THE SPECTRUM PROBLEM FOR THE CONNECTED CUBIC GRAPHS OF ORDER 10

Peter Adams
University of Queensland, QLD 4072, Australia
e-mail: p.adams@uq.edu.au
Saad I. El-Zanati
Illinois State University
Normal, IL 61790-4520 USA
e-mail: saad@ilstu.edu
UĞur Odabaşi
Istanbul University, Istanbul, 34320, Turkey
e-mail: ugur.odabasi@istanbul.edu.tr

AND
Wannasiri Wannasit
Center of Excellence in Mathematics and Applied Mathematics
Chiang Mai University, Chiang Mai 50200, Thailand
e-mail: wannasiri.w@cmu.ac.th

Abstract

We show that if G is a connected cubic graph of order 10, then there exists a G-decomposition of K_{v} if and only if $v \equiv 1$ or $10(\bmod 15)$ except when $v=10$ and G is one of 5 specific graphs.

Keywords: spectrum problem, graph decomposition, cubic graphs.
2010 Mathematics Subject Classification: 05C51, 05C70.

1. Introduction

For a graph G, we use $V(G)$ and $E(G)$ to denote the vertex set and the edge set of G, respectively. We use $K_{r \times s}$ to denote the complete simple multipartite graph with r parts of size s, and $K_{r \times s, t}$ (or $K_{t, r \times s}$) to denote the complete simple multipartite graph with r parts of size s and one part of size t. If G^{\prime} is a subgraph of G, then $G \backslash G^{\prime}$ denotes the graph obtained from G by deleting the edges of G^{\prime}. The graph $K_{v} \backslash K_{u}$ is called a complete graph of order v with a hole of size u and the vertices of K_{u} are called the vertices in the hole. If a and b are integers with $a \leq b$, let $[a, b]$ denote the set $\{a, a+1, \ldots, b\}$.

A decomposition of a graph K is a set $\Delta=\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ of subgraphs of K such that each edge of K appears in exactly one G_{i}. If each G_{i} in Δ is isomorphic to a given graph G, the decomposition is called a G-decomposition of K and the copies of G in Δ are called G-blocks. A $\{G, H\}$-decomposition of K is defined similarly. A G-decomposition of K is also known as a (K, G)-design and a (K_{v}, G)-design is often known as a G-design of order v. If a G-decomposition of K exists, then we may say G decomposes K or K is decomposable by G.

A $\left(K_{v}, K_{k}\right)$-design is also known as a balanced incomplete block design and a K_{k}-decomposition of $K_{v_{1}, v_{2}, \ldots, v_{t}}$ is a group divisible design. We will make use of group divisible designs in our constructions. However, for the sake of brevity, we will refrain from adding too many details on these concepts and direct the interested reader to the Handbook of Combinatorial Designs [10] and to the summaries within on group divisible designs [11].

Given a graph G, a classical problem in combinatorics is to find necessary and sufficient conditions on v for the existence of a $\left(K_{v}, G\right)$-design. This is known as the spectrum problem for G and it has been investigated and settled for numerous classes of simple graphs G (see [2] and [7] for summaries, and the website maintained by Bryant and McCourt [8] for more up to date results). When G is a complete graph, the spectrum problem was settled by Kirkman [15] for $G=K_{3}$ and by Hanani [13] for $G \in\left\{K_{4}, K_{5}\right\}$. The spectrum problem for connected 2regular graphs (i.e., for cycles) was investigated by numerous authors and settled by Alspach and Gavlas in [6].

In this work, we are concerned with the spectrum problem for the connected 3 -regular (i.e., cubic) graphs of order 10 . There are 19 non-isomorphic such graphs (see Figure 1 and [18]). The spectrum problem has been settled for 6 of them (the unlabeled ones in the figure). Here we settle it for the remaining 13 graphs.

If G is a cubic graph of order 10 and if there exists a $\left(K_{v}, G\right)$-design, then we must have $15 \left\lvert\,\binom{ v}{2}\right.$ (since the number of edges in G is 15 and the number of edges in K_{v} is $\binom{v}{2}$) and $3 \mid v-1$ (since G is 3 -regular and K_{v} is $(v-1)$-regular). Thus we must have $v \equiv 1$ or $10(\bmod 15)$.

Figure 1. The 19 connected cubic graphs of order 10. The spectrum problem for the 6 unlabeled graphs has previously been settled.

Because of the interest in the Petersen graph (Graph G_{19} in Figure 1), it had been known that it does not decompose K_{10} (see [14]). In 1996, Adams and Bryant [1] settled the spectrum problem for the Petersen graph by showing there exists a G_{19}-decomposition of K_{v} if and only if $v \equiv 1$ or $10(\bmod 15)$ and $v \neq 10$. Subsequently, Adams, Bryant, and Khodkar [3] showed that 4 additional connected cubic graphs of order 10 , namely G_{2}, G_{14}, G_{15}, and G_{17} do not decompose K_{10}. The aim of this manuscript is to show that these are the only cases when $v \equiv 1$ or $10(\bmod 15)$ and a G_{i}-decomposition of K_{v} does not exist. In 2016, the spectrum problem for the 5 -Prism and 5 -Mobius $\left(G_{15}\right.$ and G_{17}, respectively) was settled by Meszka, Nedela, Rosa, and Skoviera in [17]. More recently, Adams et al. [4] settled the spectrum problem for Graphs G_{1}, G_{16} and G_{18}.

It is known that if G is a connected cubic graph of order 10 , then there exists a G-design of order v for all $v \equiv 1(\bmod 30)($ see $[19]$ if G is bipartite and [20]
if G is tripartite). Thus to settle the spectrum problem for these 13 remaining graphs, it suffices to settle the cases $v \equiv 10,16$ and $25(\bmod 30)$.

Before proceeding, we note that several authors have considered the spectrum problem for various cubic graphs. In [13], Hanani settled the problem for $K_{4^{-}}$ designs by showing that there exists a $\left(K_{v}, K_{4}\right)$-design if and only if $v \equiv 1$ or $4(\bmod 12)$. The spectrum problem for $K_{3,3}$-designs was settled by Guy and Beineke in [12]. The spectrum problem for the 3 -prism was settled by Carter [9]. The spectrum problem for the 3 -dimensional cube was settled by Maheo in [16]. More recently, the spectrum problem for the remaining four connected cubic graphs of order 8 was settled in [5].

We will show that if G_{i} is a connected cubic graph of order 10 , then there exists a $\left(K_{v}, G_{i}\right)$-design of order v if and only if $v \equiv 1$ or $10(\bmod 15)$, and $v \neq 10$ when $G_{i} \in\left\{G_{2}, G_{14}, G_{15}, G_{17}, G_{19}\right\}$. Since these results are known when $G_{i} \in\left\{G_{1}, G_{15}, G_{16}, G_{17}, G_{18}, G_{19}\right\}$, we will focus on the remaining 13 graphs. Henceforth, each of the graphs G_{i} with $i \in[2,14]$ in Figure 1, with vertices labeled as in the figure, will be represented by $G_{i}\left[v_{0}, v_{1}, \ldots, v_{9}\right]$. For example, $G_{2}\left[v_{0}, v_{1}, \ldots, v_{9}\right]$ is the graph with vertex set $\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right.$, $\left.v_{8}, v_{9}\right\}$ and edge set $\left\{\left\{v_{0}, v_{1}\right\},\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{5}, v_{6}\right\},\left\{v_{6}, v_{7}\right\}\right.$, $\left.\left\{v_{7}, v_{8}\right\},\left\{v_{8}, v_{9}\right\},\left\{v_{9}, v_{0}\right\},\left\{v_{0}, v_{2}\right\},\left\{v_{1}, v_{9}\right\},\left\{v_{3}, v_{8}\right\},\left\{v_{4}, v_{6}\right\},\left\{v_{5}, v_{7}\right\}\right\}$. In some cases, we may write a G-decomposition of a graph with vertex set V as a pair (V, B), where B is a collection of copies of G that partitions the edge-set of the graph.

2. General Constructions

Our main constructions depend on many small examples. These examples are given in the Appendix. We first state some results on K_{4}-decompositions of certain complete multipartite graphs as well as a result on $\left\{K_{3}, K_{5}\right\}$-decompositions of K_{v}. We make use of these results in the next section. All of these results can be found in the Handbook of Combinatorial Designs [10].

Theorem 1. There exists a K_{4}-decomposition of $K_{n \times 2}$ if and only if $n \equiv 1$ $(\bmod 3)$ and $n \geq 7$.
Theorem 2. There exists a K_{4}-decomposition of $K_{n \times 3}$ if and only if $n \equiv 0$ or 1 $(\bmod 4)$ and $n \geq 4$.

Theorem 3. There exists a K_{4}-decomposition of $K_{n \times 2,5}$ if and only if $n \equiv 0$ $(\bmod 3)$ and $n \geq 9$.
Theorem 4. There exists a K_{4}-decomposition of $K_{(n-2) \times 3,6}$ if and only if $n \equiv 2$ or $3(\bmod 4)$ and $n \geq 7$.
Theorem 5. There exists a $\left\{K_{3}, K_{5}\right\}$-decomposition of K_{v} if v is odd.

Because of the relevance of the decompositions of K_{10} results from [3], we state them in a separate lemma.

Lemma 6. Let G be a connected cubic graph of order 10 (see Figure 1). There exists a G-decomposition of K_{10} if and only if $G \notin\left\{G_{2}, G_{14}, G_{15}, G_{17}, G_{19}\right\}$.

We are ready to proceed with our results.
Lemma 7. For every integer $x \geq 2$ and each $i \in[3,13]$, there exists a G_{i} decomposition of $K_{(3 x+1) \times 10}$.

Proof. By Theorem 1, there exists a K_{4}-decomposition of $K_{(3 x+1) \times 2}$. Replacing each vertex of $K_{(3 x+1) \times 2}$ by a set of 5 vertices and each edge of $K_{(3 x+1) \times 2}$ by a copy of $K_{5,5}$ gives a $K_{4 \times 5}$-decomposition of $K_{(3 x+1) \times 10}$. By Example 24, there exist G_{i}-decompositions of $K_{4 \times 5}$. Thus the result now follows.

Lemma 8. Let $i \in[3,13]$. There exists a G_{i}-decomposition of K_{v} for all $v \equiv 10$ $(\bmod 30)$.

Proof. Let x be a nonnegative integer and let $v=30 x+10$. For $v=10$ and $v=40$, the results follow from Lemma 6 and Example 20, respectively. So we may assume $x \geq 2$.

Let H be the complete graph with vertex set $H_{1} \cup H_{2} \cup \cdots \cup H_{3 x+1}$ with $\left|H_{j}\right|=10$ for each $j \in[1,3 x+1]$. By Lemma 7 , there is a G_{i}-decomposition B_{i}^{\prime} of $K_{(3 x+1) \times 10}$ with vertex set $H_{1} \cup H_{2} \cup \cdots \cup H_{3 x+1}$ and the obvious vertex partition. For each $i \in[3,13]$ and $j \in[1,3 x+1]$, let $B_{i, j}$ be a G_{i}-decomposition of K_{10} with vertex set H_{j}. Then $\left(V, B_{i}\right)$ where $V=V(H)$ and $B_{i}=B_{i}^{\prime} \cup B_{i, 1} \cup$ $B_{i, 2} \cup \cdots \cup B_{i, 3 x+1}$ is a G_{i}-decomposition of $K_{30 x+10}$.

Lemma 9. For every positive integer x and each $i \in[2,14]$, there exists a G_{i} decomposition of $K_{(2 x+1) \times 15}$.

Proof. It is simple to see that $K_{15,15}$ decomposes $K_{(2 x+1) \times 15}$ and since G_{14} decomposes $K_{15,15}$ (by Example 28), the result follows for G_{14}. By Theorem 5, there exists a $\left\{K_{3}, K_{5}\right\}$-decomposition of $K_{2 x+1}$. Replacing each vertex of $K_{2 x+1}$ by a set of 15 vertices and each edge of $K_{2 x+1}$ by a copy of $K_{15,15}$ gives a $\left\{K_{3 \times 15}, K_{5 \times 15}\right\}$-decomposition of $K_{(2 x+1) \times 15}$. By Examples 25 and 26, there exist G_{i}-decompositions of $K_{3 \times 15}$ and $K_{5 \times 15}$ for all $i \in[2,13]$. Thus the result now follows.

Lemma 10. Let $i \in[2,14]$. There exists a G_{i}-decomposition of K_{v} for all $v \equiv 16$ $(\bmod 30)$.

Proof. Let x be a nonnegative integer and let $v=30 x+16$. For $v=16$, the result follows from Example 18. So we may assume $x \geq 1$.

Let H be the complete graph with vertex set $H_{1} \cup H_{2} \cup \cdots \cup H_{2 x+1} \cup\{\infty\}$ with $\left|H_{j}\right|=15$ for each $j \in[1,2 x+1]$. By Lemma 9 , there is a G_{i}-decomposition B_{i}^{\prime} of $K_{(2 x+1) \times 15}$ with vertex set $H_{1} \cup H_{2} \cup \cdots \cup H_{2 x+1}$ and the obvious vertex partition. For each $i \in[2,14]$ and $j \in[1,2 x+1]$, let $B_{i, j}$ be a G_{i}-decomposition of K_{16} with vertex set $H_{j} \cup\{\infty\}$. Then $\left(V, B_{i}\right)$ where $V=V(H)$ and $B_{i}=$ $B_{i}^{\prime} \cup B_{i, 1} \cup B_{i, 2} \cup \cdots \cup B_{i, 2 x+1}$ is a G_{i}-decomposition of $K_{30 x+16}$.
Lemma 11. For every integer $x \geq 3$ and each $i \in[3,13]$, there exists a G_{i} decomposition of $K_{(3 x) \times 10,25}$.
Proof. By Theorem 3, there exists a K_{4}-decomposition of $K_{(3 x) \times 2,5}$ for $x \geq 3$. Replacing each vertex of $K_{(3 x) \times 2,5}$ by a set of 5 vertices and each edge of $K_{(3 x) \times 2,5}$ by a copy of $K_{5,5}$ gives a $K_{4 \times 5}$-decomposition of $K_{(3 x) \times 10,25}$. By Example 24, there exist G_{i}-decompositions of $K_{4 \times 5}$. Thus the result now follows.

Lemma 12. Let $i \in[3,13]$. There exists a G_{i}-decomposition of K_{v} for all $v \equiv 25$ $(\bmod 30)$.
Proof. Let x be a nonnegative integer and let $v=30 x+25$. There exist G decompositions of K_{25}, K_{55} and K_{85} by Examples 19, 21 and 22, respectively. Thus it remains to consider the case $x \geq 3$.

Let H be the complete graph with vertex set $H_{1} \cup H_{2} \cup \cdots \cup H_{3 x+1}$ with $\left|H_{j}\right|=10$ for $j \in[1,3 x]$ and $\left|H_{3 x+1}\right|=25$. By Lemma 11, there exists a $G_{i^{-}}$ decomposition B_{i}^{\prime} of $K_{(3 x) \times 10,25}$ with vertex set $H_{1} \cup H_{2} \cup \cdots \cup H_{3 x+1}$ and the obvious vertex partition. For each $i \in[3,13]$ and $j \in[1,3 x]$, let $B_{i, j}$ be a $G_{i^{-}}$ decomposition of K_{10} with vertex set H_{j}. Also, let $B_{i, 3 x+1}$ be a G_{i}-decomposition of K_{25} with vertex set $H_{3 x+1}$. Then $\left(V, B_{i}\right)$ where $V=V(H)$ and $B_{i}=B_{i}^{\prime} \cup$ $B_{i, 1} \cup B_{i, 2} \cup \cdots \cup B_{i, 3 x+1}$ is a G_{i}-decomposition of $K_{30 x+25}$.

Because there is no $G_{2^{-}}$nor a G_{14}-decomposition of K_{10}, we will treat the case $v \equiv 10(\bmod 15)$ for these two graphs separately. Moreover, since G_{14} is bipartite and G_{2} is not, we will use different approaches for the two graphs.
Lemma 13. There exists a G_{2}-decomposition of $K_{x \times 15}$ when $x \equiv 0$ or $1(\bmod 4)$, $x \geq 4$, and a G_{2}-decomposition of $K_{(x-2) \times 15,30}$ when $x \equiv 2$ or $3(\bmod 4)$ and $x \geq 7$.
Proof. By Theorem 2, if $x \equiv 0$ or $1(\bmod 4)$, then there exists a K_{4}-decomposition of $K_{x \times 3}$, and by Theorem 4 , if $x \equiv 2$ or $3(\bmod 4)$ and $x \geq 7$, then there exists a K_{4}-decomposition of $K_{(x-2) \times 3,6}$. Replacing each vertex in these decompositions by a set of 5 vertices and each edge by a copy of a $K_{5,5}$ yields a $K_{4 \times 5}$-decomposition of $K_{x \times 15}$ when $x \equiv 0$ or $1(\bmod 4)$ and of $K_{(x-2) \times 15,30}$ when $x \equiv 2$ or $3(\bmod 4)$ and $x \geq 7$. The result follows by Example 24 .

Lemma 14. If $v \equiv 10(\bmod 15)$ and $v \neq 10$, then there exists a G_{2}-decomposition of K_{v}.

Proof. Let x be a positive integer and let $v=15 x+10$. By Examples 19, 20, 21, and 23, there exist G_{2}-decompositions of K_{25}, K_{40}, K_{55}, and K_{100}, respectively. So we may assume that $x \notin\{1,2,3,6\}$.

First, suppose $x \equiv 0$ or $1(\bmod 4)$ and let H be the complete graph with vertex set $H_{1} \cup H_{2} \cup \cdots \cup H_{x+1}$ with $\left|H_{j}\right|=15$ for $j \in[1, x]$ and $\left|H_{x+1}\right|=10$. By Lemma 13, there exists a G_{2}-decomposition B^{\prime} of $K_{x \times 15}$ with vertex set $H_{1} \cup H_{2} \cup \cdots \cup H_{x}$ and the obvious vertex partition. Let B_{1} be a G_{2}-decomposition of K_{25} with vertex set $H_{1} \cup H_{x+1}$. For each $j \in[2, x]$, let B_{j} be a G_{2}-decomposition of $K_{25} \backslash K_{10}$ with vertex set $H_{j} \cup H_{x+1}$ (with the vertices of H_{x+1} being the vertices in the hole). Then (V, B) where $V=V(H)$ and $B=B^{\prime} \cup B_{1} \cup \cdots \cup B_{x}$ is a G_{2}-decomposition of $K_{15 x+10}$.

