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Abstract

In this paper, we study a new distance parameter triameter of a con-
nected graph G, which is defined as max{d(u, v)+d(v, w)+d(u,w) : u, v, w ∈
V } and is denoted by tr(G). We find various upper and lower bounds on
tr(G) in terms of order, girth, domination parameters etc., and characterize
the graphs attaining those bounds. In the process, we provide some lower
bounds of (connected, total) domination numbers of a connected graph in
terms of its triameter. The lower bound on total domination number was
proved earlier by Henning and Yeo. We provide a shorter proof of that.
Moreover, we prove Nordhaus-Gaddum type bounds on tr(G) and find tr(G)
for some specific family of graphs.
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1. Introduction

The channel assignment problem is the problem of assigning frequencies to the
transmitters in some optimal manner and with no interferences. Keeping this
problem in mind, Chartrand et al. in [1] introduced the concept of radio k-color-
ing of a simple connected graph. As finding the radio k-chromatic number of
graphs is highly non-trivial and therefore is known for very few graphs, deter-
mining good and sharp bounds is an interesting problem and has been studied
by many authors [8, 10–13] etc. In [8, 10, 11], authors provides some sharp lower
bounds on radio k-chromatic number of connected graphs in terms of a newly
defined parameter called triameter of a graph (it was denoted as M -value of a
graph in [11]). Apart from this, the concept of triameter also finds application in
metric polytopes [9]. Recently, in [7], Henning and Yeo proved a graffiti conjec-
ture on lower bound of total domination number of a connected graph in terms

http://dx.doi.org/10.7151/dmgt.2212


602 A. Das

of its triameter. Keeping these as motivation, in this paper, we formally study
triameter of connected graphs and various bounds associated with it. In fact, in
the process, we provide a shorter proof of the main result in [7].

2. Preliminaries

In this section, for convenience of the reader and also for later use, we recall
some definitions, notations and results concerning elementary graph theory. For
undefined terms and concepts the reader is referred to [14].

By a graph G = (V,E), we mean a non-empty set V and a symmetric binary
relation (possibly empty) E on V . If two vertices u, v are adjacent in G, either
we write (u, v) ∈ E or u ∼ v in G. The complement of a graph G, denoted by
Gc, is defined to be a graph on same vertex set as that of G and two vertices are
adjacent in Gc if and only if they are non-adjacent in G. The distance dG(u, v)
or d(u, v) between two vertices u, v ∈ V is the length of the shortest path joining
u and v in G. The eccentricity of a vertex v is defined as max{d(u, v) : u ∈ V }
and is denoted by ecc(v). The radius, diameter and center of a connected graph
G are defined as rad(G) = min{ecc(v) : v ∈ V }, diam(G) = max{ecc(v) : v ∈ V }
and center(G) = {v ∈ V : ecc(v) = rad(G)} respectively. The Wiener index
σ(G) is defined as

∑
{u,v}⊂V d(u, v). A graph G is said to be vertex transitive if

Aut(G), the automorphism group of G, acts transitively on G. The length of a
cycle, if it exists, of smallest length is said to be the girth g(G) of G. A graph
G is said to be Hamiltonian if there exists a cycle containing all the vertices of
G as a subgraph of G. A graph G is said to be strongly regular with parameters
(n, k, λ, µ) if it is a k-regular n-vertex graph in which any two adjacent vertices
have λ common neighbours and any two non-adjacent vertices have µ common
neighbours. A graph is said to be a bistar if it is obtained by joining the root
vertices of two stars K1,n1 and K1,n2 . We denote this graph by Kn1

n2
and it is a

graph on n1 + n2 + 2 vertices. For other definitions, e.g., domination number γ,
total domination number γt, connected domination number γc of a graph, readers
are referred to [5].

3. Triameter of a Graph and its Bounds

In what follows, even if not mentioned, G denotes a finite simple connected
undirected graph with at least 3 vertices. We start by defining triameter of a
connected graph.

Definition. Let G = (V,E) be a connected graph on n ≥ 3 vertices. The
triameter of G is defined as max{d(u, v) + d(v, w) + d(u,w) : u, v, w ∈ V } and is
denoted by tr(G).
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From the definition, it follows that tr(G) is always greater than or equal to 3.
However, triameter of a graph on n vertices can be as large as 2n− 2, as evident
from the following results proved in [8]: tr(Pn) = 2(n− 1) and tr(Cn) = n.

If G and H are two connected graphs on same vertex set with E(H) ⊆ E(G),
then by definition of triameter, we have tr(G) ≤ tr(H). For any three vertices
u, v, w, let us denote by d(u, v, w), the sum d(u, v) + d(v, w) + d(u,w). Now, we
investigate other bounds on tr(G).

