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Abstract

A variant of the Lovász Conjecture on hamiltonian paths states that
every finite connected Cayley graph contains a hamiltonian cycle. Given a
finite group G and a connection set S, the Cayley graph Cay(G,S) will be
called normal if for every g ∈ G we have that g−1Sg = S. In this paper
we present some conditions on the connection set of a normal Cayley graph
which imply the existence of a hamiltonian cycle in the graph.
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1. Introduction

Let G be a finite group. A subset S ⊆ G will be called symmetric if S = S−1.
Given a symmetric subset S ⊆ G \ {e} (with e the identity of G), the Cayley
graph Cay(G,S) is the graph with vertex set G and a pair {α, β} is an edge of
Cay(G,S) if and only if there is s ∈ S such that α = βs (since S is symmetric,
observe that s−1 ∈ S and β = αs−1). A Cayley graph Cay(G,S) will be called
normal if for every α ∈ G, α−1Sα = S. In the literature there is another definition
of normal Cayley graph, which is different from the one used in this paper, that
said that a Cayley graph on a group G is normal if the right regular representation
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of the group G is normal in the full automorphism group of the graph (see, for
instance [15, 19]).

The problem of finding hamiltonian cycles in graphs is a difficult problem,
and since 1969 has received a great attention by the Lovász Conjecture which
states that every vertex-transitive graph has a hamiltonian path. A variant of the
Lovász Conjecture on hamiltonian paths states that every finite connected Cayley
graph contains a hamiltonian cycle (see, for instance [1, 3, 14, 18]). In particular,
there are several works on the existence of hamiltonian cycles in Cayley graphs
generated by two elements (see, for instance [6–10,12, 20]).

In this paper we present the following results.

Theorem 1. Let G be a finite non-abelian simple group such that 〈δ1, δ2〉 = G. If

Cay(G,S) is a normal Cayley graph with {δ1, δ2} ⊆ S, then Cay(G,S) contains

a hamiltonian cycle.

Theorem 2. Let G be a finite group, G = G0DG1, . . . , Gl−1DGl be a composition

series of G and let {δ0, . . . , δl+1} ⊆ G such that, for each 0 ≤ i ≤ l, Gi/Gi+1 =
〈δiGi+1, δi+1Gi+1〉. If Cay(G,S) is a normal Cayley graph with {δ0, . . . , δl+1} ⊆
S, then Cay(G,S) contains a hamiltonian cycle.

Observe that the normal Cayley graphs with vertex set a group generated
by two elements have girth 4. The results are obtained via a generalization of
known methods for hamiltonicity of Cayley graphs of girth 4 (see [5, 11, 13, 14]).
For general concepts, we may refer the reader to [2, 16].

2. Notation and Previous Results

In order to prove the main theorems, we need some definitions and previous
results.

Theorem 3 [17]. Let G be a simple, non-abelian and finite group. G can be

generated by two elements.

In all this section let G = 〈δ1, δ2〉 be a simple, non-abelian and finite group
and Cay(G,S) be a normal Cayley graph with connection set S such that {δ1, δ2} ⊆
S. Let G0 = 〈δ1〉, and let

P = {a0G0 ∪ a1G0, . . . , anG0}

be the partition of G in cosets induced by the subgroup G0 (with a0 the identity
element of G). For each 0 ≤ i ≤ n, C(aiG0) will denote the subdigraph of
Cay(G,S) induced by the set of vertices aiG0. Given two isomorphic vertex
disjoint subgraphsH andH ′ of Cay(G,S), we will say thatH andH ′ are attached
if there is an isomorphism Ψ between H and H ′ such that for every x ∈ V (H),
{x,Ψ(x)} is an edge of Cay(G,S).
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Lemma 4. For every 0 ≤ i, j ≤ n, C(aiG0) ∼= C(ajG0). Moreover, for every

0 ≤ i ≤ n and δ ∈ {δ1, δ2}, C(aiG0) and C(δaiG0) are attached.

