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Abstract

A proper [k]-total coloring c of a graph G is a proper total coloring c of
G using colors of the set [k] = {1, 2, . . . , k}. Let p(u) denote the product of
the color on a vertex u and colors on all the edges incident with u. For each
edge uv ∈ E(G), if p(u) 6= p(v), then we say the coloring c distinguishes
adjacent vertices by product and call it a neighbor product distinguishing
k-total coloring of G. By χ′′∏(G), we denote the smallest value of k in such
a coloring of G. It has been conjectured by Li et al. that ∆(G) + 3 colors
enable the existence of a neighbor product distinguishing total coloring. In
this paper, by applying the Combinatorial Nullstellensatz, we obtain that
the conjecture holds for planar graph with ∆(G) ≥ 10. Moreover, for planar
graph G with ∆(G) ≥ 11, it is neighbor product distinguishing (∆(G) + 2)-
total colorable, and the upper bound ∆(G) + 2 is tight.
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1. Introduction

The terminology and notation used but undefined in this paper can be found
in [2]. Let G = (V,E) be a graph. We use V (G), E(G), ∆(G) and δ(G) to
denote the vertex set, edge set, maximum degree and minimum degree of G,
respectively. Let dG(v) or simply d(v) denote the degree of a vertex v in G. If
d(x) = k, d(x) ≥ k and d(x) ≤ k, then the vertex x is called a k-vertex, k+-
vertex and k−-vertex, respectively. Let NG(u) be the set of neighbors of u in
the graph G. We use ni(u) to denote the number of i-neighbors of u.

Let [k] be a set of colors where [k] = {1, 2, . . . , k} and let c be a total col-
oring of G for which c : E(G) ∪ V (G) → [k]. By p(v) (respectively, s(v)), we
denote the product (respectively, set) of colors taken on the edges incident to
v and the color on the vertex v, i.e., p(v) = c(v)

∏
uv∈E(G) c(uv) (respectively,

s(v) = {c(uv)|uv ∈ E(G)} ∪ {c(v)}). If the coloring c is proper, then we call
the coloring c such that p(v) 6= p(u) (respectively, s(u) 6= s(v)) for each edge
uv ∈ E(G) a neighbor product distinguishing [k]-total coloring (respectively,
adjacent vertex distinguishing [k]-total coloring) of G, or a tnpd-k-coloring (re-
spectively, tndi-k-coloring) for simplicity. By χ′′∏(G) (respectively, (tndi(G))),
we denote the smallest value k such that G has a neighbor product (respectively,
vertex) distinguishing [k]-total coloring of G. It is easy to observe that if two
vertices are distinguished by product, then they are also distinguished by sets,
but not necessarily conversely. That is to say tndi(G) ≤ χ′′∏(G).

In 2005, Zhang et al. introduced the notion of adjacent vertex distinguishing
k-total coloring and brought forward the following conjecture.

Conjecture 1.1 [25]. Let G be a connected graph with at least two vertices, then
tndi(G) ≤ ∆(G) + 3.

Zhang et al. proved the conjecture for graphs which are cliques, paths, cycles,
fans, wheels, stars, complete graphs, bipartite complete graphs and trees. Wang
and Chen confirmed the conjecture for graphs with ∆(G) = 3 [3, 18]. Recently,
Lu et al. verified the conjecture for all graphs with maximum degree 4 [13]. Wang
proved that if G is 1-tree, then tndi(G) ≤ ∆(G)+2 [19]. Wang et al. investigated
some planar graphs such as outerplanars and series-parallel graphs and confirmed
the conjecture [20, 21]. In 2008, Wang et al. showed that if G is a graph with
mad(G) < 3, then tndi(G) ≤ ∆(G) + 2 [22]. In 2012, Huang et al. proved that
if G is a planar graph with ∆(G) ≥ 11, then tndi(G) ≤ ∆(G) + 3 [9]. Recently,
Cheng et al. verified the conjecture for planar graphs with ∆(G) ≥ 10 [4]. In
2014, Wang et al. obtained that if G is a planar graph with ∆(G) ≥ 14, then
∆(G) + 1 ≤ tndi(G) ≤ ∆(G) + 2 [23]. Recently, Sun et al. confirmed the
Conjecture 1.1 for the planar graph with ∆(G) ≥ 8 and without adjacent 4-
cycles [17]. More related results can be seen in [6–8,11,12,14–16,24].
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Recently, Li et al. completely determined the neighbor product distinguishing
total coloring index for complete graphs, trees, cycles, bipartite graphs, subcubic
graphs and K4-minor free graphs. Based on these examples, they proposed the
following conjecture.

Conjecture 1.2 [10]. If G is a graph with at least two vertices, then χ′′∏(G) ≤
∆(G) + 3.

As for the sparse graph G with ∆(G) ≤ 3, Li et al. proved that χ′′∏(G) = 5
if G is an odd cycle, χ′′∏(G) = 4 if G is an even cycle and χ′′∏(G) ≤ ∆(G) + 3 if
G is a subcubic graph [10]. In 2017, Ding et al. confirmed the Conjecture 1.2 for
sparse graph G with bounded maximum degree [6]. In this paper, we consider
the planar graph G with ∆(G) ≥ 10 and obtain the following result.

Theorem 1.3. Let G be a planar graph such that ∆(G) ≥ 10. Then χ′′∏(G) ≤
∆(G) + 3.

For ∆(G) ≥ 11, we prove the following tight upper bound.

Theorem 1.4. If G is a planar graph G with ∆(G) ≥ 11, then χ′′∏(G) ≤
∆(G) + 2.

Since tndi(G) ≤ χ′′∏(G), Theorem 1.4 implies the following result in [23].

Theorem 1.5. If G is a planar graph G with ∆(G) ≥ 11, then tndi(G) ≤
∆(G) + 2.

2. Some Important Lemmas

Lemma 2.1 [1]. Let Li be the set of real numbers, where |Li| = li for 1 ≤ i ≤ t,
and l1 ≥ l2 ≥ · · · ≥ lt. Let L =

{∑t
i=1 xi |xi ∈ Li,

∏
1≤i<j≤t(xi − xj) 6= 0

}
.

Define l′1, l
′
2, . . . , l

′
t by l′1 = l1 and l′i = min

{
l′i−1 − 1, li

}
for 2 ≤ i ≤ t. If l′t > 0,

then |L| ≥
∑t

i=1 l
′
i − 1

2 t(t+ 1) + 1.

From Lemma 2.1, it is easy to get the following lemma.

Lemma 2.2. Let Si be the set of positive real numbers, where |Si| = si for 1 ≤ i ≤
t, and s1 ≥ s2 ≥ · · · ≥ st. Let S =

{∏t
i=1 xi |xi ∈ Si,

∏
1≤i<j≤t(xi − xj) 6= 0

}
.

Define s′1, s
′
2, . . . , s

′
t by s′1 = s1 and s′i = min

{
s′i−1 − 1, si

}
for 2 ≤ i ≤ t. If s′t

> 0, then |S| ≥
∑t

i=1 s
′
i − 1

2 t(t+ 1) + 1.