Theorem 3.1. For any connected graph G, 2 · diam(G) ≤ tr(G) ≤ 3 · diam(G),
and the bounds are tight.

Proof. The upper bound follows from the definition of diameter and triameter
of a connected graph. For the lower bound, let d(u, v) = diam(G). Choose
w ∈ V \ {u, v}. Then d(u, v) ≤ d(v, w) + d(w, u), implying that 2 · diam(G) =
2d(u, v) ≤ d(u, v) + d(v, w) + d(w, u) ≤ tr(G).

The tightness of the bounds follows from the following examples. For n ≥ 3,
tr(Pn) = 2 · diam(Pn). For Petersen graph P , tr(P ) = 3 · diam(P ).

Corollary 3.2. Let G be a connected graph on n vertices such that δ(G) ≥ n
2 .

Then tr(G) ≤ 6.

Proof. It follows from Theorem 3.1 and the fact that δ(G) ≥ n
2 implies diam(G)

≤ 2.

Corollary 3.3. For any connected graph G, 2 ·rad(G) ≤ tr(G) ≤ 6 ·rad(G), and
the bounds are tight.

Proof. As for any connected graph G, rad(G) ≤ diam(G) ≤ 2 · rad(G), we have
2 · rad(G) ≤ tr(G) ≤ 6 · rad(G). For the tightness of the lower bound, take
G = C2n where tr(G) = 2n = 2 · rad(G), and for upper bound, take G = K1,3

where tr(G) = 6 and rad(G) = 1.

Remark 3.4. Some other examples demonstrating the tightness of the upper
bounds are shown in Figure 1. The bound in Corollary 3.3 can be substantially
tightened in case of vertex transitive graphs; see Theorem 4.6.

Corollary 3.5. For any tree T , 4 · rad(T ) − 2 ≤ tr(T ) ≤ 6 · rad(T ), and the
bounds are tight.

Proof. We first recall a result on tree. A tree T has either |center(T )| = 1
or |center(T )| = 2, and diam(T ) = 2 · rad(T ) or 2 · rad(T ) − 1 according as
|center(T )| = 1 or |center(T )| = 2. Hence the corollary follows from Theorem
3.1. Tightness of the upper bound and lower bound follows respectively from
K1,3 and P2n.
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A Tree with tr(G) = 3 · diam(G). A Tree with tr(G) = 6 · rad(G).

Figure 1. Trees achieving the upper bounds.

The lower bound in Corollary 3.5 can be improved for trees with more than
2 leaves.

Theorem 3.6. For any tree T with more than 2 leaves, tr(T ) ≥ 4 · rad(T ), and
the bound is tight.

Proof. If T is central, i.e., |center(T )| = 1, let x1 be the center of T and rad(T ) =
r and u, v be two diametrical opposite vertices. Then diam(T ) = d(u, v) = 2r
and d(u, x1) = d(v, x1) = r. Let w be another leaf of T other than u and v and k
be the shortest distance of w from the vertices lying on the path joining u and v.
Then d(u, v, w) = 4r + 2k. Since w is a leaf, k ≥ 1. Hence tr(T ) ≥ d(u, v, w) ≥
4r + 2 > 4rad(T ).

If T is bicentral, i.e., |center(T )| = 2, let x1, x2 be the center of T and
rad(T ) = r and u, v be two diametrical opposite vertices. Then diam(T ) =
d(u, v) = 2r − 1. Let w be another leaf of T other than u and v and k be the
shortest distance of w from the vertices lying on the path joining u and v. Then
d(u, v, w) = 4r + 2k − 2. Since w is a leaf, k ≥ 1. Hence tr(T ) ≥ d(u, v, w) ≥
4r = 4rad(T ).

Hence, the theorem holds. The tightness follows from the tree obtained by
subdividing one edge of K1,3, where radius is 2 and triameter is 8.

