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Abstract

A simple graph is called semisymmetric if it is regular and edge-transitive
but not vertex-transitive. Let p be an arbitrary prime. Folkman proved [Reg-
ular line-symmetric graphs, J. Combin. Theory 3 (1967) 215–232] that there
is no semisymmetric graph of order 2p or 2p2. In this paper an extension of
his result in the case of cubic graphs of order 20p2 is given. We prove that
there is no connected cubic semisymmetric graph of order 20p2 or, equiv-
alently, that every connected cubic edge-transitive graph of order 20p2 is
necessarily symmetric.
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1. Introduction

In this paper all graphs are finite, undirected and simple, i.e., without loops or
multiple edges. A graph is called semisymmetric if it is regular and edge-transitive
but not vertex-transitive.

The class of semisymmetric graphs was first studied by Folkman [9], who
found several infinite families of such graphs and posed eight open problems.

An interesting research problem is to classify connected cubic semisymmetric
graphs of various types of orders. Among these, graphs of orders kpi for prime p
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and small k and i have been a target of much research. In [9], Folkman proved
that there are no semisymmetric graphs of order 2p or 2p2 for any prime p. In [2]
it is proved that there is no connected cubic semisymmetric graph of order 4p2

and also in [1] the authors proved that there is no connected cubic semisymmetric
graph of order 8p2 for any prime p.

For prime p, cubic semisymmetric graphs of order 2p3 were investigated in
[17], in which they proved that there is no connected cubic semisymmetric graph
of order 2p3 for any prime p 6= 3 and that for p = 3 the only such graph is the
Gray graph.

Connected cubic semisymmetric graphs of orders 4p3, 6p2, 6p3, 8p3, 10p3,
18pn have been classified in [3, 8, 11, 13] and [22].

In this paper we investigate connected cubic semisymmetric graphs of order
20p2 for all primes p. During our trial for classifying such graphs, we managed to
prove that no such graph can really exist. In fact we first assume the existence of
such a graph and obtain a very useful structure for its group of automorphisms.
Then we use this structure to prove that the existence of the graph will actually
result in a contradiction. By [23] this result is equivalent to saying that any
connected cubic edge-transitive graph of order 20p2 is symmetric.

2. Preliminaries

In this paper, the cardinality of a finite set A is denoted by |A|. A function f
acts on its argument from the left, i.e., we write f(x). The composition, fg, of
two functions f and g, is defined as (fg)(x) = f(g(x)).

The symmetric and alternating groups of degree n, the dihedral group of
order 2n and the cyclic group of order n are respectively denoted by Sn, An, D2n,
Zn. If G is a group and H ≤ G, then Aut(G), G′, Z(G), CG(H) and NG(H)
denote respectively the group of automorphisms of G, the commutator subgroup
of G, the center of G, the centralizer and the normalizer of H in G. We also
write H Ec G to denote H is a characteristic subgroup of G. If H Ec K E G,
then H EG. For a prime p dividing the order of finite G, Op(G) will denote the
largest normal p-subgroup of G. It is easy to verify that Op(G)E

c G.

For a group G and a nonempty set Ω, an action of G on Ω is a function
(g, ω) → g.ω from G × Ω to Ω, where 1.ω = ω and g.(h.ω) = (gh).ω, for every
g, h ∈ G and every ω ∈ Ω. We write gω instead of g.ω, if there is no fear of am-
biguity. For ω ∈ Ω, the stabilizer of ω in G is defined as Gω = {g ∈ G : gω = ω}.
The action is called semiregular if the stabilizer of each element in Ω is trivial; it
is called regular if it is semiregular and transitive.

For any two groups G and H and any homomorphism ϕ : H →Aut(G) the
external semidirect product G ⋊ϕ H is defined as the group whose underlying



On Semisymmetric Cubic Graphs of Order 20p2, p Prime 875

set is the Cartesian product G × H and whose binary operation is defined as
(g1, h1)(g2, h2) = (g1ϕ(h1)(g2), h1h2). If ϕ(h) = 1 for each h ∈ H, then the
semidirect product will coincide with the usual direct product. If G = NK
where N EG, K ≤ G and N ∩K = 1, then G is said to be the internal semidirect

product of N and K. These two concepts are in fact equivalent in the sense that
there is some homomorphism ϕ : K →Aut(N) where G ∼= N ⋊ϕ K.

The dihedral group D2n is defined as

D2n =
〈

a, b | an = b2 = 1, b−1ab = a−1
〉

.

So D2n = {ai | i = 0, . . . , n− 1} ∪ {bai | i = 0, . . . , n− 1}. All the elements of the
form bai are of order 2.

Consider the dihedral group of order 12. According to Sylow theorems, the
number of Sylow 2-subgroups of D12 = {ai | i = 0, . . . , 5} ∪ {bai | i = 0, . . . , 5}
divides 3. Also the following three subgroups, all isomorphic to Z2 × Z2, are
Sylow 2-subgroups of D12:

P1 = {1, a3, b, ba3}, P2 = {1, a3, ba, ba4}, P3 = {1, a3, ba2, ba5}.

Therefore D12 has exactly three Sylow 2-subgroups which are P1, P2 and P3.

Let Γ be a graph. For two vertices u and v, we write u ∼ v to denote u is
adjacent to v. If u ∼ v, then each of the ordered pairs (u, v) and (v, u) is called an
arc. The set of all vertices adjacent to a vertex u is denoted by Γ(u). The degree

or valency of u is |Γ(u)|. We call Γ regular if all of its vertices have the same
valency. The vertex set, the edge set, the arc set and the set of all automorphisms
of Γ are respectively denoted by V (Γ), E(Γ), Arc(Γ) and Aut(Γ). If Γ is a graph
and NEAut(Γ), then ΓN will denote a simple undirected graph whose vertices
are the orbits of N in its action on V (Γ), and where two vertices Nu and Nv are
adjacent if and only if u ∼ nv in Γ, for some n ∈ N .

Let Γc and Γ be two graphs. Then Γc is said to be a covering graph for Γ
if there is a surjection f : V (Γc) → V (Γ) which preserves adjacency and for
each u ∈ V (Γc), the restricted function f |Γc(u) : Γc (u) → Γ (f (u)) is a one to
one correspondence. f is called a covering projection. Clearly, if Γ is bipartite,
then so is Γc. For each u ∈ V (Γ), the fibre on u is defined as fibu = f−1 (u).
The following important set is a subgroup of Aut(Γc) and is called the group of

covering transformations for f :

CT (f) = {σ ∈ Aut (Γc) | ∀u ∈ V (Γ) , σ (fibu) = fibu}.