Proof. For convenience, let Si =
{
xi1 , xi2 , . . . , xisi

}
, Li =

{
lnxi1 , lnxi2 , . . . ,

lnxisi
}

for 1 ≤ i ≤ t. Let L=
{∑t

i=1 lnxi | lnxi ∈Li,
∏

1≤i<j≤t(lnxi− lnxj) 6= 0
}

.

From Lemma 2.1, we have |L| ≥
∑t

i=1 s
′
i− 1

2 t(t+ 1) + 1. Clearly, |S| = |L|. Thus

we have |S| ≥
∑t

i=1 s
′
i − 1

2 t(t+ 1) + 1.
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Let P (x1, x2, . . . , xn) be a polynomial in n variables. By cP

(
xk11 x

k2
2 · · ·xknn

)
,

we denote the coefficient of the monomial xk11 x
k2
2 · · ·xknn in the expansion of

P (x1, x2, . . . , xn), where ki is a non-negative integer for 1 ≤ i ≤ n.

Lemma 2.3 (Combinatorial Nullstellensatz [1]). Let F be an arbitrary field, and
let P = P (x1, x2, . . . , xn) be a polynomial in F[x1, x2, . . . , xn]. Suppose the degree
deg(P ) of P equals

∑n
i=1 ki, where each ki is a nonnegative integer, and suppose

the coefficient of xk11 x
k2
2 · · ·xknn in P is non-zero. If S1, S2, . . . , Sn are subsets of

F with |Si| > ki for 1 ≤ i ≤ n, then there are s1 ∈ S1, . . . , sn ∈ Sn so that P (s1,
s2, . . . , sn) 6= 0.

In the following, we will prove the main theorems. For convenience, for
the coloring c of G, we use pc(v) to denote the product of the color on the
vertex v and the colors taken on edges which are incident with v, i.e., pc(v) =∏

v∈e c(e)c(v). We use Sc(x) to denote the set of colors available for each element
x ∈ E(G) ∪ V (G) in the coloring c. In addition, the following configurations in
Figure 1 will be used in the proof of the theorems.

Figure 1

Figure 2

3. Proof of Theorem 1.3

For any graph G, let ni(G) = | {v | dG(v) = i}| for i = 1, 2, . . . ,∆(G). A graph
G′ is smaller than the graph G if any of the following is true.

• |E(G′)| < |E(G)|;
• |E(G′)| = |E(G)| and (nt(G

′), nt−1(G
′), . . . , n2(G

′), n1(G
′)) precedes (nt(G),

nt−1(G), . . . , n2(G), n1(G)) with respect to the lexicographic order, where
t = max{∆(G),∆(G′)}.
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A graph G is minimal for the front property when no smaller graph satisfies
it.

Suppose G is a minimal counterexample to Theorem 1.3. That is, the graph
G does not admit any tnpd-k-coloring, and its smaller graph G′ constructed from
G by deleting edge, contracting edge or splitting vertex which is shown in the
following discussion admits a tnpd-k-coloring c′.

Let H be the graph obtained by removing all the 2−-vertices of G. In the
following, we will discuss the structural property of G and H by extending the
coloring c′ of G′ to the desired coloring c of G. And then apply the discharging
method to obtain a contradiction to the planarity of graph G.

For each v ∈ V (G) and each coloring c of G, if d(v) ≤ 4, then it has at
most 12 forbidden colors since v has at most four adjacent vertices, four incident
edges, and we have to guarantee that pc(v) 6= pc(u) for each edge uv ∈ E(G).
Since k ≥ 13, we can recolor v if necessary to get a coloring as desired. So in the
following discussion, we will omit the coloring of all 4−-vertices.

For convenience, a 4-face f is good if it is incident with at most one 5−-vertex,
otherwise, f is bad. A k-vertex v is called a bad k-neighbor of u if the edge uv is
incident with two 3-faces. And v is called a special k-neighbor of u if the edge
uv is incident with a 3-face and a bad 4-face. We use nHkb(u) and nH3s(u) to denote
the number of bad k-neighbors and special 3-neighbors of u in H, respectively.

Now, we give some structural properties of G.

Property 1. Every 6−-vertex is not adjacent to any 4−-vertex.

Proof. Suppose to the contrary that there exists a 6−-vertex u which is adjacent
to a 4−-vertex v. We consider the smaller graph G′ = G−uv. By the minimality
of G, we have G′ admits a tnpd-k-coloring c′. Now, we delete the color of u.
Let S1, S2 be the sets of available colors for u, uv, respectively. It is easy to
know that |S1| ≥ 13 − 5 − 5 = 3, |S2| ≥ 13 − 5 − 3 = 5. Let B = {x1x2|x1 ∈
S1, x2 ∈ S2, x1 6= x2}. By Lemma 2.2, we have |B| ≥ 3 + 5− 3 + 1 = 6 > 5. Thus
there exist x1 ∈ S1, x2 ∈ S2 for u and uv such that u does not conflict with any
adjacent vertex. Then we can color u and uv with x1 and x2, respectively, to get
a tnpd-k-coloring, a contradiction.

Property 2. For any vertex u ∈ V (G), we have n2(u) ≤ 1.

Proof. Suppose to the contrary that n2(u) ≥ 2, and let x, y be two 2-neighbors
of u. It is clear that x is not adjacent to y by Proposition 1. By analyzing
whether the multiple edges appear or not when contracting the edges ux and uy,
G must contain one of configurations F1, F2 and F3. We divide the proof into
the following three cases:

Case 1. There is a structure isomorphic to the configuration F1 in G, i.e., x
and y are not incident with any 3-face, and u, x and y are not incident with one
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and the same 4-face. Now we contract the edges ux and uy to get a smaller graph
G′ (see H1 in Figure 2). By the minimality of G, we have G′ admits a tnpd-k-
coloring c′. For convenience, let c′(uw) = a and c′(uv) = b. In the following, we
subdivide uw, uv with x and y respectively. By coloring ux, yv with b and uy,
xw with a, we get a tnpd-k-coloring of G, a contradiction.

Case 2. There is a structure isomorphic to the configuration F2 in G, i.e., u,
x and y are incident with one and the same 4-face. We split x and y into x1, x2
and y1, y2, respectively, to obtain a smaller graph G′ (see H2 in Figure 2). By
the minimality of G, we have G′ admits a tnpd-k-coloring c′. For convenience,
let c′(ux1) = a, c′(uy1) = b, c′(x2v) = c and c′(y2v) = d. In the following, we
can stick x1 and x2 together, and stick y1 and y2 together (if necessary exchange
the colors of ux1 and uy1 to guarantee a proper total coloring) to get a tnpd-k-
coloring of G, a contradiction.

Case 3. There is a structure isomorphic to the configuration F3 in G, i.e., at
least one 2-neighbor of u is incident with some 3-face. We split x and y into x1,
x2 and y1, y2, respectively, to obtain a smaller graph G′ (see H3 in Figure 2). By
the minimality of G, we have G′ admits a tnpd-k-coloring c′. For convenience,
let c′(ux1) = a, c′(uv) = b, c′(uy1) = c, c′(x2w) = d and c′(y2v) = e.

If e = d /∈ {a, c} or d 6= e, then we can stick x1 and x2, y1 and y2 together (if
necessary exchange the colors of ux1 and uy1 to guarantee a proper total coloring)
to get a tnpd-k-coloring of G, a contradiction.

