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Abstract

Guo [Outpaths in semicomplete multipartite digraphs, Discrete Appl.
Math. 95 (1999) 273–277] proposed the concept of the outpath in digraphs.
An outpath of a vertex x (an arc xy, respectively) in a digraph is a directed
path starting at x (an arc xy, respectively) such that x does not dominate
the end vertex of this directed path. A k-outpath is an outpath of length k.
The outpath is a generalization of the directed cycle. A c-partite tournament
is an orientation of a complete c-partite graph.

In this paper, we investigate outpaths of arcs in regular 3-partite tour-
naments. We prove that every arc of an r-regular 3-partite tournament has
2- (when r ≥ 1), 3- (when r ≥ 2), and 5-, 6-outpaths (when r ≥ 3). We
also give the structure of an r-regular 3-partite tournament D with r ≥ 2
that contains arcs which have no 4-outpaths. Based on these results, we
conjecture that for all k ∈ {1, 2, . . . , r − 1}, every arc of r-regular 3-partite
tournaments with r ≥ 2 has (3k−1)- and 3k-outpaths, and it has a (3k+1)-
outpath except an r-regular 3-partite tournament.

Keywords: multipartite tournament, regular 3-partite tournament, out-
paths.
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1. Introduction

Throughout the paper, we use the terminology and notation of [1]. The vertex
set and the arc set of a digraph D are denoted by V (D) and A(D), respectively.
A digraph D is said to be strongly connected, if for all x, y ∈ V (D), there is
a directed path from x to y. A digraph D is r-regular, if there is an integer r

such that d+(x) = d−(x) = r holds for every x ∈ V (D). A digraph obtained by
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replacing each edge of a complete c-partite graph with exactly one arc is called
a c-partite tournament or a multipartite tournament. If D is a multipartite
tournament and x ∈ V (D), we denote by V (x) the partite set of D to which x

belongs.
An l-outpath of an arc x1x2 in a digraphD is a directed path P = x1x2 · · ·xl+1

with length l starting at x1x2 such that x1 does not dominate the end vertex
xl+1 of this directed path P . Note that if D is a tournament, an l-outpath
P = x1x2 · · ·xl+1 of an arc x1x2 corresponds in fact to an (l + 1)-cycle C =
x1x2 · · ·xl+1x1 through x1x2, so the concept of the outpath is a generalization
of the directed cycle. If D is a multipartite tournament, then x1x2 · · ·xl+1 is an
l-outpath of the arc x1x2 if and only if xl+1 ∈ V (x1) or xl+1 → x1 holds.

There are lots of results in multipartite tournaments, see for example [5].
However, the results on 3-partite tournaments are still very few. In 1999, Guo
proposed the concept of the outpath in digraphs. At present, outpaths in multi-
partite tournaments have also been studied by some scholars, see for example [2,
3, 4, 7]. The earliest results are the following two theorems.

Theorem 1 (Guo). Let D be a strongly connected c-partite tournament with

c ≥ 3. Then every vertex v of D has a (k − 1)-outpath for each k ∈ {3, 4, . . . , c}.

Theorem 2 (Guo). Let D be a regular c-partite tournament with c ≥ 3. Then

every arc of D has a (k − 1)-outpath for each k ∈ {3, 4, . . . , c}.

As a generalization of Theorem 2, Cui and the first author proved in [3] that
every arc of a regular c-partite tournament D with c ≥ 5 has a (k − 1)-outpath
for each k ∈ {3, 4, . . . , |V (D)|}. In this paper, we investigate outpaths of arcs
in regular 3-partite tournaments. However, the following example will show that
there exists an infinite family of regular 3-partite tournaments D such that not
every arc of D has a k-outpath for all k ∈ {3, 4, . . . , |V (D)|}.

Example 3. Let D be an r-regular 3-partite tournament with r ≥ 2 and let
V1, V2, V3 be three partite sets of D satisfying that V1 → V2 → V3 → V1. (Note
that V1 → V2 → V3 → V1 was defined below firstly.) Then it is easy to check that
every arc of D has no (3k + 1)-outpaths for all k ∈ {1, 2, . . . , r − 1}.

In this paper, we prove that every arc of an r-regular 3-partite tournament
has 2- (when r ≥ 1), 3- (when r ≥ 2), and 5-, 6-outpaths (when r ≥ 3). We also
give a characterization of regular 3-partite tournaments with at least six vertices
whose arcs have no 4-outpaths. We prove that an r-regular 3-partite tournament
D with r ≥ 2 contains arcs which have no 4-outpaths if and only if D is the
digraph in Example 3. Based on the above results, we conjecture that for all
k ∈ {1, 2, . . . , r−1}, every arc of an r-regular 3-partite tournament D with r ≥ 2
has (3k − 1)- and 3k-outpaths, and every arc of D has a (3k + 1)-outpath unless
D is the digraph in Example 3.
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2. Preliminaries

Let D be a digraph. If xy is an arc of D, then we say x dominates y and write
x → y. More generally, if A and B are two disjoint subdigraphs of D such that
every vertex of A dominates every vertex of B, then we say that A dominates B

and denote it by A → B. Otherwise, we denote it by A 9 B. Let X be a subset
of V (D). We use |X| to stand for the number of the vertices of X. Let D′ be a
subdigraph or a vertex set of D. The outset N+

D′(x) of a vertex x is the set of
vertices of D′ dominated by x and the inset N−

D′(x) is the set of vertices of D′

dominating x. We call the numbers d+
D′(x) = |N+

D′(x)| and d−
D′(x) = |N−

D′(x)| the
out-degree and in-degree of x in D′, respectively. When D′ = D, we usually use
N+(x), N−(x), d+(x) and d−(x) instead of N+

D′(x), N
−

D′(x), d
+

D′(x) and d−
D′(x),

respectively.
The following three lemmas are important to prove our main results.