It is known that K = CT (f) acts semiregularly on each fibre [14]. If this
action is regular, then Γc is said to be a regular K-cover of Γ.

Let X ≤Aut(Γ). Then Γ is said to be X-vertex-transitive, X-edge-transitive

or X-arc-transitive if X acts transitively on V (Γ), E(Γ) or Arc(Γ) respectively.
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The graph Γ is called X-semisymmetric if it is regular and X-edge-transitive
but not X-vertex-transitive. Also Γ is called X-symmetric if it is X-vertex-
transitive and X-arc-transitive. For X =Aut(Γ), we omit X and simply talk
about Γ being edge-transitive, vertex-transitive, symmetric or semisymmetric.
An X-edge-transitive but not X-vertex-transitive graph is necessarily bipartite,
where the two partites are the orbits of the action of X on V (Γ). If Γ is regular,
then the two partite sets have equal cardinality. So an X-semisymmetric graph
is bipartite such that X is transitive on each partite but X carries no vertex from
one partite set to the other.

There are only two symmetric cubic graphs of order 20 which are denoted by
F20A and F20B. Only F20B is bipartite [7].

Any minimal normal subgroup of a finite group, is the internal direct product
of isomorphic copies of a simple group.

A finite simple group G is called a Kn-group if its order has exactly n distinct
prime divisors, where n ∈ N. The following two results determine all simple K3-
groups and K4-groups [4, 12, 20, 25].

Theorem 2.1. (i) If G is a simple K3-group, then G is one of the following

groups: A5, A6, L2(7), L2(2
3), L2(17), L3(3), U3(3), U4(2).

(ii) If G is a simple K4-group, then G is one of the following groups:

(1) A7, A8, A9, A10, M11, M12, J2, L2(2
4), L2(5

2), L2(7
2), L2(3

4), L2(97),
L2(3

5), L2(577), L3(2
2), L3(5), L3(7), L3(2

3), L3(17), L4(3), U3(2
2),

U3(5), U3(7), U3(2
3), U3(3

2), U4(3), U5(2), S4(2
2), S4(5), S4(7), S4(3

2),
S6(2), O

+
8 (2), G2(3), Sz(2

3), Sz(25), 3D4(2),
2F4(2)

′;

(2) L2(r) where r is a prime, r2 − 1 = 2a · 3b · s, s > 3 is a prime, a, b ∈ N;

(3) L2(2
m) where m, 2m − 1, 2m+1

3 are primes greater than 3;

(4) L2(3
m) where m, 3m+1

4 and 3m−1
2 are odd primes.

Theorem 2.2 [21]. If H is a subgroup of a group G, then CG(H)ENG(H) and
NG(H)
CG(H) is isomorphic to a subgroup of Aut(H).

Theorem 2.3 [19]. Let G be a finite group and p a prime. If G has an abelian

Sylow p-subgroup, then p does not divide |G′ ∩ Z(G)|.

Theorem 2.4 ([18], Theorem 9.1.2). Let G be a finite group and N EG. If |N |
and

∣

∣

G
N

∣

∣ are relatively prime, then G has a subgroup H such that G = NH and

N ∩H = 1 (therefore G is the internal semidirect product of N and H).

An immediate consequence of the following theorem of Burnside is that the
order of every nonabelian simple group is divisible by at least 3 distinct primes.

Theorem 2.5 [21]. For any two distinct primes p and q and any two nonnegative

integers a and b, every finite group of order paqb is solvable.
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In the following proposition, the inverse of a pair (a, b) is meant to be (b, a).
Also for each i, Ai, Bi, Ci and Di are noncyclic groups of order i with known
structures. We will not need their structures.

Theorem 2.6 [10]. If Γ is a connected cubic X-semisymmetric graph, then the

order of the stabilizer of any vertex is of the form 2r ·3 for some 0 ≤ r ≤ 7. More

precisely, if {u, v} is any edge of Γ, then the pair (Xu, Xv) can only be one of the

following fifteen pairs or their inverses:

(Z3,Z3), (S3, S3), (S3,Z6), (D12,D12), (D12,A4), (S4,D24), (S4,Z3 ⋊ D8), (A4 ×
Z2,D12×Z2), (S4×Z2,D8×S3), (S4, S4), (S4×Z2, S4×Z2), (A96, B96), (A192, B192),
(C192, D192), (A384, B384).

Proposition 2.7 [24]. Let Γ be a connected cubic X-semisymmetric graph for

some X ≤ Aut(Γ) and let N E X. If
∣

∣

X
N

∣

∣ is not divisible by 3, then Γ is also

N -semisymmetric.

Proposition 2.8 [17]. Let Γ be a connected cubic X-semisymmetric graph for

some X ≤ Aut(Γ); then either Γ ∼= K3,3, the complete bipartite graph on 6
vertices, or X acts faithfully on each of the bipartition sets of Γ.

Theorem 2.9 [15]. Let Γ be a connected cubic X-semisymmetric graph. Let

{U,W} be a bipartition for Γ and assume N E X. If the actions of N on both

U and W are intransitive, then N acts semiregularly on both U and W , ΓN is
X
N
-semisymmetric, and Γ is a regular N -covering of ΓN .

This theorem has a nice result. For every normal subgroup N E X either
N is transitive on at least one partite set or it is intransitive on both partite
sets. In the former case, the order of N is divisible by |U | = |W |. In the latter
case, according to Theorem 2.9, the induced action of N on both U and W is
semiregular and hence the order of N divides |U | = |W |. So we have the following
handy corollary.

Corollary 2.10. If Γ is a connected cubic X-semisymmetric graph with {U,W}
as a bipartition and N EX, then either |N | divides |U | or |U | divides |N |.

Following [10] (see also [16]) the coset graph C(G;H0, H1) of a group G with
respect to finite subgroups H0 and H1 is a bipartite graph with {H0g | g ∈ G}
and {H1g | g ∈ G} as its bipartition sets of vertices where H0g is adjacent to H1g

′

whenever H0g∩H1g
′ 6= ∅. The following proposition may be extracted from [10].

Proposition 2.11. Let G be a finite group and H0, H1 ≤ G. The coset graph

C(G;H0, H1) has the following properties:

(i) C(G;H0, H1) is regular of valency d if and only if H0 ∩ H1 has index d in

both H0 and H1.
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(ii) C(G;H0, H1) is connected if and only if G = 〈H0, H1〉.

(iii) G acts on C(G;H0, H1) by right multiplication. Moreover, this action is

faithful if and only if CoreG(H0 ∩H1) = 1.

