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Abstract

A variant of the Lovasz Conjecture on hamiltonian paths states that
every finite connected Cayley graph contains a hamiltonian cycle. Given a
finite group G and a connection set S, the Cayley graph Cay(G, S) will be
called normal if for every g € G we have that g7'Sg = S. In this paper
we present some conditions on the connection set of a normal Cayley graph
which imply the existence of a hamiltonian cycle in the graph.
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1. INTRODUCTION

Let G be a finite group. A subset S C G will be called symmetric if S = S~
Given a symmetric subset S C G\ {e} (with e the identity of G), the Cayley
graph Cay(G, S) is the graph with vertex set G and a pair {«, 5} is an edge of
Cay(G,S) if and only if there is s € S such that « = s (since S is symmetric,
observe that s7! € S and 8 = as™!). A Cayley graph Cay(G, S) will be called
normal if for every o € G, o~ !Sa = S. In the literature there is another definition
of normal Cayley graph, which is different from the one used in this paper, that
said that a Cayley graph on a group G is normal if the right regular representation
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of the group G is normal in the full automorphism group of the graph (see, for
instance [15,19]).

The problem of finding hamiltonian cycles in graphs is a difficult problem,
and since 1969 has received a great attention by the Lovéasz Conjecture which
states that every vertex-transitive graph has a hamiltonian path. A variant of the
Lovasz Conjecture on hamiltonian paths states that every finite connected Cayley
graph contains a hamiltonian cycle (see, for instance [1,3,14,18]). In particular,
there are several works on the existence of hamiltonian cycles in Cayley graphs
generated by two elements (see, for instance [6-10,12,20]).

In this paper we present the following results.

Theorem 1. Let G be a finite non-abelian simple group such that (§1,62) = G. If
Cay(G,S) is a normal Cayley graph with {61,2} C S, then Cay(G,S) contains
a hamiltonian cycle.

Theorem 2. Let G be a finite group, G = Go>G1, . ..,Gi_1>G; be a composition
series of G and let {do,...,01+1} C G such that, for each 0 < i <1, G;/Giy1 =
(0;Git1,0i4+1Giy1). If Cay(G,S) is a normal Cayley graph with {do,...,041} C
S, then Cay(G, S) contains a hamiltonian cycle.

Observe that the normal Cayley graphs with vertex set a group generated
by two elements have girth 4. The results are obtained via a generalization of
known methods for hamiltonicity of Cayley graphs of girth 4 (see [5,11,13,14]).
For general concepts, we may refer the reader to [2,16].

2. NOTATION AND PREVIOUS RESULTS

In order to prove the main theorems, we need some definitions and previous
results.

Theorem 3 [17]. Let G be a simple, non-abelian and finite group. G can be
generated by two elements.

In all this section let G = (d1,d2) be a simple, non-abelian and finite group
and Cay(G, S) be a normal Cayley graph with connection set S such that {41, 2} C
S. Let Gy = (1), and let

P = {GOGO U alGo, ce 7anG0}

be the partition of G in cosets induced by the subgroup Gy (with ag the identity
element of G). For each 0 < i < n, C(a;Go) will denote the subdigraph of
Cay(G,S) induced by the set of vertices a;Gy. Given two isomorphic vertex
disjoint subgraphs H and H' of Cay(G, S), we will say that H and H' are attached
if there is an isomorphism ¥ between H and H’ such that for every x € V(H),
{z,¥(x)} is an edge of Cay(G, S).
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Lemma 4. For every 0 < 4,j < n, C(a;Go) = C(a;jGo). Moreover, for every
0<i<nandd € {01,602}, C(a;Go) and C(da;Gy) are attached.

