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Abstract

A path in a vertex-coloured graph is called conflict-free if there is a colour
used on exactly one of its vertices. A vertex-coloured graph is said to be
conflict-free vertex-connected if any two distinct vertices of the graph are
connected by a conflict-free vertex-path. The conflict-free vertex-connection

number, denoted by vcfc(G), is the smallest number of colours needed in
order to make G conflict-free vertex-connected. Clearly, vcfc(G) ≥ 2 for
every connected graph on n ≥ 2 vertices.

Our main result of this paper is the following. Let G be a connected
graph of order n. If |E(G)| ≥

(

n−6

2

)

+ 7, then vcfc(G) ≤ 3. We also show
that vcfc(G) ≤ k + 3 − t for every connected graph G with k cut-vertices
and t being the maximum number of cut-vertices belonging to a block of G.
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1. Introduction

We use [23] for terminology and notation not defined here and consider
simple, finite and undirected graphs only. Let G be a graph, we denote by
V (G), E(G), n,m the vertex set, the edge set, the number of vertices, and the
number of edges, respectively. A block is an end-block if it has only one cut-
vertex. We abbreviate the set {1, . . . , k} by [k].

A path P in an edge-coloured graph G is called a rainbow path if its edges
have distinct colours. An edge-coloured graph G is rainbow connected if every
two vertices are connected by at least one rainbow path in G. For a connected
graph G, the rainbow connection number of G, denoted by rc(G), is defined
as the smallest number of colours required to make it rainbow connected. The
concept of rainbow connection number was first introduced by Chartrand et al.

[6]. Readers who are interested in this topic are referred to [20, 21].

Motivated by the proper colouring and rainbow connection, Borozan et al.

[3] and Andrews et al. [2], independently introduced the concept of proper con-

nection. A path P in an edge-coloured graph G is a proper path if any two
consecutive edges receive distinct colours. An edge-coloured graph G is properly
connected if every two vertices are connected by at least one proper path in G.
For a connected graph G, the proper connection number of G, denoted by pc(G),
is defined as the smallest number of colours required to make it properly con-
nected. Since then, a lot of results on this concept have been obtained; see [17]
for a survey.

Recently, Czap et al. [10] introduced the concept of conflict-free connection.
A path in an edge-coloured graph G is called conflict-free if there is a colour used
on exactly one of its edges. An edge-coloured graph G is said to be conflict-free

connected if any two vertices are connected by at least one conflict-free path.
The conflict-free connection number of a connected graph G, denoted by cfc(G),
is defined as the smallest number of colours in order to make it conflict-free
connected. For more results, the readers are referred to [4, 5, 7, 10].

As a natural counterpart of the concepts of rainbow connection, proper con-
nection and conflict-free connection, the concepts of rainbow vertex-connection,

proper vertex-connection, and conflict-free vertex-connection were introduced, re-
spectively.

The concept of rainbow vertex-connection was first introduced by Krivelevich
et al. [15]. A path in a vertex-coloured graph G is called a vertex rainbow path if
its internal vertices have distinct colours. A vertex-coloured graph G is rainbow
vertex-connected if any two vertices are connected by at least one vertex rainbow
path. For a connected graph G, the rainbow vertex-connection number, denoted
by rvc(G), is the smallest number of colours that are needed in order to make
G rainbow vertex-connected. Recently, a lot of results on this topic have been
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obtained, see [8, 16, 18, 19].

Similarly, Jiang et al. [13] and Chizmar et al. [9], independently introduced
the concept of proper vertex-connection. A path P in a vertex-coloured graph G
is a proper vertex-path if any two internal adjacent vertices differ in colour. A
vertex-coloured graph G is called properly vertex-connected if any two vertices
are connected by at least one proper vertex-path. For a connected graph G, the
proper vertex-connection number, denoted by pvc(G), is the smallest number of
colours that are needed in order to make G properly vertex-connected.