(iv) In the case when the action of G is faithful, the coset graph C(G;H0, H1) is
G-semisymmetric.

Proposition 2.12 [16]. Let Γ be a regular graph and G ≤ Aut(Γ). If Γ is G-
semisymmetric, then Γ is isomorphic to the coset graph C(G;Gu, Gv) where u
and v are adjacent vertices.

3. Main Result

In this section, our goal is to prove the following important result.

Theorem 3.1. There is no connected cubic semisymmetric graph of order 20p2

for any prime p.

In the remainder we first state and prove some lemmas and then prove the
main theorem.

Lemma 3.2. Let G be a finite group and HEG such that G
H

is nonabelian simple.

If H ∼= Zp or Z2p for an odd prime p, then H = Z(G).

Proof. Since G
H

is nonabelian simple, G is nonabelian and H is a maximal nor-
mal subgroup of G. Also Aut(Zp) ∼= Zp−1 and Aut(Z2p) ∼= Aut(Z2 × Zp) ∼=
Aut(Z2)×Aut(Zp) ∼= Zp−1. Because H is abelian, we have H ≤ CG(H) E
NG(H) = G. So either CG(H) = H or CG(H) = G. In the former case, according
to Theorem 2.2, we should have G

H
≤ Aut(H) ∼= Zp−1 which is impossible. On

the other hand, CG(H) = G implies H ≤ Z(G) which again results in Z(G) = H
or Z(G) = G since H is a maximal normal subgroup of G. As G is not abelian,
the latter is impossible and so Z(G) = H.

Lemma 3.3. (i) For any odd prime number p, there are only two groups of order

2p : Z2p, D2p. The cardinalities of Z(D2p) and Aut(D2p) are 2 and p(p − 1)
respectively.

(ii) There are only four groups of order 70 : Z70, D70, X70 and Y70, where

X70 =
〈

a, b | a35 = b2 = 1, b−1ab = a6
〉

Y70 =
〈

a, b | a35 = b2 = 1, b−1ab = a−6
〉

.

Moreover,

Z(D70) ∼= Z2, Z(X70) ∼= Z5, Z(Y70) ∼= Z7,
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|Aut(D70)| = 24 · 35, |Aut(X70)| = 24 · 7 and |Aut(Y70)| = 24 · 5.

Proof. We prove part (ii). The proof for part (i) is similar. Let G be a group
of order 70. Using the Sylow theorems, it is easily verified that the number of
Sylow 5-subgroups as well as the number of Sylow 7-subgroups of G is 1. So if
P and Q are the Sylow 5-subgroup and the Sylow 7-subgroup of G respectively,
then P,Q E G and hence N = PQ E G. Now N ∼= P × Q ∼= Z5 × Z7

∼= Z35

is cyclic. Let N = 〈a〉 and take b ∈ G to be an element of order 2. There is
some 1 ≤ i < 35 for which b−1ab = ai. Therefore ai

2

= b−1(b−1ab)b = a and so
i2 ≡ 1 (mod 35). This congruence has only four solutions i = 1, 34, 6, 29 which
respectively correspond to Z70, D70, X70 and Y70.

Now consider X70. Each element equals ai or aib for some i. It can be
easily verified that no element of the form aib belongs to the center, and that
ai ∈ Z(X70) if and only if i ≡ 0 (mod 7). So Z(X70) =

〈

a7
〉

.

Every automorphism f of X70 is uniquely characterized by the two values
f(a) and f(b). By an order argument, we find out that a group of order 70 has
only one subgroup of order 35. So f takes 〈a〉 to 〈a〉 and hence f(a) = ai for some
i coprime to 35. Therefore there are ϕ(35) possibilities for f(a), where ϕ is the
Euler function. Also f(b) must be an element of order 2 and has 7 possibilities,
since the elements of order 2 in X70 are of the form aib where i ≡ 0 (mod 5). We
conclude that |Aut(X70)| = ϕ(35) × 7 = 24 × 7. The corresponding results for
D70 and Y70 follow quite similarly.

Lemma 3.4. There are only three simple K4-groups whose orders are of the form

2i · 3 · 5 · p for some prime p > 5 and some 1 ≤ i ≤ 8 : L2(2
4), L2(11) and L2(31).

Proof. Considering the powers of primes, there is no possibility for such a group
in sub-item (4) of item (ii) of Theorem 2.1. By inspecting orders of groups in
sub-item (1), the only group of the desired form is L2(2

4). As for sub-item (3),
let L2(2

m) be a group of order 2i · 3 · 5 · p; then

2m · 3 · (2m − 1) ·
(

2m+1
3

)

= 2i · 3 · 5 · p,

wherem, 2m−1 and 2m+1
3 are all primes according to Theorem 2.1. This equation

has no answer as neither 2m − 1 nor 2m+1
3 could be equal to 5. Finally, consider

groups L2(r) in sub-item (2). If for odd prime r and for prime s > 3 we have
r2 − 1 = 2a · 3b · s and

2a−1 · 3b · s · r = 2i · 3 · 5 · p,

then b = 1, a−1 = i and either s = 5 or r = 5. The equality r = 5 is not possible,
since L2(5) is not a K4-group. Also if s = 5, then the equation r2 − 1 = 2a · 3 · 5
gives us only two solutions r = 11, 31 when a spans integers 2, 3, . . . , 9.
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Lemma 3.5. Suppose Γ is a semisymmetric cubic graph of order 20p2 where

p > 5 is a prime. Let A = Aut(Γ). Then

(i) If Op(A) = 1, then A does not have a normal subgroup of order 10.

(ii) If |Op(A)| = p, then A does not have a normal subgroup of order 10p.

Proof. Let {U,W} be the bipartition for Γ. Then |U | = |W | = 10p2. Also if
u ∈ U is an arbitrary vertex, according to Theorem 2.6, |Au| = 2r · 3 for some
0 ≤ r ≤ 7. Due to transitivity of A on U , the equality [A : Au] = |U | holds which
yields |A| = 2r+1 · 3 · 5 · p2.

Let M be a normal subgroup of A of order 10 or 10p. Then M is intransitive
on the partite sets and according to Theorem 2.9 the quotient graph ΓM is A

M
-

semisymmetric with a bipartition {UM ,WM}. We prove that the combinations
(|Op(A)|, |M |) = (1, 10) or (p, 10p) lead to contradictions.