Proof. Given ai, aj let Φ : aiG0 → ajG0 be defined, for each g ∈ G0, as Φ(aig) =
ajg. If Φ(aig) = Φ(aig1) then ajg = ajg1, so g = g1. Therefore Φ is injective
and since all cosets have the same cardinality, Φ is bijective. If aig1 and aig2 are
adjacent in C(aiG0), then g−1

1
a−1

i aig2 = g−1

1
g2 ∈ S. Therefore

Φ(aig1)
−1Φ(aig2) = g−1

1
a−1

j ajg2 = g−1

1
g2 ∈ S

and then Φ(aig1) and Φ(aig2) are adjacent in C(ajG0), and the first part of the
lemma follows. For the second part, let a ∈ aiG0 and δa ∈ δaiG0. Clearly the
map a → δa define an isomorphism between C(aiG0) and C(δaiG0) and since S
is normal, a−1δa ∈ S, therefore {a, δa} is an edge in Cay(G,S) (see Figure 1),
and the lemma follows.

aiG0 δaiG0

b

a

c

d

δb

δa

δc

δd

Figure 1

As a word on {δ1, δ2} we will understand a product s1s2 · · · sn−1sn of powers
of δ1 and δ2, where two consecutive elements in the product are not powers of
the same elements, that is to say, if si ∈ 〈a〉 then si+1, si−1 /∈ 〈a〉. The length of

a word s1s2 · · · sn−1sn is n. Since G = 〈δ1, δ2〉, it follows that for each α ∈ G,
α = s1s2 · · · sn−1sn for some word s1s2 · · · sn−1sn on {δ1, δ2}. For each α ∈ G, let
ℓ(α) be the minimum length of a word on {δ1, δ2} such that α = s1s2 · · · sn−1sn.

Let H0 = {G0} and, for each k ≥ 1, let Hk = {aiG0 ∈ P : ℓ(ai) = k}.
Given a coset aiG0 ∈ P, let L[aiG0] = {aiG0} ∪ {δraiG0 ∈ P : δ ∈

{δ1, δ2}, r ≥ 1}. Observe that if ℓ(ai) = k, then for every aG0 ∈ L[aiG0]\{aiG0},
ℓ(a) = k+1, and the number of cosets in the set {δraiG0 ∈ P : δ ∈ {δ1, δ2}, r ≥ 1}
depends on the commutativity of the words δa1δ

j
1
, δ2a1δ

j
1
, . . . , δn−1a1δ

j
1
for j ≥ 1.

Lemma 5. If for some k ≥ 1, δkaiG0 ∈ L[aiG0], then δk−1aiG0 ∈ L[aiG0].

Proof. Let us suppose that for some k ≥ 1, δkaiG0 ∈ L[aiG0] and let b ∈ G
such that δk−1ai ∈ bG0 ∈ P. Thus, δk−1ai = bδj

1
and therefore δkai = δbδj

1
which

implies that δkai ∈ δbG0 = δkaiG0. Hence δkai = δb and δk−1ai = b, and the
result follows.
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Observe that for each k ≥ 0, the set
{

L[aiG0] : aiG0 ∈ Hk

}

is a partition
of Hk ∪ Hk+1. Given a coset aiG0 ∈ P, the subgraph of Cay(G,S) induced by
L[aiG0] will be called a leaf.

Given a leaf M induced by L[aiG0] =
{

aiG0, δaiG0, . . . , δ
maiG0

}

(with δ ∈
{δ1, δ2}), and a pair of elements aiδ

t
1, aiδ

t+1

1
∈ aiG0, a path of Cay(G,S) with

vertex-set
{

aiδ
t
1, aiδ

t+1

1

}

∪
⋃m

j=1
δjaiG0 which starts at aiδ

t
1, ends at aiδ

t+1

1
and

such that for every 1 ≤ j ≤ m, there is sj such that
{

δjaiδ
sj
1
, δjaiδ

sj+1

1

}

is an
edge of the path P , will be called an

(

aiδ
t
1, aiδ

t+1

1
,M

)

-complete path.