Now suppose $x \equiv 2$ or $3(\bmod 4)$ and $x \notin\{2,3,6\}$. Let H be the complete graph with vertex set $H_{0} \cup H_{1} \cup \cdots \cup H_{x-1}$ with $\left|H_{0}\right|=30,\left|H_{x-1}\right|=10$, and $\left|H_{j}\right|=15$ for $j \in[1, x-2]$. By Lemma 13, there exists a G_{2}-decomposition B^{\prime} of $K_{(x-2) \times 15,30}$ with vertex set $H_{1} \cup H_{2} \cup \cdots \cup H_{x-2} \cup H_{0}$ and the obvious vertex partition. Let B_{0} be a G_{2}-decomposition of K_{40} with vertex set $H_{0} \cup H_{x-1}$. For each $j \in[1, x-2]$, let B_{j} be a G_{2}-decomposition of $K_{25} \backslash K_{10}$ with vertex set $H_{j} \cup H_{x-1}$ (with the vertices of H_{x-1} being the vertices in the hole). Then (V, B) where $V=V(H)$ and $B=B^{\prime} \cup B_{0} \cup B_{1} \cup \cdots \cup B_{x-2}$ is a G_{2}-decomposition of $K_{15 x+10}$.

Lemma 15. There exists a G_{14}-decomposition of $K_{(x-1) \times 15,24}$ for all integers $x \geq 2$.
Proof. It is simple to see that $K_{(x-1) \times 15,24}$ can be decomposed into $\binom{x-1}{2}$ copies of $K_{15,15}$ and $x-1$ copies of $K_{15,24}$. Also note that $K_{15,24}$ can be decomposed into one copy of $K_{15,15}$ and one copy of $K_{9,15}$. By Example 28, there exists a $G_{14^{-}}$ decomposition of $K_{15,15}$ and by Example 27, there exists a G_{14}-decomposition of $K_{9,15}$. The result now follows.

Lemma 16. If $v \equiv 10(\bmod 15)$ and $v \neq 10$, then there exists a $\left(K_{v}, G_{14}\right)$-design.
Proof. Let x be a positive integer and let $v=15 x+10$. By Example 19, there exists a G_{14}-decomposition of K_{25} and thus we may assume that $x \geq 2$.

Let H be the complete graph with vertex set $H_{1} \cup H_{2} \cup \cdots \cup H_{x} \cup\{\infty\}$ with $\left|H_{x}\right|=24$ and $\left|H_{j}\right|=15$ for $j \in[1, x-1]$. By Lemma 15 , there exists a G_{14}-decomposition B^{\prime} of $K_{(x-1) \times 15,24}$ with vertex set $H_{1} \cup H_{2} \cup \cdots \cup H_{x}$ and the obvious vertex partition. Let B_{x} be a G_{14}-decomposition of K_{25} with vertex set $H_{x} \cup\{\infty\}$. For each $j \in[1, x-1]$, let B_{j} be a G_{2}-decomposition of K_{16} with vertex set $H_{j} \cup\{\infty\}$. Then (V, B) where $V=V(H)$ and $B=B^{\prime} \cup B_{1} \cup B_{2} \cup \cdots \cup B_{x}$ is a G_{14}-decomposition of $K_{15 x+10}$.

Combining the results from Lemmas 8 to 16 and the previously known results from [1], [17], and [4], we obtain the following.

Theorem 17. Let G be connected cubic graph of order 10. There exists a G decomposition of K_{v} if and only if $v \equiv 1$ or $10(\bmod 15)$ except when $v=10$ and G is one of the 5 graphs $G_{2}, G_{14}, G_{15}, G_{17}$ or G_{19} in Figure 1.

3. Appendix

Here we give examples of decompositions that were used in Section 2. These results were found by using computer searches.

Example 18. Let $V\left(K_{16}\right)=\mathbb{Z}_{16}$, and let
$B_{2}=\left\{G_{2}[4,14,8,11,3,12,6,5,15,0], G_{2}[14,5,9,3,1,7,2,13,8,10], G_{2}[2,10,6,4,5,8,1,15,7,3]\right.$,
$G_{2}[0,1,6,7,5,2,11,12,8,9], G_{2}[0,5,3,4,1,12,14,7,11,13], G_{2}[1,10,11,0,2,4,15,9,12,13]$,
$\left.G_{2}[6,11,9,13,4,10,12,15,3,14], G_{2}[7,10,0,8,6,13,15,14,2,9]\right\}$,
$B_{3}=\left\{G_{3}[6,5,0,11,8,4,14,7,2,15], G_{3}[3,10,9,15,12,11,1,7,5,4], G_{3}[13,6,10,2,8,1,9,0,15,3]\right.$,
$G_{3}[0,1,3,2,5,8,12,9,6,4], G_{3}[0,7,8,3,11,13,14,5,1,10], G_{3}[2,6,11,10,12,4,13,5,9,14]$,
$\left.G_{3}[10,15,8,13,7,6,12,2,1,14], G_{3}[12,14,0,13,15,4,11,9,7,3]\right\}$,
$B_{4}=\left\{G_{4}[10,2,11,1,4,7,6,14,15,0], G_{4}[12,2,15,7,5,3,9,6,8,13], G_{4}[8,7,0,11,15,5,12,9,4,10]\right.$,
$G_{4}[0,1,3,2,7,9,13,11,4,5], G_{4}[0,6,4,3,10,14,8,15,1,12], G_{4}[1,2,6,13,5,10,12,8,11,14]$,
$\left.G_{4}[7,14,12,3,6,11,9,10,1,13], G_{4}[9,14,0,13,3,15,4,8,2,5]\right\}$,
$B_{5}=\left\{G_{5}[8,0,11,2,6,4,15,12,9,13], G_{5}[10,1,9,7,3,14,6,15,11,4], G_{5}[0,1,2,4,7,10,8,12,5,3]\right.$,
$G_{5}[0,4,5,1,6,8,7,13,2,12], G_{5}[0,6,9,2,3,4,14,12,13,10], G_{5}[6,11,3,10,14,1,15,9,8,5]$,
$\left.G_{5}[11,12,1,13,14,5,15,7,2,10], G_{5}[14,15,0,7,5,9,11,13,3,8]\right\}$,
$B_{6}=\left\{G_{6}[0,2,13,14,5,6,1,11,4,9], G_{6}[9,7,6,2,11,12,4,10,14,3], G_{6}[4,0,1,3,5,7,10,9,8,2]\right.$,
$G_{6}[7,0,5,8,3,11,15,2,9,1], G_{6}[11,0,10,12,1,8,15,13,4,6], G_{6}[14,1,15,10,3,12,8,7,13,0]$,
$\left.G_{6}[12,2,5,10,13,6,9,11,14,15], G_{6}[15,6,14,8,4,3,13,5,12,7]\right\}$,
$B_{7}=\left\{G_{7}[1,13,2,11,15,9,10,8,14,5], G_{7}[12,5,9,2,0,4,14,6,1,8], G_{7}[4,7,1,3,0,5,6,10,2,12]\right.$,
$G_{7}[4,2,6,7,0,8,9,11,3,10], G_{7}[15,5,10,13,0,11,1,4,3,8], G_{7}[9,1,14,15,0,12,7,11,13,6]$,
$\left.G_{7}[11,12,9,14,3,15,4,13,7,8], G_{7}[14,13,12,6,3,5,2,7,15,10]\right\}$,
$B_{8}=\left\{G_{8}[14,8,12,6,4,15,3,5,10,9], G_{8}[13,10,7,11,14,12,5,0,15,6], G_{8}[2,1,4,8,13,5,6,7,3,0]\right.$,
$G_{8}[7,4,2,3,12,1,11,9,6,0], G_{8}[10,8,1,6,14,2,11,4,9,0], G_{8}[11,12,2,9,15,8,5,1,13,0]$,
$\left.G_{8}[8,7,5,14,13,3,10,11,15,2], G_{8}[1,14,7,12,15,10,4,13,9,3]\right\}$,
$B_{9}=\left\{G_{9}[5,2,9,8,15,10,0,11,14,3], G_{9}[4,14,10,9,15,7,6,3,13,1], G_{9}[2,1,5,7,9,4,6,8,3,0]\right.$,
$G_{9}[5,4,3,1,7,11,2,12,6,0], G_{9}[8,7,10,1,11,4,13,12,9,0], G_{9}[8,12,0,13,10,11,6,14,15,1]$,
$\left.G_{9}[10,8,13,5,15,4,12,7,14,2], G_{9}[15,11,12,5,6,2,13,14,9,3]\right\}$,
$B_{10}=\left\{G_{10}[4,14,10,13,12,1,9,5,3,2], G_{10}[2,10,6,5,15,11,8,14,3,7], G_{10}[5,1,0,2,6,4,3,8,9,7]\right.$,
$G_{10}[8,4,0,7,1,13,5,11,3,10], G_{10}[7,6,0,11,4,12,8,2,13,15], G_{10}[12,9,0,14,6,15,10,7,13,11]$,
$\left.G_{10}[2,14,1,15,0,12,6,3,13,9], G_{10}[11,9,4,15,8,1,10,12,5,14]\right\}$,
$B_{11}=\left\{G_{11}[8,7,2,3,5,11,13,1,0,15], G_{11}[1,4,15,6,3,8,12,5,9,7], G_{11}[10,5,4,0,2,1,9,3,7,6]\right.$,
$G_{11}[14,2,8,0,5,1,11,6,12,3], G_{11}[13,3,10,0,9,2,15,11,4,14], G_{11}[0,12,11,2,10,14,8,6,4,13]$
$\left.G_{11}[13,12,10,4,8,9,14,7,15,5], G_{11}[1,6,13,7,10,15,9,11,14,12]\right\}$,

$$
\begin{aligned}
B_{12}=\{ & G_{12}[6,4,2,7,9,3,8,15,1,5], G_{12}[6,7,3,11,10,8,9,0,4,13], G_{12}[0,1,4,7,12,3,13,8,5,2], \\
& G_{12}[0,5,3,14,2,6,9,10,1,7], G_{12}[0,8,2,11,15,10,6,14,1,12], G_{12}[0,13,11,4,8,14,5,10,12,15], \\
& \left.G_{12}[3,4,14,12,13,1,11,9,5,15], G_{12}[10,2,12,6,11,7,14,15,9,13]\right\}, \\
B_{13}=\{ & G_{13}[11,15,8,10,1,13,5,14,6,9], G_{13}[15,6,12,2,14,13,8,11,3,0], G_{13}[0,1,3,9,7,4,6,10,5,2], \\
& G_{13}[0,5,1,12,3,7,8,4,2,9], G_{13}[0,8,2,15,4,10,13,7,1,14], G_{13}[0,12,10,15,1,11,7,14,9,13], \\
& \left.G_{13}[2,6,13,4,11,10,3,5,12,7], G_{13}[5,6,8,9,12,15,3,4,14,11]\right\}, \\
B_{14}=\{ & G_{14}[3,6,13,0,14,5,4,12,15,7], G_{14}[5,2,7,1,11,9,6,4,3,12], G_{14}[0,6,8,14,15,11,3,9,7,10], \\
& G_{14}[0,1,4,14,13,3,10,12,9,2], G_{14}[0,8,2,13,5,7,4,10,11,12], G_{14}[0,9,8,12,6,5,1,2,10,15], \\
& \left.G_{14}[1,13,9,4,15,3,8,5,11,14], G_{14}[2,11,6,10,13,15,1,8,7,14]\right\} .
\end{aligned}
$$

For $i \in[2,14]$, a G_{i}-decomposition of K_{16} consists of the G_{i}-blocks in B_{i}.
Example 19. Let $V\left(K_{25}\right)=\left\{r_{s}: r \in \mathbb{Z}_{5}\right.$ and $\left.s \in \mathbb{Z}_{5}\right\}$, and let
$B_{2}=\left\{G_{2}\left[0_{0}, 1_{0}, 0_{1}, 2_{0}, 4_{0}, 3_{2}, 0_{3}, 3_{0}, 0_{2}, 2_{1}\right], G_{2}\left[0_{0}, 1_{2}, 0_{3}, 2_{0}, 1_{4}, 2_{1}, 2_{2}, 0_{1}, 0_{4}, 4_{3}\right]\right.$,
$\left.G_{2}\left[0_{0}, 0_{4}, 1_{4}, 0_{1}, 1_{2}, 0_{2}, 3_{4}, 3_{2}, 4_{1}, 2_{4}\right], G_{2}\left[0_{3}, 1_{3}, 0_{1}, 4_{3}, 1_{1}, 3_{3}, 3_{4}, 2_{2}, 2_{3}, 4_{4}\right]\right\}$,
$B_{3}=\left\{G_{3}\left[0_{0}, 1_{0}, 0_{1}, 2_{0}, 4_{0}, 1_{2}, 4_{2}, 0_{2}, 1_{1}, 2_{1}\right], G_{3}\left[0_{0}, 1_{2}, 0_{3}, 1_{0}, 0_{2}, 1_{4}, 2_{1}, 0_{4}, 3_{0}, 1_{3}\right]\right.$,
$\left.G_{3}\left[0_{0}, 2_{3}, 0_{4}, 0_{1}, 2_{1}, 0_{3}, 4_{3}, 1_{2}, 4_{1}, 1_{4}\right], G_{3}\left[0_{1}, 1_{4}, 0_{3}, 3_{2}, 3_{4}, 1_{2}, 4_{4}, 2_{4}, 2_{3}, 4_{3}\right]\right\}$,
$B_{4}=\left\{G_{4}\left[0_{0}, 1_{0}, 0_{1}, 2_{0}, 4_{0}, 0_{2}, 3_{1}, 1_{2}, 1_{1}, 2_{1}\right], G_{4}\left[0_{0}, 0_{2}, 4_{2}, 0_{1}, 1_{2}, 2_{3}, 4_{3}, 3_{3}, 1_{0}, 0_{3}\right]\right.$,
$\left.G_{4}\left[0_{0}, 1_{3}, 0_{4}, 1_{0}, 3_{4}, 4_{4}, 2_{4}, 4_{2}, 1_{2}, 1_{4}\right], G_{4}\left[0_{3}, 1_{4}, 1_{1}, 2_{4}, 0_{2}, 4_{3}, 3_{1}, 3_{3}, 0_{4}, 2_{1}\right]\right\}$,
$B_{5}=\left\{G_{5}\left[0_{0}, 1_{0}, 0_{1}, 2_{0}, 4_{0}, 1_{2}, 0_{2}, 3_{2}, 1_{1}, 2_{1}\right], G_{5}\left[0_{0}, 0_{2}, 0_{3}, 1_{0}, 2_{2}, 0_{4}, 3_{3}, 1_{4}, 3_{0}, 1_{3}\right]\right.$,
$\left.G_{5}\left[0_{0}, 1_{4}, 0_{4}, 0_{1}, 2_{1}, 0_{3}, 1_{2}, 3_{3}, 1_{1}, 4_{4}\right], G_{5}\left[0_{1}, 4_{2}, 1_{4}, 4_{1}, 2_{2}, 0_{3}, 4_{3}, 3_{4}, 3_{3}, 4_{4}\right]\right\}$,
$B_{6}=\left\{G_{6}\left[2_{0}, 0_{0}, 1_{0}, 0_{1}, 1_{1}, 0_{2}, 4_{2}, 4_{1}, 1_{2}, 3_{1}\right], G_{6}\left[0_{2}, 0_{0}, 3_{1}, 4_{2}, 2_{0}, 1_{3}, 0_{4}, 3_{3}, 3_{0}, 0_{3}\right]\right.$,
$\left.G_{6}\left[0_{4}, 0_{0}, 1_{2}, 3_{3}, 0_{1}, 1_{4}, 3_{2}, 2_{4}, 1_{3}, 0_{3}\right], G_{6}\left[0_{4}, 0_{1}, 1_{3}, 4_{3}, 2_{4}, 0_{2}, 1_{4}, 3_{0}, 4_{4}, 1_{1}\right]\right\}$,
$B_{7}=\left\{G_{7}\left[1_{2}, 3_{1}, 1_{0}, 0_{1}, 0_{0}, 2_{0}, 0_{2}, 3_{0}, 1_{1}, 3_{2}\right], G_{7}\left[1_{3}, 0_{1}, 1_{2}, 0_{3}, 0_{0}, 4_{2}, 4_{1}, 2_{3}, 1_{0}, 3_{3}\right]\right.$,
$\left.G_{7}\left[2_{3}, 3_{1}, 3_{3}, 0_{4}, 0_{0}, 1_{4}, 0_{2}, 4_{4}, 1_{0}, 3_{4}\right], G_{7}\left[3_{3}, 3_{4}, 2_{1}, 4_{4}, 0_{1}, 0_{4}, 2_{2}, 2_{3}, 4_{2}, 1_{4}\right]\right\}$,
$B_{8}=\left\{G_{8}\left[0_{1}, 1_{0}, 3_{1}, 1_{2}, 0_{3}, 1_{1}, 4_{1}, 0_{2}, 2_{0}, 0_{0}\right], G_{8}\left[2_{2}, 3_{1}, 3_{2}, 4_{0}, 3_{3}, 1_{0}, 2_{3}, 1_{2}, 0_{2}, 0_{0}\right]\right.$,
$\left.G_{8}\left[0_{4}, 0_{3}, 0_{1}, 1_{3}, 4_{4}, 1_{0}, 3_{4}, 1_{1}, 1_{4}, 0_{0}\right], G_{8}\left[3_{3}, 2_{3}, 0_{3}, 1_{4}, 3_{4}, 0_{2}, 2_{4}, 3_{2}, 4_{4}, 0_{1}\right]\right\}$,
$B_{9}=\left\{G_{9}\left[0_{1}, 1_{0}, 2_{1}, 0_{2}, 3_{2}, 3_{0}, 1_{1}, 1_{2}, 2_{0}, 0_{0}\right], G_{9}\left[2_{2}, 1_{2}, 0_{1}, 1_{1}, 2_{3}, 1_{3}, 0_{4}, 2_{1}, 0_{3}, 0_{0}\right]\right.$,
$\left.G_{9}\left[3_{3}, 1_{3}, 1_{4}, 0_{1}, 0_{4}, 4_{0}, 4_{4}, 2_{1}, 2_{3}, 0_{0}\right], G_{9}\left[4_{4}, 2_{4}, 1_{3}, 3_{2}, 3_{3}, 2_{2}, 0_{4}, 4_{2}, 3_{4}, 0_{0}\right]\right\}$,
$B_{10}=\left\{G_{10}\left[2_{1}, 1_{0}, 0_{0}, 0_{1}, 3_{0}, 0_{2}, 2_{0}, 1_{2}, 3_{2}, 1_{1}\right], G_{10}\left[0_{1}, 3_{1}, 0_{0}, 0_{3}, 1_{0}, 3_{3}, 1_{2}, 2_{1}, 2_{3}, 1_{3}\right]\right.$,
$\left.G_{10}\left[0_{2}, 3_{3}, 0_{0}, 0_{4}, 1_{0}, 3_{4}, 1_{4}, 3_{1}, 4_{4}, 4_{2}\right], G_{10}\left[4_{2}, 0_{4}, 0_{1}, 4_{4}, 1_{3}, 3_{3}, 2_{4}, 2_{3}, 1_{2}, 3_{4}\right]\right\}$,
$B_{11}=\left\{G_{11}\left[1_{1}, 3_{0}, 0_{1}, 0_{0}, 1_{0}, 2_{1}, 0_{2}, 2_{0}, 2_{2}, 3_{1}\right], G_{11}\left[4_{3}, 2_{1}, 2_{2}, 0_{0}, 1_{2}, 0_{1}, 1_{3}, 0_{3}, 2_{3}, 3_{0}\right]\right.$,
$\left.G_{11}\left[4_{4}, 1_{0}, 0_{4}, 0_{0}, 2_{3}, 4_{1}, 2_{4}, 1_{4}, 3_{4}, 0_{2}\right], G_{11}\left[0_{4}, 4_{2}, 0_{3}, 0_{2}, 2_{2}, 1_{3}, 2_{4}, 2_{3}, 4_{4}, 3_{1}\right]\right\}$,
$B_{12}=\left\{G_{12}\left[0_{0}, 1_{0}, 2_{1}, 4_{0}, 0_{2}, 2_{0}, 2_{2}, 0_{3}, 3_{0}, 0_{1}\right], G_{12}\left[0_{0}, 2_{2}, 0_{1}, 0_{2}, 1_{1}, 0_{3}, 0_{4}, 1_{4}, 4_{0}, 3_{3}\right]\right.$,
$\left.G_{12}\left[0_{0}, 0_{4}, 0_{1}, 0_{3}, 3_{1}, 4_{4}, 2_{2}, 2_{3}, 1_{1}, 3_{4}\right], G_{12}\left[0_{2}, 2_{2}, 3_{2}, 2_{4}, 0_{3}, 4_{3}, 3_{4}, 4_{1}, 2_{3}, 0_{4}\right]\right\}$,
$B_{13}=\left\{G_{13}\left[0_{0}, 1_{0}, 2_{1}, 1_{1}, 2_{2}, 2_{0}, 0_{2}, 0_{3}, 3_{0}, 0_{1}\right], G_{13}\left[0_{0}, 3_{1}, 0_{1}, 1_{3}, 4_{2}, 1_{2}, 0_{3}, 4_{3}, 2_{1}, 2_{2}\right]\right.$,
$\left.G_{13}\left[0_{0}, 0_{3}, 1_{0}, 2_{4}, 3_{4}, 1_{3}, 4_{4}, 3_{3}, 0_{1}, 0_{4}\right], G_{13}\left[0_{2}, 1_{2}, 2_{3}, 4_{0}, 3_{4}, 0_{4}, 4_{2}, 1_{4}, 2_{1}, 4_{4}\right]\right\}$,
$B_{14}=\left\{G_{14}\left[0_{0}, 1_{0}, 3_{1}, 1_{2}, 2_{1}, 0_{1}, 1_{1}, 3_{0}, 0_{2}, 2_{0}\right], G_{14}\left[0_{0}, 0_{2}, 4_{1}, 3_{3}, 2_{0}, 0_{3}, 1_{0}, 0_{4}, 2_{2}, 1_{2}\right]\right.$,
$\left.G_{14}\left[0_{0}, 0_{4}, 0_{1}, 0_{3}, 1_{2}, 2_{4}, 0_{2}, 3_{3}, 2_{1}, 1_{4}\right], G_{14}\left[0_{1}, 3_{3}, 2_{2}, 1_{4}, 3_{4}, 2_{3}, 1_{3}, 4_{4}, 0_{3}, 2_{4}\right]\right\}$.