3.1. Upper bounds

Theorem 3.7. For any connected graph G with n ≥ 3 vertices, tr(G) ≤ 2n− 2.
Moreover tr(G) = 2n− 2 if and only if G is a tree with 2 or 3 leaves.
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Proof. It suffices to prove the bound for trees, as for any connected graph G
and any spanning tree T of G, tr(G) ≤ tr(T ) holds. Let T be a tree. Let u, v
and w be three vertices of T such that tr(T ) = d(u, v, w). Suppose that P1, P2

and P3 are three shortest paths from u to v, u to w, and v to w, respectively. Let
E(P1 ∪P2 ∪P3) be a set of all edges in the paths P1, P2 and P3. It is not hard to
see that each edge in E(P1 ∪ P2 ∪ P3) is considered twice for computing tr(T ).
Therefore, we have

tr(T ) = 2|E(P1 ∪ P2 ∪ P3)| ≤ 2|E(T )| = 2|V (T )| − 2 = 2n− 2,

where V (T ) and E(T ) are the vertex set and edge set of T , respectively.
If tr(T ) = 2|V (T )|−2, then we have 2|V (T )|−2 = 2|E(P1∪P2∪P3)|. Hence,

|V (T )| − 1 = |E(P1 ∪ P2 ∪ P3)|. This implies that |E(T )| = |E(P1 ∪ P2 ∪ P3)|.
Thus, E(T ) = E(P1 ∪ P2 ∪ P3). It shows that T has either exactly 3 leaves u, v
and w or two leaves u, v and w is another vertex on T .

Next we show that G can not be a connected graph which is not a tree
with tr(G) = 2n − 2. Let G be a connected graph with tr(G) = 2n − 2 where
n = |V (G)|. We note that G has a spanning tree T . Hence, 2n − 2 = tr(G) ≤
tr(T ) ≤ 2n − 2. Thus, tr(T ) = 2n − 2. Therefore, T is a tree with 3 leaves. If
e ∈ E(G) and e 6∈ E(T ), then tr(G) ≤ tr(T+e) < tr(T ) = 2n−2, a contradiction.
Therefore, E(G) ⊆ E(T ). Hence G is a tree with exactly two or three leaves.

Theorem 3.8. Let T be a tree on n ≥ 3 vertices and l ≥ 4 leaves. Then
tr(T ) ≤ 2n− 2l + 4.

Proof. Let tr(T ) = d(u∗, v∗, w∗) for three leaves u∗, v∗, w∗ of T . Let T ′ be the
tree on n− (l − 3) vertices obtained by deleting the remaining l − 3 leaves from
T . Thus tr(T ) ≤ tr(T ′) = 2(n− l + 3)− 2 = 2n− 2l + 4, by Theorem 3.7.

Corollary 3.9. Let T be a tree on n ≥ 3 vertices such that tr(T ) = 2n− 4, then
T has exactly 4 leaves.

Proof. From Theorem 3.8, we get 2n − 4 = tr(T ) ≤ 2n − 2l + 4, i.e., l ≤ 4. If
l = 2 or l = 3, then tr(T ) = 2n− 2 6= 2n− 4. Thus l = 4.

It is to be noted that the converse of the above corollary is not true; see
Figure 2.

Corollary 3.10. Let G be a connected graph on n vertices with connected dom-
ination number γc. Then tr(G) ≤ 2γc + 4.

Proof. Let T be a spanning tree of G with maximum number of leaves l. Then
l + γc = n (see [6]). Now, if l ≥ 4, tr(G) ≤ tr(T ) ≤ 2(n − l) + 4 = 2γc + 4. If
l = 2 or l = 3, by Theorem 3.7, tr(G) = 2n− 2 and γc = n− 2 or n− 3. In this
case also, tr(G) ≤ 2γc + 4 holds.
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Figure 2. Example of a tree T with l(T ) = 4, n(T ) = 11 and tr(T ) = 16 < 18 = 2 ·11−4.

Corollary 3.11. Let G be a connected graph with domination number γ(G).
Then tr(G) ≤ 6γ(G), and the bound is tight.

Proof. It follows from the fact that tr(G) ≤ 2γc(G) + 4 and γc(G) ≤ 3γ(G)− 2
(see [3]). The bound is achieved by K1,n.

Corollary 3.12. Let G = (V,E) be a connected graph with total domination
number γt(G). Then tr(G) ≤ 4γt(G).

Proof. In [4], it was shown that γc(G) ≤ 2γt(G)− 2. Thus from Corollary 3.10,
we get tr(G) ≤ 2γc + 4 ≤ 2(2γt(G)− 2) + 4 ≤ 4γt(G).

Remark 3.13. Corollary 3.12 was also proved in [7]. However, here we provide
a shorter proof of tr(G) ≤ 4γt(G) using Theorems 3.7 and 3.8 and Corollaries
3.10 and 3.12.

In the next proposition, we show that the upper bound proved in Theorem
3.7 can be substantially tightened if the vertex connectivity κ of G increases.

Proposition 3.14. Let G be a graph on n vertices with vertex connectivity κ.
Then tr(G) ≤ 3(n−2)

κ + 3.

