CONFLICT-FREE VERTEX CONNECTION NUMBER AT MOST 3 AND SIZE OF GRAPHS

Trung Duy Doan ${ }^{1}$
School of Applied Mathematics and Informatics
Hanoi University of Science and Technology
Hanoi, Vietnam
e-mail: trungdoanduy@gmail.com

AND

Ingo Schiermeyer
Institut für Diskrete Mathematik und Algebra Technische Universität Bergakademie Freiberg

09596 Freiberg, Germany
e-mail: Ingo.Schiermeyer@tu-freiberg.de

Abstract

A path in a vertex-coloured graph is called conflict-free if there is a colour used on exactly one of its vertices. A vertex-coloured graph is said to be conflict-free vertex-connected if any two distinct vertices of the graph are connected by a conflict-free vertex-path. The conflict-free vertex-connection number, denoted by $\operatorname{vcfc}(G)$, is the smallest number of colours needed in order to make G conflict-free vertex-connected. Clearly, $\operatorname{vcfc}(G) \geq 2$ for every connected graph on $n \geq 2$ vertices.

Our main result of this paper is the following. Let G be a connected graph of order n. If $|E(G)| \geq\binom{ n-6}{2}+7$, then $v c f c(G) \leq 3$. We also show that $\operatorname{vcfc}(G) \leq k+3-t$ for every connected graph G with k cut-vertices and t being the maximum number of cut-vertices belonging to a block of G. Keywords: vertex-colouring, conflict-free vertex-connection number, size of graph.

2010 Mathematics Subject Classification: 05C15, 05C40, 05 C 07.

[^0]
1. Introduction

We use [23] for terminology and notation not defined here and consider simple, finite and undirected graphs only. Let G be a graph, we denote by $V(G), E(G), n, m$ the vertex set, the edge set, the number of vertices, and the number of edges, respectively. A block is an end-block if it has only one cutvertex. We abbreviate the set $\{1, \ldots, k\}$ by $[k]$.

A path P in an edge-coloured graph G is called a rainbow path if its edges have distinct colours. An edge-coloured graph G is rainbow connected if every two vertices are connected by at least one rainbow path in G. For a connected graph G, the rainbow connection number of G, denoted by $r c(G)$, is defined as the smallest number of colours required to make it rainbow connected. The concept of rainbow connection number was first introduced by Chartrand et al. [6]. Readers who are interested in this topic are referred to [20, 21].

Motivated by the proper colouring and rainbow connection, Borozan et al. [3] and Andrews et al. [2], independently introduced the concept of proper connection. A path P in an edge-coloured graph G is a proper path if any two consecutive edges receive distinct colours. An edge-coloured graph G is properly connected if every two vertices are connected by at least one proper path in G. For a connected graph G, the proper connection number of G, denoted by $p c(G)$, is defined as the smallest number of colours required to make it properly connected. Since then, a lot of results on this concept have been obtained; see [17] for a survey.

Recently, Czap et al. [10] introduced the concept of conflict-free connection. A path in an edge-coloured graph G is called conflict-free if there is a colour used on exactly one of its edges. An edge-coloured graph G is said to be conflict-free connected if any two vertices are connected by at least one conflict-free path. The conflict-free connection number of a connected graph G, denoted by $c f c(G)$, is defined as the smallest number of colours in order to make it conflict-free connected. For more results, the readers are referred to $[4,5,7,10]$.

As a natural counterpart of the concepts of rainbow connection, proper connection and conflict-free connection, the concepts of rainbow vertex-connection, proper vertex-connection, and conflict-free vertex-connection were introduced, respectively.

The concept of rainbow vertex-connection was first introduced by Krivelevich et al. [15]. A path in a vertex-coloured graph G is called a vertex rainbow path if its internal vertices have distinct colours. A vertex-coloured graph G is rainbow vertex-connected if any two vertices are connected by at least one vertex rainbow path. For a connected graph G, the rainbow vertex-connection number, denoted by $\operatorname{rvc}(G)$, is the smallest number of colours that are needed in order to make G rainbow vertex-connected. Recently, a lot of results on this topic have been
obtained, see $[8,16,18,19]$.
Similarly, Jiang et al. [13] and Chizmar et al. [9], independently introduced the concept of proper vertex-connection. A path P in a vertex-coloured graph G is a proper vertex-path if any two internal adjacent vertices differ in colour. A vertex-coloured graph G is called properly vertex-connected if any two vertices are connected by at least one proper vertex-path. For a connected graph G, the proper vertex-connection number, denoted by $p v c(G)$, is the smallest number of colours that are needed in order to make G properly vertex-connected.