For $i \in[2,14]$, a G_{i}-decomposition of K_{25} consists of the G_{i}-blocks in B_{i} under the action of the map $r_{s} \mapsto(r+1(\bmod 5))_{s}$.
Example 20. Let $V\left(K_{40}\right)=\left\{r_{s}: r \in \mathbb{Z}_{13}\right.$ and $\left.s \in \mathbb{Z}_{3}\right\} \cup\{\infty\}$, and let
$B_{2}=\left\{G_{2}\left[0_{0}, 1_{0}, 3_{0}, 9_{0}, 1_{1}, 2_{1}, 4_{1}, 2_{0}, 0_{1}, 5_{0}\right], G_{2}\left[0_{0}, 1_{1}, 6_{1}, 3_{0}, 0_{1}, 1_{2}, 2_{2}, 1_{0}, 0_{2}, 7_{1}\right]\right.$, $\left.G_{2}\left[0_{0}, 9_{1}, 3_{2}, 1_{0}, 6_{2}, 0_{2}, 2_{2}, 4_{1}, 0_{1}, 4_{2}\right], G_{2}\left[0_{2}, 3_{2}, 5_{0}, 1_{2}, 2_{1}, 7_{2}, \infty, 0_{0}, 6_{2}, 3_{1}\right]\right\}$,

$$
\begin{aligned}
& B_{3}=\left\{G_{3}\left[0_{0}, 1_{0}, 3_{0}, 9_{0}, 2_{1}, 2_{0}, 4_{1}, 1_{1}, 0_{1}, 5_{0}\right], G_{3}\left[0_{0}, 1_{1}, 7_{1}, 3_{0}, 0_{1}, 1_{2}, 1_{0}, 0_{2}, 6_{0}, 9_{1}\right],\right. \\
& \left.G_{3}\left[0_{0}, 1_{2}, 2_{2}, 4_{0}, 8_{2}, 9_{1}, 5_{2}, 0_{2}, 0_{1}, 3_{2}\right], G_{3}\left[0_{2}, 4_{2}, 2_{1}, 8_{2}, 3_{0}, 9_{2}, \infty, 11_{1}, 3_{2}, 9_{1}\right]\right\}, \\
& B_{4}=\left\{G_{4}\left[0_{0}, 1_{0}, 3_{0}, 9_{0}, 1_{1}, 2_{1}, 4_{1}, 2_{0}, 0_{1}, 5_{0}\right], G_{4}\left[0_{0}, 0_{1}, 3_{1}, 2_{0}, 11_{1}, 0_{2}, 3_{2}, 2_{2}, 3_{0}, 7_{1}\right]\right. \text {, } \\
& \left.G_{4}\left[0_{0}, 10_{1}, 2_{2}, 1_{0}, 5_{2}, 11_{2}, 7_{2}, 8_{1}, 0_{1}, 3_{2}\right], G_{4}\left[0_{2}, 2_{2}, 6_{0}, 1_{2}, 9_{2}, 0_{1}, \infty, 4_{0}, 10_{2}, 2_{1}\right]\right\}, \\
& B_{5}=\left\{G_{5}\left[0_{0}, 1_{0}, 3_{0}, 9_{0}, 1_{1}, 2_{0}, 2_{1}, 11_{0}, 0_{1}, 5_{0}\right], G_{5}\left[0_{0}, 1_{1}, 7_{1}, 10_{0}, 0_{2}, 2_{1}, 1_{2}, 10_{1}, 0_{1}, 9_{1}\right]\right. \text {, } \\
& \left.G_{5}\left[0_{0}, 0_{2}, 1_{2}, 2_{0}, 8_{2}, 1_{1}, 9_{2}, 5_{2}, 0_{1}, 2_{2}\right], G_{5}\left[0_{2}, 5_{2}, 8_{0}, 4_{2}, 6_{0}, 1_{2}, 4_{1}, \infty, 8_{2}, 12_{1}\right]\right\}, \\
& B_{6}=\left\{G_{6}\left[4_{0}, 0_{0}, 1_{0}, 3_{0}, 8_{0}, 1_{1}, 3_{1}, 2_{1}, 2_{0}, 0_{1}\right], G_{6}\left[3_{1}, 0_{0}, 6_{0}, 8_{1}, 3_{0}, 0_{2}, 5_{1}, 1_{2}, 0_{1}, 10_{1}\right]\right. \text {, } \\
& \left.G_{6}\left[2_{2}, 0_{0}, 0_{2}, 1_{2}, 2_{0}, 5_{2}, 3_{1}, 8_{2}, 10_{2}, 6_{0}\right], G_{6}\left[4_{2}, 0_{1}, 4_{1}, 3_{2}, 7_{2}, 12_{0}, \infty, 12_{2}, 12_{1}, 10_{2}\right]\right\}, \\
& B_{7}=\left\{G_{7}\left[1_{1}, 0_{1}, 1_{0}, 3_{0}, 0_{0}, 4_{0}, 10_{0}, 2_{1}, 8_{0}, 5_{1}\right], G_{7}\left[0_{2}, 6_{1}, 0_{1}, 2_{1}, 0_{0}, 1_{1}, 6_{0}, 1_{2}, 4_{0}, 10_{1}\right]\right. \text {, } \\
& \left.G_{7}\left[5_{2}, 2_{2}, 3_{1}, 0_{2}, 0_{0}, 1_{2}, 3_{0}, 6_{2}, 1_{0}, 10_{2}\right], G_{7}\left[4_{0}, 8_{2}, 2_{2}, 0_{1}, 0_{2}, 2_{1}, 10_{2}, 5_{1}, 1_{2}, \infty\right]\right\} \text {, } \\
& B_{8}=\left\{G_{8}\left[3_{0}, 1_{0}, 0_{1}, 2_{0}, 3_{1}, 8_{0}, 2_{1}, 10_{0}, 4_{0}, 0_{0}\right], G_{8}\left[3_{1}, 2_{1}, 0_{1}, 5_{1}, 1_{2}, 6_{0}, 0_{2}, 1_{1}, 4_{1}, 0_{0}\right]\right. \text {, } \\
& \left.G_{8}\left[1_{2}, 0_{2}, 3_{0}, 6_{2}, 10_{2}, 5_{0}, 3_{2}, 0_{1}, 2_{2}, 0_{0}\right], G_{8}\left[4_{2}, 6_{1}, 7_{2}, 1_{2}, \infty, 0_{0}, 6_{2}, 12_{1}, 5_{2}, 0_{1}\right]\right\}, \\
& B_{9}=\left\{G_{9}\left[3_{0}, 1_{0}, 6_{0}, 0_{1}, 2_{1}, 9_{0}, 7_{1}, 1_{1}, 4_{0}, 0_{0}\right], G_{9}\left[1_{1}, 0_{1}, 1_{0}, 5_{1}, 1_{2}, 9_{0}, 12_{1}, 0_{2}, 2_{1}, 0_{0}\right]\right. \text {, } \\
& \left.G_{9}\left[1_{2}, 0_{2}, 2_{0}, 5_{2}, 10_{2}, 4_{0}, 12_{2}, 6_{2}, 2_{2}, 0_{0}\right], G_{9}\left[3_{2}, 4_{1}, 11_{2}, 5_{1}, 10_{2}, 6_{1}, \infty, 4_{0}, 0_{2}, 0_{1}\right]\right\} \text {, } \\
& B_{10}=\left\{G_{10}\left[6_{0}, 1_{0}, 0_{0}, 3_{0}, 9_{0}, 0_{1}, 4_{0}, 1_{1}, 2_{1}, 4_{1}\right], G_{10}\left[1_{0}, 0_{1}, 0_{0}, 5_{1}, 2_{0}, 0_{2}, 1_{1}, 6_{0}, 3_{2}, 1_{2}\right]\right. \text {, } \\
& \left.G_{10}\left[6_{1}, 2_{1}, 0_{0}, 2_{2}, 6_{0}, 0_{2}, 3_{2}, 0_{1}, 10_{2}, 1_{2}\right], G_{10}\left[11_{2}, 6_{1}, 0_{1}, 2_{2}, 4_{1}, 10_{2}, 4_{2}, 11_{0}, \infty, 3_{2}\right]\right\}, \\
& B_{11}=\left\{G_{11}\left[4_{1}, 9_{0}, 3_{0}, 0_{0}, 1_{0}, 6_{0}, 0_{1}, 4_{0}, 1_{1}, 11_{0}\right], G_{11}\left[1_{2}, 3_{1}, 1_{1}, 0_{0}, 0_{1}, 1_{0}, 0_{2}, 4_{1}, 7_{1}, 12_{1}\right]\right. \text {, } \\
& \left.G_{11}\left[10_{2}, 5_{0}, 2_{2}, 0_{0}, 1_{2}, 3_{0}, 7_{2}, 3_{2}, 0_{2}, 0_{1}\right], G_{11}\left[8_{1}, 11_{2}, 5_{2}, 0_{1}, 6_{1}, 1_{2}, 8_{0}, 4_{2}, 6_{2}, \infty\right]\right\}, \\
& B_{12}=\left\{G_{12}\left[7_{0}, 9_{2}, 9_{1}, 9_{0}, 0_{2}, 1_{1}, 11_{1}, 7_{1}, 5_{0}, 12_{0}\right], G_{12}\left[0_{0}, 1_{0}, 0_{1}, 5_{0}, 1_{1}, 4_{0}, 9_{1}, 1_{2}, 4_{1}, 3_{0}\right]\right. \text {, } \\
& \left.G_{12}\left[0_{0}, 3_{1}, 1_{1}, 2_{2}, 7_{2}, 4_{1}, 0_{2}, 4_{2}, 1_{0}, 1_{2}\right], G_{12}\left[0_{0}, 5_{2}, 11_{1}, 4_{1}, 6_{2}, 7_{2}, 0_{2}, \infty, 2_{0}, 8_{2}\right]\right\}, \\
& B_{13}=\left\{G_{13}\left[0_{0}, 1_{0}, 6_{0}, 4_{1}, 1_{1}, 4_{0}, 0_{1}, 8_{1}, 9_{0}, 3_{0}\right], G_{13}\left[0_{0}, 0_{1}, 5_{0}, 9_{1}, 0_{2}, 2_{1}, 8_{1}, 1_{2}, 8_{0}, 1_{1}\right]\right. \text {, } \\
& \left.G_{13}\left[0_{0}, 0_{2}, 1_{0}, 8_{2}, 5_{0}, 2_{2}, 5_{2}, 6_{1}, 3_{2}, 1_{2}\right], G_{13}\left[0_{1}, 2_{1}, 10_{2}, 7_{1}, 8_{2}, 0_{2}, 4_{2}, \infty, 0_{0}, 9_{2}\right]\right\} .
\end{aligned}
$$

For $i \in[2,13]$, a G_{i}-decomposition of K_{40} consists of the G_{i}-blocks in B_{i} under the action of the map $\infty \mapsto \infty$ and $r_{s} \mapsto(r+1(\bmod 13))_{s}$.