Proof. Given a;,a; let ® : a;Gy — a;Gg be defined, for each g € Gy, as ®(a;9) =
ajg. If ®(a;g) = ®(a;g1) then ajg = ajg1, so g = gi1. Therefore ® is injective
and since all cosets have the same cardinality, ® is bijective. If a;¢91 and a;gs are
adjacent in C'(a;Gyp), then gl_lai_laigg = gl_lgg € S. Therefore

O(aig1) ' P(aiga) = g1 'a; 'ajga =g, ‘g2 € S
and then ®(a;g1) and ®(a;g2) are adjacent in C(a;Gp), and the first part of the
lemma follows. For the second part, let a € a;Gg and da € da;Gg. Clearly the
map a — da define an isomorphism between C(a;Gp) and C(da;Gy) and since S
is normal, a~'a € S, therefore {a,da} is an edge in Cay(G, S) (see Figure 1),

and the lemma follows. [ ]
d od
aiGo 5aiG0
b b
\a/ \(50,
Figure 1

As a word on {01,062} we will understand a product s;s9 - - $p—1, of powers
of §; and o, where two consecutive elements in the product are not powers of
the same elements, that is to say, if s; € (a) then s;11,s;—1 ¢ (a). The length of
a word $182 -+ Sp—1Sp 18 m. Since G = (41, d2), it follows that for each a € G,
Q= 5189 -+ - Sp—18y, for some word s182 - - Sp—15, on {d1,02}. For each o € G, let
¢(a) be the minimum length of a word on {d1,d2} such that a = s189 - 5,1 5n.

Let Ho = {Go} and, for each k > 1, let Hy = {a;Go € P : £(a;) = k}.

Given a coset a;Gy € P, let L[a;Gy] = {a;Go} U {6"a;Gyp € P : § €
{61,02},7 > 1}. Observe that if £(a;) = k, then for every aGy € L[a;Go] \ {a:Go},
{(a) = k+1, and the number of cosets in the set {6"a;Go € P : 0 € {d1,02},r > 1}
depends on the commutativity of the words da1 4, 52a15{, ceey 5”_1045{ for j > 1.

Lemma 5. If for some k > 1, 6*a;Gq € L[a;Go), then §*~1a;Go € L]a;Gy).

Proof. Let us suppose that for some k& > 1, ékaiGo € Ll[a;Go] and let b € G
such that §¥~1a; € bGy € P. Thus, 6*"1a; = bd] and therefore 6*a; = §bs] which
implies that 6Fa; € §bGy = 6%a;Gy. Hence 6¥a; = 6b and 6 1a; = b, and the
result follows. [
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Observe that for each £ > 0, the set {L[aiGo] ca;Gg € Hk} is a partition
of Hir U Hyr1. Given a coset a;Gy € P, the subgraph of Cay(G,S) induced by
L]a;Gp] will be called a leaf.

Given a leaf M induced by L[a;Go] = iaiGo, 0a;Go, . .. ,5ma@-G0} (with 0 €
{81,62}), and a pair of elements a;0%,a;6:"" € a;Gp, a path of Cay(G,S) with
vertex-set {aiéﬁ,aiétﬂ} U Um 87a;Gy which starts at ai(?i, ends at aiéiﬂ and
such that for every 1 < j < m, there is s; such that {57(11 Sj,éjaiéfjﬂ} is an
edge of the path P, will be called an (azéf, a25t+1 M) complete path.

Lemma 6. Let M be a leaf of Cay(G,S) induced by

L[aiGo = {CLiGo, 5aiG0, c. 5maiG0}
(with § € {01,92}). For every pair of elements alél,alétﬂ € a;Go there is an
(aiét, aiéfﬂ, M)—complete path.

Proof. From Lemma 4 we see that any two ”consecutive” subgraphs of the leaf,

C(dtaiGo) and C(ét“aiGo), are attached, and again, by Lemma 4, each sub-

graph of the leaf is isomorphic to C'(Gy), which is a cycle of the form (e, 61,0%,...,
' =e). Since G = (d1,d2), from here it follows that for each 1 < k < m,

(5kai,5kai51,5kai5%,.. 5k a; _5%1)

is a hamiltonian cycle of C'(6*a;Gy).

Let aiéf,aié'ﬁl € a;Go and 0 € {61,d2}. To simplify the notation, let oy =
aiéi, By = aiéiﬂ, € = aiéifl, and for each 1 < k < m, let o, = 5’“@1-5{, B =
6’“%5'{“ and €, = (5kai(5§_1.