Lemma 6. Let M be a leaf of Cay(G,S) induced by

L[aiG0] =
{

aiG0, δaiG0, . . . , δ
maiG0

}

(with δ ∈ {δ1, δ2}). For every pair of elements aiδ
t
1, aiδ

t+1

1
∈ aiG0 there is an

(

aiδ
t
1, aiδ

t+1

1
,M

)

-complete path.

Proof. From Lemma 4 we see that any two ”consecutive” subgraphs of the leaf,
C
(

δtaiG0

)

and C
(

δt+1aiG0

)

, are attached, and again, by Lemma 4, each sub-
graph of the leaf is isomorphic to C(G0), which is a cycle of the form

(

e, δ1, δ
2
1 , . . . ,

δn1 = e
)

. Since G = 〈δ1, δ2〉, from here it follows that for each 1 ≤ k ≤ m,
(

δkai, δ
kaiδ1, δ

kaiδ
2
1 , . . . , δ

kaiδ
n
1 = δkai

)

is a hamiltonian cycle of C(δkaiG0).
Let aiδ

t
1, aiδ

t+1

1
∈ aiG0 and δ ∈ {δ1, δ2}. To simplify the notation, let α0 =

aiδ
t
1, β0 = aiδ

t+1

1
, ǫ0 = aiδ

t−1

1
, and for each 1 ≤ k ≤ m, let αk = δkaiδ

t
1, βk =

δkaiδ
t+1

1
and ǫk = δkaiδ

t−1

1
.

Case 1. n is even (see Figure 2).

......aiG0 δaiG0 δm−1aiG0 δmaiG0

α0
β0

β1
α1

ǫ1
β
m−1

α
m−1

ǫ
m−1

αm

βm

Figure 2

Let

P =
(

α0, α1, . . . , αm = δmaiδ
t
1, δ

maiδ
t−1

1
, . . . ,

(

δmaiδ
t+1

1
= βm

)

,
(

βm−1 = δm−1aiδ
t+1

1

)

, δm−1aiδ
t+2

1
, . . . ,

(

δm−1aiδ
t−1

1
= ǫm−1

)

,
(

ǫm−2 = δm−2aiδ
t−1

1

)

, δm−2aiδ
t−2

1
, . . . ,

(

δm−2aiδ
t+1

1
= βm−2

)

, . . . ,
(

ǫ1 = δaiδ
t−1

1

)

, δaiδ
t−2

1
, . . . ,

(

δaiδ
t+1

1
= β1

)

, β0
)

.
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Case 2. n is odd (see Figure 3).

......aiG0 δaiG0 δM−1aiG0

α0
β0

β1
α1

ǫ1
βm

αm

ǫm

Figure 3

Let

P =
(

α0, α1, . . . , αm = δmaiδ
t
1, δ

maiδ
t+1

1
, . . . ,

(

δmaiδ
t−1

1
= ǫm

)

,
(

ǫm−1 = δm−1aiδ
t−1

1
), δm−1aiδ

t−2

1
, . . . ,

(

δm−1aiδ
t+1

1
= βm−1

)

,
(

βm−2 = δm−2aiδ
t+1

1

)

, δm−2aiδ
t+2

1
, . . . ,

(

δm−2aiδ
t−1

1
= ǫm−2

)

, . . . ,
(

ǫ1 = δaiδ
t−1

1

)

, δaiδ
t−2

1
, . . . ,

(

δaiδ
t+1

1
= β1

)

, β0
)

.

From here the result follows.

3. The Proofs of the Main Results

Proof of Theorem 1. Let G = 〈δ1, δ2〉 be a non-abelian simple group and
Cay(G,S) be a normal Cayley graph with {δ1, δ2} ⊆ S. Let G0 = 〈δ1〉, and
let P = {G0, a1G0, . . . , anG0} be the partition of G in cosets induced by the
subgroup G0.

Let H0 = {G0} and, for each k ≥ 1, let Hk = {aiG0 ∈ P : ℓ(ai) = k}. Since

G is finite, it follows that for some p ≥ 1, G =
⋃p

j=0

(

⋃

A∈Hj
A
)

.