Motivated by the above mentioned concepts, Li et al. [11] introduced the concept of conflict-free vertex-connection. A path P in a vertex-coloured graph G is said to be a conflict-free vertex-path if there is a colour used on exactly one of its vertices. A vertex-coloured graph G is said to be conflict-free vertex-connected if any two vertices of the graph are connected by a conflict-free vertex-path. The conflict-free vertex-connection number of a connected graph G, denoted by $v c f c(G)$, is defined as the smallest number of colours in order to make G conflictfree vertex-connected. Recently, some results on this topic have been shown in [12, 22].

Our research was motivated by the following results for the proper connection number and the rainbow connection number of graphs depending on their size.

Theorem 1 (Kemnitz et al. [14]). Let G be a connected graph of order n and size m. If $\binom{n-1}{2}+1 \leq m \leq\binom{ n}{2}-1$, then $r c(G)=2$.

Theorem 2 (Aardt et al. [1]). Let $k \geq 3$ be an integer and G be a connected graph of order n. If $|E(G)| \geq\binom{ n-k-1}{2}+k+2$, then $p c(G) \leq k$.

In [1], the authors also considered the case $k=2$. Let $G_{1}=K_{1} \vee\left(2 K_{1}+K_{2}\right)$ and $G_{2}=K_{1} \vee\left(K_{1}+2 K_{2}\right)$, where $G+H=\left(V_{G} \cup V_{H}, E_{G} \cup E_{H}\right)$ is the disjoint union and $G \vee H=\left(V_{G} \cup V_{H}, E_{G} \cup E_{H} \cup\left\{u v: u \in V_{G}, v \in V_{H}\right\}\right)$ is the join of the graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$.

Theorem 3 (Aardt et al. [1]). Let G be a connected graph of order n. If $|E(G)|$ $\geq\binom{ n-3}{2}+4$, then $p c(G) \leq 2$ unless $G \in\left\{G_{1}, G_{2}\right\}$.

2. Auxiliary Results

In this section, we state some fundamental results, which will be used throughout later in the proofs of our results. First note that for a connected graph G of order $n \geq 2$ we can easily observe that $\operatorname{vcfc}(G) \geq 2$.

The conflict-free vertex-connection number of a path has been computed by Li et al. [11].

Theorem 4 (Li et al. [11]). If P_{n} is a path of order n, then $\operatorname{vcfc}\left(P_{n}\right)=\left\lceil\log _{2}(n\right.$ $+1)\rceil$.

The proof of Theorem 4 is similar to that of Theorem 3 in [10]. The following result, which is very important to determine the existence of a conflict-free path of a subgraph or a 2 -connected graph, was proved by the authors in [11].

Theorem 5 (Li et al. [11]). If G is a 2-connected graph and w is a vertex of G, then for any two vertices u and v in G, there is a $u-v$ path containing the vertex w.

Next, Li et al. [11] used the result of Theorem 5, as a basic tool, to determine the necessary and the sufficient conditions of connected graphs having conflictfree connection number 2 .

Theorem 6 (Li et al. [11]). Let G be a connected graph of order at least 3, then $\operatorname{vcfc}(G)=2$ if and only if G is 2-connected or G has only one cut-vertex.

Since $v c f c(G)=2$ if and only if G is 2-connected or G has only one cut-vertex, it is natural to determine the conflict-free vertex-connection number of a graph having at least two cut-vertices. Hence, the following corollary is immediately obtained by the authors in [11].

Corollary 7 (Li et al. [11]). Let G be a connected graph. Then $\operatorname{vcfc}(G) \geq 3$ if and only if G has at least two cut-vertices.

The next lemma provides a combinatorial equality and an inequality, which will be used several times in our later proofs.