Case 1. n is even (see Figure 2).

Figure 2

Let

P = (ag,a1,... 0, = 0ma;0%, 6™a;6 1, L (6Mai 6T = B)

(Bm—1 = 0"~ 1az(5t+1) 5 1a; 6, (0 b = emt)
(€m—s = 6™ 2a;0171) 0™ 20,6072, ..., (6™ 240 = Bra) 4.
(

e1 = 6a;61) , 6a;0472, . (6a; 8T = B1), Bo) -
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Case 2. n is odd (see Figure 3).

Figure 3
Let
P = (ag,1,..., 0, = 0ma;dt, 6™a; 6L (6Maidt T =€),
(€m—1 = 6™ Ya;007 1), 0m a; 602, L (6™ aidt ! = Bra),
(Bm—z = 0™ 2a;041), 0m 20,602, ., (0™ 26 = €m—2), .. -,
(e1 = 6a;671),6a;6072, ..., (a0t = B1), Bo).
From here the result follows. [}

3. THE PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. Let G = (d1,d2) be a non-abelian simple group and
Cay(G,S) be a normal Cayley graph with {01,02} € S. Let Gy = (d1), and
let P = {Go,a1Go,...,a,Go} be the partition of G in cosets induced by the
subgroup Gy.

Let Ho = {Go} and, for each k > 1, let Hj, = {a;Go € P : £(a;) = k}. Since
G is finite, it follows that for some p > 1, G = Uf’:o <UAeHj A>.

We will prove the result by showing, by induction on k, that for every k£ > 1
the subgraph of Cay(G, S) induced by

U U4

k
=0 \AeH;

J

contains a hamiltonian cycle C' such that for each a;Gog € Hy, there is s; such
that {aﬁij,aiéfjﬂ} is an edge of C.

For k = 1, observe that Ho = {Go} and Hi = {62Go, 035Gy, ...,05'Go}.
Thus, the subgraph M of Cay(G, S) induced by U;:o (U AcH, A) is the leaf of
Cay(G,S) induced by L[Go] = {Go,égGo,égGo, .. .,5§”G0}. Let e, 61 € Go. By
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Lemma 6 there is an (e, 01, M )-complete path P. Therefore C = P o ((51, 62, ...,
5?_1, e) is a hamiltonian cycle of M such that for every 1 < j < m, there is s;
such that {(5%(5?,5%5?“} C 5%G0 is an edge of C.

Suppose that the statement is true for 1 < m < k; let @ be the subgraph of
Cay(G, S) induced by Ufié (UAeHj A) and let @’ be the subgraph of Cay(G, S)

induced by U?:O (U AcH, A). By induction hypothesis, there is a hamiltonian

cycle C of Q' such that for each a;Gy € Hy, there is s; such that {ajéfj,ajéfjH}
is an edge of C.
For each a;Go € Hy, by Lemma 6, there is an (ajéfj,ajéfjﬂ, M)—complete

path P with M the leaf induced by L{a;Go] = {ajGo, da;Go, 62ajG0, e 6majG0}.

Therefore, by deleting from C the edge {ajéij,ajéiﬁl}, and attach to C'\

{ajét,ajéiﬂ} the path P we obtain a hamiltonian cycle C’ of the subgraph
of Cay(G, S) induced by V(Q") UV (M), and such that for each 1 < i < m there

is s; such that { 8%a;d7, 5iaj5‘fi+1} is an edge of C’. Following this procedure for
each coset in Hy, since {L[a;Go] : a;Go € Hy} is a partition of Hy U Hpi1, we
obtain a hamiltonian cycle C of @ such that for each a;Go € Hp41, there is s;
such that {ajéfj , ajéfj H} is an edge of C'. From here, the result follows. [

Proof of Theorem 2. We will prove the theorem by induction on the order of
the group. For |G| = 3, we see that G = Z3 and the only possible normal Cayley
graphs are Cay(Zs,{1}) and Cay(G, {1,2}) which are both hamiltonian graphs.