Motivated by the above mentioned concepts, Li et al. [11] introduced the
concept of conflict-free vertex-connection. A path P in a vertex-coloured graph
G is said to be a conflict-free vertex-path if there is a colour used on exactly one of
its vertices. A vertex-coloured graph G is said to be conflict-free vertex-connected

if any two vertices of the graph are connected by a conflict-free vertex-path.
The conflict-free vertex-connection number of a connected graph G, denoted by
vcfc(G), is defined as the smallest number of colours in order to make G conflict-
free vertex-connected. Recently, some results on this topic have been shown in
[12, 22].

Our research was motivated by the following results for the proper connection
number and the rainbow connection number of graphs depending on their size.

Theorem 1 (Kemnitz et al. [14]). Let G be a connected graph of order n and

size m. If
(

n−1
2

)

+ 1 ≤ m ≤
(

n
2

)

− 1, then rc(G) = 2.

Theorem 2 (Aardt et al. [1]). Let k ≥ 3 be an integer and G be a connected

graph of order n. If |E(G)| ≥
(

n−k−1
2

)

+ k + 2, then pc(G) ≤ k.

In [1], the authors also considered the case k = 2. Let G1 = K1∨ (2K1+K2)
and G2 = K1 ∨ (K1 + 2K2), where G+H = (VG ∪ VH , EG ∪ EH) is the disjoint
union and G ∨H = (VG ∪ VH , EG ∪ EH ∪ {uv : u ∈ VG, v ∈ VH}) is the join of
the graphs G = (VG, EG) and H = (VH , EH).

Theorem 3 (Aardt et al. [1]). Let G be a connected graph of order n. If |E(G)|
≥

(

n−3
2

)

+ 4, then pc(G) ≤ 2 unless G ∈ {G1, G2}.

2. Auxiliary Results

In this section, we state some fundamental results, which will be used through-
out later in the proofs of our results. First note that for a connected graph G of
order n ≥ 2 we can easily observe that vcfc(G) ≥ 2.

The conflict-free vertex-connection number of a path has been computed by
Li et al. [11].
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Theorem 4 (Li et al. [11]). If Pn is a path of order n, then vcfc(Pn) = ⌈log2(n
+1)⌉.

The proof of Theorem 4 is similar to that of Theorem 3 in [10]. The following
result, which is very important to determine the existence of a conflict-free path
of a subgraph or a 2-connected graph, was proved by the authors in [11].

Theorem 5 (Li et al. [11]). If G is a 2-connected graph and w is a vertex of

G, then for any two vertices u and v in G, there is a u − v path containing the

vertex w.

Next, Li et al. [11] used the result of Theorem 5, as a basic tool, to determine
the necessary and the sufficient conditions of connected graphs having conflict-
free connection number 2.

Theorem 6 (Li et al. [11]). Let G be a connected graph of order at least 3, then
vcfc(G) = 2 if and only if G is 2-connected or G has only one cut-vertex.

Since vcfc(G) = 2 if and only ifG is 2-connected orG has only one cut-vertex,
it is natural to determine the conflict-free vertex-connection number of a graph
having at least two cut-vertices. Hence, the following corollary is immediately
obtained by the authors in [11].

Corollary 7 (Li et al. [11]). Let G be a connected graph. Then vcfc(G) ≥ 3 if

and only if G has at least two cut-vertices.

The next lemma provides a combinatorial equality and an inequality, which
will be used several times in our later proofs.

Lemma 8. (i) For every positive integer a it holds

(

a+ 1

2

)

=

(

a

2

)

+ a.

(ii) For every three positive integers n, t, a such that t ≥ a+ 1 it holds

(

n− t

2

)

≤

(

n− a

2

)

− n+ a+ 1.

Proof. Case (i) is immediately obtained after some manipulations.
Using case (i) and note that t ≥ a+ 1, we obtain case (ii) as follows

(

n− t

2

)

≤

(

n− (a+ 1)

2

)

=

(

n− a

2

)

− (n− (a+ 1))

=

(

n− a

2

)

− n+ a+ 1.
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Lemma 9. Let k ≥ 2 be an integer. If a1, . . . , ak are integers and all of them

are greater than one, then

k
∑

i=1

(

ai
2

)

<

(∑k
i=1 ai − (k − 1)

2

)

.