Lemma 3. If D is an r-regular 3-partite tournament with partite sets V1, V2, V3

and v is a vertex of D, then |V1| = |V2| = |V3| = r and d+(v) = d−(v) = r.

Lemma 4 (Xu, Li, Guo and Li). If D is an r-regular 3-partite tournament

with partite sets V1, V2, V3 and v is a vertex of V1, then d+
V2
(v) = d−

V3
(v) and

d−
V2
(v) = d+

V3
(v).

Lemma 5. Let D be an r-regular 3-partite tournament with r ≥ 2 and partite

sets V1, V2, V3. Let ab be an arc of D such that a ∈ V1 and b ∈ V2 and V3 9

a 9 V2. We divide V2 and V3 into two nonempty parts V +

2
, V −

2
and V +

3
, V −

3

respectively, such that V −

2
→ a → V +

2
and V −

3
→ a → V +

3
. Let V ′ = V +

2
∪ V +

3

and V ′′ = V −

2
∪ V −

3
. Then the following hold.

(1) N+(a) = V ′, N−(a) = V ′′ and |V ′| = |V ′′| = r.

(2) |V +

2
| = |V −

3
| and |V −

2
| = |V +

3
|.

(3) d+
V ′(y) = d−

V ′′(y) and d−
V ′(y) = d+

V ′′(y) for each vertex y ∈ V1.

Proof. Observe N+(a) = V ′ and N−(a) = V ′′. By Lemma 3, we have d+(a) =
d−(a) = r. Therefore, |V ′| = |V ′′| = r holds. This proves (1). By Lemma 3, we
get |V2| = |V +

2
|+ |V −

2
| = r, |V3| = |V +

3
|+ |V −

3
| = r and d+(a) = |V +

2
|+ |V +

3
| = r.

Therefore, we have |V −

2
| = |V +

3
| and |V +

2
| = |V −

3
|. So (2) is proved. For each

vertex y ∈ V1, by Lemma 3, we have d+
V ′′(y) + d−

V ′′(y) = |V ′′| = r, d+
V ′(y) +

d+
V ′′(y) = d+(y) = r and d−

V ′(y) + d−
V ′′(y) = d−(y) = r. So d−

V ′(y) = d+
V ′′(y) and

d+
V ′(y) = d−

V ′′(y). This completes the proof of (3).

3. Main Results

By Theorem 2, it is easy to get the following Theorem 6.
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Theorem 6. If D is an r-regular 3-partite tournament with r ≥ 1 and ab is an

arc of D, then ab has a 2-outpath.

Theorem 7. If D is an r-regular 3-partite tournament with r ≥ 2 and ab is an

arc of D, then ab has a 3-outpath.

Proof. Let V1, V2, V3 be three partite sets of D. By Lemma 3, we have |V1| =
|V2| = |V3| = r ≥ 2. Without loss of generality, we suppose a ∈ V1 and b ∈ V2.

Suppose first that V3 → a → V2. If V1 9 b, then there exists a vertex
y ∈ V1 − {a} such that b → y. By Lemma 4, there is a vertex x ∈ V3 such that
y → x. Then x → a and abyx is a 3-outpath of ab. Assume V1 → b. Then
b → V3. Let u ∈ V2 − {b}. Then a → u. By Lemma 4, there exists a vertex
x ∈ V3 such that u → x. Obviously, we also have b → x. By {b, u} → x and
Lemma 4, there exists a vertex y ∈ V1 − {a} such that x → y. Then y ∈ V (a)
and abxy is a 3-outpath of ab.

Suppose now that V3 9 a 9 V2. We divide the partite set V2 into two
nonempty parts V +

2
, V −

2
such that V −

2
→ a → V +

2
. By a → b and Lemma 4,

there exists a vertex x ∈ V3 such that b → x. If V −

2
9 x, then there is an arc xu

for some u ∈ V −

2
. Then u → a and abxu is a 3-outpath of ab. Assume V −

2
→ x.

By V −

2
∪ {b} → x and Lemma 4, there exists a vertex y ∈ V1 − {a} such that

x → y. Then y ∈ V (a) and abxy is a 3-outpath of ab.

Theorem 8. Let D be an r-regular 3-partite tournament with r ≥ 2 and partite

sets V1, V2, V3. If ab is an arc of D, then ab has no 4-outpaths if and only if

V1 → V2 → V3 → V1.

Proof. By Lemma 3, we have |V1| = |V2| = |V3| = r ≥ 2. Suppose, without loss
of generality, that a ∈ V1 and b ∈ V2. By Example 3, sufficiency is obvious.

Now, we prove the necessity. Suppose that ab has no 4-outpaths. We consider
the following two cases.

Case 1. V3 → a → V2. By a → b and Lemma 4, there exists a vertex x ∈ V3

such that b → x. If V2 9 x, then there is a vertex u ∈ V2 −{b} such that x → u.
By x → u and Lemma 4, there exists a vertex y ∈ V1 such that u → y. Obviously,
a → u and y 6= a. Then y ∈ V (a) and abxuy is a 4-outpath of ab, a contradiction.
So V2 → x and x → V1.