Lemma 8. (i) For every positive integer a it holds

$$
\binom{a+1}{2}=\binom{a}{2}+a
$$

(ii) For every three positive integers n, t, a such that $t \geq a+1$ it holds

$$
\binom{n-t}{2} \leq\binom{ n-a}{2}-n+a+1
$$

Proof. Case (i) is immediately obtained after some manipulations.
Using case (i) and note that $t \geq a+1$, we obtain case (ii) as follows

$$
\begin{aligned}
\binom{n-t}{2} & \leq\binom{ n-(a+1)}{2}=\binom{n-a}{2}-(n-(a+1)) \\
& =\binom{n-a}{2}-n+a+1
\end{aligned}
$$

Lemma 9. Let $k \geq 2$ be an integer. If a_{1}, \ldots, a_{k} are integers and all of them are greater than one, then

$$
\sum_{i=1}^{k}\binom{a_{i}}{2}<\binom{\sum_{i=1}^{k} a_{i}-(k-1)}{2}
$$

Proof. We prove this lemma by induction on k. Let $k=2$. Clearly, $\left(a_{1}-1\right)\left(a_{2}-\right.$ 1) >0 since $a_{i} \geq 2$ for every $i \in[k]$. After some manipulations we get

$$
\binom{a_{1}}{2}+\binom{a_{2}}{2}<\binom{a_{1}+a_{2}-1}{2} .
$$

We may assume that the inequality is true for some $k=t \geq 2$. Hence,

$$
\sum_{i=1}^{t}\binom{a_{i}}{2}<\binom{\sum_{i=1}^{t} a_{i}-(t-1)}{2} .
$$

By the induction hypothesis, we deduce that

$$
\sum_{i=1}^{t}\binom{a_{i}}{2}+\binom{a_{t+1}}{2}<\binom{\sum_{i=1}^{t} a_{i}-(t-1)}{2}+\binom{a_{t+1}}{2}<\binom{\sum_{i=1}^{t+1} a_{i}-t}{2}
$$

The result is obtained.
Lemma 10. Let $k \geq 2$ be an integer. If a_{1}, \ldots, a_{k} are integers and all of them are greater than one, then

$$
\sum_{i=1}^{k}\binom{a_{i}}{2} \leq\binom{\sum_{i=1}^{k} a_{i}-2(k-1)}{2}+(k-1) .
$$

Proof. We prove this lemma by induction on k. Let $k=2$. Clearly, $\left(a_{1}-2\right)\left(a_{2}-\right.$ $2) \geq 0$ since $a_{i} \geq 2$ for every $i \in[k]$. After some manipulations we get

$$
\binom{a_{1}}{2}+\binom{a_{2}}{2} \leq\binom{ a_{1}+a_{2}-2}{2}+1 .
$$

Using the induction on k, in the same way as in the proof of Lemma 9 , the result is obtained.

By Lemma 10, an upper bound for the size of a graph G having exactly k blocks is attained by the following corollary.

Corollary 11. Let G be a graph and $k \geq 2$ be an integer. If G has exactly k blocks B_{i} of order n_{i}, then

$$
|E(G)| \leq\binom{\sum_{i=1}^{k} n_{i}-2(k-1)}{2}+(k-1) .
$$

Now we consider some results on the number of cut-vertices of a connected graph. By using Lemma 9 and Lemma 10, one can readily obtain the next result, which is the vertex version of the result in [1]. Moreover, this result is very important in the proof of our main result.

Lemma 12. If a connected graph G on n vertices has t cut-vertices, then

$$
|E(G)| \leq\binom{ n-t}{2}+t
$$

Proof. We prove the lemma by induction on t. Clearly, the result immediately holds if $t=0$. We may assume, now, $t \geq 1$. Let v be a cut-vertex of G such that $v \in V\left(B_{i}\right)$, where all B_{i} are end-blocks of G. Now for every end-block B_{i} containing v, we delete $V\left(B_{i}-v\right)$ and all edges incident to $V\left(B_{i}-v\right)$. Call the resulting graph G^{\prime}.