Let G be a finite group of order greater than 3, G = Go > G1,...,G;_1 > G
be a composition series of G, and let {Jp,...,d+1} C G such that, for each
0 <i<l Gi/Giy1 = (0:Git1,0i+1Git1). Let Cay(G,S) be a normal Cayley
graph with {dp,...,0;41} C S.

Let S/G1 = {sG; : s € S} and consider the Cayley graph Cay(G/G1,S/G1).
If G/G, is an abelian group, it is known that Cay(G/G1, S/G1) contains a hamil-
tonian cycle (see [4]). If Cay(G/G1,S/G1) is not an abelian group, consider the
following.

Claim 1. Cay(G/G1,S/G1) is a normal Cayley graph.

Proof. Let g € G and s € S. Since (G1 is a normal subgroup it follows that
9 'G15G19gG1 = g~ 'sgG1 and since S is a normal connection set, g 'sg = 51 € S.
Therefore g~ 1sgG1 = 51G1 € S/G1 and the claim follows. O

Thus, by Claim 1, Cay(G/G1,S/G1) is a normal Cayley graph; G/G; =
(00G1,01G1) is a simple non-abelian group and, by hypothesis, {dp,d1} C S
which implies that {09G1,91G1} C S/G1. Therefore, from Theorem 1 it follows
that there is a hamiltonian cycle in Cay(G/G1, S/Gh1).
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Let C = (G1,91G1,-..,92.G1,G1), with n = |G/G1]|, be a hamiltonian cycle
in Cay(G/G1,S/G1) (see Figure 4).

G1

In—1G1 91G'1

gn—2G1 92G1
Figure 4

On the other hand, let S |g,= S N G; and consider the Cayley graph
Cay(GhS |G1)'

Claim 2. Cay(G1, S |¢,) is a normal Cayley graph.

Proof. Since S is a normal connection set and (1 is a normal subgroup of G
we see that g71Sg = S and g7 1G9 = G1, s0 g71(S |g,)g = g (SN G1)g =
SNGL =S8 |qg,- O

Claim 3. {61,...,641} C S |g, .

Proof. Since for each i € {0,...,l+ 1} we have G;/G;11 = (0:Gi11,0i+1Git1) it
follows that §; € G; C Gy and §; € Gy forall 1 <¢ <[+ 1. O

Clearly |G1] < |Go|, and since G1 > Gy, ..., G;_1 > G| is a composition series
of G, by Claims 2 and 3 and by induction hypothesis we see that there is a
hamiltonian cycle C' in C(G1,S |g,). Let C" = (1,n1,n9,...,n;-1,1) with i =
|G1].

Let g;G; and ¢;4+1G1 be two consecutive vertices of the hamiltonian cycle C
of Cay(G/G1,8/G1). By definition (¢;G1)"'g1+1G1 € S/G1 which implies that
Glgl_lngGl = s1G1 with s1 € S§. Thus gl_lng = syny, with n;; € G and then
gl_lgl+1nl_11 = 51 € 5. Therefore, for every n; € G, we see that

-1, -1 -1 -1
n; g, Gieiny, My =mn; sinj € S,

which implies that for every n; € G1, gin; is adjacent to gl+1nl_11nj in Cay(G, 5).
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Observe that the map gn; — ngnl_llnj defines a bijection between ¢;G

and g;11G1, and that, given «, 8 € G, we see that (g;a) g8 = a8 € S if and
only if

1\t -1 -1 -1 -1 -1
(gl-i-lnll Oé) (gl—‘rlnll 5) =a NG 191+11y, B=a BeS,

which implies that the subgraphs of Cay(G,S) induced by ¢;G; and g;11G; are
attached (see Figure 5).

gin2

qgini

g g
N .
Figure 5
From here, and by an analogous argument than in the proof for the case

k =1 in Theorem 1, we obtain a hamiltonian cycle in Cay(G, S) (see Figure 6).
u

Gy

gn—1G 91G1

gn—2G1  g2G1

Figure 6
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