We will prove the result by showing, by induction on k, that for every k ≥ 1
the subgraph of Cay(G,S) induced by

k
⋃

j=0





⋃

A∈Hj

A





contains a hamiltonian cycle C such that for each ajG0 ∈ Hk, there is sj such

that
{

aiδ
sj
1
, aiδ

sj+1

1

}

is an edge of C.

For k = 1, observe that H0 = {G0} and H1 =
{

δ2G0, δ
2
2G0, . . . , δ

m
2 G0

}

.

Thus, the subgraph M of Cay(G,S) induced by
⋃

1

j=0

(

⋃

A∈Hj
A
)

is the leaf of

Cay(G,S) induced by L[G0] =
{

G0, δ2G0, δ
2
2G0, . . . , δ

m
2 G0

}

. Let e, δ1 ∈ G0. By
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Lemma 6 there is an (e, δ1,M)-complete path P . Therefore C = P ◦
(

δ1, δ
2
1 , . . . ,

δn−1

1
, e
)

is a hamiltonian cycle of M such that for every 1 ≤ j ≤ m, there is sj

such that
{

δj
2
δ
sj
1
, δj

2
δ
sj+1

1

}

⊆ δj
2
G0 is an edge of C.

Suppose that the statement is true for 1 ≤ m ≤ k; let Q be the subgraph of

Cay(G,S) induced by
⋃k+1

j=0

(

⋃

A∈Hj
A
)

and let Q′ be the subgraph of Cay(G,S)

induced by
⋃k

j=0

(

⋃

A∈Hj
A
)

. By induction hypothesis, there is a hamiltonian

cycle C of Q′ such that for each ajG0 ∈ Hk, there is sj such that
{

ajδ
sj
1
, ajδ

sj+1

1

}

is an edge of C.

For each ajG0 ∈ Hk, by Lemma 6, there is an
(

ajδ
sj
1
, ajδ

sj+1

1
,M

)

-complete

path P withM the leaf induced by L[ajG0] =
{

ajG0, δajG0, δ
2ajG0, . . . , δ

majG0

}

.

Therefore, by deleting from C the edge
{

ajδ
sj
1
, ajδ

sj+1

1

}

, and attach to C \
{

ajδ
t
1, ajδ

t+1

1

}

the path P we obtain a hamiltonian cycle C ′ of the subgraph
of Cay(G,S) induced by V (Q′) ∪ V (M), and such that for each 1 ≤ i ≤ m there

is si such that
{

δiajδ
si
1
, δiajδ

si+1

1

}

is an edge of C ′. Following this procedure for

each coset in Hk, since {L[aiG0] : aiG0 ∈ Hk} is a partition of Hk ∪ Hk+1, we
obtain a hamiltonian cycle C of Q such that for each ajG0 ∈ Hk+1, there is sj

such that
{

ajδ
sj
1
, ajδ

sj+1

1

}

is an edge of C. From here, the result follows.

Proof of Theorem 2. We will prove the theorem by induction on the order of
the group. For |G| = 3, we see that G ∼= Z3 and the only possible normal Cayley
graphs are Cay(Z3, {1}) and Cay(G, {1, 2}) which are both hamiltonian graphs.

Let G be a finite group of order greater than 3, G = G0 DG1, . . . , Gl−1 DGl

be a composition series of G, and let {δ0, . . . , δl+1} ⊆ G such that, for each
0 ≤ i ≤ l, Gi/Gi+1 = 〈δiGi+1, δi+1Gi+1〉. Let Cay(G,S) be a normal Cayley
graph with {δ0, . . . , δl+1} ⊆ S.

Let S/G1 = {sG1 : s ∈ S} and consider the Cayley graph Cay(G/G1, S/G1).
If G/G1 is an abelian group, it is known that Cay(G/G1, S/G1) contains a hamil-
tonian cycle (see [4]). If Cay(G/G1, S/G1) is not an abelian group, consider the
following.