If d = e = a, then we recolor ux1 with b, recolor uv with a and recolor vy2
with b. Now we can stick x1 and x2, y1 and y2 together, a contradiction.

If d = e = c, then we recolor ux1 with b, recolor uv with c, recolor vy2 with
b and recolor uy1 with a. Now we can stick x1 and x2, y1 and y2 together, a
contradiction.

Property 3. For any vertex u ∈ V (G), let x, y be bad 3-neighbors of u, then
any 3-face which is incident with x is not adjacent to any 3-face which is incident
with y.

Proof. By the contrary, G contains a structure isomorphic to the configuration
F4. We split the bad 3-neighbors x and y of u into x1, x2, y1 and y2, respectively
to get a smaller graph G′ (see H4 in Figure 2). By the minimality of G, we have
G′ admits a tnpd-k-coloring c′. For convenience, let c′(vx1) = a, c′(wx1) = b,
c′(uv) = c, c′(uz) = d, c′(uw) = e, c′(uy2) = f , c′(wy1) = g, c′(zy1) = h and
c′(ux2) = i. Next, we try to stick x1, y1 with x2, y2 together, respectively.
If x1, y1 can be stuck with x2, y2 to get a proper total coloring, then we get a
tnpd-k-coloring of G, a contradiction. Otherwise, we consider the following cases.

Case 1. If only one pair of the vertices xi and yi for i = 1, 2 cannot be stuck
properly, without loss of generality, we say x2 cannot be stuck properly with x1.
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Then i ∈ {a, b}. Without loss of generality, let i = a.
If a /∈ {g, h}, then f = b (otherwise, we exchange the colors of ux2 and uy2

so that we can stick y1, y2 and x1, x2 together to get a tnpd-k-coloring of G, a
contradiction). We exchange the colors of ux2 and uy2, and meanwhile exchange
the colors of wx1 and wy1. Now, we can stick x1, x2 with y1, y2 together,
respectively, to get a tnpd-k-coloring of G, a contradiction.

If g = a, then we consider the following subcases.

• If h 6= e, then exchange the colors ux2 and uw, recolor wy1 with e. Now we
can stick x1, x2 with y1, y2 together, respectively, a contradiction.

• If h = e and d 6= b, then first, exchange the colors of zu and zy1, and
meanwhile exchange the colors of wu and wy1. Then recolor ux2 with d.
Now we can stick x1, x2 with y1, y2 together, respectively, a contradiction.

• If h = e and d = b, then first, exchange the colors of vu and vx1. And then
recolor ux2 with f , recolor uy2 with c. Now we can stick x1, x2 with y1, y2
together, respectively, a contradiction.

If h = a, then we consider the following subcases.

• If g 6= d and d 6= b, then exchange the colors ux2 and uz, recolor zy1 with d.
Now we can stick y1, y2 and x1, x2 together properly, a contradiction.

• If g 6= d and d = b, then first, exchange the colors of zu and zy1, and
meanwhile exchange the colors of wu and wx1. Then recolor ux2 with f and
recolor uy2 with e. Now we can stick x1, x2 and y1, y2 together properly, a
contradiction.

• If g = d, then first, exchange the colors of zu and zy1 and meanwhile exchange
the colors of wy1 and wu. And then recolor ux2 with e. Now we can stick
x1, x2 and y1, y2 together properly, a contradiction.

Case 2. x2 and y2 cannot be properly stuck with x1 and y1, respectively.
Without loss of generality, let c′(ux2) = g = a and h = f = b. Now we exchange
the colors of uv and vx1, and exchange the colors of uz and y1z. Next, recolor
ux2 with d and recolor uy2 with c. Now, we can stick x1, x2 and y1, y2 together
properly, a contradiction.

Property 4. Every 5−-vertex is not adjacent to any 5−-vertex.

Proof. Suppose to the contrary that there exists a 5−-vertex u which is adjacent
to a 5−-vertex v. Without loss of generality, we assume dG(u) = dG(v) = 5, and
let NG(u) = {u1, u2, u3, u4, v}, and NG(v) = {v1, v2, v3, v4, u}. We consider the
smaller graph G′ = G− uv. By the minimality of G, we have G′ admits a tnpd-
k-coloring c′. Now, we delete the colors of u and v. For convenience, we use ϕ to
denote the current coloring of G′. Let S1, S2 and S3 be the sets of available colors
for u, uv and v, respectively. It is easy to know that |Si| ≥ 5 for 1 ≤ i ≤ 3. We
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associate u, uv, v with the variables x1, x2 and x3, respectively, and let lnxi = yi
for 1 ≤ i ≤ 3. For convenience, let S′i = {yi| lnxi = yi, xi ∈ Si} for 1 ≤ i ≤ 3.
Obviously, |S′i| ≥ 5 for 1 ≤ i ≤ 3. Now we consider the following polynomial.

P (y1, y2, y3) =
∏

1≤k<l≤3
(yk − yl)

4∏
i=1

(
y1 + y2 + lnPϕ(u)− lnPϕ(ui)

)
4∏

j=1

(
y2 + y3 + lnPϕ(v)− lnPϕ(vj)

)
(
y1 + y2 + lnPϕ(u)− (y2 + y3 + lnPϕ(v))

)
,

where Pϕ(x) denotes the product of colors which are used for x and the elements
which are incident with x in G′ in the coloring ϕ. It is not difficult to obtain that
cP
(
y41y

4
2y

4
3

)
= 20 6= 0 by MATLAB. Since deg(P ) = 12 = 4+4+4, by Lemma 2.3,

there is si ∈ S′i for 1 ≤ i ≤ 3 such that P (s1, s2, s3) 6= 0. Finally, from the above
discussion, we can color u, uv and v with es1 , es2 and es3 , respectively, to obtain
a tnpd-k-coloring of G, a contradiction.

Note that the coefficient of the monomial y41y
4
2y

4
3 in the expansion of P (y1y2y3)

is equal to that of the same monomial in the polynomial
∏

1≤k<l≤3(yk − yl)(y1 +

y2)
4(y2+y3)

4(y1−y3) in Property 4. Thus in the following proofs when discussing
the coefficient of some monomial in the expansion of the polynomial, if its degree
is equal to the degree of the polynomial, we will omit the constant term in the
polynomial.

Property 5. There exists no (5−, 6−, 6−)-cycle.

Proof. Suppose to the contrary that there exists a (5−, 6−, 6−)-cycle uvw. With-
out loss of generality, we assume dG(u) = 5, dG(v) = dG(w) = 6. We consider
the smaller graph G′ = G− uv − uw − vw. By the minimality of G, we have G′

admits a tnpd-k-coloring c′. Now, we delete the colors of u, v and w. Let S1,
S2, S3, S4, S5 and S6 be the sets of available colors for v, w, u, vw, vu and uw,
respectively. It is easy to know that |S1| ≥ 13− 8 = 5 > 3, |S2| ≥ 13− 8 = 5 > 4,
|S3| ≥ 13 − 6 = 7 > 6, |S4| ≥ 13 − 8 = 5 > 4, |S5| ≥ 13 − 7 = 6 > 5 and
|S6| ≥ 13 − 7 = 6 > 4. We associate v, w, u, vw, vu and uw with the variables
x1, x2, . . . , x6, respectively, and let lnxi = yi for 1 ≤ i ≤ 6. For convenience, let
S′i = {yi | lnxi = yi, xi ∈ Si} for 1 ≤ i ≤ 6. Obviously, |S′1| ≥ 5 > 3, |S′2| ≥ 5 > 4,
|S′3| ≥ 7 > 6, |S′4| ≥ 5 > 4, |S′5| ≥ 6 > 5 and |S′6| ≥ 6 > 4. Now we consider the
following polynomial.