Example 21. Let $V\left(K_{55}\right)=\left\{r_{s}: r \in \mathbb{Z}_{11}\right.$ and $\left.s \in \mathbb{Z}_{5}\right\}$, and let
$B_{2}=\left\{G_{2}\left[8_{0}, 1_{0}, 10_{3}, 7_{0}, 2_{3}, 6_{3}, 6_{0}, 2_{4}, 4_{4}, 2_{1}\right], G_{2}\left[1_{0}, 10_{2}, 1_{4}, 5_{1}, 9_{1}, 6_{4}, 0_{0}, 3_{0}, 6_{2}, 8_{1}\right]\right.$,
$G_{2}\left[0_{0}, 1_{0}, 0_{1}, 3_{0}, 5_{0}, 0_{2}, 1_{2}, 1_{1}, 8_{0}, 3_{1}\right], G_{2}\left[0_{0}, 0_{2}, 2_{2}, 1_{0}, 6_{2}, 0_{3}, 3_{3}, 10_{0}, 9_{2}, 4_{2}\right]$,
$G_{2}\left[0_{0}, 5_{3}, 10_{3}, 2_{0}, 0_{4}, 1_{1}, 4_{2}, 0_{1}, 1_{4}, 2_{4}\right], G_{2}\left[0_{0}, 1_{4}, 4_{4}, 0_{1}, 3_{1}, 0_{3}, 1_{3}, 7_{1}, 2_{1}, 5_{4}\right]$,
$G_{2}\left[0_{1}, 5_{2}, 8_{2}, 1_{1}, 2_{3}, 7_{1}, 1_{4}, 3_{3}, 7_{2}, 0_{3}\right], G_{2}\left[0_{1}, 3_{3}, 6_{4}, 6_{1}, 8_{3}, 6_{3}, 8_{4}, 3_{2}, 5_{3}, 9_{4}\right]$,
$\left.G_{2}\left[0_{3}, 1_{4}, 0_{2}, 4_{4}, 5_{2}, 3_{3}, 8_{4}, 2_{2}, 10_{4}, 1_{2}\right]\right\}$,
$B_{3}=\left\{G_{3}\left[0_{0}, 1_{0}, 3_{0}, 0_{1}, 6_{0}, 6_{1}, 8_{1}, 2_{0}, 1_{1}, 5_{0}\right], G_{3}\left[0_{0}, 1_{1}, 4_{1}, 1_{0}, 4_{2}, 1_{2}, 7_{0}, 3_{2}, 2_{0}, 0_{2}\right]\right.$,
$G_{3}\left[0_{0}, 4_{2}, 6_{2}, 0_{1}, 1_{1}, 4_{3}, 5_{1}, 2_{3}, 1_{0}, 0_{3}\right], G_{3}\left[0_{0}, 2_{3}, 4_{3}, 6_{0}, 1_{3}, 1_{4}, 5_{0}, 0_{4}, 8_{0}, 5_{3}\right]$,
$G_{3}\left[0_{0}, 0_{4}, 1_{4}, 0_{1}, 0_{2}, 4_{4}, 4_{1}, 3_{4}, 5_{0}, 2_{4}\right], G_{3}\left[0_{1}, 1_{2}, 2_{2}, 4_{1}, 7_{2}, 1_{3}, 6_{3}, 2_{3}, 1_{1}, 5_{2}\right]$,
$G_{3}\left[0_{1}, 8_{2}, 5_{3}, 1_{1}, 7_{4}, 4_{4}, 1_{2}, 3_{4}, 10_{1}, 6_{3}\right], G_{3}\left[0_{2}, 5_{2}, 0_{3}, 7_{2}, 8_{3}, 9_{4}, 7_{3}, 6_{4}, 1_{2}, 1_{4}\right]$,
$\left.G_{3}\left[0_{2}, 9_{4}, 2_{3}, 5_{4}, 8_{3}, 2_{4}, 6_{4}, 9_{1}, 7_{4}, 3_{3}\right]\right\}$,
$B_{4}=\left\{G_{3}\left[5_{3}, 8_{0}, 1_{2}, 4_{2}, 10_{0}, 1_{4}, 7_{2}, 2_{2}, 9_{1}, 9_{2}\right], G_{3}\left[8_{3}, 7_{2}, 9_{2}, 10_{2}, 6_{4}, 8_{4}, 6_{1}, 3_{0}, 8_{1}, 9_{3}\right]\right.$,
$G_{3}\left[8_{4}, 5_{3}, 3_{4}, 2_{2}, 7_{3}, 6_{0}, 2_{3}, 4_{0}, 4_{4}, 5_{2}\right], G_{3}\left[0_{0}, 1_{0}, 3_{0}, 0_{1}, 2_{0}, 3_{1}, 4_{2}, 2_{1}, 1_{1}, 5_{0}\right]$,
$G_{3}\left[0_{0}, 2_{1}, 6_{1}, 2_{0}, 1_{1}, 0_{2}, 6_{3}, 0_{3}, 6_{0}, 8_{2}\right], G_{3}\left[0_{0}, 0_{2}, 4_{4}, 3_{0}, 2_{2}, 9_{2}, 0_{4}, 0_{3}, 1_{0}, 6_{4}\right]$,
$G_{3}\left[0_{0}, 2_{3}, 4_{3}, 0_{1}, 5_{1}, 0_{3}, 4_{4}, 3_{3}, 1_{1}, 6_{3}\right], G_{3}\left[0_{1}, 3_{3}, 0_{4}, 8_{4}, 7_{1}, 1_{4}, 7_{3}, 4_{2}, 10_{1}, 9_{4}\right]$,
$\left.G_{3}\left[0_{3}, 10_{4}, 4_{1}, 8_{4}, 10_{0}, 7_{4}, 10_{1}, 6_{4}, 6_{2}, 3_{3}\right]\right\}$,
$B_{5}=\left\{G_{4}\left[0_{0}, 1_{0}, 3_{0}, 0_{1}, 2_{0}, 5_{1}, 6_{0}, 6_{1}, 1_{1}, 5_{0}\right], G_{4}\left[0_{0}, 1_{1}, 2_{1}, 7_{0}, 1_{2}, 3_{2}, 2_{2}, 5_{2}, 1_{0}, 0_{2}\right]\right.$,
$G_{4}\left[0_{0}, 1_{2}, 7_{2}, 4_{0}, 2_{2}, 2_{3}, 1_{3}, 3_{3}, 1_{0}, 0_{3}\right], G_{4}\left[0_{0}, 8_{2}, 3_{3}, 5_{0}, 0_{3}, 0_{4}, 10_{3}, 2_{4}, 8_{0}, 4_{3}\right]$,

```
    G4[00, 和, 14},\mp@subsup{2}{0}{},\mp@subsup{6}{4}{},\mp@subsup{2}{1}{},\mp@subsup{8}{4}{},\mp@subsup{3}{1}{},\mp@subsup{0}{1}{},\mp@subsup{2}{4}{}],\mp@subsup{G}{4}{}[\mp@subsup{0}{1}{},\mp@subsup{0}{2}{},\mp@subsup{2}{3}{},\mp@subsup{1}{1}{},\mp@subsup{2}{2}{},\mp@subsup{0}{3}{},\mp@subsup{3}{2}{},\mp@subsup{7}{3}{},\mp@subsup{3}{1}{},\mp@subsup{3}{3}{}]
```



```
    G4[03, 44, 63, 54, 92, 0}\mp@subsup{0}{1}{,},\mp@subsup{9}{3}{},\mp@subsup{4}{1}{},1\mp@subsup{0}{3}{},\mp@subsup{7}{3}{}]}
    B6}={\mp@subsup{G}{6}{}[\mp@subsup{4}{0}{},\mp@subsup{0}{0}{},\mp@subsup{1}{0}{},\mp@subsup{3}{0}{},\mp@subsup{8}{0}{},\mp@subsup{1}{1}{},\mp@subsup{3}{1}{},\mp@subsup{2}{1}{},\mp@subsup{2}{0}{},\mp@subsup{0}{1}{}],\mp@subsup{G}{6}{}[\mp@subsup{3}{1}{},\mp@subsup{0}{0}{},2\mp@subsup{2}{1}{},\mp@subsup{6}{1}{},\mp@subsup{0}{1}{},\mp@subsup{2}{2}{},\mp@subsup{3}{2}{},\mp@subsup{1}{2}{},\mp@subsup{1}{0}{},\mp@subsup{0}{2}{}]
```



```
    G6[84, 03, 64, 103, 94, 62, 104 , 42, 54, 101]},
B7 ={G7[[60, 0}\mp@subsup{\mp@code{1}}{1}{},\mp@subsup{1}{0}{},\mp@subsup{3}{0}{},\mp@subsup{0}{0}{},\mp@subsup{4}{0}{},\mp@subsup{1}{1}{},\mp@subsup{6}{1}{},\mp@subsup{8}{0}{},\mp@subsup{8}{1}{}],\mp@subsup{G}{7}{}[\mp@subsup{2}{2}{},\mp@subsup{0}{2}{},\mp@subsup{1}{1}{},\mp@subsup{4}{1}{},\mp@subsup{0}{0}{},\mp@subsup{3}{1}{},\mp@subsup{2}{1}{},\mp@subsup{3}{2}{},\mp@subsup{0}{1}{},\mp@subsup{6}{2}{}]
    G7[72, 3}\mp@subsup{3}{0}{},\mp@subsup{0}{2}{},\mp@subsup{1}{2}{},\mp@subsup{0}{0}{},\mp@subsup{2}{2}{},\mp@subsup{4}{0}{},1\mp@subsup{0}{2}{},\mp@subsup{5}{0}{},\mp@subsup{0}{3}{}],\mp@subsup{G}{7}{}[7\mp@subsup{7}{3}{},\mp@subsup{3}{0}{},\mp@subsup{0}{3}{},\mp@subsup{1}{3}{},\mp@subsup{0}{0}{},\mp@subsup{2}{3}{},\mp@subsup{4}{0}{},\mp@subsup{0}{4}{},\mp@subsup{5}{0}{},1\mp@subsup{0}{3}{}]
```



```
    G7[14, 31, 0}\mp@subsup{0}{3}{},\mp@subsup{0}{4}{},\mp@subsup{0}{1}{},\mp@subsup{1}{3}{},\mp@subsup{9}{1}{},\mp@subsup{3}{3}{},\mp@subsup{1}{1}{},\mp@subsup{5}{4}{}],\mp@subsup{G}{7}{}[\mp@subsup{2}{3}{},\mp@subsup{0}{2}{},\mp@subsup{6}{4}{},\mp@subsup{8}{4}{},\mp@subsup{0}{1}{},\mp@subsup{1}{4}{},\mp@subsup{2}{2}{},\mp@subsup{7}{3}{},\mp@subsup{1}{2}{},\mp@subsup{5}{4}{}]
    G7}[\mp@subsup{6}{4}{},\mp@subsup{4}{2}{},\mp@subsup{3}{3}{},\mp@subsup{0}{4}{},\mp@subsup{0}{2}{},\mp@subsup{9}{4}{},\mp@subsup{2}{3}{},\mp@subsup{1}{4}{},\mp@subsup{6}{3}{},\mp@subsup{9}{2}{}]}
B8}={\mp@subsup{G}{8}{}[\mp@subsup{3}{0}{},\mp@subsup{1}{0}{},\mp@subsup{0}{1}{},\mp@subsup{2}{0}{},\mp@subsup{3}{1}{},\mp@subsup{8}{0}{},\mp@subsup{2}{1}{},\mp@subsup{1}{1}{},\mp@subsup{4}{0}{},\mp@subsup{0}{0}{}],\mp@subsup{G}{8}{}[\mp@subsup{0}{2}{},\mp@subsup{2}{1}{},\mp@subsup{6}{1}{},\mp@subsup{0}{1}{},\mp@subsup{3}{2}{},\mp@subsup{1}{0}{},\mp@subsup{2}{2}{},1\mp@subsup{0}{0}{},\mp@subsup{3}{1}{},\mp@subsup{0}{0}{}]
```



```
    G}\mp@subsup{G}{8}{[3},\mp@subsup{3}{3}{},\mp@subsup{1}{3}{},\mp@subsup{3}{2}{},\mp@subsup{1}{2}{},\mp@subsup{6}{4}{},\mp@subsup{5}{1}{},\mp@subsup{2}{4}{},\mp@subsup{0}{2}{},\mp@subsup{2}{3}{},\mp@subsup{0}{1}{}],\mp@subsup{G}{8}{}[\mp@subsup{3}{4}{},\mp@subsup{4}{3}{},\mp@subsup{1}{2}{},\mp@subsup{9}{2}{},\mp@subsup{6}{4}{},\mp@subsup{0}{3}{},\mp@subsup{5}{2}{},\mp@subsup{2}{3}{},\mp@subsup{4}{4}{},\mp@subsup{0}{1}{}]
    G8[73,43, 04, 63, 44, 3, 3, 34, 64, 74, 0 2]},
B9}={\mp@subsup{G}{9}{}[\mp@subsup{3}{0}{},\mp@subsup{1}{0}{},\mp@subsup{6}{0}{},\mp@subsup{2}{1}{},\mp@subsup{7}{0}{},\mp@subsup{0}{1}{},\mp@subsup{1}{1}{},\mp@subsup{5}{1}{},\mp@subsup{4}{0}{},\mp@subsup{0}{0}{}],G\mp@subsup{G}{9}{}[2\mp@subsup{2}{1}{},\mp@subsup{0}{1}{},\mp@subsup{5}{1}{},\mp@subsup{0}{2}{},\mp@subsup{2}{2}{},1\mp@subsup{0}{1}{},\mp@subsup{9}{2}{},\mp@subsup{1}{2}{},\mp@subsup{3}{1}{},\mp@subsup{0}{0}{}]
```



```
    G9[44, 53, 74 , 30, 14, ,42, 94, 3, , 64, 01]},
B10}={\mp@subsup{G}{10}{}[\mp@subsup{6}{0}{},\mp@subsup{1}{0}{},\mp@subsup{0}{0}{},\mp@subsup{3}{0}{},\mp@subsup{0}{1}{},\mp@subsup{2}{1}{},\mp@subsup{4}{0}{},\mp@subsup{3}{1}{},\mp@subsup{0}{2}{},\mp@subsup{6}{1}{}],\mp@subsup{G}{10}{[}[\mp@subsup{6}{0}{},\mp@subsup{1}{1}{},\mp@subsup{0}{0}{},2,2,\mp@subsup{8}{0}{},\mp@subsup{1}{2}{},\mp@subsup{3}{1}{},1\mp@subsup{0}{0}{},\mp@subsup{6}{2}{},\mp@subsup{0}{2}{}]
    G}\mp@subsup{G}{10}{[}[\mp@subsup{1}{0}{},\mp@subsup{0}{2}{},\mp@subsup{0}{0}{},\mp@subsup{2}{2}{},\mp@subsup{5}{0}{},\mp@subsup{0}{3}{},\mp@subsup{3}{2}{},\mp@subsup{0}{1}{},\mp@subsup{2}{3}{},\mp@subsup{1}{3}{}],\mp@subsup{G}{10}{}[\mp@subsup{3}{0}{},\mp@subsup{1}{3}{},\mp@subsup{0}{0}{},\mp@subsup{3}{3}{},\mp@subsup{7}{0}{},\mp@subsup{0}{4}{},\mp@subsup{2}{3}{},\mp@subsup{8}{0}{},\mp@subsup{3}{4}{},\mp@subsup{2}{4}{}]
    G}\mp@subsup{G}{10}{[[0}\mp@subsup{0}{1}{},\mp@subsup{4}{3}{},\mp@subsup{0}{0}{},\mp@subsup{0}{4}{},\mp@subsup{2}{0}{},\mp@subsup{4}{4}{},\mp@subsup{1}{4}{},\mp@subsup{2}{1}{},\mp@subsup{5}{4}{},\mp@subsup{7}{1}{}],\mp@subsup{G}{10}{}[2, 1, 12,\mp@subsup{0}{1}{},\mp@subsup{2}{2}{},\mp@subsup{6}{1}{},\mp@subsup{0}{3}{},\mp@subsup{4}{2}{},\mp@subsup{9}{1}{},\mp@subsup{6}{3}{},\mp@subsup{1}{3}{}]
    G10}[02,\mp@subsup{6}{3}{},\mp@subsup{0}{1}{},\mp@subsup{0}{4}{},\mp@subsup{3}{1}{},\mp@subsup{4}{4}{},\mp@subsup{7}{3}{},\mp@subsup{2}{2}{},1\mp@subsup{0}{4}{},\mp@subsup{0}{3}{}],\mp@subsup{G}{10}{}[\mp@subsup{0}{2}{},\mp@subsup{2}{4}{},\mp@subsup{0}{1}{},\mp@subsup{6}{4}{},\mp@subsup{1}{2}{},\mp@subsup{4}{2}{},\mp@subsup{5}{4}{},\mp@subsup{2}{2}{},\mp@subsup{4}{3}{},\mp@subsup{1}{3}{}]
    G10[0}\mp@subsup{0}{3}{},\mp@subsup{4}{3}{},\mp@subsup{0}{2}{},1\mp@subsup{0}{4}{},1\mp@subsup{0}{3}{},\mp@subsup{1}{4}{},\mp@subsup{6}{4}{},\mp@subsup{6}{2}{},\mp@subsup{2}{4}{},\mp@subsup{4}{4}{}]}
B
    G11 [0}\mp@subsup{0}{3}{},\mp@subsup{6}{0}{},\mp@subsup{3}{2}{},\mp@subsup{0}{0}{},\mp@subsup{2}{2}{},\mp@subsup{4}{0}{},\mp@subsup{0}{2}{},\mp@subsup{4}{2}{},\mp@subsup{1}{2}{},\mp@subsup{8}{1}{}],\mp@subsup{G}{11}{}[43,1,\mp@subsup{1}{0}{},\mp@subsup{0}{3}{},\mp@subsup{0}{0}{},\mp@subsup{5}{2}{},\mp@subsup{3}{1}{},\mp@subsup{0}{2}{},\mp@subsup{1}{3}{},\mp@subsup{3}{3}{},1\mp@subsup{0}{1}{}]
```



```
    G}\mp@subsup{G}{11}{}[\mp@subsup{1}{4}{},\mp@subsup{9}{1}{},\mp@subsup{2}{4}{},\mp@subsup{0}{1}{},\mp@subsup{2}{3}{},\mp@subsup{4}{1}{},\mp@subsup{9}{4}{},\mp@subsup{6}{3}{},\mp@subsup{5}{3}{},\mp@subsup{0}{2}{}],\mp@subsup{G}{11}{}[\mp@subsup{2}{4}{},\mp@subsup{3}{2}{},\mp@subsup{0}{3}{},\mp@subsup{0}{2}{},\mp@subsup{2}{2}{},\mp@subsup{1}{3}{},\mp@subsup{9}{3}{},\mp@subsup{5}{2}{},\mp@subsup{0}{4}{},\mp@subsup{6}{2}{}]
    G11[74},\mp@subsup{4}{2}{},\mp@subsup{4}{4}{},\mp@subsup{0}{2}{},\mp@subsup{2}{3}{},\mp@subsup{9}{4}{},\mp@subsup{2}{4}{},\mp@subsup{7}{3}{},\mp@subsup{6}{4}{},\mp@subsup{9}{3}{}]}
```



```
    G12[0}\mp@subsup{0}{2}{},\mp@subsup{3}{2}{},\mp@subsup{4}{4}{},\mp@subsup{9}{1}{},\mp@subsup{8}{4}{},\mp@subsup{2}{2}{},\mp@subsup{9}{4}{},\mp@subsup{0}{4}{},\mp@subsup{8}{1}{},\mp@subsup{5}{4}{}]}
B13}={\mp@subsup{G}{13}{}[\mp@subsup{0}{0}{},\mp@subsup{1}{0}{},\mp@subsup{6}{0}{},\mp@subsup{1}{1}{},\mp@subsup{3}{1}{},\mp@subsup{4}{0}{},\mp@subsup{2}{1}{},\mp@subsup{8}{0}{},\mp@subsup{0}{1}{},\mp@subsup{3}{0}{}],\mp@subsup{G}{13}{}[\mp@subsup{0}{0}{},\mp@subsup{0}{1}{},\mp@subsup{4}{1}{},\mp@subsup{4}{2}{},\mp@subsup{1}{2}{},\mp@subsup{2}{1}{},\mp@subsup{0}{2}{},\mp@subsup{9}{2}{},\mp@subsup{6}{1}{},\mp@subsup{1}{1}{}]
    G}\mp@subsup{G}{13}{}[\mp@subsup{0}{0}{},\mp@subsup{0}{2}{},\mp@subsup{1}{0}{},\mp@subsup{4}{2}{},\mp@subsup{0}{3}{},\mp@subsup{2}{2}{},\mp@subsup{6}{2}{},\mp@subsup{1}{3}{},\mp@subsup{3}{0}{},\mp@subsup{1}{2}{2}],\mp@subsup{G}{13}{}[\mp@subsup{0}{0}{},\mp@subsup{4}{2}{},\mp@subsup{7}{0}{},\mp@subsup{3}{2}{},\mp@subsup{6}{3}{},\mp@subsup{6}{2}{},\mp@subsup{0}{3}{},\mp@subsup{7}{3}{},\mp@subsup{1}{0}{},\mp@subsup{3}{3}{}]
```



```
    G}\mp@subsup{G}{13}{}[\mp@subsup{0}{0}{},\mp@subsup{5}{4}{},\mp@subsup{0}{1}{},1\mp@subsup{0}{3}{},\mp@subsup{9}{2}{},\mp@subsup{6}{4}{},\mp@subsup{4}{2}{},\mp@subsup{2}{4}{},\mp@subsup{1}{1}{},\mp@subsup{7}{4}{}],\mp@subsup{G}{13}{}[0\mp@subsup{0}{1}{},\mp@subsup{2}{3}{},\mp@subsup{4}{1}{},\mp@subsup{9}{3}{},\mp@subsup{0}{4}{},\mp@subsup{3}{3}{},\mp@subsup{0}{3}{},1\mp@subsup{0}{4}{},\mp@subsup{7}{1}{},\mp@subsup{4}{3}{}]
    G13[0}\mp@subsup{0}{1}{},\mp@subsup{0}{4}{},\mp@subsup{6}{4}{},\mp@subsup{7}{1}{},\mp@subsup{4}{4}{},\mp@subsup{6}{3}{},\mp@subsup{0}{3}{},\mp@subsup{5}{4}{},\mp@subsup{1}{2}{},\mp@subsup{7}{4}{}]}
```