By our assumption, it can be readily seen that G^{\prime} has exactly $t-1$ cut-vertices which are distinct from v. Let $n_{B_{i}}$ be the order of B_{i} for every i and $n_{G^{\prime}}$ be the order of G^{\prime}. Hence, by the induction hypothesis, $\left|E\left(G^{\prime}\right)\right| \leq\binom{ n_{G^{\prime}}-(t-1)}{2}+t-1$. Let k be the number of end-blocks B_{i} of G incident with v. Since all blocks B_{i} and the component G^{\prime} have the common cut-vertex v,

$$
n=\sum_{i=1}^{k}\left(n_{B_{i}}-1\right)+n_{G^{\prime}}-1+1=\sum_{i=1}^{k} n_{B_{i}}+n_{G^{\prime}}-k .
$$

Hence,

$$
|E(G)|=\sum_{i=1}^{k}\left|E\left(B_{i}\right)\right|+\left|E_{G^{\prime}}\right| \leq \sum_{i=1}^{k}\binom{n_{B_{i}}}{2}+\left|E_{G^{\prime}}\right| .
$$

Using Lemma 9 for k blocks B_{i} and the induction hypothesis on G^{\prime}, we deduce that

$$
|E(G)| \leq\binom{\sum_{i=1}^{k} n_{B_{i}}-(k-1)}{2}+\binom{n_{G^{\prime}}-(t-1)}{2}+t-1 .
$$

After using Lemma 10 and the order of G, the result is obtained

$$
|E(G)| \leq\binom{\sum_{i=1}^{k} n_{B_{i}}-(k-1)+n_{G^{\prime}}-(t-1)-2}{2}+1+t-1=\binom{n-t}{2}+t
$$

This completes our proof.
Lemma 13. Let G be a connected graph and $t \geq 3$ be an integer. If G has t cut-vertices, then there always exists a subset of at least 3 cut-vertices that are connected by a path.

Proof. If a block of G has at least three cut-vertices, then the statement follows from Theorem 5. Now assume that a block contains exactly two cut-vertices u and v. Let w be a third cut-vertex in G. Let P_{1} be a path connecting u and v and P_{2} be a path connecting w and u. If P_{2} contains v, then P_{2} contains three cut-vertices, otherwise the path $w P_{2} u P_{1} v$ has the required property. This finishes our proof.

The following example shows that there are connected graphs having no path connecting at least 4 cut-vertices. Let $k \geq 3$ be an integer and $K_{1, k}$ be a star on $k+1$ vertices. Let G be a graph obtained from $K_{1, k}$ by subdividing each of its edges. Clearly, every path in G contains at most 3 cut-vertices.

3. Main Result

In this section, we study graphs with conflict-free vertex-connection number at most 3 depending on their size. Before presenting our main result, we prove several useful results on the conflict-free vertex-connection number of a connected graph. First of all, we consider the upper bound of the conflict-free vertexconnection number of graphs.

3.1. The upper bound

By Theorem 6, the conflict-free vertex-connection number equals 2 for every connected graph having no cut-vertex or only one cut-vertex. Consequently, the conflict-free vertex-connection number is at least 3 , if G has at least two cut-vertices. Motivated by these results, we consider the upper bound of the conflict-free vertex-connection number depending on the number of cut-vertices of a connected graph. Let G be a connected graph having at least 2 cut-vertices. For every block B_{i} of G, let x_{i} denote the number of cut-vertices of G belonging to B_{i}. Hence, $x_{i} \geq 1$, for $1 \leq i \leq l$, where l is the number of (trivial or non-trivial) blocks in G. Let $t=\max \left\{x_{i} \mid 1 \leq i \leq l\right\}$. Hence, t is the maximum number of cut-vertices belonging to a block of G. The following theorem gives a tight upper bound for the conflict-free vertex-connection number of a connected graph.

Theorem 14. Let G be a connected graph. If k is the number of cut-vertices of G and t is the maximum number of cut-vertices belonging to a block of G, then $v c f c(G) \leq k+3-t$. Moreover, this bound is sharp.

Proof. Renaming blocks if necessary, assume that B_{1} is a block of G having the maximum number of cut-vertices. Trivially, if $t=1$, then $k=1$. It follows that G has only one cut-vertex. By Theorem 6, the result is obtained. Hence, $t \geq 2$. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ be the set of cut-vertices of G belonging to B_{1}. Now, we
assign colour 2 to the vertex v_{1}, colour 3 to all the vertices in $S \backslash\left\{v_{1}\right\}$. Every cutvertex of G that is not in S is assigned a different colour from $\{4,5, \ldots, k+3-t\}$. Next, we colour all the remaining vertices of G by colour 1 . In such a way we obtain a vertex-coloring c of G. For every block B_{i} from G, it can be readily seen that there always exists at least one cut-vertex having the colour which is different from the colour of the remaining vertices of B_{i}. It follows that there is a conflict-free vertex-path between any two arbitrary vertices belonging to the same block by Theorem 5 .