P (y1, y2, . . . , y6) =
∏

1≤k<l≤3
(yk − yl)

∏
4≤i<j≤6

(yi − yj)(y1 − y4)(y2 − y4)

(y1 − y5)(y3 − y5)(y2 − y6)(y3 − y6)
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(y1 + y5 − y2 − y6)(y2 + y4 − y3 − y5)
(y1 + y4 − y3 − y6)(y2 + y4 + y6)

4(y3 + y5 + y6)
3

(y1 + y4 + y5)
4.

It is not difficult to obtain that cP
(
y31y

4
2y

6
3y

4
4y

5
5y

4
6

)
= 346 6= 0 by MATLAB.

Since deg(P ) = 26 = 3 + 4 + 6 + 4 + 5 + 4, by Lemma 2.3, there is si ∈ S′i for
1 ≤ i ≤ 6 such that P (s1, s2, . . . , s6) 6= 0. Finally, we can color v, w, u, vw,
vu and uw with es1 , es2 , . . . , es6 , respectively, to obtain a tnpd-k-coloring of G, a
contradiction.

Property 6. For any non-zero integer t, if each (t + 1)-vertex in G can be
recolored, then for any vertex u ∈ V (G) with n1(u) ≥ t, we have nd(u) = 0 where
2 ≤ d ≤ t+ 1.

Proof. Suppose to the contrary that there exists a vertex u with n1(u) ≥ t and
nd(u) 6= 0. Let v1, v2, . . . , vt be some 1-neighbors of u, and v0 be a d-neighbor of
u where 2 ≤ d ≤ t+ 1. Since v0 can be recolored, then we split the vertex v0 into
v00 and v01 to obtain a smaller graph G′ where dG′(v00) = 1 and dG′(v01) = d−1.
By the minimality of G, G′ has a tnpd-k-coloring. Now, we stick v00 and v01
together properly (if necessary, we can exchange the color of uv00 with some uvi
for 1 ≤ i ≤ t) to obtain a tnpd-k-coloring of G, a contradiction.

In the following, we give some structural properties of H.

Fact 1. For each u ∈ V (H), if dH(u) ≤ 5, then dH(u) = dG(u).

Proof. Suppose to the contrary that there exists a vertex u ∈ V (H) such that
dH(u) ≤ 5 and nG2−(u) ≥ 1. Without loss of generality, we assume that dH(u) = 5.

First, we assume that nG1 (u) ≥ 1. By Property 6, we have nG2 (u) = 0. Clearly,
nG1 (u) = dG(u)− 5. If nG1 (u) = 1, then dG(u) = 6, a contradiction by Property 1.
So we have nG1 (u) ≥ 2. Let uu1, uu2, . . . , uud−5 be the 1-neighbors of u where d =
dG(u). Now, we consider the smaller graph G′ = G− {uu1, uu2, . . . , uud−5}. By
the minimality of G, we have G′ admits a tnpd-k-coloring c′. Let S1, S2, . . . , Sd−5
be the sets of available colors for uu1, uu2, . . . , uud−5, respectively. It is easy to
know that |Si| ≥ (∆(G) + 2) − 6 = ∆(G) − 4 for 1 ≤ i ≤ d − 5. Let B =

{
x1

x2 · · ·xd−5 |xk ∈ Sk, 1 ≤ k ≤ d−5,
∏

1≤i<j≤d−5(xi−xj) 6= 0
}

. By Lemma 2.2, we

have |B| ≥ (∆(G)−4) + (∆(G)−5) + · · ·+ (∆(G) + 2−d)− 1
2(d−5)(d−4) + 1 =

1
2(2∆(G)− d− 2)(d− 5)− 1

2(d− 5)(d− 4) + 1 = 1
2(d− 5)(2∆(G)− 2d+ 2) + 1 =

(d− 5)(∆(G)− d+ 1) + 1.
Clearly, if d = 7, 8, 9 and 10, since ∆(G) ≥ 11, we have |B| ≥ (7−5)(11−7+

1)+1 = 11 > 5, |B| ≥ (8−5)(11−8+1)+1 = 13 > 5, |B| ≥ (9−5)(11−9+1)+1 =
13 > 5 and |B| ≥ (10 − 5)(11 − 10 + 1) + 1 = 11 > 5, respectively. In each of
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the above-mentioned three situations, we can choose αi ∈ Si to color uui for
1 ≤ i ≤ d − 5 to obtain a tnpd-k-coloring of G, a contradiction. If d ≥ 11,
then we have |B| ≥ (11 − 5)(∆(G) − d + 1) + 1 ≥ 6 + 1 = 7 > 5. Now, we can
choose αi ∈ Si to color uui for 1 ≤ i ≤ d− 5 to obtain a tnpd-k-coloring of G, a
contradiction.

Now, we assume that nG1 (u) = 0. Then by Property 2, nG2 (u) = 1. Thus
dG(u) = 6, a contradiction by Property 1.

By Fact 1, it is easy to obtain the following fact.

Fact 2. δ(H) ≥ 3.

Fact 3. For each u ∈ V (H) with dH(u) = 6, if dH(u) < dG(u), then u is not
adjacent to any 5−-vertex in H.

Proof. Suppose to the contrary that there exists a vertex u ∈ V (H) with
dH(u) = 6 and nH5−(u) ≥ 1. By Fact 1, we have nG5−(u) ≥ 1.

First, we assume dG(u) = 7. Let w be the 2−-neighbor and v be some 5−-
neighbor of u, respectively. Without loss of generality, we assume dG(w) = 2
and dG(v) = 5. Now, we consider the smaller graph G′ = G − {uv, uw}. By
the minimality of G, we have G′ admits a tnpd-k-coloring c′. We delete the
colors of u and v. Let S1, S2, S3 and S4 be the sets of available colors for u,
uv, uw and v, respectively. It is easy to know that |S1| ≥ 13 − 10 = 3 > 2,
|S2| ≥ 13− 5− 4 = 4 > 3, |S3| ≥ 13− 6 = 7 > 6 and |S4| ≥ 13− 8 = 5 > 4. We
associate u, uv, uw and v with the variables x1, x2, x3 and x4, respectively, and
let lnxi = yi for 1 ≤ i ≤ 4. For convenience, let S′i = {yi | lnxi = yi, xi ∈ Si} for
1 ≤ i ≤ 4. Obviously, |S′1| ≥ 3 > 2, |S′2| ≥ 4 > 3, |S′3| ≥ 7 > 6 and |S′4| ≥ 5 > 4.
Now we consider the following polynomial.