For $i \in[2,13]$, a G_{i}-decomposition of K_{55} consists of the G_{i}-blocks in B_{i} under
the action of the map $r_{s} \mapsto(r+1(\bmod 11))_{s}$.
Example 22. Let $V\left(K_{85}\right)=\left\{r_{s}: r \in \mathbb{Z}_{17}\right.$ and $\left.s \in \mathbb{Z}_{5}\right\}$, and let
$B_{2}=\left\{G_{2}\left[8_{2}, 2_{3}, 10_{1}, 1_{3}, 16_{0}, 3_{0}, 15_{3}, 9_{3}, 3_{2}, 7_{3}\right], G_{2}\left[5_{0}, 2_{1}, 6_{2}, 12_{0}, 7_{0}, 6_{1}, 10_{4}, 1_{3}, 9_{0}, 13_{1}\right]\right.$,
$G_{2}\left[10_{0}, 0_{4}, 12_{1}, 14_{1}, 7_{4}, 7_{1}, 4_{2}, 16_{1}, 13_{4}, 10_{1}\right], G_{2}\left[4_{0}, 6_{4}, 10_{1}, 10_{2}, 8_{2}, 12_{0}, 11_{0}, 7_{4}, 11_{3}, 11_{1}\right]$,
$G_{2}\left[0_{0}, 2_{0}, 8_{0}, 1_{0}, 10_{1}, 5_{1}, 0_{2}, 10_{0}, 6_{1}, 3_{1}\right], G_{2}\left[0_{0}, 10_{1}, 11_{1}, 13_{0}, 0_{2}, 4_{2}, 7_{2}, 1_{0}, 1_{2}, 2_{2}\right]$,
$G_{2}\left[0_{0}, 8_{2}, 16_{2}, 1_{0}, 11_{2}, 2_{3}, 6_{3}, 15_{0}, 10_{2}, 0_{3}\right], G_{2}\left[0_{0}, 1_{3}, 3_{3}, 5_{0}, 2_{3}, 9_{3}, 6_{4}, 2_{0}, 3_{4}, 10_{3}\right]$,
$G_{2}\left[0_{0}, 5_{3}, 0_{4}, 1_{0}, 12_{3}, 7_{1}, 10_{2}, 0_{1}, 14_{3}, 5_{4}\right], G_{2}\left[0_{0}, 6_{4}, 8_{4}, 11_{0}, 5_{4}, 1_{2}, 13_{2}, 2_{1}, 4_{4}, 9_{4}\right]$,
$G_{2}\left[0_{1}, 4_{1}, 6_{2}, 5_{1}, 1_{2}, 6_{3}, 0_{4}, 2_{1}, 1_{3}, 2_{3}\right], G_{2}\left[0_{1}, 8_{2}, 1_{3}, 8_{1}, 15_{3}, 0_{4}, 1_{4}, 0_{2}, 14_{3}, 11_{3}\right]$,
$\left.G_{2}\left[0_{1}, 3_{3}, 1_{4}, 7_{1}, 13_{4}, 7_{2}, 3_{4}, 1_{2}, 16_{4}, 8_{4}\right], G_{2}\left[0_{3}, 1_{4}, 4_{2}, 14_{4}, 9_{2}, 3_{4}, 16_{4}, 8_{2}, 8_{3}, 7_{4}\right]\right\}$,
$B_{3}=\left\{G_{3}\left[0_{0}, 1_{0}, 3_{0}, 9_{0}, 1_{1}, 4_{0}, 2_{1}, 0_{1}, 12_{0}, 5_{0}\right], G_{3}\left[0_{0}, 0_{1}, 3_{1}, 1_{0}, 7_{1}, 2_{1}, 0_{2}, 13_{1}, 3_{0}, 4_{1}\right]\right.$,
$G_{3}\left[0_{0}, 7_{1}, 13_{1}, 2_{0}, 4_{2}, 5_{2}, 8_{0}, 0_{2}, 1_{0}, 1_{2}\right], G_{3}\left[0_{0}, 3_{2}, 5_{2}, 10_{0}, 0_{2}, 1_{3}, 7_{0}, 0_{3}, 12_{0}, 6_{2}\right]$,
$G_{3}\left[0_{0}, 8_{2}, 0_{3}, 1_{0}, 4_{3}, 11_{3}, 0_{1}, 5_{3}, 3_{0}, 1_{3}\right], G_{3}\left[0_{0}, 9_{3}, 12_{3}, 15_{0}, 1_{4}, 7_{1}, 15_{1}, 0_{4}, 0_{1}, 13_{3}\right]$,
$G_{3}\left[0_{0}, 0_{4}, 1_{4}, 2_{0}, 8_{4}, 2_{4}, 1_{1}, 11_{4}, 6_{0}, 4_{4}\right], G_{3}\left[0_{0}, 7_{4}, 10_{4}, 2_{0}, 16_{4}, 0_{2}, 8_{1}, 13_{4}, 0_{1}, 12_{4}\right]$,
$G_{3}\left[0_{1}, 1_{2}, 5_{2}, 2_{1}, 9_{2}, 0_{2}, 3_{3}, 16_{2}, 4_{1}, 6_{2}\right], G_{3}\left[0_{1}, 8_{2}, 3_{3}, 1_{1}, 0_{2}, 2_{3}, 11_{2}, 0_{3}, 5_{1}, 6_{3}\right]$,
$G_{3}\left[0_{1}, 0_{3}, 8_{3}, 1_{1}, 11_{3}, 3_{4}, 11_{2}, 5_{4}, 6_{1}, 15_{3}\right], G_{3}\left[0_{2}, 7_{2}, 14_{3}, 1_{2}, 0_{3}, 11_{4}, 1_{3}, 8_{4}, 2_{1}, 0_{4}\right]$,
$\left.G_{3}\left[0_{2}, 5_{3}, 1_{4}, 3_{2}, 7_{4}, 0_{4}, 2_{3}, 8_{4}, 5_{2}, 2_{4}\right], G_{3}\left[0_{3}, 5_{3}, 0_{4}, 9_{2}, 5_{4}, 3_{3}, 14_{3}, 15_{4}, 6_{4}, 4_{4}\right]\right\}$,
$B_{4}=\left\{G_{4}\left[0_{2}, 9_{1}, 13_{3}, 1_{3}, 6_{4}, 10_{4}, 3_{1}, 7_{2}, 2_{2}, 10_{1}\right], G_{4}\left[1_{4}, 0_{1}, 13_{1}, 2_{3}, 2_{1}, 12_{2}, 0_{3}, 10_{4}, 7_{0}, 13_{4}\right]\right.$,
$G_{4}\left[9_{3}, 7_{3}, 5_{2}, 16_{4}, 9_{0}, 11_{0}, 6_{3}, 15_{0}, 10_{1}, 0_{0}\right], G_{4}\left[14_{1}, 11_{1}, 12_{0}, 1_{1}, 16_{4}, 1_{2}, 11_{0}, 1_{0}, 14_{3}, 14_{0}\right]$,
$G_{4}\left[2_{0}, 9_{1}, 4_{4}, 0_{3}, 1_{2}, 15_{1}, 14_{3}, 0_{0}, 11_{4}, 1_{0}\right], G_{4}\left[3_{3}, 13_{3}, 3_{4}, 6_{2}, 3_{2}, 8_{0}, 12_{3}, 7_{0}, 8_{4}, 2_{3}\right]$,
$G_{4}\left[0_{0}, 3_{0}, 8_{0}, 4_{0}, 7_{1}, 9_{1}, 10_{2}, 14_{1}, 5_{0}, 1_{1}\right], G_{4}\left[0_{0}, 4_{1}, 2_{2}, 2_{0}, 13_{1}, 1_{2}, 0_{2}, 7_{2}, 3_{0}, 6_{2}\right]$,
$G_{4}\left[0_{0}, 8_{2}, 10_{2}, 1_{0}, 12_{2}, 3_{3}, 0_{3}, 13_{3}, 2_{0}, 1_{3}\right], G_{4}\left[0_{0}, 6_{3}, 0_{4}, 1_{0}, 9_{4}, 15_{4}, 8_{4}, 7_{4}, 12_{0}, 4_{4}\right]$,
$G_{4}\left[0_{1}, 5_{1}, 3_{3}, 2_{1}, 8_{1}, 14_{2}, 0_{4}, 15_{3}, 1_{1}, 10_{3}\right], G_{4}\left[0_{1}, 8_{1}, 0_{4}, 3_{1}, 0_{2}, 7_{4}, 15_{4}, 3_{3}, 9_{1}, 2_{4}\right]$,
$\left.G_{4}\left[0_{2}, 4_{2}, 15_{3}, 7_{1}, 2_{3}, 10_{4}, 6_{2}, 1_{4}, 12_{2}, 0_{4}\right], G_{4}\left[0_{2}, 6_{3}, 14_{3}, 5_{2}, 5_{3}, 6_{4}, 3_{4}, 10_{2}, 1_{2}, 9_{4}\right]\right\}$,
$B_{5}=\left\{G_{5}\left[3_{2}, 5_{0}, 6_{3}, 10_{3}, 2_{0}, 16_{3}, 1_{3}, 16_{4}, 4_{0}, 8_{0}\right], G_{5}\left[7_{3}, 6_{4}, 1_{1}, 0_{0}, 7_{2}, 0_{1}, 10_{4}, 2_{3}, 10_{2}, 5_{2}\right]\right.$,
$G_{5}\left[2_{1}, 7_{1}, 4_{2}, 5_{3}, 0_{1}, 1_{1}, 14_{4}, 1_{2}, 7_{0}, 9_{3}\right], G_{5}\left[4_{3}, 1_{3}, 14_{0}, 2_{0}, 16_{2}, 12_{0}, 2_{4}, 4_{1}, 14_{1}, 0_{1}\right]$,
$G_{5}\left[0_{0}, 1_{0}, 7_{0}, 5_{0}, 13_{0}, 5_{1}, 1_{1}, 10_{1}, 2_{0}, 0_{1}\right], G_{5}\left[0_{0}, 4_{1}, 6_{1}, 1_{0}, 13_{1}, 4_{2}, 0_{2}, 9_{2}, 3_{0}, 10_{1}\right]$,
$G_{5}\left[0_{0}, 0_{2}, 2_{2}, 6_{0}, 11_{2}, 2_{3}, 14_{2}, 4_{3}, 10_{0}, 3_{2}\right], G_{5}\left[0_{0}, 9_{2}, 3_{3}, 3_{0}, 1_{3}, 2_{3}, 9_{3}, 2_{4}, 6_{0}, 5_{3}\right]$,
$G_{5}\left[0_{0}, 10_{3}, 4_{4}, 1_{0}, 0_{4}, 9_{4}, 2_{4}, 14_{4}, 3_{0}, 5_{4}\right], G_{5}\left[0_{2}, 6_{2}, 4_{4}, 9_{2}, 11_{4}, 3_{2}, 14_{4}, 5_{2}, 9_{3}, 16_{4}\right]$,
$G_{5}\left[0_{1}, 4_{2}, 5_{2}, 6_{1}, 12_{2}, 11_{3}, 0_{3}, 2_{4}, 2_{1}, 11_{2}\right], G_{5}\left[0_{1}, 15_{2}, 13_{3}, 1_{1}, 4_{3}, 0_{4}, 11_{3}, 8_{4}, 6_{1}, 1_{4}\right]$,
$\left.G_{5}\left[0_{1}, 3_{4}, 0_{3}, 12_{3}, 4_{1}, 8_{4}, 12_{4}, 10_{4}, 1_{1}, 15_{3}\right], G_{5}\left[0_{0}, 9_{4}, 8_{4}, 0_{1}, 0_{2}, 0_{3}, 3_{2}, 0_{4}, 1_{1}, 15_{4}\right]\right\}$,
$B_{6}=\left\{G_{6}\left[4_{0}, 0_{0}, 1_{0}, 3_{0}, 10_{0}, 0_{1}, 2_{1}, 1_{1}, 15_{0}, 9_{0}\right], G_{6}\left[1_{1}, 0_{0}, 0_{1}, 5_{1}, 3_{0}, 9_{1}, 0_{2}, 14_{1}, 11_{1}, 2_{0}\right]\right.$,
$G_{6}\left[12_{1}, 0_{0}, 10_{1}, 14_{1}, 3_{1}, 4_{2}, 2_{2}, 1_{2}, 1_{0}, 0_{2}\right], G_{6}\left[3_{2}, 0_{0}, 2_{2}, 5_{2}, 1_{0}, 7_{2}, 13_{1}, 8_{2}, 0_{2}, 5_{0}\right]$,
$G_{6}\left[9_{2}, 0_{0}, 8_{2}, 13_{2}, 0_{1}, 7_{1}, 6_{2}, 0_{2}, 0_{3}, 15_{0}\right], G_{6}\left[3_{3}, 0_{0}, 0_{3}, 1_{3}, 3_{0}, 7_{3}, 14_{0}, 11_{3}, 9_{3}, 4_{0}\right]$,
$G_{6}\left[7_{3}, 0_{0}, 6_{3}, 9_{3}, 15_{0}, 0_{4}, 13_{1}, 1_{4}, 10_{2}, 0_{1}\right], G_{6}\left[4_{4}, 0_{0}, 0_{4}, 1_{4}, 3_{0}, 8_{4}, 0_{1}, 9_{4}, 2_{4}, 5_{0}\right]$,
$G_{6}\left[8_{4}, 0_{0}, 7_{4}, 9_{4}, 2_{1}, 0_{3}, 0_{1}, 1_{3}, 10_{4}, 14_{0}\right], G_{6}\left[33_{3}, 0_{1}, 2_{3}, 8_{3}, 3_{1}, 12_{3}, 2_{2}, 7_{3}, 0_{3}, 6_{1}\right]$,
$G_{6}\left[12_{3}, 0_{1}, 10_{3}, 0_{4}, 1_{1}, 7_{4}, 1_{3}, 2_{4}, 10_{2}, 3_{2}\right], G_{6}\left[12_{4}, 0_{1}, 3_{4}, 11_{4}, 13_{1}, 9_{4}, 3_{2}, 10_{4}, 6_{3}, 0_{2}\right]$,
$\left.G_{6}\left[2_{3}, 0_{2}, 1_{3}, 13_{3}, 1_{2}, 2_{4}, 16_{3}, 1_{4}, 2_{2}, 0_{4}\right], G_{6}\left[12_{4}, 0_{4}, 6_{4}, 12_{3}, 8_{4}, 15_{2}, 2_{4}, 6_{2}, 5_{3}, 1_{2}\right]\right\}$,
$B_{7}=\left\{G_{7}\left[0_{1}, 9_{0}, 1_{0}, 3_{0}, 0_{0}, 4_{0}, 15_{0}, 2_{1}, 10_{0}, 3_{1}\right], G_{7}\left[8_{1}, 2_{0}, 0_{1}, 5_{1}, 0_{0}, 1_{1}, 5_{0}, 0_{2}, 8_{0}, 2_{1}\right]\right.$,
$G_{7}\left[2_{2}, 3_{1}, 7_{1}, 0_{2}, 0_{0}, 12_{1}, 2_{1}, 3_{2}, 1_{0}, 4_{2}\right], G_{7}\left[0_{3}, 7_{0}, 1_{2}, 4_{2}, 0_{0}, 5_{2}, 12_{0}, 2_{3}, 8_{0}, 14_{2}\right]$,
$G_{7}\left[4_{2}, 0_{1}, 7_{2}, 14_{2}, 0_{0}, 8_{2}, 2_{1}, 13_{2}, 1_{1}, 16_{1}\right], G_{7}\left[7_{3}, 3_{0}, 0_{3}, 1_{3}, 0_{0}, 2_{3}, 4_{0}, 13_{3}, 5_{0}, 11_{3}\right]$,
$G_{7}\left[5_{4}, 0_{1}, 12_{3}, 0_{4}, 0_{0}, 1_{4}, 3_{0}, 6_{4}, 1_{0}, 7_{4}\right], G_{7}\left[5_{4}, 11_{0}, 4_{4}, 7_{4}, 0_{0}, 8_{4}, 13_{0}, 9_{4}, 0_{1}, 3_{2}\right]$,
$G_{7}\left[6_{3}, 0_{2}, 9_{2}, 0_{3}, 0_{1}, 1_{3}, 3_{1}, 5_{3}, 1_{1}, 11_{3}\right], G_{7}\left[3_{4}, 9_{1}, 5_{3}, 8_{3}, 0_{1}, 6_{3}, 12_{1}, 1_{4}, 1_{1}, 10_{3}\right]$,
$G_{7}\left[16_{4}, 4_{1}, 2_{4}, 10_{4}, 0_{1}, 3_{4}, 0_{2}, 1_{4}, 14_{1}, 11_{4}\right], G_{7}\left[15_{4}, 12_{3}, 4_{4}, 10_{4}, 0_{2}, 12_{4}, 11_{3}, 13_{4}, 5_{2}, 0_{3}\right]$,
$\left.G_{7}\left[4_{2}, 1_{4}, 4_{3}, 11_{3}, 0_{2}, 7_{3}, 2_{4}, 8_{2}, 0_{4}, 4_{4}\right], G_{7}\left[1_{4}, 2_{3}, 4_{2}, 0_{3}, 0_{2}, 5_{2}, 11_{2}, 3_{3}, 1_{2}, 11_{3}\right]\right\}$,
$B_{8}=\left\{G_{8}\left[3_{0}, 1_{0}, 9_{0}, 0_{1}, 3_{1}, 10_{0}, 2_{1}, 15_{0}, 4_{0}, 0_{0}\right], G_{8}\left[1_{1}, 0_{1}, 3_{0}, 6_{1}, 16_{1}, 5_{0}, 11_{1}, 4_{0}, 2_{1}, 0_{0}\right]\right.$,
$G_{8}\left[1_{2}, 0_{2}, 3_{0}, 6_{2}, 11_{2}, 5_{0}, 9_{2}, 4_{0}, 2_{2}, 0_{0}\right], G_{8}\left[10_{2}, 8_{2}, 14_{0}, 0_{3}, 2_{2}, 0_{1}, 0_{2}, 1_{1}, 9_{2}, 0_{0}\right]$,
$G_{8}\left[1_{3}, 0_{3}, 3_{0}, 7_{3}, 12_{3}, 5_{0}, 10_{3}, 4_{0}, 2_{3}, 0_{0}\right], G_{8}\left[11_{3}, 9_{3}, 0_{1}, 4_{1}, 1_{4}, 16_{0}, 0_{4}, 2_{1}, 10_{3}, 0_{0}\right]$,
$G_{8}\left[3_{4}, 0_{4}, 5_{0}, 10_{4}, 15_{4}, 6_{0}, 14_{4}, 8_{0}, 4_{4}, 0_{0}\right], G_{8}\left[11_{4}, 10_{4}, 3_{1}, 9_{1}, 14_{2}, 0_{1}, 3_{2}, 5_{1}, 15_{4}, 0_{0}\right]$,
$G_{8}\left[4_{2}, 8_{1}, 15_{2}, 2_{2}, 4_{3}, 9_{1}, 3_{3}, 0_{2}, 6_{2}, 0_{1}\right], G_{8}\left[4_{3}, 0_{3}, 2_{1}, 7_{3}, 5_{4}, 1_{1}, 4_{4}, 4_{1}, 1_{3}, 0_{1}\right]$,
$G_{8}\left[13_{3}, 2_{3}, 7_{2}, 14_{2}, 12_{4}, 6_{1}, 8_{4}, 0_{2}, 6_{3}, 0_{1}\right], G_{8}\left[13_{3}, 5_{3}, 13_{2}, 4_{3}, 3_{4}, 3_{2}, 0_{4}, 10_{2}, 7_{3}, 0_{2}\right]$,
$\left.G_{8}\left[3_{4}, 1_{4}, 10_{1}, 15_{4}, 9_{4}, 4_{2}, 8_{4}, 0_{3}, 2_{4}, 0_{2}\right], G_{8}\left[1_{4}, 7_{3}, 13_{4}, 0_{2}, 9_{4}, 6_{3}, 6_{4}, 16_{3}, 4_{4}, 0_{3}\right]\right\}$,
$B_{9}=\left\{G_{9}\left[7_{3}, 9_{0}, 4_{1}, 12_{1}, 4_{3}, 15_{4}, 14_{0}, 10_{0}, 10_{2}, 7_{0}\right], G_{9}\left[11_{0}, 1_{0}, 9_{3}, 1_{4}, 12_{3}, 1_{2}, 4_{1}, 16_{3}, 4_{0}, 3_{2}\right]\right.$,
$G_{9}\left[9_{4}, 11_{1}, 13_{4}, 15_{3}, 16_{3}, 11_{0}, 12_{0}, 5_{1}, 8_{2}, 10_{4}\right], G_{9}\left[4_{3}, 3_{4}, 9_{1}, 14_{2}, 13_{1}, 12_{3}, 10_{0}, 9_{3}, 3_{0}, 11_{0}\right]$,
$G_{9}\left[0_{1}, 3_{0}, 9_{0}, 1_{1}, 2_{1}, 1_{0}, 5_{1}, 7_{1}, 5_{0}, 0_{0}\right], G_{9}\left[1_{2}, 5_{1}, 14_{0}, 5_{2}, 10_{1}, 3_{0}, 0_{2}, 10_{2}, 6_{1}, 0_{0}\right]$,
$G_{9}\left[5_{2}, 4_{2}, 9_{0}, 1_{3}, 13_{3}, 12_{0}, 9_{3}, 3_{3}, 6_{2}, 0_{0}\right], G_{9}\left[0_{4}, 3_{3}, 0_{1}, 6_{1}, 3_{4}, 1_{0}, 7_{4}, 7_{1}, 13_{3}, 0_{0}\right]$,
$G_{9}\left[5_{4}, 3_{4}, 7_{0}, 1_{4}, 5_{1}, 0_{1}, 11_{2}, 14_{4}, 4_{4}, 0_{0}\right], G_{9}\left[1_{3}, 4_{1}, 6_{2}, 2_{2}, 13_{2}, 3_{1}, 5_{3}, 9_{2}, 0_{2}, 0_{1}\right]$,
$G_{9}\left[10_{3}, 8_{2}, 3_{2}, 2_{3}, 16_{3}, 5_{1}, 0_{4}, 7_{3}, 9_{2}, 0_{1}\right], G_{9}\left[4_{4}, 4_{3}, 1_{2}, 0_{4}, 5_{3}, 0_{2}, 7_{4}, 1_{4}, 13_{3}, 0_{1}\right]$,
$\left.G_{9}\left[13_{4}, 0_{3}, 7_{4}, 16_{0}, 9_{4}, 3_{2}, 1_{4}, 6_{2}, 11_{4}, 0_{2}\right], G_{9}\left[6_{3}, 8_{3}, 11_{4}, 1_{1}, 2_{4}, 5_{2}, 14_{4}, 5_{1}, 8_{4}, 0_{2}\right]\right\}$,
$B_{10}=\left\{G_{10}\left[10_{3}, 5_{0}, 3_{2}, 6_{3}, 4_{0}, 2_{0}, 8_{0}, 1_{3}, 4_{2}, 3_{3}\right], G_{10}\left[2_{1}, 1_{0}, 5_{1}, 6_{2}, 4_{2}, 16_{4}, 0_{2}, 7_{3}, 1_{1}, 6_{4}\right]\right.$,
$G_{10}\left[10_{4}, 10_{2}, 5_{2}, 2_{2}, 0_{1}, 2_{1}, 11_{0}, 7_{1}, 9_{3}, 4_{2}\right], G_{10}\left[14_{4}, 7_{0}, 5_{3}, 0_{1}, 1_{1}, 7_{2}, 11_{0}, 1_{2}, 2_{0}, 1_{3}\right]$,
$G_{10}\left[8_{0}, 1_{0}, 0_{0}, 4_{0}, 12_{0}, 0_{1}, 5_{0}, 2_{1}, 12_{1}, 6_{1}\right], G_{10}\left[88_{0}, 2_{1}, 0_{0}, 7_{1}, 1_{0}, 10_{2}, 3_{1}, 0_{1}, 4_{2}, 5_{2}\right]$,
$G_{10}\left[8_{0}, 1_{2}, 0_{0}, 8_{2}, 2_{0}, 5_{3}, 4_{2}, 4_{1}, 8_{3}, 0_{3}\right], G_{10}\left[4_{0}, 0_{3}, 0_{0}, 4_{3}, 9_{0}, 0_{4}, 7_{3}, 0_{1}, 2_{4}, 1_{4}\right]$,
$G_{10}\left[1_{0}, 0_{4}, 0_{0}, 2_{4}, 4_{0}, 7_{4}, 1_{4}, 1_{1}, 8_{4}, 12_{4}\right], G_{10}\left[2_{1}, 5_{4}, 0_{0}, 12_{4}, 0_{1}, 11_{2}, 9_{4}, 3_{1}, 3_{3}, 1_{2}\right]$,
$G_{10}\left[1_{2}, 8_{1}, 0_{1}, 1_{3}, 2_{1}, 14_{3}, 8_{2}, 12_{1}, 10_{3}, 9_{3}\right], G_{10}\left[0_{2}, 11_{3}, 0_{1}, 9_{4}, 1_{2}, 10_{3}, 10_{4}, 5_{2}, 15_{4}, 1_{4}\right]$,
$\left.G_{10}\left[0_{4}, 6_{2}, 0_{2}, 4_{3}, 10_{4}, 16_{3}, 4_{2}, 7_{4}, 3_{3}, 15_{3}\right], G_{10}\left[7_{1}, 3_{4}, 0_{3}, 8_{4}, 4_{2}, 6_{4}, 11_{3}, 8_{3}, 13_{4}, 5_{4}\right]\right\}$,
$B_{11}=\left\{G_{11}\left[1_{1}, 9_{0}, 3_{0}, 0_{0}, 1_{0}, 6_{0}, 13_{0}, 4_{0}, 0_{1}, 2_{1}\right], G_{11}\left[12_{1}, 5_{0}, 3_{1}, 0_{0}, 0_{1}, 1_{0}, 5_{1}, 1_{1}, 7_{1}, 0_{2}\right]\right.$,
$G_{11}\left[2_{2}, 1_{1}, 10_{1}, 0_{0}, 5_{1}, 12_{1}, 1_{2}, 14_{1}, 0_{2}, 1_{0}\right], G_{11}\left[11_{2}, 6_{0}, 3_{2}, 0_{0}, 2_{2}, 4_{0}, 0_{2}, 4_{2}, 1_{2}, 3_{1}\right]$,
$G_{11}\left[2_{3}, 15_{0}, 8_{2}, 0_{0}, 6_{2}, 12_{0}, 0_{3}, 9_{2}, 1_{3}, 1_{0}\right], G_{11}\left[0_{4}, 9_{0}, 6_{3}, 0_{0}, 2_{3}, 4_{0}, 0_{3}, 8_{3}, 1_{3}, 6_{0}\right]$,
$G_{11}\left[4_{4}, 1_{0}, 0_{4}, 0_{0}, 10_{3}, 0_{1}, 0_{2}, 1_{4}, 3_{4}, 4_{1}\right], G_{11}\left[1_{4}, 8_{0}, 5_{4}, 0_{0}, 4_{4}, 6_{0}, 13_{4}, 6_{4}, 0_{4}, 3_{1}\right]$,
$G_{11}\left[2_{3}, 0_{2}, 9_{2}, 0_{1}, 2_{2}, 7_{2}, 0_{3}, 11_{2}, 1_{3}, 1_{1}\right], G_{11}\left[0_{3}, 6_{1}, 3_{3}, 0_{1}, 2_{3}, 4_{1}, 9_{3}, 4_{3}, 1_{3}, 4_{2}\right]$,
$G_{11}\left[2_{4}, 4_{2}, 8_{3}, 0_{1}, 6_{3}, 14_{1}, 0_{4}, 7_{3}, 1_{4}, 6_{1}\right], G_{11}\left[0_{4}, 0_{2}, 6_{4}, 0_{1}, 1_{4}, 9_{1}, 16_{4}, 2_{4}, 6_{2}, 0_{3}\right]$,
$\left.G_{11}\left[8_{4}, 3_{2}, 2_{4}, 0_{2}, 0_{3}, 1_{2}, 4_{4}, 3_{3}, 7_{4}, 13_{2}\right], G_{11}\left[2_{4}, 13_{3}, 10_{4}, 0_{2}, 15_{3}, 4_{3}, 0_{4}, 9_{4}, 5_{4}, 14_{3}\right]\right\}$,
$B_{12}=\left\{G_{12}\left[1_{3}, 3_{1}, 13_{2}, 7_{3}, 8_{1}, 10_{2}, 13_{0}, 9_{0}, 8_{0}, 8_{3}\right], G_{12}\left[6_{4}, 16_{2}, 1_{2}, 11_{1}, 0_{2}, 7_{3}, 12_{2}, 8_{1}, 15_{1}, 15_{0}\right]\right.$,
$G_{12}\left[10_{4}, 8_{4}, 16_{0}, 3_{2}, 1_{4}, 2_{1}, 5_{4}, 4_{1}, 11_{0}, 16_{1}\right], G_{12}\left[0_{0}, 2_{0}, 9_{0}, 6_{1}, 4_{1}, 3_{0}, 1_{1}, 10_{0}, 0_{1}, 8_{0}\right]$,
$G_{12}\left[0_{0}, 2_{1}, 3_{0}, 5_{2}, 14_{1}, 3_{1}, 1_{2}, 8_{2}, 2_{0}, 6_{1}\right], G_{12}\left[0_{0}, 0_{2}, 2_{0}, 13_{2}, 9_{2}, 3_{2}, 0_{3}, 4_{2}, 9_{0}, 5_{2}\right]$,
$G_{12}\left[0_{0}, 8_{2}, 15_{0}, 2_{3}, 7_{3}, 9_{2}, 8_{3}, 4_{3}, 2_{0}, 1_{3}\right], G_{12}\left[0_{0}, 3_{3}, 6_{0}, 1_{3}, 2_{3}, 5_{3}, 0_{4}, 1_{4}, 1_{0}, 11_{3}\right]$,
$G_{12}\left[0_{3}, 1_{4}, 6_{2}, 11_{3}, 7_{4}, 14_{2}, 11_{4}, 1_{1}, 14_{3}, 5_{1}\right], G_{12}\left[0_{0}, 4_{4}, 0_{1}, 3_{2}, 9_{1}, 6_{4}, 4_{2}, 4_{3}, 3_{1}, 10_{4}\right]$,
$G_{12}\left[0_{0}, 7_{4}, 1_{1}, 12_{3}, 10_{2}, 13_{4}, 13_{2}, 0_{4}, 0_{1}, 12_{4}\right], G_{12}\left[0_{1}, 0_{3}, 3_{1}, 7_{3}, 5_{4}, 2_{3}, 6_{4}, 13_{4}, 0_{2}, 6_{3}\right]$,
$\left.G_{12}\left[0_{1}, 3_{3}, 11_{2}, 3_{4}, 16_{4}, 8_{3}, 0_{4}, 10_{3}, 6_{2}, 5_{4}\right], G_{12}\left[0_{0}, 7_{3}, 0_{1}, 0_{2}, 5_{1}, 3_{4}, 0_{4}, 8_{4}, 3_{0}, 1_{4}\right]\right\}$,
$B_{13}=\left\{G_{13}\left[3_{2}, 5_{0}, 10_{3}, 3_{3}, 1_{3}, 8_{0}, 2_{0}, 4_{2}, 4_{0}, 6_{3}\right], G_{13}\left[5_{1}, 1_{0}, 2_{1}, 1_{1}, 6_{4}, 0_{2}, 16_{4}, 5_{2}, 4_{2}, 6_{2}\right]\right.$,
$G_{13}\left[0_{0}, 10_{2}, 0_{1}, 9_{2}, 7_{1}, 10_{4}, 2_{1}, 5_{3}, 2_{3}, 7_{2}\right], G_{13}\left[7_{0}, 0_{1}, 4_{4}, 14_{1}, 2_{0}, 15_{1}, 1_{2}, 4_{1}, 1_{1}, 11_{0}\right]$,
$G_{13}\left[0_{0}, 1_{0}, 8_{0}, 8_{1}, 3_{1}, 5_{0}, 2_{1}, 2_{2}, 11_{0}, 3_{0}\right], G_{13}\left[0_{0}, 2_{1}, 14_{0}, 0_{2}, 11_{2}, 3_{1}, 8_{2}, 0_{3}, 2_{0}, 1_{2}\right]$,
$G_{13}\left[0_{0}, 4_{2}, 7_{0}, 1_{3}, 8_{1}, 6_{2}, 3_{3}, 4_{1}, 0_{1}, 13_{2}\right], G_{13}\left[0_{0}, 0_{3}, 1_{0}, 7_{3}, 0_{4}, 3_{3}, 8_{3}, 3_{4}, 9_{0}, 4_{3}\right]$,
$G_{13}\left[0_{0}, 9_{3}, 0_{1}, 6_{2}, 3_{4}, 1_{4}, 6_{1}, 4_{4}, 1_{0}, 0_{4}\right], G_{13}\left[0_{0}, 4_{4}, 6_{0}, 2_{4}, 10_{4}, 6_{4}, 13_{4}, 8_{4}, 13_{0}, 5_{4}\right]$,
$G_{13}\left[0_{1}, 7_{2}, 0_{2}, 13_{2}, 7_{3}, 1_{3}, 12_{2}, 3_{4}, 2_{1}, 0_{3}\right], G_{13}\left[0_{1}, 2_{3}, 6_{1}, 13_{3}, 3_{4}, 4_{3}, 2_{4}, 5_{4}, 3_{1}, 11_{3}\right]$,
$\left.G_{13}\left[0_{1}, 6_{3}, 1_{2}, 10_{4}, 7_{3}, 9_{4}, 5_{3}, 4_{3}, 6_{2}, 6_{4}\right], G_{13}\left[0_{3}, 5_{4}, 12_{1}, 6_{4}, 12_{3}, 10_{2}, 11_{4}, 1_{2}, 13_{4}, 9_{2}\right]\right\}$.