Claim 1. Cay(G/G1, S/G1) is a normal Cayley graph.

Proof. Let g ∈ G and s ∈ S. Since G1 is a normal subgroup it follows that
g−1G1sG1gG1 = g−1sgG1 and since S is a normal connection set, g−1sg = s1 ∈ S.
Therefore g−1sgG1 = s1G1 ∈ S/G1 and the claim follows. �

Thus, by Claim 1, Cay(G/G1, S/G1) is a normal Cayley graph; G/G1 =
〈δ0G1, δ1G1〉 is a simple non-abelian group and, by hypothesis, {δ0, δ1} ⊆ S
which implies that {δ0G1, δ1G1} ⊆ S/G1. Therefore, from Theorem 1 it follows
that there is a hamiltonian cycle in Cay(G/G1, S/G1).
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Let C = (G1, g1G1, . . . , gnG1, G1), with n = |G/G1|, be a hamiltonian cycle
in Cay(G/G1, S/G1) (see Figure 4).

....

G1

gn−1G1 g1G1

gn−2G1 g2G1

Figure 4

On the other hand, let S |G1
= S ∩ G1 and consider the Cayley graph

Cay(G1, S |G1
).

Claim 2. Cay(G1, S |G1
) is a normal Cayley graph.

Proof. Since S is a normal connection set and G1 is a normal subgroup of G
we see that g−1Sg = S and g−1G1g = G1, so g−1(S |G1

)g = g−1(S ∩ G1)g =
S ∩G1 = S |G1

. �

Claim 3. {δ1, . . . , δl+1} ⊆ S |G1
.

Proof. Since for each i ∈ {0, . . . , l+1} we have Gi/Gi+1 = 〈δiGi+1, δi+1Gi+1〉 it
follows that δi ∈ Gi ⊂ G1 and δi ∈ G1 for all 1 ≤ i ≤ l + 1. �

Clearly |G1| < |G0|, and since G1DG2, . . . , Gl−1DGl is a composition series
of G1, by Claims 2 and 3 and by induction hypothesis we see that there is a
hamiltonian cycle C′ in C(G1, S |G1

). Let C′ = (1, n1, n2, . . . , ni−1, 1) with i =
|G1|.

Let glG1 and gl+1G1 be two consecutive vertices of the hamiltonian cycle C
of Cay(G/G1, S/G1). By definition (glG1)

−1gl+1G1 ∈ S/G1 which implies that
G1g

−1

l gl+1G1 = s1G1 with s1 ∈ S. Thus g−1

l gl+1 = s1nl1 with nl1 ∈ G1 and then
g−1

l gl+1n
−1

l1
= s1 ∈ S. Therefore, for every nj ∈ G1, we see that

n−1

j g−1

l gl+1n
−1

l1
nj = n−1

j s1nj ∈ S,

which implies that for every nj ∈ G1, glnj is adjacent to gl+1n
−1

l1
nj in Cay(G,S).
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Observe that the map glnj → gl+1n
−1

l1
nj defines a bijection between glG1

and gl+1G1, and that, given α, β ∈ G1, we see that (glα)
−1glβ = α−1β ∈ S if and

only if

(

gl+1n
−1

l1
α
)−1 (

gl+1n
−1

l1
β
)

= α−1nl1g
−1

l+1
gl+1n

−1

l1
β = α−1β ∈ S,

which implies that the subgraphs of Cay(G,S) induced by glG1 and gl+1G1 are
attached (see Figure 5).

gl

gln1

gln2

gln
−1

l1
n1

gln
−1

l1

gln
−1

l1
n2

Figure 5

From here, and by an analogous argument than in the proof for the case
k = 1 in Theorem 1, we obtain a hamiltonian cycle in Cay(G,S) (see Figure 6).

....

G1

gn−1G1 g1G1

gn−2G1 g2G1

Figure 6
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Cayley graphs of small order, Ars Math. Contemp. 5 (2012) 27–71.
doi:10.26493/1855-3974.177.341
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