Proof. We prove this lemma by induction on k. Let k = 2. Clearly, (a1−1)(a2−
1) > 0 since ai ≥ 2 for every i ∈ [k]. After some manipulations we get

(

a1
2

)

+

(

a2
2

)

<

(

a1 + a2 − 1

2

)

.

We may assume that the inequality is true for some k = t ≥ 2. Hence,

t
∑

i=1

(

ai
2

)

<

(∑t
i=1 ai − (t− 1)

2

)

.

By the induction hypothesis, we deduce that

t
∑

i=1

(

ai
2

)

+

(

at+1

2

)

<

(∑t
i=1 ai − (t− 1)

2

)

+

(

at+1

2

)

<

(∑t+1
i=1 ai − t

2

)

.

The result is obtained.

Lemma 10. Let k ≥ 2 be an integer. If a1, . . . , ak are integers and all of them

are greater than one, then

k
∑

i=1

(

ai
2

)

≤

(∑k
i=1 ai − 2(k − 1)

2

)

+ (k − 1).

Proof. We prove this lemma by induction on k. Let k = 2. Clearly, (a1−2)(a2−
2) ≥ 0 since ai ≥ 2 for every i ∈ [k]. After some manipulations we get

(

a1
2

)

+

(

a2
2

)

≤

(

a1 + a2 − 2

2

)

+ 1.

Using the induction on k, in the same way as in the proof of Lemma 9, the
result is obtained.

By Lemma 10, an upper bound for the size of a graph G having exactly k
blocks is attained by the following corollary.

Corollary 11. Let G be a graph and k ≥ 2 be an integer. If G has exactly k
blocks Bi of order ni, then

|E(G)| ≤

(∑k
i=1 ni − 2(k − 1)

2

)

+ (k − 1).



622 T. Duy Doan and I. Schiermeyer

Now we consider some results on the number of cut-vertices of a connected
graph. By using Lemma 9 and Lemma 10, one can readily obtain the next result,
which is the vertex version of the result in [1]. Moreover, this result is very
important in the proof of our main result.

Lemma 12. If a connected graph G on n vertices has t cut-vertices, then

|E(G)| ≤

(

n− t

2

)

+ t.

Proof. We prove the lemma by induction on t. Clearly, the result immediately
holds if t = 0. We may assume, now, t ≥ 1. Let v be a cut-vertex of G such
that v ∈ V (Bi), where all Bi are end-blocks of G. Now for every end-block Bi

containing v, we delete V (Bi − v) and all edges incident to V (Bi − v). Call the
resulting graph G′.

By our assumption, it can be readily seen that G′ has exactly t−1 cut-vertices
which are distinct from v. Let nBi

be the order of Bi for every i and nG′ be the

order of G′. Hence, by the induction hypothesis, |E(G′)| ≤
(

n
G′−(t−1)

2

)

+ t − 1.
Let k be the number of end-blocks Bi of G incident with v. Since all blocks Bi

and the component G′ have the common cut-vertex v,

n =

k
∑

i=1

(nBi
− 1) + nG′ − 1 + 1 =

k
∑

i=1

nBi
+ nG′ − k.

Hence,

|E(G)| =
k

∑

i=1

|E(Bi)|+ |EG′ | ≤
k

∑

i=1

(

nBi

2

)

+ |EG′ |.

Using Lemma 9 for k blocks Bi and the induction hypothesis on G′, we deduce
that

|E(G)| ≤

(∑k
i=1 nBi

− (k − 1)

2

)

+

(

nG′ − (t− 1)

2

)

+ t− 1.

After using Lemma 10 and the order of G, the result is obtained

|E(G)| ≤

(∑k
i=1 nBi

− (k − 1) + nG′ − (t− 1)− 2

2

)

+ 1 + t− 1 =

(

n− t

2

)

+ t.

This completes our proof.

Lemma 13. Let G be a connected graph and t ≥ 3 be an integer. If G has t
cut-vertices, then there always exists a subset of at least 3 cut-vertices that are

connected by a path.
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Proof. If a block of G has at least three cut-vertices, then the statement follows
from Theorem 5. Now assume that a block contains exactly two cut-vertices u
and v. Let w be a third cut-vertex in G. Let P1 be a path connecting u and v
and P2 be a path connecting w and u. If P2 contains v, then P2 contains three
cut-vertices, otherwise the path wP2uP1v has the required property. This finishes
our proof.