If V1 9 b, then there exists a vertex y ∈ V1 such that b → y. Obviously,
y 6= a and x → y. By b → y and Lemma 4, there is a vertex w ∈ V3 such that
y → w. Obviously, w 6= x and w → a. Then abxyw is a 4-outpath of ab, a
contradiction. So V1 → b and b → V3.

If (V2−{b}) 9 (V3−{x}), then there exists an arc x′u′ for some x′ ∈ V3−{x}
and u′ ∈ V2 − {b}. Obviously, b → x′ and u′ → x → a. Thus, abx′u′x is a 4-
outpath of ab, a contradiction. Therefore, we get (V2 −{b}) → (V3 −{x}). Since
b → V3 and V2 → x, we have V2 → V3. So V3 → V1 and V1 → V2 hold.



Outpaths of Arcs in Regular 3-Partite Tournaments 897

Case 2. V3 9 a 9 V2. In this case, we prove that ab always has a 4-
outpath, which contradicts our assumption. We divide the partite set V2 into
two nonempty parts V +

2
, V −

2
such that V −

2
→ a → V +

2
. Similarly, the partite set

V3 is also divided into two nonempty parts V +

3
, V −

3
such that V −

3
→ a → V +

3
.

Let V ′ = V +

2
∪ V +

3
and V ′′ = V −

2
∪ V −

3
. By Lemma 5(1), we have N+(a) = V ′

and N−(a) = V ′′.
If V +

3
9 b, then there is an arc bx for some x ∈ V +

3
. By b → x and Lemma

4, there exists a vertex y ∈ V1 such that x → y. Obviously, a → x and y 6= a.
By x ∈ V ′ and Lemma 5(3), there exists a vertex z ∈ V ′′ such that y → z. Then
z → a and abxyz is a 4-outpath of ab, a contradiction. So V +

3
→ b. By Lemma

4, there exists a vertex y ∈ V1 − {a} such that b → y. By a → b and Lemma 4,
there is a vertex v ∈ V3 such that b → v. It is easy to see that v ∈ V −

3
.

If y → v, then Lemma 4 implies that there is a vertex u ∈ V2 such that
v → u. Obviously, u 6= b. When u ∈ V −

2
, we get that u → a and abyvu is a

4-outpath of ab. When u ∈ V +

2
, we have a → u. By v → u and Lemma 4, there

exists a vertex y′ ∈ V1 (y′ may be equal to y) such that u → y′. Since a → u,
we get y′ 6= a. Then y′ ∈ V (a) and abvuy′ is a 4-outpath of ab, a contradiction.
Assume v → y. By b → y, b ∈ V ′ and Lemma 5(3), there exists a vertex z ∈ V ′′

such that y → z. Obviously, z 6= v and z → a. Then abvyz is a 4-outpath of ab,
a contradiction.

Therefore, we have shown that if ab has no 4-outpaths, then V1 → V2 →
V3 → V1, and the proof is complete.

Theorem 9. If D is an r-regular 3-partite tournament with r ≥ 3 and ab is an

arc of D, then ab has a 5-outpath and a 6-outpath.

Proof. Let V1, V2, V3 be three partite sets of D. By Lemma 3, we have |V1| =
|V2| = |V3| = r and d+(v) = d−(v) = r for each vertex v of D. Without loss of
generality, suppose a ∈ V1 and b ∈ V2. We distinguish the following two cases.

Case 1. V3 → a → V2. By a → b and Lemma 4, there exists a vertex x ∈ V3

such that b → x.

Case 1.1. (V2 − {b}) 9 x. By the hypothesis, there is a vertex u ∈ V2 − {b}
such that x → u. By Lemma 4, there is a vertex y ∈ V1 such that u → y. Since
a → V2, we have a → u and y 6= a. By a → u and Lemma 4, there exists a vertex
v ∈ V3 such that u → v. Obviously, v 6= x and v → a. Then abxuvy (when
v → y) or abxuyv (when y → v) is a 5-outpath of ab. We will prove that ab has
a 6-outpath.

Subcase 1.1.1. v → y. If (V3 − {x, v}) 9 y, then there exists a vertex
w ∈ V3 − {x, v} such that y → w. Thus, w → a and abxuvyw is a 6-outpath
of ab. Assume (V3 − {x, v}) → y. Note that {u, v} → y. We have N−(y) =
(V3 − {x}) ∪ {u} and N+(y) = (V2 − {u}) ∪ {x}. Let u′ ∈ V2 − {b, u}. Then
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y → u′. If (V1 − {a, y}) 9 u′, then there is an arc u′y′ for some y′ ∈ V1 − {a, y}.
Thus, y′ ∈ V (a) and ab has a 6-outpath abxuyu′y′. Assume (V1 − {a, y}) → u′.
Note {a, y} → u′. We get V1 → u′ and u′ → V3. Then u′ → v → a and abxuyu′v

is a 6-outpath of ab.