P (y1, y2, y3, y4) =
∏

1≤k<j≤3
(yk − yj)(y1 − y4)(y2 − y4)

(y1 + y3 − y4)(y1 + y2 + y3)
5(y2 + y4)

4.

It is not difficult to obtain that cP
(
y21y

3
2y

6
3y

4
4

)
= 50 6= 0 by MATLAB. Since

deg(P ) = 15 = 2 + 3 + 6 + 4, by Lemma 2.3, there is si ∈ S′i for 1 ≤ i ≤ 4
such that P (s1, s2, s3, s4) 6= 0. Finally, we can color u, uv, uw and v with es1 ,
es2 , . . . , es4 , respectively, to obtain a tnpd-k-coloring of G, a contradiction.

Now, we assume dG(u) ≥ 8. Then nG2−(u) ≥ 2. By Property 2 and Prop-
erty 6, we have nG1 (u) = dG(u) − dH(u). Let uu1, uu2, . . . , uud−6 be the 1-
neighbors of u where d = dG(u). Now, we consider the smaller graph G′ =
G − {uu1, uu2, . . . , uud−6}. By the minimality of G, we have G′ admits a tnpd-
k-coloring c′. Let S1, S2, . . . , Sd−6 be the sets of available colors for uu1, uu2, . . . ,
uud−6, respectively. It is easy to know that |Si| ≥ (∆(G) + 2)− 7 = ∆(G)− 5 for
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1 ≤ i ≤ d− 6. Let B = {x1x2 · · ·xd−6 |xk ∈ Sk, 1 ≤ k ≤ d− 6,
∏

1≤i<j≤d−6(xi −
xj) 6= 0}. By Lemma 2.2, we have |B| ≥ (∆(G)−5)+(∆(G)−6)+ · · ·+(∆(G)+
2− d)− 1

2(d− 6)(d− 5) + 1 = 1
2(2∆(G)− d− 3)(d− 6)− 1

2(d− 6)(d− 5) + 1 =
1
2(d− 6)(2∆(G)− 2d+ 2) + 1 = (d− 6)(∆(G)− d+ 1) + 1.

Clearly, if d = 8, 9, and 10, since ∆(G) ≥ 11, we have |B| ≥ (8 − 6)(11 −
8 + 1) + 1 = 9 > 6, |B| ≥ (9 − 6)(11 − 9 + 1) + 1 = 10 > 6, and |B| ≥
(10 − 6)(11 − 10 + 1) + 1 = 9 > 6, respectively. In each of the above-mentioned
three situations, we can choose αi ∈ Si to color uui for 1 ≤ i ≤ d− 6 to obtain a
tnpd-k-coloring of G, a contradiction.

If d = 11, then we consider the following subcases.

• If ∆(G) = 11, then the color set which is used in the coloring is {1, 2, . . . , 13}.
Let v be some 5−-neighbor of u. Without loss of generality, we assume
dG(v) = 5. Clearly, in any coloring of G, p(u) ≥ 1 × 2 × · · · × 12, p(v) ≤
13×12×· · ·×8. Thus p(u)

p(v) = 7!
13 > 1. So we have p(u) 6= p(v) in any coloring.

Since |B| ≥ (11− 6)(11− 11 + 1) + 1 = 6 > 5, we can choose αi ∈ Si to color
uui for 1 ≤ i ≤ 5 to obtain a tnpd-k-coloring of G, a contradiction.

• If ∆(G) ≥ 12, then we have |B| ≥ (11−6)(12−11+1)+1 = 11 > 6. Now, we
can choose αi ∈ Si to color uui for 1 ≤ i ≤ d− 6 to obtain a tnpd-k-coloring
of G, a contradiction.

If d ≥ 12, then we have |B| ≥ (12−6)(∆(G)−d+1)+1 ≥ 6+1 = 7 > 6. Now,
we can choose αi ∈ Si to color uui for 1 ≤ i ≤ d− 6 to obtain a tnpd-k-coloring
of G, a contradiction.

Fact 4. For each u ∈ V (H) with dH(u) = 7, if dH(u) < dG(u), then u is not
adjacent to any 4−-vertex in H.

Proof. Suppose to the contrary that there exists a vertex u ∈ V (H) with
dH(u) = 7 and nH4−(u) ≥ 1. By Fact 1, we have nG4−(u) ≥ 1.

If dG(u) = 8, then let v be the 2−-neighbor and w be some 4−-neighbor of
u, respectively. Now, we consider the smaller graph G′ = G − {uv, uw}. By
the minimality of G, we have G′ admits a tnpd-k-coloring c′. Let S1, S2 be
the sets of available colors for uv and uw, respectively. It is easy to know that
|S1| ≥ 13−8 = 5, |S2| ≥ 13−10 = 3. Let B = {x1x2 |xk ∈ Sk, k = 1, 2, x1 6= x2}.
By Lemma 2.2, we have |B| ≥ 5 + 3 − 3 + 1 = 6 > 5. Thus there exist x1 ∈ S1,
x2 ∈ S2 for uv and uw such that u does not conflict with any adjacent vertex. Now
we can color uv and uw with x1 and x2, respectively, to get a tnpd-k-coloring, a
contradiction.

If dG(u) = 9, then nG2−(u) = 2. By Property 2 and Property 6, we have
nG1 (u) = 2. Let v, w be the 1-neighbors. Now, we consider the smaller graph
G′ = G−{uv, uw}. By the minimality of G, we have G′ admits a tnpd-k-coloring
c′. Let S1, S2 be the sets of available colors for uv and uw, respectively. It is
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easy to know that |S1| ≥ 13 − 8 = 5, |S2| ≥ 13 − 8 = 5. Let B = {x1x2 |xk ∈
Sk, k = 1, 2, x1 6= x2}. By Lemma 2.2, we have |B| ≥ 5 + 4− 3 + 1 = 7 > 5. Thus
there exist x1 ∈ S1, x2 ∈ S2 for uv and uw such that u does not conflict with
any adjacent vertex. Now we can color uv and uw with x1 and x2, respectively,
to get a tnpd-k-coloring, a contradiction.

If dG(u) ≥ 10, then nG2−(u) ≥ 3. By Property 2 and Property 6, we have
nG1 (u) ≥ 3. By Property 6, we have nGd (u) = 0 for 2 ≤ d ≤ 4. Thus nH4−(u) = 0
by Fact 1.

Fact 5. For each u ∈ V (H) with dH(u) = 7, u is adjacent to at most one
4−-vertex in H.

Proof. Suppose to the contrary that there exists a vertex u ∈ V (H) with
dH(u) = 7 and nH4−(u) ≥ 2. By Fact 1, we have nG4−(u) ≥ 2.