The following example shows that there are connected graphs having no path
connecting at least 4 cut-vertices. Let k ≥ 3 be an integer and K1,k be a star on
k + 1 vertices. Let G be a graph obtained from K1,k by subdividing each of its
edges. Clearly, every path in G contains at most 3 cut-vertices.

3. Main Result

In this section, we study graphs with conflict-free vertex-connection number
at most 3 depending on their size. Before presenting our main result, we prove
several useful results on the conflict-free vertex-connection number of a connected
graph. First of all, we consider the upper bound of the conflict-free vertex-
connection number of graphs.

3.1. The upper bound

By Theorem 6, the conflict-free vertex-connection number equals 2 for every
connected graph having no cut-vertex or only one cut-vertex. Consequently,
the conflict-free vertex-connection number is at least 3, if G has at least two
cut-vertices. Motivated by these results, we consider the upper bound of the
conflict-free vertex-connection number depending on the number of cut-vertices
of a connected graph. Let G be a connected graph having at least 2 cut-vertices.
For every block Bi of G, let xi denote the number of cut-vertices of G belonging to
Bi. Hence, xi ≥ 1, for 1 ≤ i ≤ l, where l is the number of (trivial or non-trivial)
blocks in G. Let t = max{xi | 1 ≤ i ≤ l}. Hence, t is the maximum number of
cut-vertices belonging to a block of G. The following theorem gives a tight upper
bound for the conflict-free vertex-connection number of a connected graph.

Theorem 14. Let G be a connected graph. If k is the number of cut-vertices of

G and t is the maximum number of cut-vertices belonging to a block of G, then

vcfc(G) ≤ k + 3− t. Moreover, this bound is sharp.

Proof. Renaming blocks if necessary, assume that B1 is a block of G having the
maximum number of cut-vertices. Trivially, if t = 1, then k = 1. It follows that
G has only one cut-vertex. By Theorem 6, the result is obtained. Hence, t ≥ 2.
Let S = {v1, v2, . . . , vt} be the set of cut-vertices of G belonging to B1. Now, we
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assign colour 2 to the vertex v1, colour 3 to all the vertices in S \{v1}. Every cut-
vertex of G that is not in S is assigned a different colour from {4, 5, . . . , k+3− t}.
Next, we colour all the remaining vertices of G by colour 1. In such a way we
obtain a vertex-coloring c of G. For every block Bi from G, it can be readily
seen that there always exists at least one cut-vertex having the colour which is
different from the colour of the remaining vertices of Bi. It follows that there is
a conflict-free vertex-path between any two arbitrary vertices belonging to the
same block by Theorem 5.

Suppose now that two arbitrary vertices, say x and y, belong to two different
blocks, say Bx and By, respectively. Since G is connected, there is a path, say
P , connecting x and y. Let vx ∈ V (P ) and vy ∈ V (P ) be the cut-vertices of
Bx and By, respectively. If vx ≡ vy or c(vx) 6= c(vy), then P is the conflict-
free vertex-path with the unique colour, say c(vx) or c(vy). If c(vx) = c(vy) and
vx 6= vy, then vx, vy ∈ V (B1). Hence, B1 is the nontrivial block. By Theorem
5, there is a vx − vy path in B1, say P ′, containing v1. Now, xPvxP

′vyPy is
a conflict-free vertex-path. Hence, there always exists at least one conflict-free
vertex-path connecting any two arbitrary vertices of G.

The result is obtained.

The sharpness examples for Theorem 14 are given as follows. Let G be
a connected graph having at least two cut-vertices and let all the cut-vertices
belong to the same block, i.e., k = t ≥ 2. By Corollary 7, vcfc(G) ≥ 3. On the
other hand, by Theorem 14, vcfc ≤ 3. Hence, vcfc(G) = 3 = k + 3− t.

Clearly, if G has exactly two cut-vertices, then they are in the same block.
Hence, the following corollary is immediately obtained.

Corollary 15. Let G be a connected graph. If G has exactly two cut-vertices,

then vcfc(G) = 3.