Subcase 1.1.2. y → v. If (V1 − {a, y}) 9 v, then there exists a vertex
y′ ∈ V1 − {a, y} such that v → y′. Thus, y′ ∈ V (a) and abxuyvy′ is a 6-
outpath of ab. Assume (V1 − {a, y}) → v. Note that {u, y} → v. We have
N−(v) = (V1−{a})∪{u} andN+(v) = {a}∪(V2−{u}). Let u′ ∈ V2−{b, u}. Then
v → u′. If (V3 − {x, v}) 9 u′, then there is an arc u′v′ for some v′ ∈ V3 − {x, v}.
Thus, v′ → a and ab has a 6-outpath abxuvu′v′. Assume (V3−{x, v}) → u′. Since
{a, v} → u′, we get N−(u′) = {a} ∪ (V3 − {x}) and N+(u′) = (V1 − {a}) ∪ {x}.
Then u′ → y and abxuvu′y is a 6-outpath of ab.

Case 1.2. (V2 − {b}) → x. In this case, we have V2 → x → V1 since b → x.

Subcase 1.2.1. (V1 − {a}) 9 b. By the hypothesis, there exists a vertex
y ∈ V1 − {a} such that b → y. By Lemma 4, there is a vertex w ∈ V3 − {x}
such that y → w. Obviously, we have x → y. Then Lemma 4 implies that
there is a vertex u ∈ V2 such that y → u. It is easy to see u 6= b and u → x.
Note {x,w} → a. Then abxyuw (when u → w) or abywux (when w → u) is a
5-outpath of ab. We will prove that ab has a 6-outpath. Let y′ ∈ V1 − {a, y}.
Then y′ ∈ V (a).

Suppose first that u → w. If w → y′, then abxyuwy′ is a 6-outpath of ab.
Assume y′ → w. By {y, y′} → w and Lemma 4, there exists a vertex v ∈ V2−{b}
such that w → v. Since u → w, we have v 6= u. Obviously, v → x → a and
abyuwvx is a 6-outpath of ab.

Suppose now that w → u. If u → y′, then abxywuy′ is a 6-outpath of
ab. Assume y′ → u. By {a, y, y′} → u and Lemma 4, there exists a vertex
w′ ∈ V3 − {x,w} such that u → w′. Then w′ → a and abxywuw′ is a 6-outpath
of ab.

Subcase 1.2.2. (V1−{a}) → b. Since a → b, we have V1 → b and b → V3. Let
w ∈ V3 − {x}. Then b → w.

Suppose first that (V2 − {b}) 9 w. Then there is a vertex u ∈ V2 − {b}
such that w → u. By Lemma 4, there exists a vertex y ∈ V1 such that u → y.
Obviously, a → u, y 6= a and y ∈ V (a). Recalling that V2 → x → V1, we get
u → x → y. Then abwuxy is a 5-outpath of ab. Let w′ ∈ V3 − {x, v}. Then
w′ → a. If y → w′, then abwuxyw′ is a 6-outpath of ab. Assume w′ → y. By
{x,w′} → y and Lemma 4, there is a vertex u′ ∈ V2−{b} such that y → u′. Then
u′ → x → a. Since u → y, we have that u′ 6= u and abwuyu′x is a 6-outpath of
ab.

Suppose now that (V2 − {b}) → w. Since b → w, we have V2 → w and
w → V1. Then w → a. Let y ∈ V1 − {a}. Then {x,w} → y. By Lemma 4,
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there is a vertex z ∈ V2 − {b} such that y → z. Obviously, z → w and ab has a
5-outpath abxyzw. Let y′ ∈ V1 − {a, y}. Then y′ ∈ V (a) and w → y′. Now, ab
has a 6-outpath abxyzwy′.

Subcase 2. V3 9 a 9 V2. We divide the partite set V2 into two nonempty
parts V +

2
, V −

2
such that V −

2
→ a → V +

2
. Similarly, the partite set V3 is divided

into two nonempty parts V +

3
, V −

3
such that V −

3
→ a → V +

3
. Let V ′ = V +

2
∪ V +

3

and V ′′ = V −

2
∪ V −

3
. By Lemma 5(1), we have N+(a) = V ′, N−(a) = V ′′ and

|V ′| = |V ′′| = r.

Subcase 2.1. V +

3
9 b. By the hypothesis, there is a vertex x ∈ V +

3
such that

b → x. By Lemma 4, there is a vertex y ∈ V1 − {a} such that x → y. Obviously,
y ∈ V (a). Similarly, by a → x and Lemma 4, there is a vertex u ∈ V2 − {b} such
that x → u.

We first show that ab has a 5-outpath. If u → y, then by x ∈ V ′, x → y and
Lemma 5(3), there is a vertex z ∈ V ′′ such that y → z. Obviously, z 6= u and z →
a. Then ab has a 5-outpath abxuyz. Assume y → u. Then (V1−{a, y})∪V −

3
9 u

(as otherwise, we have (V1 − {a, y}) ∪ V −

3
∪ {x, y} ⊆ N−(u) and d−(u) ≥ r + 1,

a contradiction). Therefore, there exists a vertex z′ ∈ V1 −{a, y} ∪ V −

3
such that

u → z′. Then z′ ∈ V (a) or z′ → a. Now, ab has a 5-outpath abxyuz′.

Next, we will prove that ab has a 6-outpath. We discuss the following two
subcases.

Subcase 2.1.1. |V +

2
| = 1. By Lemma 5(2), we have |V +

2
| = |V −

3
| = 1, |V −

2
| =

|V +

3
| = r − 1 ≥ 2. Obviously, V +

2
= {b} and V −

2
= V2 − {b}. Let V −

3
= {v}.