To prove (i), let Op(A) = 1 and |M | = 10. Then |UM | = |WM | = p2 and
∣

∣

A
M

∣

∣ = 2r · 3 · p2. Let K
M

be a minimal normal subgroup of A
M
. If K

M
is unsolvable,

it must be a simple group of order 2i ·3 ·p2 for some i. But there is no simple K3-
group of such order. So K

M
is solvable and hence elementary abelian. Whether it

is intransitive or transitive on the partite sets, its order must be p or p2. Therefore
|K| = 10pi for i = 1 or 2. The Sylow p-subgroup of K is normal in K. So it
is characteristic in K and hence normal in A, contradicting the assumption that
Op(A) = 1.

Now consider part (ii) and suppose |Op(A)| = p and |M | = 10p. In this case
|UM | = |WM | = p and

∣

∣

A
M

∣

∣ = 2r ·3 ·p. Again let K
M

be a minimal normal subgroup

of A
M
. If K

M
is unsolvable, it must be a simple group of order 2i · 3 · p for some

i and p > 5. So K
M

∼= L2(7) and p = 7. Since 3 does not divide the order of

A
K

∼=
A

M
K

M

, we conclude that Γ is K-semisymmetric according to Proposition 2.7.

Because K
M

is nonabelian simple, M is a maximal normal subgroup of K. Also
note that CK(M) E NK(M) = K. So M ≤ MCK(M) E K and hence either
MCK(M) = M or MCK(M) = K. If MCK(M) = M , then CK(M) ≤ M and
so CK(M) = CK(M) ∩M = Z(M). Now according to Theorem 2.2 the order of
K

Z(M) must divide |Aut(M)|. The order of M is 70 and so according to Lemma

3.3, M ∼= Z70, D70, X70 and Y70. We have |K| = |L2(7)| × |M | = 24 · 3 · 5 · 72. If
M ∼= Z70, then

∣

∣

K
Z(M)

∣

∣ = 23 · 3 · 7 does not divide |Aut(M)| = ϕ(70) = 24. Also

for the three remaining cases of M , the orders of Z(M) and Aut(M) are known
according to Lemma 3.3, and in each case one can make sure that

∣

∣

K
Z(M)

∣

∣ does

not divide |Aut(M)|. So the equality MCK(M) =M could not be possible.

On the other hand if MCK(M) = K, then |K| = |M ||CK(M)|
|M∩CK(M)| =

|M ||CK(M)|
|Z(M)| .

From this equation, in each of the four possibilities forM one can obtain |CK(M)|,
since the order of Z(M) is known in each case. As Γ is K-semisymmetric and
CK(M)EK, according to Corollary 2.10 either |U | = 10 · 72 divides |CK(M)| or
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|CK(M)| divides 10 ·72. In none of the four cases, these are possible. For example

if M ∼= D70, then from |K| = |M ||CK(M)|
|Z(M)| we obtain |CK(M)| = 24 · 3 · 7 which is

neither divisible by 10 · 72 nor it divides 10 · 72. So K
M

cannot be unsolvable.

If K
M

is solvable, it is elementary abelian. Whether it is intransitive or transi-
tive on the partite sets, its order must equal p. Therefore |K| = 10p2. The Sylow
p-subgroup of K is normal in K. So it is characteristic in K and hence normal
in A, contradicting the assumption that |Op(A)| = p.

Lemma 3.6. If p > 5 is a prime and Γ is a connected cubic semisymmetric

graph of order 20p2, then Aut(Γ) has a normal Sylow p-subgroup.

Proof. Take {U,W} to be a bipartition for Γ and let A =Aut(Γ). Then |U | =
|W | = 10p2 and |A| = 2r+1 · 3 · 5 · p2 for some 0 ≤ r ≤ 7. Let N ∼= T k be a
minimal normal subgroup of A, where T is simple.

If T is nonabelian, then k = 1 and N = T since the powers of 3 and 5 in
|A| equal 1. According to Corollary 2.10 either |N | divides |U | = 10p2 or 10p2

divides |N |. If |N | divides 10p2, then since |N | is divisible by at least three
distinct primes (Theorem 2.5), we must have |N | = 2 · 5 · pi for i = 1 or 2, and
so N is a simple K3-group. But the order of every simple K3-group, listed in
Theorem 2.1, is divisible by 3, a contradiction. Therefore |N | is divisible by 10p2.
Again since the order of every simple K3-group is divisible by 3, N must be a
simple K4-group whose order is of the form 2i · 3 · 5 · p2. But no such simple
K4-group exists.

We conclude that N is elementary abelian and hence it follows from Corollary
2.10 that |N | divides 10p2. Therefore N ∼= Z2, Z5, Zp or Z

2
p. In each case ΓN

would itself be a connected cubic A
N
-semisymmetric graph of order 20p2

|N | . We

claim |Op(A)| = p2 by showing that |Op(A)| < p2 will result in a contradiction as
follows.

Case 1. Op(A) = 1. If this case happens, then the minimal normal subgroup
of A isN ∼= Z2 or Z5 and ΓN is A

N
-semisymmetric of order 10p2 or 4p2 respectively.

Take {UN ,WN} to be the bipartition for ΓN . Also let M
N

be a minimal normal
subgroup of A

N
.

If N ∼= Z2, then
∣

∣

A
N

∣

∣ = 2r ·3·5·p2 and |UN | = |WN | = 5p2. If M
N

is unsolvable,
then it must be a simple K4-group whose order is of the form 2i · 3 · 5 · p2. But
there is no such simple K4-group. If M

N
is solvable, it is elementary abelian and

hence according to Corollary 2.10 its order divides 5p2 which yields M
N

∼= Z5

or Z
i
p for i = 1 or 2. It follows from part (i) of Lemma 3.5 that M

N
cannot be

isomorphic to Z5. Accordingly, M
N

∼= Z
i
p and so |M | = 2pi for i = 1 or 2. If P is

a Sylow p-subgroup of M , then P EcM EA which implies P EA, contradicting
our assumption.
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If N ∼= Z5, then
∣

∣

A
N

∣

∣ = 2r+1 · 3 · p2 and |UN | = |WN | = 2p2. Now if M
N

is
unsolvable, then it must be a simple group whose order is of the form 2i · 3 · p2

for some i ≥ 1. But there is no such simple K3-group. If M
N

is solvable, it is
elementary abelian and according to Corollary 2.10 its order divides |UN | = 2p2

which yields M
N

∼= Z2 or Zip for i = 1 or 2. Again it follows from Lemma 3.5 that
M
N

is not isomorphic to Z2 and so M
N

∼= Z
i
p which results in |M | = 5pi for i = 1 or

2. Again a Sylow p-subgroup of M is normal in A, contradicting our assumption
on Op(A).

Case 2. |Op(A)| = p. Let M = Op(A). According to Theorem 2.9, ΓM
is connected cubic A

M
-semisymmetric with the bipartition {UM ,WM}, where

|UM | = |WM | = 10p. We have
∣

∣

A
M

∣

∣ = 2r+1 · 3 · 5 · p. Let L
M

be a minimal normal

subgroup of A
M

and consider the following two subcases based on solvability or
unsolvability of L

M
.