Now, we consider the conflict-free vertex-connection number of a connected
graph having many cut-vertices in the same block.

Lemma 16. Let k ≥ 3 be an integer and G be a connected graph of k cut-vertices.

If at least k − 1 cut-vertices belong to an unique block, then vcfc(G) = 3.

Proof. By Corollary 7, vcfc(G) ≥ 3 since G has at least 3 cut-vertices. Let
v1, . . . , vk be the cut-vertices of G. By Theorem 14 it suffices to consider the case
when k − 1 cut-vertices belong to the same block. Hence we may assume that
v1, . . . , vk−1 ∈ V (B) and vk /∈ V (B) for some block B.

Now, we show that we are able to assign three colours to all the vertices of
G in order to make it conflict-free vertex-connected. Since G is connected, there
is a path, say P , connecting vk and V (B). Clearly, the end-vertex of P is a
cut-vertex of G. Otherwise, G contains at least k + 1 cut-vertices since vk does
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not belong to the block B. Renaming vertices if necessary, we may assume, that
the end-vertex of P is v1. Now, let B′ be a block containing v1 and vk. Clearly,
V (B) ∩ V (B′) = {v1}. If v1vk is a bridge of G, then B′ is trivial. Otherwise,
B′ is non-trivial. We assign the colour 1 to the vertex v1, the colour 2 to all
the vertices in V (B)∪ V (B′) \ {v1}, the colour 3 to all the remaining uncoloured
vertices of G. By simple case to case analysis, G is conflict-free vertex-connected.
Hence, vcfc(G) ≤ 3. We deduce that vcfc(G) = 3.

The proof is obtained.

Let G be a connected graph. The eccentricity ǫG(v) of a vertex v ∈ V (G) is
the maximum value among the distance between v and the other vertices in G.
The radius rad(G) of G is the minimum eccentricity among all the vertices of G.
In [11], the authors proved an upper bound for the conflict-free vertex-connection
of a connected graph depending on the radius rad(G) as follows.

Theorem 17 (Li et al. [11]). If T is a tree with radius rad(T ), then vcfc(T ) ≤
rad(T ) + 1. Moreover, the bound is sharp.

Corollary 18 (Li et al. [11]). If G is a connected graph, then vcfc(G) ≤ rad(G)
+ 1.

Let G be a connected graph with k ≥ 2 cut-vertices and let t be the maximum
number of cut-vertices belonging to a block, say B, of G. Clearly, t ≥ 2. Now,
there are k − t cut-vertices of G not belonging to B. Let S = {v1, v2, . . . , vt,
vt+1, . . . , vk} be the cut-vertex set of G such that v1, . . . , vt are in B and vt+1,
. . . , vk are not in B. Two blocks are neighbours if they have a common cut-vertex.
We construct the tree T ∗

vi
, where i ∈ [t], as follows.

1. Every vi ∈ V (B) is the root of T ∗

vi
.

2. We consider all the neighbour blocks of B containing vi, say Bj , having the
cut-vertices of G. We denote these cut-vertices, say vj ∈ V (Bj), by vT

∗

j and

add them to T ∗

vi
by adding an edge viv

T ∗

j . Next, we continue to consider the
neighbour block of Bj and repeat these processes to the end-blocks of G.

Now applying steps 1 and 2 above, we construct the tree T ∗ by identifying all
vi of T

∗

vi
, where i ∈ [t], by a vertex, say v. Hence, |V (T ∗)| = k − t + 1 and v is

the root of T ∗. An example of T ∗ is depicted in Figure 1. By Theorem 17, the
following result is obtained.

Theorem 19. If G is a connected graph with at least two cut-vertices, then

vcfc(G) ≤ rad(T ∗) + 4.