Proof. The proof follows from the result that n ≥ κ(diam(G)−1)+2 (see p. 174,
4.2.22, [14]) and tr(G) ≤ 3 · diam(G).

Theorem 3.15. For a connected graph G on n ≥ 3 vertices with chromatic
number χ(G), tr(G) + χ(G) ≤ 2n, and the bound is tight.

Proof. We first observe that the result holds for odd cycles and complete graphs,
i.e., for G = Cn with odd n ≥ 3, tr(G) = n, χ(G) = 3 and for G = Kn,
tr(G) = 3, χ(G) = n, and in both cases tr(G) + χ(G) = n + 3 ≤ 2n. Thus, we
assume that G is neither an odd cycle nor a complete graph. Let T be a spanning
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tree of G with maximum degree ∆(T ) = ∆(G). Also, the number of leaves l(T )
of T satisfies ∆(T ) ≤ l(T ). Therefore, by Brooks’ Theorem, we have

(1) tr(G) + χ(G) ≤ tr(G) + ∆(G) ≤ tr(T ) + ∆(T ) ≤ tr(T ) + l(T ).

Now, if l(T ) ≥ 4, then by Theorem 3.8, tr(T ) + l(T ) ≤ 2n − l + 4 ≤ 2n. If
l(T ) = 2, then by Theorem 3.7, tr(T ) + l(T ) = 2n− 2 + 2 = 2n.

Thus the only case left is l(T ) = 3. If G = T , then tr(G)+χ(G) = 2n−2+2 =
2n. If G has at least one edge more than T , then tr(G) ≤ 2n − 3 and hence by
Brooks’ Theorem, tr(G)+χ(G) ≤ tr(G)+∆(G) = tr(G)+∆(T ) ≤ tr(G)+l(T ) ≤
2n− 3 + 3 = 2n.

The tightness of the bound follows from taking G = Pn or any tree with 3
leaves.

3.2. Lower bounds

It is known that in a connected graph G that contains a cycle, g(G) ≤ 2 ·
diam(G) + 1. Thus, it trivially follows from Theorem 3.1 that g(G) ≤ tr(G) + 1.
In the next theorem, we prove a stronger inequality involving girth and triameter.

Theorem 3.16. If G is a connected graph that contains a cycle, then g(G) ≤
tr(G).

Proof. Let C be a cycle of length g(G) = g. Since C is a smallest cycle in G,
there exists two vertices u and v on C such that d(u, v) = bg/2c. Choose w
on C such that w ∼ v and d(u,w) = b(g − 1)/2c. Again, existence of such w
is guaranteed as C is a smallest cycle in G. Now, d(u, v) + d(u,w) + d(v, w) =
bg/2c+ b(g − 1)/2c+ 1 = (g − 1) + 1 = g and hence the bound follows.

Theorem 3.17. In a connected graph G, g(G) = tr(G) holds if and only if G is
a complete graph or a cycle.

Proof. It is clear that if G is a cycle, then tr(G) = g(G) and if G is a complete
graph Kn with n ≥ 3, then tr(G) = g(G) = 3. Conversely, let tr(G) = g(G)
holds for a graph G. If tr(G) = g(G) = 3, then d(u, v) = 1 for all vertices u, v in
G, i.e., G is a complete graph Kn. Also, as g(G) = 3, we have n ≥ 3. Thus let
tr(G) = g(G) > 3 and C be a cycle of length g = g(G) in G. Since C is a smallest
cycle, C is a chordless induced cycle in G. If G = C, then the proof is over. If
not, let v be a vertex in G, but not in C, which is adjacent to some vertex u in
C, i.e., d(u, v) = 1.

Case 1. g is odd, say g = 2k + 1 > 3, i.e., k > 1. Then there exist two
vertices x and y in C such that d(u, x) = k = d(u, y) and d(x, y) = 1. Since the
girth is 2k + 1, d(v, x) and d(v, y) are greater or equal to k, otherwise we get a
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cycle of length less than g. If any one of them is greater than k, say d(v, x) > k,
then we get d(u, v) + d(u, x) + d(v, x) > 1 + k+ k = 2k+ 1 = g, i.e., tr(G) > g, a
contradiction. Thus, let both d(v, x) = d(v, y) = k. Since C is a cycle, there are
two vertices in C which are adjacent to x, one being y. Let the other vertex in C
which is adjacent to x be z. Thus d(y, z) ≤ 2 via a path through x. However, as
C is chordless, d(y, z) 6= 1. Thus d(y, z) = 2. Also d(u, z) = k − 1 as d(u, x) = k.
Now if d(v, z) < k, then we get a cycle of length less than 2k+ 1 passing through
u, v and z. Thus d(v, z) = k via a path through u. Hence,

tr(G) ≥ d(v, z) + d(v, y) + d(y, z) = k + k + 2 > 2k + 1 = g(G),

a contradiction.