(a) L
M

is unsolvable. In this case L
M

should be of an order divisible by
|UM | = 10p and so it is a simple K4-group whose order equals 2i · 3 · 5 · p for some
1 ≤ i ≤ 8. According to Lemma 3.4, L

M
is isomorphic to either L2(2

4) of order
24 · 3 · 5 · 17, L2(11) of order 2

2 · 3 · 5 · 11 or L2(31) of order 2
5 · 3 · 5 · 31. These

three groups correspond to p = 17, 11 and 31 respectively. In each case the order

of A
L
∼=

A

M
L

M

is not divisible by 3. So Γ would also be L-semisymmetric according

to Proposition 2.7. Also since in all the three cases L
M

is nonabelian simple and
M ∼= Zp, according to Lemma 3.2 Z(L) = M . Now L′ ∩ Z(L) ≤ Z(L) and
p does not divide the order of L′ ∩ Z(L) according to Theorem 2.3. Therefore
L′ ∩ Z(L) = 1. The relations Z(L) ≤ L′Z(L) E L imply L′Z(L) = Z(L) or
L′Z(L) = L. If L′Z(L) = Z(L), then L′ ≤ Z(L) and so L′ = L′ ∩ Z(L) = 1
which is not possible as L is not abelian. On the other hand if L′Z(L) = L,
then |L| = |L′||Z(L)| and so |L′| = 2i · 3 · 5 · p, where i depends on p (e.g. i = 2
for p = 11). Since Γ is L-semisymmetric, according to Corollary 2.10, |L′| either
divides |U | = 10p2 or is divisible by 10p2. With the order that we just obtained
for L′, none of these divisibilities hold.

(b) L
M

is solvable. In this case, L
M

is elementary abelian and hence intransitive
on both UM and WM . So L

M
∼= Z2, Z5 or Zp. The isomorphism L

M
∼= Zp could

not hold as it would lead to |L| = p2 which contradicts the assumption that
|Op(A)| = p. In the following we discuss the two remaining cases.

(b1) L
M

∼= Z2. This yields |L| = 2p. Consider the graph ΓL which is con-
nected cubic A

L
-semisymmetric (Theorem 2.9) with the bipartition {UL,WL},

where |UL| = |WL| = 5p. Let T
L

be a minimal normal subgroup of A
L
. It is

either solvable or unsolvable. In the following we discuss that both cases lead to
contradictions.

Suppose T
L
is solvable. Then T

L
∼= Z5 or Zp. The case T

L
∼= Z5 is not possible
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since according to Lemma 3.5, A does not have any normal subgroup of order
10p. Also the case T

L
∼= Zp yields |T | = 2p2 and a Sylow p-subgroup of T would

be normal in A, contradicting our assumption that |Op(A)| = p.

Now suppose T
L
is unsolvable. So it should be a simple group of order 2i ·3·5·p

for some 1 ≤ i ≤ 7. Again according to Lemma 3.4, T
L

∼= L2(2
4), L2(11) or

L2(31) which respectively correspond to p = 17, 11, 31. In each case Γ is T -

semisymmetric according to Proposition 2.7, since the order of A
T

∼=
A

L
T

L

is not

divisible by 3. As |L| = 2p and p is odd prime, according to Lemma 3.3 we have
L ∼= Z2p or D2p.

First suppose L ∼= Z2p. Then according to Lemma 3.2, Z(T ) = L. Now
T ′ ∩ Z(T ) ≤ Z(T ) ∼= Z2p and p does not divide the order of T ′ ∩ Z(T ) according
to Theorem 2.3. Therefore |T ′ ∩L| = |T ′ ∩Z(T )| = 1 or 2. Since T

L
is nonabelian

simple, T ′L
L

=
(

T
L

)′
= T

L
and so T ′L = T . So |T | = |T ′| · |L|

|T ′∩L| . Because

|T | = 2i · 3 · 5 · p2 for some i > 1 and |L|
|T ′∩L| = p or 2p, we obtain |T ′| = 2j · 3 · 5 · p

for some j. The graph Γ is T -semisymmetric and so according to Corollary 2.10
either |T ′| divides |U | = 10p2 or |T ′| is divisible by 10p2. Both these cases are
inconsistent with the order that we just obtained for T ′.

Next assume L ∼= D2p. The relations L ≤ LCT (L) E T imply LCT (L) = L

or LCT (L) = T . If LCT (L) = T , then |T | = |L||CT (L)|
|L∩CT (L)| . Since |L ∩ CT (L)| =

|Z(L)| = |Z(D2p)| = 2, we will have |T | = |L||CT (L)|
2 and so |CT (L)| = 2j · 3 · 5 · p

for some j. With this order, the normal subgroup CT (L) E T does not satisfy
Corollary 2.10. If LCT (L) = L, then CT (L) ≤ L and hence CT (L) = CT (L)∩L =
Z(L) ∼= Z(D2p) ∼= Z2. According to Theorem 2.2, T

CT (L) ≤ Aut(L) ∼=Aut(D2p)

and so
∣

∣

T
CT (L)

∣

∣ = 2i·3·5·p2

2 divides |Aut(D2p)| = p(p− 1) which is impossible.

(b2) L
M

∼= Z5. In this case |L| = 5p. The graph ΓL is connected cubic
A
L
-semisymmetric (Theorem 2.9) with the bipartition {UL,WL}, where |UL| =

|WL| = 2p. Let T
L
be a minimal normal subgroup of A

L
.

If T
L

is solvable, then T
L

∼= Z2 or Zp. The case T
L

∼= Z2 is ruled out, as a
result of part (ii) of Lemma 3.5. Also the case T

L
∼= Zp yields |T | = 5p2 and a

Sylow p-subgroup of T would be normal in A, contradicting our assumption that
|Op(A)| = p.

If T
L
is unsolvable, then it is a simple group of order 2i ·3·p for some 1 ≤ i ≤ 8.

