+n_{5 b}^{H}(v) \leq 4$ by Property 4 and Fact 1 . Thus we have $w^{\prime}(v) \geq w(v)-1-\frac{1}{2} \times 3=\frac{1}{2}>0$ by $D 1, D 2, D 3$ and $D 5$.

Otherwise $n_{3 b}^{H}(v)=0$. Then $n_{3 s}^{H}(v)+n_{4 b}^{H}(v)+n_{5 b}^{H}(v) \leq 5$ by Property 4 and Fact 1. Thus we have $w^{\prime}(v) \geq w(v)-\frac{1}{2} \times 5=\frac{1}{2}>0$ by $D 2, D 3$ and $D 5$.

Suppose $d_{H}(v)=10$. Then $w(v)=4$. We have $n_{3 b}^{H}(v) \leq 3$ by Property 3 .
If $n_{3 b}^{H}(v)=3$, then $n_{3 s}^{H}(v)+n_{4 b}^{H}(v)+n_{5 b}^{H}(v) \leq 1$ by Property 4 and Fact 1 . Thus we have $w^{\prime}(v)=w(v)-1 \times 3-\frac{1}{2}=\frac{1}{2}>0$ by $D 1, D 2, D 3$ and $D 5$.

If $n_{3 b}^{H}(v)=2$, then $n_{3 s}^{H}(v)+n_{4 b}^{H}(v)+n_{5 b}^{H}(v) \leq 4$ by Property 4 and Fact 1. Thus we have $w^{\prime}(v) \geq w(v)-1 \times 2-\frac{1}{2} \times 4=0$ by $D 1, D 2, D 3$ and $D 5$.

If $n_{3 b}^{H}(v)=1$, then $n_{3 s}^{H}(v)+n_{4 b}^{H}(v)+n_{5 b}^{H}(v) \leq 5$ by Property 4 and Fact 1 . Thus we have $w^{\prime}(v) \geq w(v)-1-\frac{1}{2} \times 5=\frac{1}{2}>0$ by $D 1, D 2, D 3$ and $D 5$.

Otherwise $n_{3 b}^{H}(v)=0$. Then $n_{3 s}^{H}(v)+n_{4 b}^{H}(v)+n_{5 b}^{H}(v) \leq 6$ by Property 4 and Fact 1. Thus we have $w^{\prime}(v) \geq w(v)-\frac{1}{2} \times 6=1>0$ by $D 2, D 3$ and $D 5$.

Suppose $d_{H}(v) \geq 11$. Then $w(v)=d_{H}(v)-6$. Since two special 3-neighbors may be incident with one and the same bad 4 -face, it is not difficult to obtain that $n_{3 s}^{H}(v) \leq \frac{2}{3}\left(d_{H}(v)-2 n_{3 b}^{H}(v)\right)$. Clearly, $n_{3 s}^{H}(v)+n_{4 b}^{H}(v)+n_{5 b}^{H}(v) \leq$ $\frac{2}{3}\left(d_{H}(v)-2 n_{3 b}^{H}(v)\right)$ by Property 4 and Fact 1.

Thus we have $w^{\prime}(v) \geq w(v)-n_{3 b}^{H}(v)-\left[\frac{2}{3}\left(d_{H}(v)-2 n_{3 b}^{H}(v)\right)\right] \times \frac{1}{2}=d_{H}(v)-$ $6-n_{3 b}^{H}(v)-\left(d_{H}(v)-2 n_{3 b}^{H}(v)\right) \times \frac{1}{3}=d_{H}(v)-6-n_{3 b}^{H}(v)-\frac{1}{3} d_{H}(v)+\frac{2}{3} n_{3 b}^{H}(v)=$ $\frac{2}{3} d_{H}(v)-6-\frac{1}{3} n_{3 b}^{H}(v)$ by $D 1, D 2, D 3$ and $D 5$.

Since $n_{3 b}^{H}(v) \leq \frac{1}{3} d_{H}(v)$ by Property 3 , we have $w^{\prime}(v) \geq \frac{2}{3} d_{H}(v)-6-\frac{1}{3} \times$ $\frac{1}{3} d_{H}(v)=\frac{5}{9} d_{H}(v)-6 \geq \frac{1}{9}>0$.

For each $f \in F(H)$, suppose $d_{H}(f)=3$. Then $w^{\prime}(v)=w(v)=0$.
Suppose $d_{H}(f)=4$. Then $w(f)=2$. By Property 4 and Fact $1, f$ is incident with at most two 5^{-}-vertices. If f is bad, then $w^{\prime}(f)=w(f)-1 \times 2=0$ by $D 6$. Otherwise, we have $w^{\prime}(f) \geq w(f)-2=0$ by $D 6$.

Suppose $d_{H}(f) \geq 5$. Then $w(f)=2 d_{H}(f)-6$. By Property 4 and Fact 1 , f is incident with at most $\left\lfloor\frac{1}{2} d_{H}(f)\right\rfloor 5^{-}$-vertices. We have $w^{\prime}(f) \geq w(f)-2 \times$ $\frac{1}{2} d_{H}(f)=0$ by $D 7$.