If dG(u) = dH(u) = 7, then let v, w be the 4−-neighbors of u. Without loss
of generality, we assume that dG(v) = dG(w) = 4. Now, we consider the smaller
graph G′ = G− {uv, uw}. By the minimality of G, we have G′ admits a tnpd-k-
coloring c′. We delete the color of u. Let S1, S2 and S3 be the sets of available
colors for u, uv and uw, respectively. It is easy to know that |S1| ≥ 13− 10 = 3,
|S2| ≥ 13 − 8 = 5 and |S3| ≥ 13 − 8 = 5. Let B =

{
x1x2x3 |xk ∈ Sk, 1 ≤ k ≤ 3,∏

1≤i<j≤3(xi−xj) 6= 0
}

. By Lemma 2.2, we have |B| ≥ 3 + 4 + 5−6 + 1 = 7 > 5.
Thus there exist x1 ∈ S1, x2 ∈ S2 and x3 ∈ S3 for u, uv and uw such that u does
not conflict with any adjacent vertex. Now we can color u, uv and uw with x1,
x2 and x3, respectively, to get a tnpd-k-coloring, a contradiction.

If dG(u) ≥ 8, then n4−(u) = 0 by Fact 4.

For convenience, for each u ∈ V (H) with dH(u) = 7, if nH3 (u) = 1, then we
call it a bad 7-vertex. Otherwise, it is called a good 7-vertex.

Fact 6. There is no (5, 6, 7)-cycle or (5, 7, 7)-cycle such that the 7-vertices are
bad 7-vertices in H.

Proof. Without loss of generality, suppose to the contrary that there exists a
(u, v, w)-cycle such that dH(u) = dH(w) = 7, dH(v) = 5 and u, w are bad 7-
vertices, or dH(u) = 7, dH(w) = 6, dH(v) = 5 and u is a bad 7-vertex. By
Fact 1, Fact 3 and Fact 4, we have dH(x) = dG(x) where x is u, w or v. For
convenience, let uu1 ∈ E(H) with dH(u1) = 3. Now, we consider the smaller
graph G′ = G − {uu1, uv, uw, vw}. By the minimality of G, we have G′ admits
a tnpd-k-coloring c′. Now, we delete the colors of u, v and w. Let S1, S2, S3,
S4, S5, S6 and S7 be the sets of available colors for u, v, w, uv, uw, wv and uu1,
respectively. It is easy to know that |S1| ≥ 13− 8 = 5 > 4, |S2| ≥ 13− 6 = 7 > 6,
|S3| ≥ 13 − 10 = 3 > 2, |S4| ≥ 13 − 7 = 6 > 5, |S5| ≥ 13 − 9 = 4 > 3,
|S6| ≥ 13 − 8 = 5 > 4 and |S7| ≥ 13 − 6 = 7 > 6. We associate u, v, w, uv,
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uw, wv and uu1 with the variables x1, x2, . . . , x7, respectively, and let lnxi = yi
for 1 ≤ i ≤ 7. For convenience, let S′i = {yi | lnxi = yi, xi ∈ Si} for 1 ≤ i ≤ 7.
Obviously, |S′1| ≥ 5 > 4, |S′2| ≥ 7 > 6, |S′3| ≥ 3 > 2, |S′4| ≥ 6 > 5, |S′5| ≥ 4 > 3,
|S′6| ≥ 5 > 4 and |S′7| ≥ 7 > 6. Now we consider the following polynomial.

P (y1, y2, . . . , y7) =
∏

1≤k<j≤3
(yk − yj)

∏
4≤i<j≤6

(yi − yj)(y1 − y4)(y2 − y4)

(y1 − y5)(y3 − y5)(y2 − y6)(y3 − y6)(y1 − y7)(y4 − y7)
(y5 − y7)(y1 + y5 + y7 − y2 − y6)(y2 + y4 − y3 − y5)
(y1 + y4 + y7 − y3 − y6)(y2 + y4 + y6)

3(y3 + y5 + y6)
5

(y1 + y4 + y5 + y7)
4.

It is not difficult to obtain that cP
(
y41y

6
2y

2
3y

5
4y

3
5y

4
6y

6
7

)
= 200 6= 0 by MATLAB.

Since deg(P ) = 30 = 4 + 6 + 2 + 5 + 3 + 4 + 6, by Lemma 2.3, there is si ∈ S′i for
1 ≤ i ≤ 7 such that P (s1, s2, . . . , s7) 6= 0. Finally, we can color u, v, w, uv, uw,
wv and uu1 with es1 , es2 , . . . , es7 , respectively, to obtain a tnpd-k-coloring of G,
a contradiction.

Fact 7. For each u ∈ V (H) with dH(u) = 7, if nH4−(u) = 1, then u is adjacent to
at most one 5-vertex in H.

Proof. Suppose to the contrary that there exists a vertex u ∈ V (H) with
dH(u) = 7, nH4−(u) = 1 and nH5 (u) ≥ 2. By Fact 1, we have nG4−(u) = 1 and
nG5 (u) ≥ 2. Let u1 be the 4−-neighbor of u, u2 and u3 be the 5-neighbors of u.

By Fact 4, we only consider the situation dG(u) = dH(u). Without loss of
generality, we assume dG(u1) = 4. Now, we consider the smaller graph G′ =
G − {uu1, uu2, uu3}. By the minimality of G, we have G′ admits a tnpd-k-
coloring c′. Now, we delete the colors of u, u2 and u3. Let S1, S2, S3, S4, S5 and
S6 be the sets of available colors for u, uu1, uu2, uu3, u2 and u3, respectively.
It is easy to know that |S1| ≥ 13 − 8 = 5 > 4, |S2| ≥ 13 − 4 − 3 = 6 > 5,
|S3| ≥ 13 − 8 = 5 > 3, |S4| ≥ 13 − 8 = 5 > 4, |S5| ≥ 13 − 8 = 5 > 4 and
|S6| ≥ 13−8 = 5 > 4. We associate u, uu1, uu2, uu3, u2 and u3 with the variables
x1, x2, . . . , x6, respectively, and let lnxi = yi for 1 ≤ i ≤ 6. For convenience, let
S′i = {yi | lnxi = yi, xi ∈ Si} for 1 ≤ i ≤ 6. Obviously, |S′1| ≥ 5 > 4, |S′2| ≥ 6 > 5,
|S′3| ≥ 5 > 3, |S′4| ≥ 5 > 4, |S′5| ≥ 5 > 4 and |S′6| ≥ 5 > 4. Now we consider the
following polynomial.

P (y1, y2, . . . , y6) =
∏

2≤k≤6
(y1 − yk)

∏
2≤i<j≤4

(yi − yj)(y3 − y5)(y4 − y6)

(y1 + y2 + y4 − y5)(y1 + y2 + y3 − y6)(y3 + y5)
4

(y4 + y6)
4(y1 + y2 + y3 + y4)

4.
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It is not difficult to obtain that cP
(
y41y

5
2y

3
3y

4
4y

4
5y

4
6

)
= 176 6= 0 by MATLAB.

Since deg(P ) = 24 = 4 + 5 + 3 + 4 + 4 + 4, by Lemma 2.3, there is si ∈ S′i for
1 ≤ i ≤ 6 such that P (s1, s2, . . . , s6) 6= 0. Finally, we can color u, uu1, uu2, uu3,
u2 and u3 with es1 , es2 , . . . , es6 , respectively, to obtain a tnpd-k-coloring of G, a
contradiction.

Fact 8. For each u ∈ V (H) with dH(u) = 8, if nH3 (u) ≥ 1 and nH4−(u) ≥ 2, then
nH5−(u) = 2.