Then v → a and V +

3
= V3 − {v}.

Suppose first that y → u. If V +

3
→ u, then N−(u) = V +

3
∪ {y} = (V3 −

{v}) ∪ {y} and N+(u) = (V1 − {y}) ∪ {v}. Let y′ ∈ V1 − {a, y}. Then y′ ∈ V (a)
and u → y′. Thus, abxyuy′v (when y′ → v) or abxyuvy′ (when v → y′) is a
6-outpath of ab. Assume V +

3
9 u. Then there exists a vertex w ∈ V +

3
such

that u → w. Obviously, w 6= x and a → w. If (V1 − {a, y}) 9 w, then there
is a vertex y′ ∈ V1 − {a, y} such that w → y′. Then y′ ∈ V (a) and ab has a
6-outpath abxyuwy′. Assume (V1 − {a, y}) → w. Since {a, u} → w, we have
N−(w) = (V1 − {y}) ∪ {u} and N+(w) = {y} ∪ (V2 − {u}). Let u′ ∈ V −

2
− {u}.

Then w → u′ → a and ab has a 6-outpath abxyuwu′.

Suppose now that u → y. If V −

2
→ y, then N−(y) = V −

2
∪{x} = (V2−{b})∪

{x} and N+(y) = {b} ∪ (V3 − {x}). Let w ∈ V +

3
− {x}. Then {a, y} → w. When

(V1 − {a, y}) 9 w, there is a vertex y′ ∈ V1 − {a, y} such that w → y′. Then
y′ ∈ V (a) and abxuywy′ is a 6-outpath of ab. When (V1 − {a, y}) → w, we have
V1 → w → V2 since {a, y} → w. Let u′ ∈ V −

2
− {u}. Then w → u′ → a and

abxuywu′ is a 6-outpath of ab.

Assume V −

2
9 y. Then there is a vertex z ∈ V −

2
such that y → z. Clearly,

z 6= u. If (V1 − {a, y}) 9 z, then there exists a vertex y0 ∈ V1 − {a, y} such
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that z → y0. Thus, y0 ∈ V (a) and abxuyzy0 is a 6-outpath of ab. Assume
(V1 − {a, y}) → z. Since y → z, we get (V1 − {y}) → z and d−

V1
(z) ≥ r − 1 ≥ 2.

By Lemma 4, there is a vertex w ∈ V3 − {x} such that z → w. When w = v,
we know that w → a and abxuyzw is a 6-outpath of ab. When w 6= v, we have
w ∈ V +

3
− {x} and a → w. If w → u, then abxyzwu is a 6-outpath of ab. If

u → w, then by {u, z} → w and Lemma 4, there exists a vertex y1 ∈ V1 − {a, y}
such that w → y1. Thus, y1 ∈ V (a) and ab has a 6-outpath abxyzwy1.

Subcase 2.1.2. 2 ≤ |V +

2
| ≤ r − 1. By Lemma 5(2), we have 2 ≤ |V +

2
| =

|V −

3
| ≤ r − 1, 1 ≤ |V −

2
| = |V +

3
| ≤ r − 2.

Suppose first that (V ′ − {b}) 9 y. Then there exists a vertex v ∈ V ′ − {b}
such that y → v. Obviously, v ∈ V +

3
or v ∈ V +

2
− {b}.

When v ∈ V +

3
, by {a, y} → v and Lemma 4, there exists a vertex w ∈ V2−{b}

such that v → w. If V −

3
9 w, then there is an arc wz for some vertex z ∈ V −

3

and abxyvwz is a 6-outpath of ab. Assume V −

3
→ w. By V −

3
∪ {v} → w and

Lemma 4, there is a vertex y′ ∈ V1 − {a, y} such that w → y′. Now, y′ ∈ V (a)
and abxyvwy′ is a 6-outpath of ab.

When v ∈ V +

2
− {b}, by {a, y} → v and Lemma 4, there exists a vertex

v′ ∈ V3 − {x} such that v → v′. If V −

2
9 v′, then there is an arc v′w′ for

some vertex w′ ∈ V −

2
and abxyvv′w′ is a 6-outpath of ab. Assume V −

2
→ v′. If

(V1−{a, y}) 9 v′, then there is a vertex y′ ∈ V1−{a, y} such that v′ → y′. Now,
y′ ∈ V (a) and abxyvv′y′ is a 6-outpath of ab. Assume (V1 − {a, y}) → v′. Then
(V1 − {a, y}) ∪ V −

2
∪ {v} → v′. Note d−(v′) = r. We get |V −

2
| = |V +

3
| = 1. So

V +

3
= {x} and v′ ∈ V −

3
. Let V −

2
= {w′}. Then N−(v′) = (V1 − {a, y}) ∪ {v, w′}

and N+(v′) = {a, y} ∪ (V2 − {v, w′}).

If (V1 − {a, y}) 9 v, then there exists an arc vy0 for some y0 ∈ V1 − {a, y}.
Note y0 → v′ → a. Then abxyvy0v

′ is a 6-outpath of ab. Assume (V1−{a, y}) →
v. Since {a, y} → v, we get V1 → v → V3. Then v → x. By {b, v} → x and
Lemma 4, there exists a vertex y1 ∈ V1 −{y} such that x → y1. Since a → x, we
get y1 6= a and y1 ∈ V1 − {a, y}. Note y1 → v and y ∈ V (a). Then abxy1vv

′y is
a 6-outpath of ab.