So T
L
∼= A5, L2(7) according to Theorem 2.1. But since p > 5, we may only have

T
L

∼= L2(7) and p = 7. The order of
A

L
T

L

is not divisible by 3. So ΓL is also G-

semisymmetric where G = T
L
. Therefore G is transitive on both UL and WL,

each with 2p = 14 points. So for any pair of vertices u ∈ UL and w ∈ WL, the
stabilizers Gu and Gw are of order 12. For any prime power q all subgroups of the
group L2(q) have been characterized (see [21], Chapter 3). The only subgroup of
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L2(7) of order 12 is A4. So Gu ∼= Gw ∼= A4. But the pair (Gu, Gw) = (A4,A4) is
not possible for an edge {u,w} of a cubic G-semisymmetric graph according to
Theorem 2.6.

Lemma 3.7. For any prime p, the group GL2(p) does not have a subgroup iso-

morphic to A5.

Proof. For p = 2, 3 the claim follows by comparing the orders. Let p > 3 and
suppose on the contrary that A5

∼= H ≤ GL2(p). Then H = H ′ ≤ (GL2(p))
′ =

SL2(p). It is a well-known fact that SL2(p) has only one involution for odd prime
p, whereas A5 has more that one element of order 2, a contradiction.

Lemma 3.8. Suppose p > 5 is a prime and Γ is a connected cubic semisymmetric

graph of order 20p2. Let A = Aut(Γ) and take M to be the (normal) Sylow p-
subgroup of A. For G = A5 or S5 if A

M
∼= G, then

(1) For each vertex u the stabilizer Au is isomorphic to a subgroup of G.

(2) A ∼=M ⋊ϕ G for some homomorphism ϕ : G→ Aut(M).

Proof. For each vertex u of Γ, MAu ≤ A. Therefore Au ∼= Au

M∩Au

∼= MAu

M
≤ A

M
.

This proves (1). Also it follows from Theorem 2.4 that A = MH for some
subgroup H ≤ A whereM ∩H = 1. So A is the internal semidirect product ofM
and H and hence it is isomorphic to the external semidirect product ofM and H;
i.e., A ∼=M ⋊ψ H for some ψ : H →Aut(M). Since G ∼= A

M
= MH

M
∼= H

M∩H
∼= H,

we can write A ∼=M ⋊ϕ G for some ϕ : G→Aut(M).

Lemma 3.9. Suppose p > 5 is a prime and Γ is a connected cubic semisymmetric

graph of order 20p2. Let A = Aut(Γ) and take M to be the Sylow p-subgroup of

A. Then A
M

cannot be isomorphic to A5.

Proof. Suppose on the contrary, that A
M

∼= A5. Then for any vertex u from
the equality [A : Au] = 10p2 we obtain |Au| = 6 and hence Au ∼= Z6 or S3. By
Lemma 3.8 Au ≤ A5. Since A5 does not have elements of order 6, we conclude
that Au ∼= S3. Also according to Lemma 3.8, A ∼=M ⋊ϕ A5. There are only two
possibilities for the kernel of ϕ : A5 →Aut(M).

(a) If ker(ϕ) = 1, then A5 is isomorphic to a subgroup of Aut(M). Since
M of order p2 is abelian, either M ∼= Zp2 or M ∼= Zp × Zp. In the first case
Aut(M) is abelian and does not have a subgroup isomorphic to A5 and in the
second case Aut(M) ∼= GL2(p) which again does not have a subgroup isomorphic
to A5 according to Lemma 3.7.

(b) If ker(ϕ) = A5, then ϕ is the trivial homomorphism and so A ∼= M ×
A5. Since Γ is semisymmetric, according to Proposition 2.12 Γ is isomorphic to
C(A;Au, Av) where u and v are two adjacent vertices in Γ. As Γ is connected,
according to Proposition 2.11 we must have A = 〈Au, Av〉. In view of Au ∼= Av ∼=
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S3, this means that M × A5 is generated by two of its subgroups, say H and
K, both of them isomorphic to S3. Now for each element (m, a) ∈ H we have
(m, a)6 = 1 which means m6 = 1 in M . As |M | = p2 and p > 5, this results in
m = 1. Therefore the first component of each element of H (and similarly for K)
equals 1. Consequently the first component of each element in M ×A5 = 〈H,K〉
equals 1 which is a contradiction.

Lemma 3.10. Suppose p > 5 is a prime and Γ is a connected cubic semisymmet-

ric graph of order 20p2. Let A = Aut(Γ) and take M to be the Sylow p-subgroup
of A. Then A

M
cannot be isomorphic to S5.

Proof. If A
M

∼= S5, then according to Lemma 3.8, A ∼=M ⋊ϕ S5 for some homo-
morphism ϕ : S5 →Aut(M). Moreover, according to the same Lemma for each
vertex u, Au is isomorphic to a subgroup of S5. From [A : Au] = 10p2 we have
|Au| = 12. Subgroups of S5 of order 12 are A4 and D12. So Au ∼= D12 or A4 for
any vertex u. Now there are three possibilities for the kernel of ϕ.

(a) If ker(ϕ) = 1, then S5 and hence A5 is isomorphic to a subgroup of
Aut(M). But as we showed in part (a) of the proof of Lemma 3.9, A5 cannot be
a subgroup of Aut(M). So this case cannot happen.

(b) If ker(ϕ) = S5, then ϕ is the trivial homomorphism and so A ∼=M × S5.
As in part (b) of the proof of Lemma 3.9 we conclude that A = 〈Au, Av〉 where u
and v are two adjacent vertices. Since |Au| = |Av| = 12, this means that M × S5

is generated by two of its subgroups, say H and K, each of order 12. For each
element (m, a) ∈ H we have (m, a)12 = 1 which means m12 = 1. As |M | = p2

and p > 5, it follows that m = 1. Therefore the first component of each element
of H (and similarly for K) equals 1. Consequently the first component of each
element in M × S5 = 〈H,K〉 equals 1 which is a contradiction.

(c) If ker(ϕ) = A5, then the image of ϕ is isomorphic to S5
A5

∼= Z2. So
there is some T ∈Aut(M) of order 2 for which ϕ(x) = 1 for all x ∈ A5 and
ϕ(x) = T for any x /∈ A5. For any two elements (x, g) and (y, h) from M ⋊ϕ S5

the multiplication (x, g)(y, h) equals (xy, gh) if g ∈ A5 and equals (xT (y), gh)
if g /∈ A5. Now it is easy to see that in the group M ⋊ϕ S5 for any positive
integer n if g ∈ A5, then (x, g)n = (xn, gn) for all x ∈ M , and if g /∈ A5, then
(x, g)2n = (xnT (xn), g2n) and (x, g)2n+1 = (xn+1T (xn), g2n+1) for all x ∈M .