Even Girth.

x

z

u

v

y

kC

Odd Girth.

x y

u

v

z

k kC

Figure 3. Schematic diagram of the proof of Theorem 3.17.

Case 2. g is even, say g = 2k > 3, i.e., k > 1. Then there exist a unique
vertex x in C such that d(u, x) = k. Let y be a vertex in C adjacent to u. Since
k > 1, y 6= x. Similarly let z be the unique vertex in C such that d(y, z) = k.
Note that as C is a smallest cycle in G, d(x, z) = 1 and d(u, z) = k − 1. Again,
d(v, z) ≥ k − 1, because if d(v, z) < k − 1, we get a cycle of length less than k
through v, u and z in G, a contradiction. Also, d(y, v) = 2. Hence

tr(G) ≥ d(v, z) + d(v, y) + d(y, z) ≥ (k − 1) + 2 + k = 2k + 1 > g(G),

a contradiction.

Thus, combining both the cases, there does not exist any vertex v in G which
is not in C. Moreoer, as C is an induced chordless cycle in G, we have G = C,
i.e., G is a cycle.
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Theorem 3.18. Let T be a tree on n vertices with l ≥ 3 leaves. Then tr(T ) ≥⌈
4(n−1)
(l−1)

⌉
and the bound is tight.

Proof. For l = 3, its an equality. So we assume that l > 3. Let tr(T ) = d(u, v, w)
for three leaves u, v, w in T . Let P1, P2, P3 be the unique shortest path joining
u − v, v − w and w − u, respectively. Let T ′ = 〈P1 ∪ P2 ∪ P3〉 be the sub-
tree of T induced by the union of P1, P2 and P3. Note that T ′ is a tree of
with three leaves u, v, w and tr(T ′) = tr(T ). As T ′ is a tree with 3 leaves, it
is obtained by subdividing edges of K1,3. Let y be the root vertex in T ′. Let
d(u, y) = k1, d(v, y) = k2 and d(w, y) = k3. Then tr(T ) = tr(T ′) = 2(k1+k2+k3).

Since l > 3, let x be another leaf in T apart from u, v, w and d(x, T ′) = k,
i.e., there exists z ∈ T ′ such that d(x, z) = k and d(x, t) > k for all t ∈ T ′ \ {z}.
Without loss of generality, let z lie on the path joining u and y, see Figure 4.
Here the black vertices denote the vertices of T ′ and the blue vertex is x.

u v

w

y

x

z

k1

k2

k3

k

Figure 4. Schematic diagram for the proof of Theorem 3.18.

Claim 1. d(u, z) ≥ d(x, z) = k.

Proof. If possible, let d(u, z) < d(x, z), then

d(u, v) = d(u, z) + d(z, v) < d(x, z) + d(z, v) = d(x, v) and

d(u,w) = d(u, z) + d(y, z) + d(y, w) < d(x, z) + d(y, z) + d(y, w) = d(x,w).

Thus
tr(T ) = d(u, v, w) = d(u, v) + d(u,w) + d(v, w)

< d(x, v) + d(x,w) + d(v, w) = d(x, v, w),

a contradiction. �
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Claim 2. Either d(v, z) ≥ d(x, z) or d(w, z) ≥ d(x, z).

Proof. If possible, let d(v, z) < d(x, z) or d(w, z) < d(x, z). Without loss of
generality, let k2 ≤ k3. Then

d(u, v, w)

= d(u, v) + d(w, u) + d(v, w) = (d(u, z) + d(z, v)) + (k2 + k3) + d(w, u)

< d(u, y) + d(x, z) + (k2 + k3) + d(w, u) [as, d(u, z) ≤ d(u, y); d(v, z) < d(x, z)]

= (d(u, z) + d(y, z)) + d(x, z) + (k2 + k3) + d(w, u)

= (d(u, z) + d(x, z)) + (d(y, z) + k3) + k2 + d(w, u)

= d(u, x) + d(w, z) + k2 + d(w, u)

< d(u, x) + d(x, z) + k2 + d(w, u) [as, d(w, z) < d(x, z)]

≤ d(u, x) + (d(x, y) + k3) + d(w, u) [as, d(x, z) ≤ d(x, y); k2 ≤ k3]
= d(u, x) + d(x,w) + d(w, u) = d(u, x, w),

a contradiction. �

As d(x, z) = k, from the above two claims, we have d(u, z) ≥ k and either
d(v, z) or d(w, z) ≥ k. Thus adding them, we get d(u, z) + d(v, z) ≥ 2k or
d(u, z) + d(w, z) ≥ 2k, i.e., d(u, y) + d(v, y) = k1 + k2 ≥ 2k or d(u, y) + d(w, y) =
k1 + k3 ≥ 2k. In any case, 2k ≤ k1 + k2 + k3, i.e.,

(2) k ≤ k1 + k2 + k3
2

≤ tr(T ′)

4
=
tr(T )

4
.