Proof. By Theorem 17, T ∗ is conflict-free vertex-connected with rad(T ∗) + 1
colours. We assign rad(T ∗) + 1 colours from {4, 5, . . . , rad(T ∗) + 4} to make
it conflict-free vertex-connected. Since T ∗ is a tree, every its two vertices are
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Figure 1. Graph G and T ∗.

connected by only one path. We colour all the vertices of G as following: c(vj) =
c(vT

∗

j ), for every j ∈ [k]\[t]. We assign colour 2 to the vertex v1, colour 3 to all the
t − 1 remaining cut-vertices in B. Hence, all the cut-vertices of G are coloured.
We colour all the remaining vertices of G by colour 1. It can be readily seen
that there always exists at least one conflict-free vertex-path between any two
cut-vertices of G since T ∗ is conflict-free vertex-connected and B is conflict-free
vertex-connected with 3 colours from [3]. Moreover, every block has at least one
cut-vertex having different colour to all its remaining vertices. As in the proof
of Theorem 14, there always exists at least one conflict-free vertex-path between
any two arbitrary vertices of G.

3.2. Conflict-free vertex-connection number at most 3

In this subsection, we consider our main result as follows.

Theorem 20. Let G be a connected graph of order n ≥ 8. If |E(G)| ≥
(

n−6
2

)

+7,
then vcfc(G) ≤ 3.

Before starting to prove Theorem 20, we show that the bound for the size of
the graph is sharp by the following proposition.

Proposition 21. There exists a connected graph of order n and |E(G)| =
(

n−6
2

)

+6 such that vcfc(G) ≥ 4.

Proposition 21 can be extended for any integer k ≥ 2 by the following theo-
rem.

Theorem 22. Let k ≥ 2 be an integer. There exists a connected graph of order

n and |E(G)| =
(

n−(2k−2)
2

)

+ 2k − 2 such that vcfc(G) ≥ k + 1.

Proof. We construct a connected graph G as follows. Take a complete graph
Kn−(2k−2) and a path P2k−1 = w1 · · ·w2k−1. Note that |V (P2k−1)| is odd. Let
u be an arbitrary vertex of Kn−(2k−2). Now, we identify the vertex u with the
vertex w1. It can be readily observed that the resulting graph G has order n, and

size |E(G)| =
(

n−(2k−2)
2

)

+ 2k − 2. Next, we prove that vcfc(G) ≥ k + 1.
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Note that, by our construction above, there is an unique path between any
two vertices wi, wj , where wi, wj ∈ V

(

P2k−1

)

. It follows that P2k−1 is conflict-
free vertex-connected. By Theorem 4, we must use at least k colours in order
to make P2k−1 conflict-free vertex-connected since

∣

∣V
(

P2k−1

)
∣

∣ = 2k − 1. Hence,
vcfc(G) ≥ k. Now, suppose to the contrary, that we are able to use exactly k
colours to colour all the vertices of G in order to make it conflict-free vertex-
connected. By the concept of conflict-free vertex-connection, there must be an
unique colour on P2k−1, say k, that is assigned to a vertex wi. We show that
c
(

w2k−1

)

= k. Otherwise, without loss of generality, we may assume that c(wi) =
k, where i ∈

[

2k − 1
]

\
[

2k−1
]

since P2k−1 is symmetry by w2k−1 . By Theorem
4, vcfc

(

w1P2k−1w2k−1

)

= k. Hence, the colour k appears at least two times
on the path P2k−1, a contradiction. Thus, c(w2k−1) = k and all vertices in
V
(

w1P2k−1w2k−1
−1

)

can receive the colours from [k − 1]. On the other hand, by
Theorem 4, vcfc

(

w1P2k−1w2k−1
−1

)

= k−1. Similarly, a unique colour, say k−1,
on the path w1P2k−1w2k−1

−1 must be assigned to w2k−2 . We continue these steps
by decreasing k to 2. Hence, by Theorem 4, vcfc

(

w1P2k−1w3

)

= 2. It follows
that we can use two colours from [2] to colour all the vertices of the subgraph
H = G − {w4, w5, . . . , w2k−1} to make it conflict-free vertex-connected. Note
that H has two cut-vertices. By Corollary 15, vcfc(H) = 3, a contradiction.
Hence, k is not enough to make G conflict-free vertex-connected. Therefore,
vcfc(G) ≥ k + 1. This completes our proof.

Clearly, when k = 3 we immediately obtain Proposition 21.

Now we are able to prove our main result. Recall its statement here.