For $i \in[2,13]$, a G_{i}-decomposition of K_{85} consists of the G_{i}-blocks in B_{i} under the action of the map $r_{s} \mapsto(r+1(\bmod 17))_{s}$.

Example 23. Let $V\left(K_{100}\right)=\left\{r_{s}: r \in \mathbb{Z}_{33}\right.$ and $\left.s \in \mathbb{Z}_{3}\right\} \cup\{\infty\}$, and let

$$
\begin{aligned}
B_{2}=\{ & G_{2}\left[13_{0}, 12_{1}, 23_{1}, 22_{1}, 13_{2}, 5_{2}, 30_{1}, 3_{0}, 9_{0}, 4_{1}\right], G_{2}\left[1_{1}, 18_{0}, 9_{0}, 32_{0}, 4_{2}, 13_{2}, 9_{2}, 29_{1}, 15_{2}, 12_{2}\right], \\
& G_{2}\left[5_{1}, 19_{1}, 17_{2}, 18_{0}, 14_{2}, 28_{2}, 13_{1}, 28_{1}, 15_{2}, 8_{2}\right], G_{2}\left[3_{1}, 17_{2}, 16_{0}, 5_{2}, 20_{0}, 22_{1}, 27_{1}, 10_{0}, 27_{2}, 17_{0}\right], \\
& G_{2}\left[13_{1}, 9_{1}, 8_{0}, 6_{1}, 3_{0}, 20_{0}, 22_{0}, 19_{0}, 30_{0}, 15_{1}\right], G_{2}\left[0_{0}, 4_{0}, 12_{0}, 5_{0}, 18_{0}, 6_{1}, 22_{1}, 25_{0}, 10_{0}, 0_{1}\right], \\
& G_{2}\left[0_{0}, 6_{1}, 15_{1}, 4_{0}, 12_{1}, 0_{2}, 16_{2}, 7_{0}, 2_{2}, 26_{1}\right], G_{2}\left[0_{0}, 22_{1}, 7_{2}, 1_{0}, 4_{2}, 10_{2}, 25_{2}, 6_{0}, 14_{2}, 12_{2}\right], \\
& \left.G_{2}\left[0_{0}, 11_{2}, 21_{2}, 11_{1}, 6_{2}, 7_{1}, 10_{1}, 4_{2}, 32_{1}, 24_{2}\right], G_{2}\left[0_{2}, 1_{2}, 19_{0}, 6_{2}, 14_{0}, 4_{2}, \infty, 11_{1}, 4_{1}, 27_{1}\right]\right\} .
\end{aligned}
$$

Then a G_{2}-decomposition of K_{100} consists of the G_{2}-blocks in B_{2} under the action of the map $\infty \mapsto \infty$ and $r_{s} \mapsto(r+1(\bmod 33))_{s}$.
Example 24. Let $V\left(K_{4 \times 5}\right)=\left\{r_{s}: r \in \mathbb{Z}_{5}\right.$ and $\left.s \in \mathbb{Z}_{4}\right\}$ with the obvious vertex partition and let

$$
\begin{aligned}
B_{2} & =\left\{G_{2}\left[0_{0}, 0_{1}, 0_{2}, 1_{0}, 3_{2}, 1_{1}, 0_{3}, 4_{0}, 2_{1}, 1_{2}\right], G_{2}\left[0_{0}, 4_{1}, 0_{3}, 3_{1}, 1_{3}, 4_{0}, 2_{2}, 2_{3}, 1_{2}, 4_{3}\right]\right\}, \\
B_{3} & =\left\{G_{3}\left[0_{0}, 0_{1}, 0_{2}, 1_{0}, 3_{2}, 1_{1}, 0_{3}, 2_{1}, 3_{0}, 1_{2}\right], G_{3}\left[0_{1}, 4_{2}, 0_{3}, 0_{2}, 2_{1}, 3_{3}, 0_{0}, 4_{3}, 2_{0}, 2_{3}\right]\right\}, \\
B_{4} & =\left\{G_{4}\left[0_{0}, 0_{1}, 0_{2}, 1_{0}, 3_{2}, 0_{3}, 1_{1}, 1_{3}, 3_{0}, 1_{2}\right], G_{4}\left[0_{1}, 3_{3}, 2_{2}, 3_{1}, 4_{0}, 0_{3}, 0_{0}, 1_{1}, 2_{3}, 3_{2}\right]\right\}, \\
B_{5} & =\left\{G_{5}\left[0_{0}, 0_{1}, 0_{2}, 1_{0}, 2_{1}, 0_{3}, 3_{1}, 2_{3}, 3_{0}, 1_{2}\right], G_{5}\left[0_{0}, 4_{1}, 2_{2}, 1_{3}, 1_{2}, 2_{1}, 4_{2}, 2_{3}, 4_{0}, 0_{3}\right]\right\}, \\
B_{6} & =\left\{G_{6}\left[1_{1}, 0_{0}, 0_{1}, 0_{2}, 1_{0}, 2_{2}, 0_{3}, 3_{2}, 4_{1}, 2_{0}\right], G_{6}\left[3_{3}, 0_{0}, 2_{3}, 3_{2}, 4_{3}, 4_{0}, 0_{3}, 2_{1}, 3_{1}\right]\right\}, \\
B_{7} & =\left\{G_{7}\left[0_{3}, 2_{0}, 0_{1}, 0_{2}, 0_{0}, 1_{1}, 4_{0}, 1_{3}, 2_{2}\right], G_{7}\left[3_{3}, 0_{1}, 2_{2}, 4_{3}, 0_{0}, 3_{2}, 4_{1}, 0_{3}, 4_{2}, 3_{1}\right]\right\}, \\
B_{8} & =\left\{G_{8}\left[0_{2}, 0_{1}, 2_{0}, 3_{2}, 1_{3}, 1_{0}, 0_{3}, 4_{0}, 1_{1}, 0_{0}\right], G_{8}\left[3_{3}, 2_{2}, 1_{1}, 0_{2}, 4_{3}, 2_{1}, 0_{3}, 0_{1}, 3_{2}, 0_{0}\right]\right\}, \\
B_{9} & =\left\{G_{9}\left[0_{2}, 0_{1}, 1_{0}, 2_{2}, 4_{1}, 2_{0}, 0_{3}, 3_{2}, 1_{1}, 0_{0}\right], G_{9}\left[0_{3}, 3_{1}, 3_{3}, 2_{0}, 1_{2}, 2_{1}, 1_{3}, 0_{2}, 4_{3}, 0_{0}\right]\right\}, \\
B_{10} & =\left\{G_{10}\left[1_{0}, 0_{1}, 0_{0}, 0_{2}, 2_{0}, 3_{2}, 1_{1}, 2_{2}, 0_{3}, 3_{1}\right], G_{10}\left[2_{3}, 3_{1}, 0_{0}, 1_{3}, 2_{0}, 1_{2}, 0_{3}, 4_{1}, 4_{3}, 2_{2}\right]\right\}, \\
B_{11} & =\left\{G_{11}\left[4_{1}, 2_{0}, 0_{2}, 0_{0}, 0_{1}, 1_{0}, 2_{2}, 1_{1}, 4_{2}, 0_{3}\right], G_{11}\left[4_{1}, 1_{2}, 1_{3}, 0_{0}, 4_{2}, 3_{3}, 1_{0}, 0_{3}, 2_{1}, 4_{3}\right]\right\}, \\
B_{12} & =\left\{G_{12}\left[0_{0}, 0_{1}, 1_{0}, 3_{1}, 2_{2}, 1_{1}, 4_{2}, 0_{3}, 2_{0}, 0_{2}\right], G_{12}\left[0_{0}, 3_{1}, 4_{3}, 4_{1}, 1_{2}, 0_{3}, 3_{2}, 3_{3}, 4_{0}, 1_{3}\right]\right\}, \\
B_{13} & =\left\{G_{13}\left[0_{0}, 0_{1}, 1_{0}, 3_{1}, 0_{3}, 1_{1}, 2_{2}, 1_{3}, 2_{0}, 0_{2}\right], G_{13}\left[0_{0}, 3_{1}, 3_{3}, 2_{1}, 4_{2}, 1_{3}, 1_{0}, 0_{2}, 0_{3}, 2_{2}\right]\right\} .
\end{aligned}
$$