Suppose now that (V ′−{b}) → y. If V −

2
→ y, then N−(y) = (V2−{b})∪V +

3
.

So we have |V +

3
| = |V −

2
| = 1 and V +

3
= {x}. Thus, N+(y) = {b} ∪ V −

3
. Let

V −

2
= {w}. By w → {a, y} and Lemma 4, there exists a vertex z ∈ V −

3
such that

z → w. Clearly, we have y → z. Let u′ ∈ V +

2
−{b}. Then u′ → y. If x → u′, then

abxu′yzw is a 6-outpath of ab. Assume u′ → x. By {b, u′} → x and Lemma 4,
there exists a vertex y′ ∈ V1−{y} such that x → y′. Obviously, y′ 6= a, y′ ∈ V (a)
and z → a. Then abxy′wyz (when y′ → w) or abxyzwy′ (when w → y′) is a
6-outpath of ab.

Assume V −

2
9 y. Then there is an arc yw for some vertex w ∈ V −

2
. By

(V +

2
− {b}) → y and Lemma 4, there exists a vertex v1 ∈ V3 such that y → v1.

Since V +

3
→ y, we get v1 ∈ V −

3
and v1 → a.
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If v1 → w, then (V1 − {a, y}) ∪ (V −

3
− {v1}) 9 w (as otherwise, we get

(V1−{a, y})∪(V −

3
−{v1})∪{y, v1} ⊆ N−(w) and d−(w) ≥ r+1, a contradiction).

So there is a vertex z1 in (V1 − {a, y}) ∪ (V −

3
− {v1}) such that w → z1. Note

z1 ∈ V (a) or z1 → a. Then abxyv1wz1 is a 6-outpath of ab.
Assume w → v1. If (V1 − {a, y}) 9 v1, then there exists a vertex y′ ∈

V1 − {a, y} such that v1 → y′. Then y′ ∈ V (a) and abxywv1y
′ is a 6-outpath

of ab. Assume (V1 − {a, y}) → v1. Since {y, w} → v1, we have N−(v1) =
(V1 − {a, y}) ∪ {y, w} = (V1 − {a}) ∪ {w} and N+(v1) = {a} ∪ (V2 − {w}).
Let u1 ∈ V +

2
− {b}. Then v1 → u1 → y. If x → w, then abxwv1u1y is a 6-

outpath of ab. Assume w → x. By {b, w} → x and Lemma 4, there exists a
vertex y1 ∈ V1 − {y} such that x → y1. Obviously, y1 6= a and y1 → v1. Then
abxy1v1u1y is a 6-outpath of ab.

Subcase 2.2. V +

3
→ b.

Subcase 2.2.1. |V +

2
| = 1. By Lemma 5(2), we have |V +

2
| = |V −

3
| = 1 and

|V −

2
| = |V +

3
| = r − 1 ≥ 2. Obviously, we have V +

2
= {b}. Let V −

3
= {v}.

Then v → a, V −

2
= V2 − {b} and V +

3
= V3 − {v}. Since V +

3
→ b, we get

N−(b) = V +

3
∪ {a} and N+(b) = (V1 − {a}) ∪ {v}.

If V +

3
→ (V1−{a}), then we have V +

3
∪{b} → (V1−{a}) → (V2−{b})∪{v},

V +

3
→ (V1 − {a}) ∪ {b} and {a} ∪ (V2 − {b}) → V +

3
. Let y, y′ be two distinct

vertices in V1−{a} and let u and x be two arbitrary vertices in V2−{b} and V +

3
,

respectively. Then y′ ∈ V (a) and ab has a 5-outpath abyuxy′ and a 6-outpath
abyuxy′v.

Assume V +

3
9 (V1 − {a}). Then there is an arc yx for some y ∈ V1 − {a}

and x ∈ V +

3
. Clearly, we get b → y.

If (V1 − {a, y}) 9 x, then there exists a vertex y′ ∈ V1 − {a, y} such that
x → y′. By Lemma 4, there is a vertex u ∈ V2 such that y′ → u. Note b → y′.
We have u 6= b and u ∈ V −

2
. Then u → a and abyxy′u is a 5-outpath of ab.

We will seek for a 6-outpath of ab. If y′ → v, then abyxy′uv (when u → v) or
abyxy′vu (when v → u) is a 6-outpath of ab. Assume v → y′. By b → y′ and
Lemma 4, there exists a vertex w ∈ V3 such that y′ → w. Since {x, v} → y′, we
have w 6= x and w 6= v. Then w ∈ V +

3
− {x} and a → w. By {a, y′} → w and

Lemma 4, there exists a vertex u′ ∈ V2 − {b} (u′ may be equal to u) such that
w → u′. Then u′ → a and abyxy′wu′ is a 6-outpath of ab.

If (V1 − {a, y}) → x, we have V1 → x → V2 since {a, y} → x.
In the case when (V1−{a}) → (V2−{b}), we have (V1−{a}) → (V2−{b})∪{x}

and {b} ∪ (V3 −{x}) → (V1 −{a}). In addition, we also have (V1 −{a})∪ {x} →
(V2−{b}) → {a}∪(V3−{x}). Let y′ and u be two arbitrary vertices in V1−{a, y}
and V2 − {b}, respectively. Then x → u → v → y′. Note y′ ∈ V (a) and v → a.
We have that ab has a 5-outpath abyxuv and a 6-outpath abyxuvy′.