Theorem 20. Let G be a connected graph of order n ≥ 8. If |E(G)| ≥
(

n−6
2

)

+7,
then vcfc(G) ≤ 3.

Proof. We prove our theorem by several claims as follows. Let G be a connected
graph of order n and |E(G)| ≥

(

n−6
2

)

+ 7.

Claim 23. G has at most 5 cut-vertices.

Proof. Let t be the number of cut-vertices of G. By Lemma 12, |E(G)| ≤
(

n−t
2

)

+ t. If t = 6, then |E(G)| ≤
(

n−6
2

)

+ 6, a contradiction.

If t ≥ 7, then by Lemma 8

|E(G)| ≤

(

n− t

2

)

+ t ≤

(

n− 6

2

)

− n+ 7 + t.

Note that n ≥ t+ 2 since G has order n and t cut-vertices. Hence, |E(G)| ≤
(

n−6
2

)

+ 5, a contradiction.

Therefore, we deduce that t ≤ 5.
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Let B1, . . . , Bl be the blocks of G which contain at least two cut-vertices of
G, and let Q1, . . . , Qk be the other blocks (the end-blocks) of G.

By Theorem 6, Corollary 15 and Lemma 16, now we consider that G has at
least 4 cut-vertices.

Claim 24. If G has 4 cut-vertices, then vcfc(G) = 3.

Proof. Let S = {v1, v2, v3, v4} be the set of cut-vertices of G. By Lemma 16, we
can assume that there are at most two vertices of S in the same block. By Lemma
13, there always exist a subset of at least three cut-vertices that are connected
by a path. Hence, two cases are considered as follows. Let Bi, where i ∈ [3], be
three blocks containing exactly two cut-vertices of G.

Case 1. At most three cut-vertices are connected by a path. Renaming
vertices if necessary, we may assume that v1, v2 ∈ B1, v2, v3 ∈ B2 and v2, v4 ∈ B3,
see Figure 2. Clearly, G must contain several other blocks. We assign colour
1 to the vertex v2, colour 2 to all three vertices v1, v3, v4 and colour 3 to all
uncoloured vertices of G. By simple case to case analysis, it can be observed that
G is conflict-free vertex-connected with three colours. Hence, vcfc(G) ≤ 3.

v1 v2 v3

v4

B1 B2

B3

v1 v2 v3 v4
B1 B2 B3

At most 3 cut-vertices in a path. All 4 cut-vertices in a path.

Figure 2. Graph G has 4 cut-vertices.

Case 2. All four cut-vetices are connected by a path. Renaming vertices if
necessary, we may assume that vi, vi+1 ∈ Bi, where i ∈ [3], see Figure 2. Since
v1, v4 are cut-vertices of G, there are at least two end-blocks Qi, i.e., k ≥ 2. Let
v1, v4 belong to Q1, Q2, respectively. Hence,

n =
k

∑

i=1

(nQi
− 1) +

3
∑

i=1

(nBi
− 2) + 4 =

k
∑

i=1

nQi
+

3
∑

i=1

nBi
− k − 2.

Now, |E(G)| =
∑k

i=1 |E(Qi)| +
∑3

i=1 |E(Bi)|. By Lemma 10, after some
manipulations we get

|E(G)| ≤

(

n− (k + 2)

2

)

+ k + 2.

By Lemma 8 and n ≥ k + 4, we conclude that k ≤ 3. By the symmetry of
induced subgraph G[V (G) \ V (Q3)], when k = 3, renaming vertices if necessary,
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there are two following cases: v1 ∈ Q3 or v2 ∈ Q3. Now we assign colour 1 to the
vertex v2, colour 2 to two vertices v1, v4, and colour 3 to all uncoloured vertices
of G. By simple case to case analysis, it can be observed that G is conflict-free
vertex-connected with three colours. Hence, vcfc(G) ≤ 3.

On the other hand, by Corollary 7, vcfc(G) ≥ 3. Therefore, vcfc(G) = 3.
This completes our proof.

Claim 25. If G has 5 cut-vertices, then vcfc(G) = 3.

Proof. Let S = {v1, v2, v3, v4, v5} be the set of cut-vertices of G. Again by
Lemma 16, we can assume there are at most three vertices of S in the same
block. Now, we consider two following cases.