For $i \in[2,13]$, a G_{i}-decomposition of $K_{4 \times 5}$ consists of the G_{i}-blocks in B_{i} under the action of the map $r_{s} \mapsto(r+1(\bmod 5))_{s}$.

Example 25. Let $V\left(K_{3 \times 15}\right)=\left\{r_{s}: r \in \mathbb{Z}_{15}\right.$ and $\left.s \in \mathbb{Z}_{3}\right\}$ with the obvious vertex partition and let

$$
\begin{aligned}
B_{2}=\{ & G_{2}\left[0_{0}, 0_{1}, 0_{2}, 1_{0}, 3_{2}, 6_{0}, 8_{1}, 4_{2}, 2_{1}, 1_{2}\right], G_{2}\left[0_{0}, 3_{2}, 5_{1}, 8_{0}, 3_{1}, 4_{0}, 12_{2}, 7_{1}, 13_{2}, 6_{1}\right], \\
& \left.G_{2}\left[0_{1}, 3_{2}, 8_{0}, 1_{1}, 7_{0}, 5_{1}, 13_{2}, 9_{0}, 5_{2}, 11_{0}\right]\right\}, \\
B_{3}=\{ & \left\{G_{3}\left[0_{0}, 0_{1}, 0_{2}, 1_{0}, 3_{1}, 5_{2}, 8_{0}, 2_{1}, 3_{0}, 1_{2}\right], G_{3}\left[0_{0}, 3_{1}, 6_{2}, 1_{0}, 13_{1}, 12_{2}, 2_{0}, 7_{1}, 3_{0}, 7_{2}\right],\right. \\
& \left.G_{3}\left[0_{0}, 13_{1}, 8_{2}, 0_{1}, 12_{2}, 9_{0}, 1_{1}, 7_{2}, 2_{1}, 11_{2}\right]\right\}, \\
B_{4}=\{ & G_{4}\left[0_{2}, 0_{1}, 11_{0}, 14_{2}, 13_{0}, 6_{1}, 14_{0}, 1_{1}, 7_{2}, 9_{0}\right], G_{4}\left[0_{0}, 0_{1}, 2_{2}, 2_{0}, 1_{1}, 12_{2}, 3_{1}, 0_{2}, 6_{0}, 5_{2}\right], \\
& \left.G_{4}\left[0_{0}, 11_{2}, 1_{1}, 3_{0}, 12_{1}, 10_{2}, 6_{1}, 1_{0}, 13_{2}, 10_{1}\right]\right\}, \\
B_{5}= & \left\{G_{5}\left[0_{0}, 0_{1}, 0_{2}, 1_{0}, 2_{1}, 5_{2}, 3_{1}, 7_{2}, 3_{0}, 1_{2}\right], G_{5}\left[0_{0}, 3_{1}, 9_{2}, 1_{0}, 12_{1}, 6_{2}, 13_{1}, 8_{2}, 3_{0}, 10_{2}\right],\right. \\
& \left.G_{5}\left[0_{1}, 13_{2}, 1_{0}, 7_{2}, 8_{1}, 0_{0}, 1_{1}, 4_{0}, 9_{1}, 2_{0}\right]\right\}, \\
B_{6}=\{ & \left\{G_{6}\left[1_{1}, 0_{0}, 0_{1}, 0_{2}, 1_{0}, 2_{2}, 7_{0}, 3_{2}, 4_{1}, 2_{0}\right], G_{6}\left[4_{1}, 0_{0}, 3_{1}, 5_{2}, 1_{0}, 7_{2}, 10_{0}, 4_{2}, 0_{1}, 8_{0}\right],\right. \\
& \left.G_{6}\left[11_{2}, 0_{1}, 13_{2}, 6_{0}, 14_{2}, 2_{1}, 12_{2}, 7_{1}, 14_{0}, 5_{1}\right]\right\}, \\
B_{7}=\{ & G_{7}\left[6_{1}, 2_{0}, 0_{1}, 0_{2}, 0_{0}, 1_{1}, 4_{0}, 7_{1}, 1_{0}, 2_{2}\right], G_{7}\left[3_{0}, 6_{2}, 5_{1}, 2_{2}, 0_{0}, 7_{1}, 0_{2}, 12_{1}, 4_{0}, 10_{2}\right], \\
& \left.G_{7}\left[6_{0}, 1_{2}, 9_{1}, 11_{2}, 0_{0}, 10_{1}, 1_{2}, 10_{0}, 6_{1}, 0_{2}\right]\right\}, \\
B_{8}=\{ & G_{8}\left[0_{2}, 0_{1}, 2_{0}, 4_{1}, 6_{2}, 1_{0}, 2_{2}, 4_{0}, 1_{1}, 0_{0}\right], G_{8}\left[4_{2}, 3_{1}, 8_{0}, 0_{1}, 8_{2}, 1_{0}, 7_{2}, 11_{0}, 4_{1}, 0_{0}\right], \\
& \left.G_{8}\left[9_{0}, 4_{2}, 1_{1}, 7_{2}, 12_{1}, 2_{2}, 8_{1}, 3_{0}, 12_{2}, 0_{1}\right]\right\},
\end{aligned}
$$

```
\(B_{9}=\left\{G_{9}\left[0_{2}, 0_{1}, 1_{2}, 3_{0}, 5_{1}, 1_{0}, 7_{2}, 4_{0}, 1_{1}, 0_{0}\right], G_{9}\left[1_{2}, 3_{1}, 0_{2}, 10_{0}, 14_{2}, 7_{0}, 6_{1}, 13_{0}, 5_{1}, 0_{0}\right]\right.\),
        \(\left.G_{9}\left[10_{2}, 6_{1}, 13_{2}, 2_{1}, 6_{0}, 0_{1}, 14_{2}, 8_{1}, 11_{2}, 0_{0}\right]\right\}\),
\(B_{10}=\left\{G_{10}\left[1_{0}, 0_{1}, 0_{0}, 0_{2}, 2_{0}, 3_{2}, 1_{1}, 3_{0}, 6_{2}, 5_{1}\right], G_{10}\left[6_{0}, 3_{1}, 0_{0}, 6_{2}, 0_{1}, 13_{2}, 5_{1}, 10_{0}, 9_{2}, 2_{1}\right]\right.\),
        \(\left.G_{10}\left[5_{2}, 8_{1}, 0_{0}, 12_{2}, 4_{0}, 10_{1}, 9_{2}, 4_{1}, 0_{2}, 10_{0}\right]\right\}\),
\(B_{11}=\left\{G_{11}\left[4_{1}, 2_{0}, 0_{2}, 0_{0}, 0_{1}, 1_{0}, 2_{2}, 1_{1}, 4_{2}, 7_{0}\right], G_{11}\left[10_{2}, 4_{0}, 3_{2}, 0_{0}, 4_{1}, 6_{0}, 0_{2}, 5_{1}, 9_{2}, 2_{1}\right]\right.\),
        \(\left.G_{11}\left[2_{2}, 11_{1}, 8_{2}, 0_{0}, 6_{1}, 10_{0}, 6_{2}, 10_{1}, 3_{0}, 12_{1}\right]\right\}\),
\(B_{12}=\left\{G_{12}\left[0_{0}, 0_{1}, 1_{0}, 3_{1}, 2_{2}, 1_{1}, 4_{0}, 6_{2}, 2_{1}, 0_{2}\right], G_{12}\left[0_{0}, 3_{1}, 0_{2}, 4_{1}, 8_{0}, 3_{2}, 9_{1}, 14_{2}, 1_{0}, 5_{2}\right]\right.\),
        \(\left.G_{12}\left[0_{1}, 8_{2}, 14_{0}, 6_{1}, 13_{2}, 5_{0}, 11_{2}, 0_{0}, 5_{1}, 11_{0}\right]\right\}\),
\(B_{13}=\left\{G_{13}\left[0_{0}, 0_{1}, 1_{0}, 6_{1}, 4_{0}, 1_{1}, 2_{2}, 10_{0}, 2_{1}, 0_{2}\right], G_{13}\left[0_{0}, 3_{1}, 0_{2}, 2_{0}, 6_{2}, 4_{1}, 9_{0}, 14_{2}, 3_{0}, 2_{2}\right]\right.\),
        \(\left.G_{13}\left[0_{1}, 3_{2}, 9_{1}, 0_{2}, 7_{1}, 11_{2}, 1_{0}, 10_{1}, 2_{2}, 9_{0}\right]\right\}\).
```

For $i \in[2,13]$, a G_{i}-decomposition of $K_{3 \times 15}$ consists of the G_{i}-blocks in B_{i} under the action of the map $r_{s} \mapsto(r+1 \bmod 15)_{s}$.
Example 26. Let $V\left(K_{5 \times 15}\right)=\left\{r_{s}: r \in \mathbb{Z}_{15}\right.$ and $\left.s \in \mathbb{Z}_{5}\right\}$ with the obvious vertex partition. Let

```
B2}={\mp@subsup{G}{2}{[}[\mp@subsup{1}{4}{},\mp@subsup{4}{1}{},\mp@subsup{4}{3}{},1\mp@subsup{4}{0}{},\mp@subsup{9}{1}{},1\mp@subsup{4}{2}{},1\mp@subsup{2}{0}{},\mp@subsup{9}{3}{},\mp@subsup{8}{2}{},\mp@subsup{3}{0}{}],\mp@subsup{G}{2}{}[\mp@subsup{6}{4}{},\mp@subsup{6}{2}{},1\mp@subsup{0}{3}{},\mp@subsup{6}{1}{},1\mp@subsup{0}{0}{},\mp@subsup{1}{4}{},\mp@subsup{9}{1}{},\mp@subsup{5}{0}{},\mp@subsup{7}{4}{},\mp@subsup{7}{0}{}]
```



```
    G2[10},\mp@subsup{4}{3}{},\mp@subsup{6}{4}{},1\mp@subsup{4}{3}{},1\mp@subsup{3}{4}{},1\mp@subsup{2}{2}{},\mp@subsup{3}{1}{},\mp@subsup{0}{3}{},\mp@subsup{0}{4}{},1\mp@subsup{1}{2}{}],\mp@subsup{G}{2}{}[00,\mp@subsup{0}{1}{},\mp@subsup{0}{2}{},\mp@subsup{2}{0}{},\mp@subsup{4}{1}{},\mp@subsup{2}{2}{},\mp@subsup{0}{3}{},\mp@subsup{7}{0}{},\mp@subsup{5}{1}{},\mp@subsup{4}{2}{}]
```



```
    G2[0}\mp@subsup{\mp@code{1}}{1}{},\mp@subsup{8}{2}{},\mp@subsup{3}{4}{},1\mp@subsup{4}{0}{},\mp@subsup{8}{4}{},\mp@subsup{2}{1}{},1\mp@subsup{4}{2}{},\mp@subsup{2}{4}{},\mp@subsup{6}{2}{},1\mp@subsup{3}{4}{}],\mp@subsup{G}{2}{}[0\mp@subsup{0}{3}{},54,1\mp@subsup{3}{0}{},\mp@subsup{5}{3}{},1\mp@subsup{2}{1}{},1\mp@subsup{3}{3}{},\mp@subsup{6}{4}{},\mp@subsup{9}{0}{},1\mp@subsup{4}{4}{},\mp@subsup{6}{2}{}]}
```



```
        G3[0
B4}={\mp@subsup{G}{4}{}[84,\mp@subsup{3}{3}{},\mp@subsup{9}{2}{},\mp@subsup{7}{1}{},\mp@subsup{8}{0}{},1\mp@subsup{1}{3}{},1\mp@subsup{4}{1}{},1\mp@subsup{3}{2}{},\mp@subsup{5}{3}{},\mp@subsup{6}{0}{}],\mp@subsup{G}{4}{}[1\mp@subsup{2}{0}{},1\mp@subsup{3}{1}{},\mp@subsup{9}{4}{},\mp@subsup{6}{0}{},1\mp@subsup{4}{3}{},\mp@subsup{0}{1}{},\mp@subsup{1}{4}{},\mp@subsup{6}{2}{},1\mp@subsup{4}{1}{},\mp@subsup{4}{2}{}]
```



```
B5}={\mp@subsup{G}{5}{}[\mp@subsup{0}{1}{},1\mp@subsup{3}{0}{},\mp@subsup{5}{3}{},1\mp@subsup{4}{4}{},1\mp@subsup{3}{2}{},\mp@subsup{3}{1}{},\mp@subsup{2}{3}{},\mp@subsup{9}{1}{},\mp@subsup{8}{0}{},1\mp@subsup{0}{3}{}],\mp@subsup{G}{5}{}[30,91,1\mp@subsup{3}{4}{},1\mp@subsup{0}{2}{},\mp@subsup{1}{4}{},\mp@subsup{4}{1}{},\mp@subsup{4}{4}{},1\mp@subsup{1}{2}{},\mp@subsup{5}{3}{},\mp@subsup{9}{2}{}]
```



```
B6}={\mp@subsup{G}{6}{}[1\mp@subsup{0}{0}{},\mp@subsup{5}{3}{},\mp@subsup{7}{1}{},\mp@subsup{3}{0}{},1\mp@subsup{0}{1}{},\mp@subsup{5}{2}{},\mp@subsup{8}{4}{},1\mp@subsup{0}{3}{},\mp@subsup{6}{2}{},1\mp@subsup{4}{3}{}],\mp@subsup{G}{6}{}[32,1\mp@subsup{4}{0}{},1\mp@subsup{2}{2}{},1\mp@subsup{4}{1}{},1\mp@subsup{3}{0}{},5\mp@subsup{5}{3}{},1\mp@subsup{1}{4}{},\mp@subsup{3}{3}{},1\mp@subsup{3}{1}{},1\mp@subsup{0}{3}{}]
```



```
        G6[12, 0},\mp@subsup{0}{2}{},\mp@subsup{0}{3}{},\mp@subsup{1}{0}{},\mp@subsup{2}{3}{},\mp@subsup{7}{4}{},\mp@subsup{7}{3}{},\mp@subsup{4}{0}{},\mp@subsup{6}{4}{}],\mp@subsup{G}{6}{}[1\mp@subsup{2}{2}{},\mp@subsup{0}{0}{},\mp@subsup{6}{2}{},\mp@subsup{4}{4}{},\mp@subsup{3}{0}{},\mp@subsup{8}{4}{},\mp@subsup{6}{1}{},1\mp@subsup{2}{4}{},\mp@subsup{1}{3}{},1\mp@subsup{0}{1}{}]
        G6[74, 01, 4 4, 14, 60, 0}\mp@subsup{\mp@code{3}}{3}{},\mp@subsup{5}{2}{},\mp@subsup{5}{4}{},\mp@subsup{5}{1}{},1\mp@subsup{4}{2}{}],\mp@subsup{G}{6}{}[\mp@subsup{9}{4}{},\mp@subsup{0}{3}{},\mp@subsup{2}{4}{},\mp@subsup{7}{1}{},\mp@subsup{9}{3}{},1\mp@subsup{2}{0}{},\mp@subsup{5}{4}{},\mp@subsup{0}{1}{},\mp@subsup{1}{3}{},1\mp@subsup{3}{1}{}]}
B7 ={G7[1\mp@subsup{1}{0}{},1\mp@subsup{4}{2}{},\mp@subsup{2}{1}{},\mp@subsup{9}{2}{},\mp@subsup{6}{4}{},\mp@subsup{9}{1}{},\mp@subsup{9}{3}{},\mp@subsup{7}{2}{},\mp@subsup{5}{1}{},\mp@subsup{1}{3}{}],\mp@subsup{G}{7}{}[\mp@subsup{7}{2}{},\mp@subsup{7}{3}{},1\mp@subsup{2}{4}{},\mp@subsup{1}{2}{},\mp@subsup{6}{0}{},\mp@subsup{6}{2}{},1\mp@subsup{2}{1}{},1\mp@subsup{1}{2}{},\mp@subsup{6}{3}{},\mp@subsup{6}{4}{}],
```