In the other case when (V1 −{a}) 9 (V2 −{b}), there exists an arc uy′ from
V2 − {b} to V1 − {a} (y′ may be equal to y). Let y1 ∈ V1 − {a, y′} (when y′ 6= y,
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y1 may be equal to y). Then b → y1 → x → u. By b → y′ and Lemma 5(3),
there exists a vertex z ∈ V ′′ such that y′ → z. Since u → y′, we have z 6= u.
Note y′ ∈ V (a) and z → a. Then ab has a 5-outpath aby1xuy

′ and a 6-outpath
aby1xuy

′z.

Subcase 2.2.2. 2 ≤ |V +

2
| ≤ r − 1. By Lemma 5(2), we have 2 ≤ |V +

2
| =

|V −

3
| ≤ r − 1, 1 ≤ |V −

2
| = |V +

3
| ≤ r − 2. By V +

3
→ b and Lemma 4, there is an

arc by for some y ∈ V1 − {a}. Obviously, y ∈ V (a).

Subcase 2.2.2.1. V +

3
9 y. By the hypothesis, there is a vertex x ∈ V +

3
such

that y → x.

Suppose first that (V +

2
−{b}) 9 x. Then there exists a vertex u ∈ V +

2
−{b}

such that x → u. If (V1 − {a, y}) 9 u, then there is a vertex y′ ∈ V1 − {a, y}
such that u → y′. By u ∈ V ′ and Lemma 5(3), there exists a vertex w ∈ V ′′ such
that y′ → w. Note y′ ∈ V (a) and w → a. Then ab has a 5-outpath abyxuy′ and
a 6-outpath abyxuy′w.

Assume (V1−{a, y}) → u. Since {a, x} → u, we get N−(u) = (V1−{y})∪{x}
and N+(u) = {y} ∪ (V3 − {x}). Let z ∈ V −

3
. Then u → z → a and abyxuz

is a 5-outpath of ab. We will seek for a 6-outpath of ab. Let w ∈ V −

2
be

arbitrary. If (V1 − {a, y}) ∪ {w} 9 z, then there is an arc zy′ or zw for some
y′ ∈ V1 − {a, y}. Note y′ ∈ V (a) and w → a. Then abyxuzy′ or abyxuzw is a
6-outpath of ab. Assume (V1 − {a, y}) ∪ {w} → z. Then it is easy to see that
N−(z) = (V1−{a, y})∪{u,w} and N+(z) = {a, y}∪(V2−{u,w}). So z → {b, y}.
By {x, z} → b and Lemma 4, there exists a vertex y0 ∈ V1−{y} such that b → y0.
Obviously, y0 6= a and y0 → u. Then aby0xuzy (when y0 → x) or abyxy0uz (when
x → y0) is a 6-outpath of ab.

Suppose now that (V +

2
−{b}) → x. By Lemma 4, there exists a vertex y′ ∈ V1

such that x → y′. Since {a, y} → x, we have y′ 6= a and y′ 6= y. By x ∈ V ′,
x → y′ and Lemma 5(3), there is a vertex z ∈ V ′′ such that y′ → z. Then z → a

and abyxy′z is a 5-outpath of ab. We will prove that ab has a 6-outpath.

By {a, y} → x and Lemma 4, there exists a vertex v ∈ V2 − {b} such that
x → v. Since (V +

2
− {b}) → x, we get v ∈ V −

2
. When v → y′, we have that

v 6= z and abyxvy′z is a 6-outpath of ab. When y′ → v, it is easy to see that
(V1 −{a, y, y′})∪ V −

3
9 v (as otherwise, (V1 −{a, y, y′})∪ V −

3
∪ {y′, x} ⊆ N−(v)

and d−(v) ≥ r+1, a contradiction). So there is a vertex v′ ∈ (V1−{a, y, y′})∪V −

3

such that v → v′. Note v′ ∈ V (a) or v′ → a. Then abyxy′vv′ is a 6-outpath of ab.

Subcase 2.2.2.2. (V +

2
− {b}) 9 y. By the hypothesis, there is an arc yu for

some vertex u ∈ V +

2
− {b}.

Suppose first that V +

3
9 u. Then there exists a vertex x ∈ V +

3
such that

u → x. If (V1 − {a, y}) 9 x, then there is a vertex y′ ∈ V1 − {a, y} such that
x → y′. By x ∈ V ′ and Lemma 5(3), there exists a vertex w ∈ V ′′ such that
y′ → w. Note y′ ∈ V (a) and w → a. Then ab has a 5-outpath abyuxy′ and a 6-
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outpath abyuxy′w. Assume (V1−{a, y}) → x. Since {a, u} → x, we get N−(x) =
(V1−{y})∪{u} and N+(x) = {y}∪(V2−{u}). Let z ∈ V −

2
. Then x → z → a and

abyuxz is a 5-outpath of ab. In addition, we also have (V1−{a, y})∪V −

3
9 z (as

otherwise, (V1−{a, y})∪V −

3
∪{x} ⊆ N−(z) and d−(z) ≥ r+1, a contradiction).

So there is an arc zy1 or zv for some y1 ∈ V1−{a, y} and v ∈ V −

3
. Note y1 ∈ V (a)

and v → a. Then abyuxzy1 or abyuxzv is a 6-outpath of ab.