Let n′ be the number of vertices in T ′. Then

n′ = (k1 + 1) + (k2 + 1) + (k3 + 1)− 2 = k1 + k2 + k3 + 1 =
tr(T )

2
+ 1.

From (2), we note that while deleting vertices from T to get T ′, we have

deleted at most tr(T )
4 (l − 3) vertices, i.e.,

tr(T )

2
+ 1 = n′ ≥ n− tr(T )

4
(l − 3),

i.e.,
2tr(T ) + 4 ≥ 4n− (l − 3)tr(T ),

i.e.,

(l − 1)tr(T ) ≥ 4(n− 1)⇒ tr(T ) ≥
⌈

4(n− 1)

(l − 1)

⌉
.

The lower bound is achieved by any tree with 3 leaves.
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Theorem 3.19. Let G = (V,E) be a connected graph on n vertices with Wiener
index σ. Then tr(G) ≥ 6σ

n(n−1) , and the bound is tight.

Proof. Observe that for any pair of vertices u, v ∈ V , d(u, v) appears
(
n−2
1

)
times

in the sum
∑
{u,v,w}⊂V d(u, v, w). Thus, we get(

n

3

)
· tr(G) ≥

∑
{u,v,w}⊂V

d(u, v, w) =

(
n− 2

1

) ∑
{u,v}⊂V

d(u, v) = (n− 2)σ,

and hence the theorem follows. The tightness of the bound follows by taking
G = C4, the cycle on 4 vertices for which σ = 8, tr(G) = 4.

4. Triameter of Some Graph Families

In this section, we find the triameter of some important families of graphs. We
start by recalling a result from [8].

Proposition 4.1 [8]. For any two connected graphs G and H, tr(G�H) =
tr(G) + tr(H).

Corollary 4.2. Let G be a m× n rectangular grid graph. Then tr(G) = 2(m+
n− 2).

Proof. Since G is a m× n rectangular grid graph, G ∼= Pm�Pn. Thus tr(G) =
tr(Pm) + tr(Pn) = (2m− 2) + (2n− 2) = 2(m+ n− 2).

Theorem 4.3. Let G be a connected bipartite graph. Then tr(G) is even.

Proof. Let V (G) = V1 ∪ V2 be the bipartition and u, v, w be 3 vertices in V (G)
such that tr(G) = d(u, v, w). If u, v, w ∈ Vi for same i, then each of d(u, v), d(v, w)
and d(w, u) are even and hence tr(G) is even. Thus, without loss of generality,
let u, v ∈ V1 and w ∈ V2. Then d(u,w) and d(v, w) are odd and d(u, v) is even
and as a result, tr(G) is even.

Theorem 4.4. Let T be a tree on n ≥ 4 vertices which is not a star. Then

tr(T c) =

{
6, if T is a bistar,
5, if T is not a bistar.

Proof. If T is neither a star nor bistar, then diam(T ) ≥ 4. Hence, diam(T c) ≤ 2.
By Theorem 3.1, tr(T c) ≤ 6. We claim that tr(T c) < 6. Suppose to the contrary
that tr(T c) = 6. Let dT c(u, v, w) = 6. We have dT c(u, v) = 2, dT c(u,w) = 2 and
dT c(v, w) = 2, since diam(T c) ≤ 2. Hence, there is a triangle in T with vertices
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Figure 5. Bistar and its complement.

u, v and w, a contradiction. Thus, tr(T c) < 6. Using a path of length two in T ,
one can prove that tr(T c) ≥ 5. Therefore, tr(T c) = 5. For the other part, let
T = Kn1

n2
be a bistar as in Figure 5 (left). Then its complement is as in Figure 5

(right).
Note that the complement consists of a clique induced by x1, x2, . . . , xn1 , y1,

y2, . . . , yn2 (indicated in red) and v being adjacent to all the xi’s and u being
adjacent to all the yi’s. Thus, for triameter of T c, we need two of the vertices as
u and v and the other to be any one of xi’s or yi’s. Hence, tr(T c) = 3+1+2 = 6.