$$
\begin{aligned}
& B_{8}=\left\{G_{8}\left[11_{0}, 1_{3}, 12_{2}, 1_{1}, 13_{4}, 14_{2}, 9_{3}, 10_{1}, 4_{0}, 2_{4}\right], G_{8}\left[10_{3}, 7_{0}, 4_{4}, 10_{0}, 12_{4}, 8_{1}, 0_{4}, 11_{0}, 4_{1}, 3_{4}\right],\right. \\
& G_{8}\left[1_{3}, 1_{1}, 7_{2}, 6_{0}, 4_{3}, 10_{4}, 4_{1}, 3_{2}, 14_{4}, 8_{2}\right], G_{8}\left[1_{2}, 0_{1}, 1_{3}, 10_{1}, 8_{0}, 13_{1}, 6_{0}, 0_{3}, 2_{2}, 4_{3}\right] \text {, } \\
& G_{8}\left[11_{0}, 12_{1}, 6_{2}, 2_{1}, 0_{4}, 11_{2}, 11_{3}, 5_{2}, 0_{0}, 8_{3}\right], G_{8}\left[2_{2}, 0_{1}, 4_{0}, 13_{1}, 5_{3}, 3_{0}, 10_{2}, 6_{0}, 3_{1}, 0_{0}\right] \text {, } \\
& G_{8}\left[10_{2}, 10_{1}, 5_{3}, 4_{0}, 12_{4}, 12_{0}, 8_{3}, 13_{0}, 9_{2}, 0_{0}\right], G_{8}\left[6_{3}, 12_{2}, 2_{1}, 10_{2}, 12_{4}, 1_{1}, 11_{4}, 3_{1}, 0_{3}, 0_{0}\right] \text {, } \\
& \left.G_{8}\left[2_{4}, 5_{2}, 3_{4}, 6_{3}, 10_{4}, 2_{2}, 5_{4}, 10_{3}, 13_{2}, 0_{1}\right], G_{8}\left[9_{4}, 7_{3}, 10_{4}, 0_{0}, 7_{4}, 11_{3}, 3_{4}, 2_{1}, 5_{3}, 0_{2}\right]\right\} \text {, } \\
& B_{9}=\left\{G_{9}\left[3_{1}, 5_{0}, 0_{1}, 6_{4}, 6_{1}, 2_{4}, 1_{3}, 8_{4}, 9_{2}, 10_{3}\right], G_{9}\left[3_{3}, 11_{0}, 14_{1}, 4_{2}, 1_{1}, 8_{2}, 7_{3}, 3_{4}, 1_{3}, 11_{2}\right]\right. \text {, } \\
& G_{9}\left[13_{0}, 2_{2}, 13_{1}, 3_{3}, 0_{0}, 9_{3}, 8_{1}, 1_{3}, 2_{0}, 13_{4}\right], G_{9}\left[3_{0}, 13_{2}, 3_{1}, 5_{3}, 5_{0}, 14_{2}, 12_{1}, 11_{2}, 5_{1}, 2_{4}\right] \text {, } \\
& G_{9}\left[4_{2}, 6_{1}, 10_{3}, 13_{4}, 11_{0}, 6_{3}, 12_{4}, 2_{2}, 5_{0}, 11_{4}\right], G_{9}\left[1_{2}, 0_{1}, 1_{0}, 13_{3}, 4_{1}, 2_{0}, 7_{4}, 14_{3}, 1_{1}, 0_{0}\right] \text {, } \\
& G_{9}\left[0_{2}, 2_{4}, 10_{1}, 9_{3}, 14_{4}, 10_{0}, 14_{3}, 11_{4}, 11_{2}, 0_{1}\right], G_{9}\left[13_{4}, 3_{3}, 1_{4}, 6_{0}, 9_{4}, 4_{2}, 10_{3}, 10_{2}, 3_{4}, 0_{2}\right] \text {, } \\
& \left.G_{9}\left[13_{2}, 4_{1}, 8_{0}, 1_{3}, 7_{2}, 5_{0}, 11_{3}, 0_{4}, 5_{1}, 0_{0}\right], G_{9}\left[3_{2}, 6_{1}, 9_{0}, 3_{4}, 2_{2}, 11_{0}, 13_{3}, 7_{4}, 9_{1}, 0_{0}\right]\right\} \text {, } \\
& B_{10}=\left\{G_{10}\left[11_{2}, 4_{1}, 6_{0}, 2_{4}, 12_{3}, 13_{0}, 9_{1}, 2_{2}, 4_{4}, 0_{0}\right], G_{10}\left[8_{2}, 11_{1}, 4_{3}, 7_{2}, 7_{1}, 1_{4}, 11_{2}, 2_{3}, 10_{2}, 2_{4}\right]\right. \text {, } \\
& G_{10}\left[10_{1}, 0_{2}, 12_{4}, 14_{0}, 6_{2}, 2_{0}, 10_{3}, 5_{1}, 7_{3}, 11_{4}\right], G_{10}\left[2_{0}, 8_{4}, 2_{2}, 5_{3}, 9_{2}, 8_{1}, 6_{3}, 3_{1}, 6_{0}, 5_{4}\right] \text {, } \\
& G_{10}\left[9_{1}, 9_{3}, 0_{0}, 10_{4}, 9_{2}, 13_{4}, 7_{3}, 4_{0}, 12_{4}, 1_{3}\right], G_{10}\left[5_{1}, 1_{3}, 0_{1}, 10_{4}, 3_{0}, 4_{3}, 3_{4}, 13_{1}, 7_{3}, 5_{4}\right] \text {, } \\
& G_{10}\left[0_{2}, 2_{1}, 0_{0}, 12_{2}, 2_{0}, 2_{3}, 7_{1}, 1_{2}, 11_{4}, 14_{3}\right], G_{10}\left[14_{3}, 5_{2}, 0_{0}, 5_{4}, 5_{0}, 7_{4}, 8_{2}, 6_{4}, 11_{3}, 9_{0}\right] \text {, } \\
& \left.G_{10}\left[11_{1}, 8_{4}, 7_{0}, 12_{1}, 11_{4}, 0_{2}, 5_{3}, 5_{2}, 3_{1}, 0_{3}\right], G_{10}\left[1_{0}, 0_{1}, 0_{0}, 6_{2}, 6_{0}, 0_{2}, 1_{1}, 7_{0}, 2_{3}, 11_{1}\right]\right\} \text {, } \\
& B_{11}=\left\{G_{11}\left[5_{4}, 4_{0}, 4_{4}, 9_{0}, 6_{3}, 2_{2}, 12_{3}, 5_{2}, 12_{4}, 14_{1}\right], G_{11}\left[5_{3}, 0_{4}, 4_{2}, 14_{4}, 14_{1}, 6_{4}, 3_{0}, 1_{2}, 7_{3}, 6_{1}\right]\right. \text {, } \\
& G_{11}\left[5{ }_{3}, 14_{4}, 13_{1}, 5_{0}, 12_{4}, 6_{0}, 10_{4}, 3_{3}, 2_{0}, 11_{2}\right], G_{11}\left[8,0_{2}, 9_{0}, 2_{2}, 8_{4}, 8_{2}, 12_{4}, 10_{3}, 1_{0}, 4_{2}\right] \text {, } \\
& G_{11}\left[10_{4}, 9_{2}, 9_{0}, 9_{1}, 11_{4}, 6_{3}, 14_{1}, 8_{2}, 6_{1}, 11_{3}\right], G_{11}\left[6_{1}, 1_{0}, 2_{2}, 0_{0}, 1_{1}, 2_{0}, 6_{2}, 2_{1}, 8_{2}, 11_{0}\right] \text {, } \\
& G_{11}\left[10_{3}, 4_{0}, 0_{3}, 0_{0}, 6_{1}, 8_{0}, 3_{3}, 7_{1}, 7_{3}, 5_{2}\right], G_{11}\left[10_{4}, 14_{0}, 4_{3}, 0_{0}, 9_{1}, 12_{0}, 6_{4}, 11_{1}, 4_{4}, 1_{1}\right] \text {, } \\
& \left.G_{11}\left[3_{2}, 5_{4}, 8_{3}, 0_{0}, 5_{2}, 8_{1}, 6_{2}, 7_{3}, 1_{1}, 3_{3}\right], G_{11}\left[1_{4}, 5_{3}, 11_{4}, 0_{1}, 8_{3}, 4_{1}, 7_{3}, 8_{2}, 5_{4}, 11_{2}\right]\right\} \text {, } \\
& B_{12}=\left\{G_{12}\left[14_{4}, 8_{1}, 3_{2}, 2_{4}, 14_{0}, 1_{2}, 6_{0}, 9_{1}, 2_{3}, 5_{2}\right], G_{12}\left[9_{0}, 4_{1}, 7_{4}, 13_{1}, 2_{0}, 2_{3}, 11_{0}, 9_{4}, 2_{2}, 5_{4}\right]\right. \text {, } \\
& G_{12}\left[4_{4}, 10_{3}, 7_{0}, 6_{1}, 10_{2}, 5_{3}, 5_{4}, 8_{2}, 4_{3}, 5_{0}\right], G_{12}\left[0_{3}, 4_{1}, 4_{2}, 13_{3}, 12_{0}, 2_{2}, 7_{4}, 12_{2}, 14_{3}, 11_{2}\right] \text {, } \\
& G_{12}\left[5_{1}, 2_{4}, 13_{2}, 3_{3}, 8_{1}, 3_{0}, 12_{4}, 13_{1}, 11_{2}, 13_{0}\right], G_{12}\left[0_{0}, 0_{1}, 2_{0}, 14_{1}, 10_{2}, 1_{1}, 0_{2}, 8_{3}, 1_{0}, 1_{2}\right] \text {, } \\
& G_{12}\left[0_{3}, 2_{4}, 7_{1}, 9_{4}, 14_{3}, 11_{1}, 10_{3}, 12_{0}, 13_{4}, 13_{1}\right], G_{12}\left[0_{3}, 7_{4}, 7_{2}, 7_{3}, 13_{4}, 3_{0}, 11_{4}, 0_{2}, 6_{3}, 0_{1}\right] \text {, } \\
& \left.G_{12}\left[0_{0}, 4_{1}, 10_{0}, 3_{1}, 4_{3}, 6_{1}, 3_{3}, 1_{4}, 1_{0}, 12_{2}\right], G_{12}\left[0_{0}, 9_{2}, 3_{1}, 6_{2}, 8_{4}, 4_{3}, 1_{4}, 5_{3}, 10_{0}, 2_{4}\right]\right\}, \\
& B_{13}=\left\{G_{13}\left[4_{0}, 13_{3}, 7_{2}, 10_{3}, 6_{1}, 0_{3}, 8_{0}, 8_{1}, 5_{0}, 9_{2}\right], G_{13}\left[2_{4}, 13_{3}, 9_{4}, 7_{2}, 10_{1}, 12_{0}, 12_{3}, 6_{0}, 10_{4}, 14_{1}\right]\right. \text {, } \\
& G_{13}\left[14_{4}, 2_{2}, 11_{1}, 9_{4}, 14_{2}, 13_{1}, 1_{2}, 1_{1}, 8_{3}, 7_{0}\right], G_{13}\left[12_{3}, 13_{2}, 4_{1}, 4_{3}, 13_{4}, 9_{1}, 14_{3}, 6_{0}, 6_{2}, 2_{4}\right] \text {, } \\
& G_{13}\left[13_{4}, 5_{2}, 9_{0}, 11_{4}, 10_{3}, 4_{1}, 6_{2}, 8_{3}, 0_{2}, 2_{0}\right], G_{13}\left[0_{0}, 2_{1}, 3_{0}, 0_{1}, 1_{3}, 4_{1}, 11_{2}, 8_{3}, 4_{0}, 6_{2}\right] \text {, } \\
& G_{13}\left[0_{0}, 14_{3}, 12_{4}, 6_{0}, 5_{4}, 10_{3}, 14_{2}, 14_{4}, 0_{2}, 1_{4}\right], G_{13}\left[0_{1}, 11_{2}, 13_{1}, 6_{2}, 4_{3}, 14_{2}, 5_{4}, 13_{3}, 4_{4}, 11_{3}\right] \text {, } \\
& \left.G_{13}\left[0_{0}, 5_{1}, 9_{0}, 2_{1}, 1_{4}, 6_{1}, 1_{2}, 4_{4}, 1_{0}, 3_{3}\right], G_{13}\left[0_{0}, 7_{1}, 12_{0}, 6_{2}, 0_{4}, 9_{1}, 6_{4}, 7_{3}, 2_{0}, 12_{4}\right]\right\} .
\end{aligned}
$$

For $i \in[2,13]$, a G_{i}-decomposition of $K_{5 \times 15}$ consists of the G_{i}-blocks in B_{i} under the action of the map $r_{s} \mapsto(r+1(\bmod 15))_{s}$.

Example 27. Let $V\left(K_{9,15}\right)=[0,8] \cup[9,23]$ with the obvious vertex partition. Let

$$
\begin{aligned}
B_{14}=\{ & G_{14}[8,18,2,20,5,14,4,17,7,23], G_{14}[20,3,11,4,12,6,9,0,17,8], \\
& G_{14}[9,5,13,1,19,2,17,6,22,7], G_{14}[0,10,1,15,4,13,3,16,2,11], \\
& G_{14}[0,14,2,12,7,16,5,11,6,15], G_{14}[0,18,3,9,8,22,1,16,6,23] \\
& G_{14}[1,18,4,21,7,20,0,19,5,23], G_{14}[2,13,6,10,4,22,3,19,8,21], \\
& \left.G_{14}[5,10,7,14,3,21,1,12,8,15]\right\} .
\end{aligned}
$$

Then a G_{14}-decomposition of $K_{9,15}$ consists of the G_{14}-blocks in B_{14}.

Example 28. Let $V\left(K_{15,15}\right)=\left\{r_{s}: r \in \mathbb{Z}_{15}, s \in \mathbb{Z}_{2}\right\}$ with the obvious vertex partition. Let $B_{14}=\left\{G_{14}\left[2_{0}, 14_{1}, 4_{0}, 8_{1}, 3_{0}, 10_{1}, 7_{0}, 9_{1}, 0_{0}, 0_{1}\right]\right\}$. Then a $G_{14^{-}}$ decomposition of $K_{15,15}$ consists of the G_{14}-blocks in B_{14} under the action of the map $r_{s} \mapsto(r+1(\bmod 15))_{s}$.

Example 29. Let $V\left(K_{25} \backslash K_{10}\right)=\mathbb{Z}_{25}$ with [0, 9] being the vertices in the hole. Let

$$
\begin{aligned}
B_{2}= & \left\{G_{2}[12,16,13,11,14,4,23,24,15,21], G_{2}[16,17,1,20,14,22,24,2,23,7],\right. \\
& G_{2}[14,18,7,21,22,5,13,10,23,3], G_{2}[2,14,10,4,12,20,24,5,16,15], \\
& G_{2}[16,18,20,9,23,13,19,0,21,2], G_{2}[15,20,17,6,22,3,10,24,13,4], \\
& G_{2}[0,10,11,1,13,15,18,5,14,12], G_{2}[0,14,16,3,19,18,21,4,11,17], \\
& G_{2}[0,15,22,1,24,11,19,2,12,23], G_{2}[1,10,15,3,17,21,24,6,12,18], \\
& G_{2}[2,13,17,4,19,10,16,9,22,20], G_{2}[3,21,13,9,17,12,22,7,11,20], \\
& G_{2}[5,12,19,1,23,8,17,10,21,11], G_{2}[8,14,21,5,23,6,11,18,17,19], \\
& G_{2}[10,20,7,13,8,12,15,9,14,6], G_{2}[15,19,6,16,23,18,22,8,24,7], \\
& \left.G_{2}[18,24,9,19,22,11,16,8,20,0]\right\} .
\end{aligned}
$$

Then a G_{2}-decomposition of $K_{25} \backslash K_{10}$ consists of the G_{2}-blocks in B_{2}.

Acknowledgements

U. Odabaşı acknowledges a grant from the Scientific and Technical Research Council of Turkey (TUBITAK, 2219-International Postdoctoral Research Fellowship Program) for a postdoctoral fellowship.
W. Wannasit acknowledges support from Chiang Mai University.

References

[1] P. Adams and D. Bryant, The spectrum problem for the Petersen graph, J. Graph Theory 22 (1996) 175-180.
https://doi.org/10.1002/(SICI)1097-0118(199606)22:2;175::AID-JGT8¿3.0.CO;2-K
[2] P. Adams, D. Bryant and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008) 373-410.
https://doi.org/10.1002/jcd. 20170
[3] P. Adams, D. Bryant and A. Khodkar, Uniform 3-factorisations of K_{10}, Congr. Numer. 127 (1997) 23-32.
[4] P. Adams, C. Chan, S.I. El-Zanati, E. Holdaway, U. Odabaşı and J. Ward, The spectrum problem for 3 of the cubic graphs of order 10, J. Combin. Math. Combin. Comput., to appear.
[5] P. Adams, S.I. El-Zanati and W. Wannasit, The spectrum problem for the cubic graphs of order 8, Ars Combin. 137 (2018) 345-354.
[6] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B 81 (2001) 77-99. https://doi.org/10.1006/jctb.2000.1996
[7] D. Bryant and S.I. El-Zanati, Graph decompositions, in: Handbook of Combinatorial Designs, C.J. Colbourn and J.H. Dinitz (Ed(s)), 2nd Ed. (Chapman \& Hall/CRC, Boca Raton, 2007) 477-485.
[8] D.E. Bryant and T.A. McCourt, Existence results for G-designs. http://wiki.smp.uq.edu.au/G-designs/
[9] J.E. Carter, Designs on Cubic Multigraphs, Ph.D. Thesis (McMaster University, Hamilton, 1989).
[10] C.J. Colbourn and J.H. Dinitz, Handbook of Combinatorial Designs (Chapman/CRC Press, Boca Raton, 2007).
[11] G. Ge, Group divisible designs, in: Handbook of Combinatorial Designs, C.J. Colbourn and J.H. Dinitz (Ed(s)), 2nd Ed. (Chapman \& Hall/CRC, Boca Raton, 2007) 255-260.
[12] R.K. Guy and L.W. Beineke, The coarseness of the complete graph, Canad. J. Math. 20 (1968) 888-894.
https://doi.org/10.4153/CJM-1968-085-6
[13] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961) 361-386. https://doi.org/10.1214/aoms/1177705047
[14] D. Hanson, A quick proof that $K_{10} \neq P+P+P$, Discrete Math. 101 (1992) 107-108. https://doi.org/10.1016/0012-365X(92)90595-7
[15] T.P. Kirkman, On a problem in combinatorics, Cambridge Dublin Math. J. 2 (1847) 191-204.
[16] M. Maheo, Strongly graceful graphs, Discrete Math. 29 (1980) 39-46. https://doi.org/10.1016/0012-365X(90)90285-P
[17] M. Meszka, R. Nedela, A. Rosa and M. Škoviera, Decompositions of complete graphs into circulants, Discrete Math. 339 (2016) 2471-2480.
https://doi.org/10.1016/j.disc.2016.04.009
[18] R.C. Read and R.J. Wilson, An Atlas of Graphs (Oxford University Press, Oxford, 1998).
[19] W. Wannasit and S.I. El-Zanati, On free α-labelings of cubic bipartite graphs, J. Combin. Math. Combin. Comput. 82 (2012) 269-293.
[20] W. Wannasit and S.I. El-Zanati, On cyclic G-designs where G is a cubic tripartite graph, Discrete Math. 312 (2012) 293-305.
https://doi.org/10.1016/j.disc.2011.09.017