Suppose now that V +

3
→ u. By Lemma 4, there exists a vertex y′ ∈ V1 such

that u → y′. Since {a, y} → u, we have y′ 6= a and y′ 6= y. By u ∈ V ′, u → y′

and Lemma 5(3), there is a vertex z′ ∈ V ′′ such that y′ → z′. Then z′ → a and
abyuy′z′ is a 5-outpath of ab. We will prove that ab has a 6-outpath.

By {a, y} → u and Lemma 4, there exist two distinct vertices v, v′ ∈ V3 such
that u → {v, v′}. Since V +

3
→ u, we get v, v′ ∈ V −

3
. If v → y′, then v 6= z′ and

abyxvy′z′ is a 6-outpath of ab. Assume y′ → v. If (V1−{a, y, y′})∪V −

2
9 v, then

there is a vertex w ∈ (V1 − {a, y, y′}) ∪ V −

2
such that v → w. Note w ∈ V (a) or

w → a. Then abyuy′vw is a 6-outpath of ab. Assume (V1 − {a, y, y′}) ∪ V −

2
→ v.

Note (V1 − {a, y, y′}) ∪ V −

2
∪ {y′, u} → v and d−(v) = r. We have |V −

2
| = 1 and

N+(v) = {a, y}∪(V +

2
−{u}). Then v → b. By V +

3
∪{v} → b and Lemma 4, there

is a vertex y0 ∈ V1 − {y} (y0 may be equal to y′) such that b → y0. Obviously,
y0 6= a and y0 → v. Thus, aby0vyuv

′ is a 6-outpath of ab.

Subcase 2.2.2.3. (V +

2
− {b}) ∪ V +

3
→ y. In this case, we have V ′ → y → V ′′

since b → y. By a → b and Lemma 4, there exists a vertex c ∈ V3 such that b → c.
Note V +

3
→ b. We get c ∈ V −

3
. Let x ∈ V +

3
be arbitrary. Note that {b, y} → c →

a and a → x → {b, y}. Then there exists a vertex u ∈ (V1 − {a, y}) ∪ (V2 − {b})
such that c → u → x (as otherwise, we have d+(c) < d+(x), this is impossible).
Then ab has a 5-outpath abcuxy. Let v ∈ V −

3
− {c}. Then y → v and ab has a

6-outpath abcuxyv.

The proof of Theorem 9 is complete.

Theorems 6–9 give support to the following conjecture.

Conjecture 10. Let D be an r-regular 3-partite tournament with r ≥ 2 and

partite sets V1, V2, V3. If ab is an arc of D, then the following hold for all k ∈
{1, 2, . . . , r − 1}.

(1) ab has a (3k − 1)-outpath.

(2) ab has a 3k-outpath.

(3) ab has a (3k + 1)-outpath unless V1 → V2 → V3 → V1.

Note that the length of the longest path in an r-regular 3-partite tournament
is at most 3r−1. So the value of k cannot exceed r−1 in (2) and (3) of Conjecture
10. However, the following example show that (1) of Conjecture 10 is not always
true when k = r.
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Example 11. Let V1 = {a, y}, V2 = {b, u} and V3 = {x, v} be the partite sets of
a 3-partite tournament D such that {u, v} → a → {b, x}, {a, x} → b → {y, v},
{y, b} → v → {a, u} V2 → y → V3, V3 → u → V1 and V1 → x → V2. Then D is
2-regular, but the arc ab has no 5-outpath since there is only one path abvuyx of
length 5 starting from ab, which is not an outpath of ab.

Acknowledgments

We would like to thank the referees for providing some very useful suggestions
for revising this paper. This work is supported by the National Natural Science
Foundation of China (No. 11701349) and by the Natural Science Foundation of
Shanxi Province (No. 201601D011005 and 201801D121004) and by Shanxi Schol-
arship Council of China (2017-018).

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd
Edition (Springer, London, 2009).
https://doi.org/10.1007/978-1-84800-998-1

[2] L. Cui and Q. Guo, Outpaths of arcs in almost regular multipartite tournaments ,
Acta Math. Appl. Sin. (Chinese Ser.) 39 (2016) 310–317.

[3] Q. Guo and L. Cui, Outpaths of all length of an arc in regular multipartite tourna-

ments , Appl. Math. J. Chinese Univ. (Chinese Ser.) 29 (2014) 288–294.

[4] Y. Guo, Outpaths in semicomplete multipartite digraphs , Discrete Appl. Math. 95
(1999) 273–277.
https://doi.org/10.1016/S0166-218X(99)00080-3

[5] L. Volkmann, Multipartite tournaments: a survey , Discrete Math. 307 (2007) 3097–
3129.
https://doi.org/10.1016/j.disc.2007.03.053

[6] G. Xu, S. Li, Q. Guo and H. Li, Notes on cycles through a vertex or an arc in regular

3-partite tournaments , Appl. Math. Lett. 25 (2012) 662–664.
https://doi.org/10.1016/j.aml.2011.09.075

[7] G. Zhou and K. Zhang, Outpaths of arcs in multipartite tournaments , Acta Math.
Appl. Sin. (Engl. Ser.) 17 (2001) 361–365.

Received 25 August 2018
Revised 9 March 2019

Accepted 9 March 2019

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1016/S0166-218X\(99\)00080-3
https://doi.org/10.1016/j.disc.2007.03.053
https://doi.org/10.1016/j.aml.2011.09.075
http://www.tcpdf.org