Take {u, v} to be a fixed edge in Γ. Then according to Proposition 2.12,
Γ ∼= C(A;Au, Av). Now according to part (ii) of Proposition 2.11, A = 〈Au, Av〉
and also according to part (i) of Proposition 2.11, |Au ∩Av| = 4, i.e., Au ∩Av is
a common Sylow 2-subgroup of both Au and Av. Since A ∼= M ⋊ϕ S5, a similar
result holds for M ⋊ϕ S5; i.e., there are two subgroups U, V ≤M ⋊ϕ S5 where

(1) U, V ∈ {D12,A4}; and
(2) M ⋊ϕ S5 = 〈U, V 〉; and
(3) U ∩ V is a common Sylow 2-subgroup of both U and V .



886 M. Shahsavaran and M.R. Darafsheh

We will show however, that the existence of U and V with the above speci-
fications will lead to a contradiction.

Let H ≤M ⋊ϕ S5 and H ∼= D12 or A4. We say H is of type 1 if all elements
of H have their second component in A5. We also call H of type 2 if there is at
least one element in H whose second component is not in A5.

Define K := {(x, g) ∈ H | g ∈ A5}. Then K ≤ H. Define f : K → M by
f(x, g) = x. Then f is a homomorphism and hence K

ker(f)
∼= Im(f). Consequently

∣

∣

K
ker(f)

∣

∣ divides both 12 and p2 and hence K = ker(f). This means that if

(x, g) ∈ H and g ∈ A5, then x = 1.

Suppose H is of type 1. Then the first component of each element of H
equals 1 and so H is isomorphic to a subgroup of A5. Since A5 does not have any
element of order 6, H cannot be isomorphic to D12. Hence H ∼= A4.

Now suppose H is of type 2. If (x, g) ∈ H is an arbitrary element with
g /∈ A5, then (xT (x), g2) = (x, g)2 ∈ H. Since g2 ∈ A5, we conclude xT (x) = 1
and so T (x) = x−1. Also if (y, h) ∈ H is another element with h /∈ A5, then
(yT (x), hg) = (y, h)(x, g) ∈ H. Again hg ∈ A5 implies that yT (x) = 1 or
T (x) = y−1. Therefore x−1 = y−1 and so x = y. In other words, for any pair
of elements (x, g) ∈ H and (y, h) ∈ H with g /∈ A5 and h /∈ A5 we must have
x = y. Certainly there are always elements in H whose second component lies in
A5 (and hence their first component is 1).

Therefore we can write

H = {(x, g1), (x, g2), . . . , (x, gn), (1, h1), . . . , (1, hm)},

where n + m = 12 and where g1, . . . , gn /∈ A5 and h1, . . . , hm ∈ A5. If H =
{(1, h1), . . . , (1, hm)} then H ≤ H, and if H1 = {h1, . . . , hm} then H1 ≤ A5 and
H1

∼= H. Multiplying all the elements of H by (x, gt), t arbitrary, we again obtain
H. Therefore

H = {(1, gtg1), (1, gtg2), . . . , (1, gtgn), (x, gth1), . . . , (x, gthm)}.

Comparing the two equalities for H and by taking into account that gtgi ∈ A5

for i = 1, . . . , n and gthj /∈ A5 for j = 1, . . . ,m, we obtain

{gtg1, gtg2, . . . , gtgn} = {h1, . . . , hm}

and

{gth1, . . . , gthm} = {g1, . . . , gn}.

This results in m = n = 6. So |H| = 6. Since A4 does not have a subgroup
of order 6, the first conclusion is that H cannot be isomorphic to A4 and hence
H ∼= D12. The group D12 has only two subgroups of order 6, namely Z6 and
S3. If H ∼= Z6, then Z6

∼= H1 ≤ A5. But A5 does not have elements of order
6. Therefore H cannot be isomorphic to Z6 and hence H ∼= S3. Since H ∼= D12,
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we can write H = {ai | i = 0, . . . , 5} ∪ {bai | i = 0, . . . , 5}. As H ∼= S3 does not
have any element of order 6, a must be of the form (x, g) for some g /∈ A5. As
for b, there are two possible cases; either b = (1, h) ∈ H in which case we call H
of (sub)type 2.1 or b = (x, g′) ∈ H −H in which case we call H of (sub)type 2.2.

If H is of type 2.1 and b = (1, h), h ∈ A5, then

H1(x, g, h) =
{

(x, g)i| i = 0, . . . , 5} ∪ {(1, h)(x, g)i| i = 0, . . . , 5
}

=
{

(1, 1), (x, g),
(

1, g2
)

,
(

x, g3
)

,
(

1, g4
)

,
(

x, g5
)

,

(1, h), (x, hg),
(

1, hg2
)

,
(

x, hg3
)

,
(

1, hg4
)

,
(

x, hg5
)}

.

In this case all the Sylow 2-subgroups of H are as follows:

HP 1
1 (x, g, h) =

{

(1, 1),
(

x, g3
)

, (1, h),
(

x, hg3
)}

,

HP 1
2 (x, g, h) =

{

(1, 1),
(

x, g3
)

, (x, hg),
(

1, hg4
)}

,

HP 1
3 (x, g, h) =

{

(1, 1),
(

x, g3
)

,
(

1, hg2
)

,
(

x, hg5
)}

.

Also if H is of type 2.2 and b = (x, g′), g′ /∈ A5, then

H2(x, g, g′) =
{

(1, 1), (x, g),
(

1, g2
)

,
(

x, g3
)

,
(

1, g4
)

,
(

x, g5
)

,
(

x, g′
)

,
(

1, g′g
)

,
(

x, g′g2
)

,
(

1, g′g3
)

,
(

x, g′g4
)

,
(

1, g′g5
)}

and all the Sylow 2-subgroups of H are as follows:

HP 2
1 (x, g, g

′) =
{

(1, 1),
(

x, g3
)

,
(

x, g′
)

,
(

1, g′g3
)}

,

HP 2
2 (x, g, g

′) =
{

(1, 1),
(

x, g3
)

,
(

1, g′g
)

,
(

x, g′g4
)}

,

HP 2
3 (x, g, g

′) =
{

(1, 1),
(

x, g3
)

,
(

x, g′g2
)

,
(

1, g′g5
)}

.

In the above notations, the superindex j = 1, 2 refers to type 2.j of H.

Now we go back and consider U and V . There are only three possible cases
for their types.

Case c1. Both U and V are of type 1. This means (Au, Av) = (A4,A4) which
is not possible according to Theorem 2.6.