Suppose now that two arbitrary vertices, say x and y, belong to two different blocks, say B_{x} and B_{y}, respectively. Since G is connected, there is a path, say P, connecting x and y. Let $v_{x} \in V(P)$ and $v_{y} \in V(P)$ be the cut-vertices of B_{x} and B_{y}, respectively. If $v_{x} \equiv v_{y}$ or $c\left(v_{x}\right) \neq c\left(v_{y}\right)$, then P is the conflictfree vertex-path with the unique colour, say $c\left(v_{x}\right)$ or $c\left(v_{y}\right)$. If $c\left(v_{x}\right)=c\left(v_{y}\right)$ and $v_{x} \neq v_{y}$, then $v_{x}, v_{y} \in V\left(B_{1}\right)$. Hence, B_{1} is the nontrivial block. By Theorem 5 , there is a $v_{x}-v_{y}$ path in B_{1}, say P^{\prime}, containing v_{1}. Now, $x P v_{x} P^{\prime} v_{y} P y$ is a conflict-free vertex-path. Hence, there always exists at least one conflict-free vertex-path connecting any two arbitrary vertices of G.

The result is obtained.
The sharpness examples for Theorem 14 are given as follows. Let G be a connected graph having at least two cut-vertices and let all the cut-vertices belong to the same block, i.e., $k=t \geq 2$. By Corollary $7, v c f c(G) \geq 3$. On the other hand, by Theorem 14, $v c f c \leq 3$. Hence, $v c f c(G)=3=k+3-t$.

Clearly, if G has exactly two cut-vertices, then they are in the same block. Hence, the following corollary is immediately obtained.

Corollary 15. Let G be a connected graph. If G has exactly two cut-vertices, then $v c f c(G)=3$.

Now, we consider the conflict-free vertex-connection number of a connected graph having many cut-vertices in the same block.

Lemma 16. Let $k \geq 3$ be an integer and G be a connected graph of k cut-vertices. If at least $k-1$ cut-vertices belong to an unique block, then $v c f c(G)=3$.

Proof. By Corollary 7, $\operatorname{vcfc}(G) \geq 3$ since G has at least 3 cut-vertices. Let v_{1}, \ldots, v_{k} be the cut-vertices of G. By Theorem 14 it suffices to consider the case when $k-1$ cut-vertices belong to the same block. Hence we may assume that $v_{1}, \ldots, v_{k-1} \in V(B)$ and $v_{k} \notin V(B)$ for some block B.

Now, we show that we are able to assign three colours to all the vertices of G in order to make it conflict-free vertex-connected. Since G is connected, there is a path, say P, connecting v_{k} and $V(B)$. Clearly, the end-vertex of P is a cut-vertex of G. Otherwise, G contains at least $k+1$ cut-vertices since v_{k} does
not belong to the block B. Renaming vertices if necessary, we may assume, that the end-vertex of P is v_{1}. Now, let B^{\prime} be a block containing v_{1} and v_{k}. Clearly, $V(B) \cap V\left(B^{\prime}\right)=\left\{v_{1}\right\}$. If $v_{1} v_{k}$ is a bridge of G, then B^{\prime} is trivial. Otherwise, B^{\prime} is non-trivial. We assign the colour 1 to the vertex v_{1}, the colour 2 to all the vertices in $V(B) \cup V\left(B^{\prime}\right) \backslash\left\{v_{1}\right\}$, the colour 3 to all the remaining uncoloured vertices of G. By simple case to case analysis, G is conflict-free vertex-connected. Hence, $v c f c(G) \leq 3$. We deduce that $v c f c(G)=3$.

The proof is obtained.
Let G be a connected graph. The eccentricity $\epsilon_{G}(v)$ of a vertex $v \in V(G)$ is the maximum value among the distance between v and the other vertices in G. The radius $\operatorname{rad}(G)$ of G is the minimum eccentricity among all the vertices of G. In [11], the authors proved an upper bound for the conflict-free vertex-connection of a connected graph depending on the radius $\operatorname{rad}(G)$ as follows.