Proposition 4.5. If G is a Hamiltonian graph on n vertices, then tr(G) ≤ n.

Proof. Since G is a Hamiltonian graph on n vertices, G contains Cn as a sub-
graph and hence tr(G) ≤ tr(Cn) = n.

Theorem 4.6. If G = (V,E) is a connected vertex transitive graph, then

2 · rad(G) ≤ tr(G) ≤ 3 · rad(G).

Proof. As G is vertex transitive, V = center(G) = {x ∈ V : ecc(x) = rad(G)}.
Thus, for u, v, w ∈ V , d(u, v) + d(v, w) + d(w, u) ≤ ecc(u) + ecc(v) + ecc(w) = 3 ·
rad(G). Hence the upper bound follows. The lower bound follows from Corollary
3.3. The tightness of lower and upper bounds follows by taking G as C2n and
Petersen graph, respectively.

Theorem 4.7. If G is a connected strongly regular graph, then

tr(G) =

{
5, if Gc is triangle-free,
6, otherwise.
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Proof. Let G be strongly regular with parameters (n, k, λ, µ). Since G is con-
nected, µ 6= 0 and G is not a complete graph. As a connected strongly regu-
lar graph has diameter 2, tr(G) ≤ 6. Moreover Gc is again a strongly regular
graph with parameter (n, n − k − 1, n − 2k + µ − 2, n − 2k + λ). Let u, v be
two non-adjacent vertices in G, i.e., d(u, v) = 2. If there exists a vertex w such
that d(u,w) = d(v, w) = 2, then choosing u, v, w as the three vertices we get
tr(G) = 6. If there does not exist such vertices in G, then all vertices other than
u and v are either adjacent to u or v or both. Thus, counting the vertices in G,
we get n = (k − µ) + (k − µ) + µ+ 2, i.e., n− 2k + µ− 2 = 0, i.e., Gc is triangle
free. In this case, choosing any w ∈ N(v) \ N(u) in G, we get d(u,w) = 2 and
d(v, w) = 1. Then tr(G) = 5.

5. Nordhaus-Gaddum Bounds

In this section, we prove some Nordhaus-Gaddum type bounds on triameter of a
graph and its complement.

Lemma 5.1. Let G be a connected graph such that Gc is connected. Then tr(G) ≥
7 implies tr(Gc) ≤ 12.

Proof. Since diam(G) ≥ tr(G)/3 > 2, it follows that γ(Gc) = 2. Thus tr(Gc) ≤
6γ(Gc) = 12.

Lemma 5.2. Let G = (V,E) be a graph such that G and Gc is connected. If
tr(G) > 9, then tr(Gc) ≤ 6.

Proof. If possible, let tr(G) > 9 and tr(Gc) ≥ 7. Let u, v, w be three arbitrary
vertices in V .

Case 1. If at least one of dGc(u, v), dGc(v, w), dGc(w, u), say dGc(w, u) is
greater than 1, then dG(w, u) = 1. If dG(u, v) or dG(v, w) is greater than 3,
then diam(G) > 3 implies diam(Gc) ≤ 2 and tr(Gc) ≤ 6, a contradiction. Thus
dG(u, v), dG(v, w) ≤ 3, i.e., dG(u, v) + dG(v, w) + dG(w, u) ≤ 7 ≤ 9.

Case 2. If dGc(u, v) = dGc(v, w) = dGc(w, u) = 1, then 2 ≤ dG(u, v), dG(v, w),
dG(w, u) ≤ 3 and hence dG(u, v) + dG(v, w) + dG(w, u) ≤ 9.

Combining the two cases we get tr(G) ≤ 9, which is a contradiction to the
assumption and hence the lemma holds.

Theorem 5.3. Let G = (V,E) be a graph with n ≥ 4 vertices such that G and
Gc is connected. Then

• 10 ≤ tr(G) + tr(Gc) ≤ 2n+ 4,
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• 25 ≤ tr(G) · tr(Gc) ≤ 12(n− 1) except for a finite family of graphs F ,

and the bounds are tight.

Proof. If tr(G) > 9, tr(Gc) ≤ 6. Also, by Theorem 3.7, tr(G) ≤ 2n − 2 and
hence tr(G) + tr(Gc) ≤ 2n + 4 and tr(G) · tr(Gc) ≤ 12(n − 1). Let tr(G) ≤ 6
and if possible, let tr(G) + tr(Gc) > 2n+ 4 or tr(G) · tr(Gc) > 12(n− 1). Then
tr(Gc) > 2n−2, a contradiction to Theorem 3.7. Thus, if tr(G) > 9 or tr(G) ≤ 6,
the both the upper bounds hold. Similarly, if tr(Gc) > 9 or tr(Gc) ≤ 6, both the
upper bounds hold.