Proof. Suppose to the contrary that there exists a vertex u ∈ V (H) with
dH(u) = 8 such that nH3 (u) ≥ 1, nH4−(u) ≥ 2 and nH5−(u) ≥ 3. By Fact 1,
we have nG3 (u) ≥ 1, nG4−(u) ≥ 2 and nG5−(u) ≥ 3.

If dG(u) = dH(u) = 8, then let u1, u2 and u3 be the 5−-neighbor of u.
Without loss of generality, we assume dG(u1) = 3, dG(u2) = 4 and dG(u3) = 5.
Now, we consider the smaller graph G′ = G−{uu1, uu2, uu3}. By the minimality
of G, we have G′ admits a tnpd-k-coloring c′. Now, we delete the colors of u
and u3. Let S1, S2, S3, S4 and S5 be the sets of available colors for u, uu1,
uu2, uu3 and u3, respectively. It is easy to know that |S1| ≥ 13 − 10 = 3 > 2,
|S2| ≥ 13 − 5 − 2 = 6 > 5, |S3| ≥ 13 − 8 = 5 > 4, |S4| ≥ 13 − 9 = 4 > 3 and
|S5| ≥ 13 − 8 = 5 > 4. We associate u, uu1, uu2, uu3 and u3 with the variables
x1, x2, . . . , x5, respectively, and let lnxi = yi for 1 ≤ i ≤ 5. For convenience, let
S′i = {yi | lnxi = yi, xi ∈ Si} for 1 ≤ i ≤ 5. Obviously, |S′1| ≥ 3 > 2, |S′2| ≥ 6 > 5,
|S′3| ≥ 5 > 4, |S′4| ≥ 4 > 3 and |S′5| ≥ 5 > 4. Now we consider the following
polynomial.

P (y1, y2, . . . , y5) =
∏

1≤k<l≤4
(yk − yl)(y1 − y5)(y4 − y5)(y1 + y2 + y3 − y5)

(y4 + y5)
4(y1 + y2 + y3 + y4)

5.

It is not difficult to obtain that cP
(
y21y

5
2y

4
3y

3
4y

5
5

)
= 45 6= 0 by MATLAB. Since

deg(P ) = 18 = 2+5+4+3+4, by Lemma 2.3, there is si ∈ S′i for 1 ≤ i ≤ 5 such
that P (s1, s2, . . . , s5) 6= 0. Finally, we can color u, uu1, uu2, uu3 and u3 with
es1 , es2 , . . . , es5 , respectively, to obtain a tnpd-k-coloring of G, a contradiction.

If dG(u) = 9, then n2−(u) = 1. Let u1, u2 and u3 be the 4−-neighbor of u.
Without loss of generality, we assume dG(u1) = 2, dG(u2) = 3 and dG(u3) = 4.
Now, we consider the smaller graph G′ = G−{uu1, uu2, uu3}. By the minimality
of G, we have G′ admits a tnpd-k-coloring c′. Now, we delete the colors of u.
Let S1, S2, S3 and S4 be the sets of available colors for u, uu1, uu2 and uu3,
respectively. It is easy to know that |S1| ≥ 13 − 12 = 1, |S2| ≥ 13 − 7 = 6,
|S3| ≥ 13− 8 = 5 and |S4| ≥ 13− 9 = 4. Let B =

{
x1x2x3x4 |xk ∈ Sk, 1 ≤ k ≤ 4,∏

1≤i<j≤4(xi−xj) 6= 0
}

. By Lemma 2.2, we have |B| ≥ 1+4+5+6−10+1 = 7 > 6.
Thus there exist x1 ∈ S1, x2 ∈ S2, x3 ∈ S3 and x4 ∈ S4 for u, uu1, uu2 and uu3
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such that u does not conflict with any adjacent vertex. Now we can color u,
uu1, uu2 and uu3 with x1, x2, x3 and x4, respectively, to get a tnpd-k-coloring,
a contradiction.

If dG(u) ≥ 10, then nG2−(u) ≥ 2. By Property 2 and Property 6, we have
nG1 (u) ≥ 2. By Property 6, we have nGd (u) = 0 for 2 ≤ d ≤ 3. Thus nH3 (u) = 0
by Fact 1. A contradiction to nH3 (u) ≥ 1.

In order to complete the proof, we use the discharging method. By Euler’s
formula |V (H)| − |E(H)|+ |F (H)| = 2 and

∑
v∈V (H) dH(v) =

∑
f∈F (H) dH(f) =

2|E(H)|, thus∑
v∈V (H)

(dH(v)−6)+
∑

f∈F (H)

(2dH(f)−6) = −6(|V (H)|− |E(H)|+ |F (H)|) = −12.

Define an initial charge function w on V (H) ∪ F (H) by setting w(v) =
dH(v) − 6 if v ∈ V (H) and w(f) = 2dH(f) − 6 if f ∈ F (H). Clearly, we
have

∑
x∈V (H)∪F (H)w(x) = −12.

Now redistribute the charges according to the following discharging rules.

D1. If v is a bad 3-neighbor of u, then u gives 1 to v.

D2. Assume that v is a special 3-neighbor of u, then u gives 1
2 to v.

D3. If v is a bad 4-neighbor of u, then u gives 1
2 to v.

D4. For each u ∈ V (H), if u is a good 7-vertex and v is a bad 5-neighbor of u,
then u gives 1

3 to v.

D5. If v is a bad 5-neighbor of u with dH(u) ≥ 8, then u gives 1
3 to v.

D6. Assume that f is a 4-face. If f is bad, then f gives 1 to each of its incident
5−-vertices. If f is good, then f gives 2 to each of its incident 5−-vertices.

D7. If f is a 5+-face, then f gives 2 to each of its incident 5−-vertices.

Let the new charge of each element x ∈ V (H)∪F (H) be w′(x). In the follow-
ing, we will show that

∑
x∈V (H)∪F (H)w

′(x) ≥ 0, a contradiction to
∑

x∈V (H)∪F (H)

w(x) = −12. This will complete the proof.

Consider any vertex v ∈ V (H), suppose dH(v) = 3. Then w(v) = −3.

If v is incident with three 3-faces, then w′(v) = w(v) + 3× 1 = 0 by D1.

If v is incident with two 3-faces and one bad 4-face, then w′(v) = w(v) + 1 +
1
2 × 2 + 1 = 0 by D1, D2 and D6.

If v is incident with two 3-faces and one good 4-face (or 5+-face), then w′(v) =
w(v) + 1 + 2 = 0 by D1 and D6 (or D7).

If v is incident with one 3-face and two bad 4-face, then w′(v) = w(v) + 1
2 ×

2 + 1× 2 = 0 by D2 and D6.
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If v is incident with one 3-face and at least one good 4-face (or 5+-face), then
w′(v) ≥ w(v) + 1

2 + 1 + 2 = 1
2 > 0 by D2 and D6 (or D7).

Otherwise, v is incident with three 4+-faces. Then w′(v) ≥ w(v) + 1× 3 = 0
by D6 and D7.

Suppose dH(v) = 4. Then w(v) = −2.

If v is incident with four 3-faces, then w′(v) = w(v) + 1
2 × 4 = 0 by D3.

Otherwise, v is incident with at least one 4+-face. Then w′(v) ≥ w(v) + 1 +
1
2 × 2 = 0 by D6, D7 and D3.