Case c2. One of U and V is of type 1 and the other has type 2. Without
loss of generality assume U has type 1 and V is of type 2. So every element of U
has its first component equal to 1 and so will be every element of U ∩ V which is
a Sylow 2-subgroup of both U and V . No matter what the subtype of V is, this
says that the first component of every element of V should be 1. For example, if

U ∩ V = V P 2
2 (x, g, g

′) =
{

(1, 1),
(

x, g3
)

,
(

1, g′g
)

,
(

x, g′g4
)}



888 M. Shahsavaran and M.R. Darafsheh

for some x ∈ M , g, g′ /∈ A5, then x = 1 and hence the first component of every
element of V = V 2(x, g, g′) is 1. Now U and V cannot both generate M ⋊ϕ S5

since every element of 〈U, V 〉 is an alternating product of elements from U and
V which will have its first component equal to 1 because (1, t)(1, s) = (1, ts) for
any t, s ∈ S5.

Case c3. Both U and V are of type 2. In this case, there are four possible
cases for the subtypes of U and V . Suppose U = U i(x, a, b) and V = V j(y, α, β)
for some x, y ∈ M and some suitable a, b, α, β ∈ S5. Since U ∩ V is a Sylow
2-subgroup of both U and V , we must have UP ii′(x, a, b) = V P jj′(y, α, β) for some
i′, j′ ∈ {1, 2, 3}. We compare the first components of non-identity elements from
the two sides of this equality. If x = 1, then inevitably y = 1. If x 6= 1, then
x = y. Therefore x = y in any case.

DefineMx = ({1}×A5)∪({x}×(S5−A5)). It is easy to check thatMx ≤M⋊ϕ

S5. Obviously U ∪V ⊂Mx, and so 〈U, V 〉 ≤Mx. Therefore 〈U, V 〉 6=M⋊ϕS5.

Proof of Theorem 3.1. According to [6] there is no connected cubic semisym-
metric graph of order 20p2 for p = 2, 3 and 5. So let p > 5 and suppose on the
contrary that Γ is a connected cubic semisymmetric graph of order 20p2. Let
{U,W} be a bipartition for Γ and A =Aut(Γ). Then |U | = |W | = 10p2 and
|A| = 2r+1 · 3 · 5 · p2 for some 0 ≤ r ≤ 7. Also assume M is a Sylow p-subgroup
of A. According to Lemma 3.6, M E A. Due to its order, M is intransitive on
both U and W and so according to Theorem 2.9, ΓM is a connected cubic G-
semisymmetric graph of order 20 with the bipartition {UM ,WM}, where G = A

M

and |UM | = |WM | = 10.

Therefore ΓM is G-edge-transitive and hence edge-transitive. Now if ΓM is
not vertex-transitive, then it must be semisymmetric, but there is no semisym-
metric cubic graph of order 20 according to [6]. So ΓM should be vertex-transitive
and hence symmetric since according to [23] a cubic vertex and edge-transitive
graph is necessarily symmetric. According to [7] there are only two symmetric
cubic graphs of order 20: F20A and F20B. Since ΓM is bipartite and F20A is not
bipartite, we should have ΓM ∼=F20B.

The automorphism group of F20B has 240 elements [7] and G = A
M

is iso-
morphic to a subgroup of Aut(F20B) of order |G| = 2r+1 · 3 · 5. The equality
is not possible since G is not transitive on V (F20B) whereas Aut(F20B) is. So
|G| < 240 and hence 1 ≤ r+1 ≤ 3. Also G is transitive on both UM andWM and
according to Proposition 2.8 the action of G on each of UM and WM is faithful.
Therefore G is a transitive permutation group of degree 10. Transitive permuta-
tion groups of degree 10 have been completely classified in [5]. There are 45 such
groups up to isomorphism which are denoted by T1, T2, . . . , T45 in [5]. Among
these, the only groups whose orders are of the form 2i · 3 · 5 for 1 ≤ i ≤ 3, are
T7 ∼= A5 of order 60, and T11, T12 and T13 ∼= S5 of order 120. We first argue
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that G could not be isomorphic to T11 or T12.

In [5] all the transitive groups of degree 10 have been defined with a set of
generating permutations on ten points. If

a = (1, 2, 3, 4, 5), b = (6, 7, 8, 9, 10),

e = (1, 5)(2, 3), f = (6, 10)(7, 8), g = (1, 2), h = (6, 7) and

i = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10),

then

T11 = 〈ab, ef, i〉, T12 = 〈ab, ef, ghi〉.

Using the GAP software it is easy to verify that H = 〈i〉 E T11. Obviously
|H| = 2.

If G ∼= T11, then according to Theorem 2.9 the quotient graph of ΓM with
respect to H which we denote by (ΓM )H , would be R-semisymmetric of order
10, where R = T11

H
. This implies that R is transitive on each partite set and by

Proposition 2.8, R would be a transitive permutation group of degree 5. Again
according to [5] the only transitive permutation group of degree 5 and of order
60 is A5. So we should have R ∼= A5. Now the stabilizer of any vertex of (ΓM )H
under the action of R has |R|

5 = 12 points and the only subgroup of A5 of order 12
is isomorphic to A4. So for an edge {u,w} of the cubic R-semisymmetric graph
(ΓM )H , we have (Ru, Rw) = (A4,A4) which is not possible according to Theorem
2.6. Therefore the assumption that G ∼= T11, leads to a contradiction.

Now suppose G ∼= T12. Since G is transitive on either of the two partite
sets, the stabilizers of any vertex in one partite set are isomorphic. Consider one
vertex, e.g. 1. Using GAP software, we easily obtain the stabilizer of 1 under
T12 as

〈(2, 4)(3, 5)(7, 9)(8, 10), (3, 5, 4)(8, 10, 9)〉.

Using GAP one finds out that this group is nonabelian of order 12 which has
the following group of order 4 as a normal subgroup:

〈(2, 3)(4, 5)(7, 8)(9, 10), (2, 4)(3, 5)(7, 9)(8, 10)〉.

There are only 3 nonabelian groups of order 12 up to isomorphism: A4, D12

and the dicyclic group of order 12. Among these, the only one having a normal
subgroup of order 4, is A4. So the stabilizer of any vertex in ΓM would be
isomorphic to A4 which is not possible according to Theorem 2.6.

Finally A
M

∼= T7 ∼= A5 is not possible according to Lemma 3.9 and A
M

∼=
T13 ∼= S5 is not possible according to Lemma 3.10.

Since every case for A
M

is contradictory, we conclude that there is no con-
nected cubic semisymmetric graph of order 20p2.
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