Case 1. If three vertices of S are in the same block, then there are three
subcases, see Figure 3.

v3 v2 v5

v1 v4

B1 B2 v3 v2 v4v5

v1

B1B3 B2 v4 v2 v3

v1

v5
B1 B2 B3

v3 v2 v5

v1

v4

B1 B2

B3

(a) Two blocks contain 3
cut-vertices.

(b)–(d) One block contains 3 cut-vertices.

Figure 3. Graph G has 5 cut-vertices, where 3 cut-vertices are in the same block.

For subcase 1(a), 4 ≤ k ≤ n− 5 since v1, v3, v4, v5 are cut-vertices and l = 2.
Hence, n =

∑k
i=1 nQi

+ nB1
+ nB2

− k − 1. Now, |E(G)| ≤
(

n−(k+1)
2

)

+ k + 1. As
in the proof of Claim 24, one can easily see that k ≤ 4. Hence, k = 4 and v2 /∈ Qi

for all i ∈ [4]. We assign colour 1 to the vertex v2, colour 2 to all uncoloured
vertices of B1 and B2, and colour 3 to all uncoloured vertices of G.

For subcases 1(b) and 1(c), 3 ≤ k ≤ n− 5 since v1, v4, v5 are cut-vertices and
l = 3. Hence, n =

∑k
i=1 nQi

+
∑3

i=1 nBi
−k−2. Now |E(G)| ≤

(

n−(k+2)
2

)

+k+2.
As in the proof of Claim 24, one can easily see that k ≤ 3. Hence, k = 3 and
v2, v3 /∈ Qi for all i ∈ [3]. Renaming vertices if necessary, we may assume that
v1 ∈ Q1, v4 ∈ Q2 and v5 ∈ Q3. We assign colour 1 to the vertex v2, colour 2 to
the vertex v5, all uncoloured vertices in V (Q2) \ {v4} and V (Q1) \ v1, and colour
3 to all remaining uncoloured vertices of G.

For subcase 1(d), 4 ≤ k ≤ n− 5 since v1, v3, v4, v5 are cut-vertices and l = 3.
Hence, n =

∑k
i=1 nQi

+nB1
+nB2

+nB3
−k−2. Now, |E(G)| ≤

(

n−(k+2)
2

)

+k+2.
As in the proof of Claim 24, one can easily see that k ≤ 3, a contradiction.

By simple case to case analysis, it can be readily observed that G is conflict-
free vertex-connected. Hence, vcfc(G) ≤ 3.
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Case 2. Now we consider the last case that at most two vertices of S are in
the same block. It can be readily observed that there are 4 blocks Bi containing
exactly two cut-vertices of G. Hence, n =

∑k
i=1Qi +

∑4
i=1Bi − k − 3, where

2 ≤ k ≤ n − 5. Now |E(G)| ≤
(

n−(k+3)
2

)

+ k + 3. As in the proof of Claim 24,
one can easily see that k ≤ 2. Hence, k = 2, i.e., there are only two blocks Qi

such that Qi contains only one cut-vertex of G, where i ∈ [2]. Therefore, there
always exist a path in G that connects all five cut-vertives of G, see Figure 4. We
assign colour 1 to the vertex v3, colour 2 to two vertices v1, v5 and colour 3 to all
remaining uncoloured vertices of G.

v3v2v1 v4 v5

Figure 4. Graph G has 5 cut-vertices, where at most 2 cut-vertices are in the same block.

By simple case to case analysis, it can be readily observed that G is conflict-
free vertex-connected. Hence, vcfc(G) ≤ 3.

On the other hand, by Corollary 7, vcfc(G) ≥ 3. Therefore, vcfc(G) = 3.
This completes our proof.

The proof is obtained.

By Theorem 22 and Theorem 20, we pose the following conjecture.

Conjecture 26. Let k ≥ 3 be an integer, and G be a connected graph of order n.

If |E(G)| ≥
(

n−(2k−2)
2

)

+ 2k − 1, then vcfc(G) ≤ k.

Clearly, Conjecture 26 is true for k = 3 by Theorem 20.
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