Suppose dH(v) = 5. Then w(v) = −1.

If v is incident with at least one 4+-face, then w′(v) ≥ w(v) + 1 = 0 by D6.
Otherwise, v is incident with five 3-faces. By Property 5 and Fact 3, v has at
least three 7+-neighbors in H. Furthermore, v is adjacent to at most two bad
7-vertices by Fact 4 and Fact 6. For convenience, we divide the proof into the
following cases.

• If v is not adjacent to any bad 7-vertex, then clearly we have w′(v) ≥ w(v) +
1
3 × 3 = 0 by D5.

• If v is adjacent to one bad 7-vertex, then we have nH7+(v) ≥ 4 by Fact 6. We
have w′(v) ≥ w(v) + 1

3 × 3 = 0 by D4 and D5.

• If v is adjacent to two bad 7-vertices, then we have nH7+(v) = 5 by Fact 6.
We have w′(v) ≥ w(v) + 1

3 × 3 = 0 by D4 and D5.

Suppose dH(v) = 6. Then w(v) = 0. By Property 1 and Fact 3, we have v is
not adjacent to any 4−-vertex in H. Thus we have w′(v) = w(v) = 0.

Suppose dH(v) = 7. Then w(v) = 1. By Fact 5, we have nH4−(v) ≤ 1. If
nH3 (v) = 1, i.e., v is a bad 7-vertex, then nH4 (v) = 0. We have w′(v) ≥ w(v)−1 = 0
by D1, D2 and D4. If nH4 (v) = 1, then nH3 (v) = 0 and v is adjacent to at most
one 5-vertex by Fact 7. We have w′(v) ≥ w(v)− 1

2 −
1
3 = 1

6 > 0 by D3 and D4.
Otherwise, n4−(v) = 0, since v has at most three bad 5-neighbors by Proposition 4
and Fact 1, we have w′(v) ≥ w(v)− 1

3 × 3 = 0 by D4.

Suppose dH(v) = 8. Then w(v) = 2. By Fact 8, we have nH3 (v) ≤ 2.

If nH3 (v) = 2, then nH4 (v) = 0 and nH5 (v) = 0. Thus we have w′(v) ≥
w(v)− 1× 2 = 0 by D1.

If nH3 (v) = 1, then nH4 (v) ≤ 1 by Fact 8.

• If nH4 (v) = 1, then nH5 (v) = 0 by Fact 8. We have w′(v) ≥ w(v)−1−1
2 = 1

2 > 0
by D1 and D2.

• If nH4 (v) = 0, then nH5b(v) ≤ 3 by Property 4 and Fact 1. We have w′(v) ≥
w(v)− 1− 1

3 × 3 = 0 by D1 and D5.

Otherwise, nH3 (v) = 0. Then nH4b(v) + nH5b(v) ≤ 4 by Property 4 and Fact 1.
We have w′(v) ≥ w(v)− 1

2 × 4 = 0 by D3 and D5.

Suppose dH(v) = 9. Then w(v) = 3. We have nH3b(v) ≤ 3 by Property 3.
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If nH3b(v) = 3, then nH4 (v) = 0 and nH5 (v) = 0 by Property 4 and Fact 1.
Thus we have w′(v) = w(v)− 1× 3 = 0 by D1.

If nH3b(v) = 2, then nH3s(v) + nH4b(v) + nH5b(v) ≤ 2 by Property 4 and Fact 1.
Thus we have w′(v) ≥ w(v)− 1× 2− 1

2 × 2 = 0 by D1, D2, D3 and D5.

If nH3b(v) = 1, then nH3s(v) + nH4b(v) + nH5b(v) ≤ 4 by Property 4 and Fact 1.
Thus we have w′(v) ≥ w(v)− 1− 1

2 × 3 = 1
2 > 0 by D1, D2, D3 and D5.

Otherwise nH3b(v) = 0. Then nH3s(v) + nH4b(v) + nH5b(v) ≤ 5 by Property 4 and
Fact 1. Thus we have w′(v) ≥ w(v)− 1

2 × 5 = 1
2 > 0 by D2, D3 and D5.

Suppose dH(v) = 10. Then w(v) = 4. We have nH3b(v) ≤ 3 by Property 3.

If nH3b(v) = 3, then nH3s(v) + nH4b(v) + nH5b(v) ≤ 1 by Property 4 and Fact 1.
Thus we have w′(v) = w(v)− 1× 3− 1

2 = 1
2 > 0 by D1, D2, D3 and D5.

If nH3b(v) = 2, then nH3s(v) + nH4b(v) + nH5b(v) ≤ 4 by Property 4 and Fact 1.
Thus we have w′(v) ≥ w(v)− 1× 2− 1

2 × 4 = 0 by D1, D2, D3 and D5.

If nH3b(v) = 1, then nH3s(v) + nH4b(v) + nH5b(v) ≤ 5 by Property 4 and Fact 1.
Thus we have w′(v) ≥ w(v)− 1− 1

2 × 5 = 1
2 > 0 by D1, D2, D3 and D5.

Otherwise nH3b(v) = 0. Then nH3s(v) + nH4b(v) + nH5b(v) ≤ 6 by Property 4 and
Fact 1. Thus we have w′(v) ≥ w(v)− 1

2 × 6 = 1 > 0 by D2, D3 and D5.

Suppose dH(v) ≥ 11. Then w(v) = dH(v)− 6. Since two special 3-neighbors
may be incident with one and the same bad 4-face, it is not difficult to ob-
tain that nH3s(v) ≤ 2

3

(
dH(v)− 2nH3b(v)

)
. Clearly, nH3s(v) + nH4b(v) + nH5b(v) ≤

2
3

(
dH(v)− 2nH3b(v)

)
by Property 4 and Fact 1.

Thus we have w′(v) ≥ w(v)− nH3b(v)−
[
2
3

(
dH(v)− 2nH3b(v)

)]
× 1

2 = dH(v)−
6 − nH3b(v) −

(
dH(v)− 2nH3b(v)

)
× 1

3 = dH(v) − 6 − nH3b(v) − 1
3dH(v) + 2

3n
H
3b(v) =

2
3dH(v)− 6− 1

3n
H
3b(v) by D1, D2, D3 and D5.

Since nH3b(v) ≤ 1
3dH(v) by Property 3, we have w′(v) ≥ 2

3dH(v) − 6 − 1
3 ×

1
3dH(v) = 5

9dH(v)− 6 ≥ 1
9 > 0.

For each f ∈ F (H), suppose dH(f) = 3. Then w′(v) = w(v) = 0.

Suppose dH(f) = 4. Then w(f) = 2. By Property 4 and Fact 1, f is incident
with at most two 5−-vertices. If f is bad, then w′(f) = w(f)− 1× 2 = 0 by D6.
Otherwise, we have w′(f) ≥ w(f)− 2 = 0 by D6.

Suppose dH(f) ≥ 5. Then w(f) = 2dH(f) − 6. By Property 4 and Fact 1,
f is incident with at most

⌊
1
2dH(f)

⌋
5−-vertices. We have w′(f) ≥ w(f) − 2 ×

1
2dH(f) = 0 by D7.
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