So the only cases left are when tr(G), tr(Gc) ∈ {7, 8, 9}. Thus by Theorem
3.1, diam(G), diam(Gc) ∈ {3, 4}. However, if diam(G) or diam(Gc) equals 4,
then diam(Gc) or diam(G) is less than or equal to 2, a contradiction. Thus
diam(G) = diam(Gc) = 3.

However, in this cases, for n ≥ 7, tr(G)+tr(Gc) ≤ 18 ≤ 2n+4 and for n ≥ 8,
tr(G) · tr(Gc) ≤ 81 ≤ 12(n− 1).

In [2], authors provide a complete list of 112 connected graphs on 6 vertices.
Similarly, there are exactly 5 non-isomorphic graphs (see [15]) on 5 vertices for
which both the graph and its complement is connected. Finally, P4 is the only
connected graph on 4 vertices whose complement is also connected. An exhaustive
check (using Sage [16]) on these graphs revealed that the additive upper bound
holds for n = 4, 5, 6, and hence the additive upper bound holds for all n ≥ 4.
Also note that for P4, the multiplicative upper bound is an equality.

For the multiplicative upper bound in case of n = 5, 6, 7, let us define a family
of graphs F as follows:

F = {G : |G| ∈ {5, 6, 7}; diam(G) = diam(Gc) = 3; tr(G), tr(Gc) ∈ {7, 8, 9}}.
From the above discussions, it follows that the multiplicative upper bound holds
for all graphs G not in F .

For the lower bounds, observe that as diam(G) = 1 implies Gc is discon-
nected, we have diam(G), diam(Gc) ≥ 2, and hence by Theorem 3.1, tr(G), tr(Gc)
≥ 4. If possible, let tr(G) = 4, then there exists u, v, w ∈ W , such that
d(u, v)+d(v, w)+d(w, u) = 4. Without loss of generality, let us assume d(u, v) = 2
and d(v, w) = d(w, u) = 1. If G is a graph on 3 vertices, then P3 is the only choice
for G satisfying the condition. However, complement of P3 is not connected. Thus
we assume that order of G is greater than 3. Note that for all z ∈ V \ {u, v}, we
have d(u, z) = d(v, z) = 1 in G. But this implies that Gc is disconnected with
u, v as one of the components. Thus, to ensure connectedness of G and Gc, we
have tr(G), tr(Gc) ≥ 5 and hence the additive and multiplicative lower bounds
follows.

If G = P4, path on 4 vertices, then tr(G) = tr(Gc) = 6 and hence the upper
bounds are tight. If G = C5, cycle on 5 vertices, then tr(G) = tr(Gc) = 5 and
hence the lower bounds are tight.
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Remark 5.4. The multiplicative upper bound may not hold for graphs in F .
We demonstrate it in Figure 6. Here n = 6, diam(G) = diam(Gc) = 3, tr(G) =
tr(Gc) = 8. Thus tr(G) · tr(Gc) = 64 > 12(6− 1).

G G

Figure 6. G,Gc ∈ F .

6. Conclusion and Open Problems

In this paper, motivated by a lower bound on radio k-coloring in graphs, we
formally introduce the idea of triameter in graphs and provide various bounds of
various types with respect to other graph parameters. We also provide a shorter
proof of a result in [7]. We conclude with some possible directions of further
research and some open questions.

• Theorem 3.18 provides a lower bound of tr(T ) in terms of its order n and
number of leaves l ≥ 3. Though the bound is tight for l = 3, the bound
loosens as l increases. To find a tighter bound can be an interesting topic of
research.

• The only lower bound for connected graphs G (not necessarily trees) is in
terms of girth (see Theorem 3.16). However, we believe that a better bound
is possible in terms of the maximum ∆(G) and minimum degree δ(G).

• Let T be a tree with at least 3 leaves and u1, u2, and u3 be three vertices of
T such that d(u1, u2, u3) = tr(T ). Is it true that there exist i and j where
i, j ∈ {1, 2, 3} and i 6= j such that d(ui, uj) = diam(T )?

• Let T be a tree with at least 3 leaves and u, v be two vertices such that
d(u, v) = diam(T ). Is it true that there exists a vertex w such that d(u, v, w) =
tr(T )?
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