References

[1] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999) 7-29. https://doi.org/10.1017/S0963548398003411
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York, 1976).
[3] X.E. Chen, On the adjacent vertex distinguishing total coloring numbers of graphs with $\Delta=3$, Discrete Math. 308 (2008) 4003-4007. https://doi.org/10.1016/j.disc.2007.07.091
[4] X.H. Cheng, G.H. Wang and J.L. Wu, The adjacent vertex distinguishing total chromatic numbers of planar graphs $\Delta=10$, J. Comb. Optim. 34 (2017) 383-397. https://doi.org/10.1007/s10878-016-9995-x
[5] X.H. Cheng and J.L. Wu, The adjacent vertex distinguishing total choosability of planar graphs with maximum degree at least eleven, J. Comb. Optim. 35 (2018) 1-13.
https://doi.org/10.1007/s10878-017-0149-6
[6] L.H. Ding, G.H. Wang and G.Y. Yan, Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz, Sci. China Math. 57 (2014) 1875-1882. https://doi.org/10.1007/s11425-014-4796-0
[7] L.H. Ding, G.H. Wang, J.L. Wu and J.G. Yu, Neighbor sum (set) distinguishing total choosability via the Combinatorial Nullstellensatz, Graphs Combin. 33 (2017) 885-900.
https://doi.org/10.1007/s00373-017-1806-3
[8] S. Ge, J.G. Li and C.Q. Xu, Neighbor sum distinguishing total coloring of planar graphs without 5-cycles, Theoret. Comput. Sci. 689 (2017) 169-175. https://doi.org/10.1016/j.tcs.2017.05.037
[9] D.J. Huang and W.F. Wang, Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree, Sci. Sin. Math. 42 (2012) 151-164 (in Chinese). https://doi.org/10.1360/012011-359
[10] T. Li, C.Q. Qu, G.H. Wang and X.W. Yu, Neighbor product distinguishing total colorings, J. Comb. Optim. 33 (2017) 237-253.
https://doi.org/10.1007/s10878-015-9952-0
[11] H.L. Li, B.Q. Liu and G.H. Wang, Neighbor sum distinguishing total colorings of K_{4}-minor free graphs, Front. Math. China 8 (2013) 1351-1366. https://doi.org/10.1007/s11464-013-0322-x
[12] H.L. Li, L.H. Ding, B.Q. Liu and G.H. Wang, Neighbor sum distinguishing total colorings of planar graphs, J. Comb. Optim. 30 (2015) 675-688. https://doi.org/10.1007/s10878-013-9660-6
[13] Y. Lu, J.A. Li, R. Luo and Z.K. Miao, Adjacent vertex distinguishing total coloring of graphs with maximum degree 4, Discrete Math. 340 (2017) 119-123. https://doi.org/10.1016/j.disc.2016.07.011
[14] Y. Lu, C.D. Xu and Z.K. Miao, Neighbor sum distinguishing list total coloring of subcubic graphs, J. Comb. Optim. 35 (2018) 778-793. https://doi.org/10.1007/s10878-017-0239-5
[15] C.Q. Qu, G.H. Wang, J.L. Wu and X.W. Yu, On the neighbor sum distinguishing total coloring of planar graphs, Theoret. Comput. Sci. 609 (2016) 162-170. https://doi.org/10.1016/j.tcs.2015.09.017
[16] H.J. Song and C.Q. Xu, Neighbor sum distinguishing total coloring of planar graphs without 4-cycles, J. Comb. Optim. 34 (2017) 1147-1158. https://doi.org/10.1007/s10878-017-0137-x
[17] L. Sun, X.H. Cheng and J.L. Wu, The adjacent vertex distinguishing total coloring of planar graphs without adjacent 4-cycles, J. Comb. Optim. 33 (2017) 779-790. https://doi.org/10.1007/s10878-016-0004-1
[18] H.Y. Wang, On the adjacent vertex-distinguishing total chromatic numbers of the graphs with $\Delta(G)=3$, J. Comb. Optim. 14 (2007) 87-109. https://doi.org/10.1007/s10878-006-9038-0
[19] H.Y. Wang, The adjacent vertex-distinguishing total chromatic number of 1-tree, Ars Combin. 91 (2009) 183-192.
[20] Y.Q. Wang and W.F. Wang, Adjacent vertex distinguishing total colorings of outerplanar graphs, J. Comb. Optim. 19 (2010) 123-133. https://doi.org/10.1007/s10878-008-9165-x
[21] W.F. Wang and P. Wang, On adjacent-vertex-distinguishing total coloring of $K_{4}{ }^{-}$ minor free graphs, Sci. China Ser. A Math. 39 (2009) 1462-1472 (in Chinese). https://doi.org/10.1360/za2009-39-12-1462
[22] W F. Wang and Y.Q. Wang, Adjacent vertex distinguishing total coloring of graphs with lower average degree, Taiwanese J. Math. 12 (2008) 979-990. https://doi.org/10.11650/twjm/1500404991
[23] W.F. Wang and D.J. Huang, The adjacent vertex distinguishing total coloring of planar graphs, J. Comb. Optim. 27 (2014) 379-396. https://doi.org/10.1007/s10878-012-9527-2
[24] D.L. Yang, L. Sun, X.W. Yu, J.L. Wu and S. Zhou, Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10, Appl. Math. Comput. 314 (2017) 456-468. https://doi.org/10.1016/j.amc.2017.06.002
[25] Z.F. Zhang, X.E. Chen, J.W. Li, B. Yao, X.Z. Lu and J.F. Wang, On adjacent-vertex-distinguishing total coloring of graphs, Sci. China Math. 48 (2005) 289-299. https://doi.org/10.1360/03ys0207

[^0]: ${ }^{1}$ This work was supported by the National Natural Science Foundation of China (Grant No. 61773015). It was also supported by China Postdoctoral Science Foundation Funded Project (Grant No.2014M561909); the Nature Science Foundation of Shandong Province of China (Grant No. ZR2014AM028, ZR2017LEM014).