Theorem 17 (Li et al. [11]). If T is a tree with radius $\operatorname{rad}(T)$, then $\operatorname{vcfc}(T) \leq$ $\operatorname{rad}(T)+1$. Moreover, the bound is sharp.

Corollary 18 (Li et al. [11]). If G is a connected graph, then $v c f c(G) \leq \operatorname{rad}(G)$ +1 .

Let G be a connected graph with $k \geq 2$ cut-vertices and let t be the maximum number of cut-vertices belonging to a block, say B, of G. Clearly, $t \geq 2$. Now, there are $k-t$ cut-vertices of G not belonging to B. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{t}\right.$, $\left.v_{t+1}, \ldots, v_{k}\right\}$ be the cut-vertex set of G such that v_{1}, \ldots, v_{t} are in B and v_{t+1}, \ldots, v_{k} are not in B. Two blocks are neighbours if they have a common cut-vertex. We construct the tree $T_{v_{i}}^{*}$, where $i \in[t]$, as follows.

1. Every $v_{i} \in V(B)$ is the root of $T_{v_{i}}^{*}$.
2. We consider all the neighbour blocks of B containing v_{i}, say B_{j}, having the cut-vertices of G. We denote these cut-vertices, say $v_{j} \in V\left(B_{j}\right)$, by $v_{j}^{T^{*}}$ and add them to $T_{v_{i}}^{*}$ by adding an edge $v_{i} v_{j}^{T^{*}}$. Next, we continue to consider the neighbour block of B_{j} and repeat these processes to the end-blocks of G.
Now applying steps 1 and 2 above, we construct the tree T^{*} by identifying all v_{i} of $T_{v_{i}}^{*}$, where $i \in[t]$, by a vertex, say v. Hence, $\left|V\left(T^{*}\right)\right|=k-t+1$ and v is the root of T^{*}. An example of T^{*} is depicted in Figure 1. By Theorem 17, the following result is obtained.

Theorem 19. If G is a connected graph with at least two cut-vertices, then $v c f c(G) \leq \operatorname{rad}\left(T^{*}\right)+4$.

Proof. By Theorem 17, T^{*} is conflict-free vertex-connected with $\operatorname{rad}\left(T^{*}\right)+1$ colours. We assign $\operatorname{rad}\left(T^{*}\right)+1$ colours from $\left\{4,5, \ldots, \operatorname{rad}\left(T^{*}\right)+4\right\}$ to make it conflict-free vertex-connected. Since T^{*} is a tree, every its two vertices are

Figure 1. Graph G and T^{*}.
connected by only one path. We colour all the vertices of G as following: $c\left(v_{j}\right)=$ $c\left(v_{j}^{T^{*}}\right)$, for every $j \in[k] \backslash[t]$. We assign colour 2 to the vertex v_{1}, colour 3 to all the $t-1$ remaining cut-vertices in B. Hence, all the cut-vertices of G are coloured. We colour all the remaining vertices of G by colour 1 . It can be readily seen that there always exists at least one conflict-free vertex-path between any two cut-vertices of G since T^{*} is conflict-free vertex-connected and B is conflict-free vertex-connected with 3 colours from [3]. Moreover, every block has at least one cut-vertex having different colour to all its remaining vertices. As in the proof of Theorem 14, there always exists at least one conflict-free vertex-path between any two arbitrary vertices of G.

3.2. Conflict-free vertex-connection number at most 3

In this subsection, we consider our main result as follows.
Theorem 20. Let G be a connected graph of order $n \geq 8$. If $|E(G)| \geq\binom{ n-6}{2}+7$, then $\operatorname{vcfc}(G) \leq 3$.

Before starting to prove Theorem 20, we show that the bound for the size of the graph is sharp by the following proposition.

Proposition 21. There exists a connected graph of order n and $|E(G)|=\binom{n-6}{2}$ +6 such that $v c f c(G) \geq 4$.

Proposition 21 can be extended for any integer $k \geq 2$ by the following theorem.

Theorem 22. Let $k \geq 2$ be an integer. There exists a connected graph of order n and $|E(G)|=\binom{n-\left(2^{k}-2\right)}{2}+2^{k}-2$ such that $\operatorname{vcf} c(G) \geq k+1$.

Proof. We construct a connected graph G as follows. Take a complete graph $K_{n-\left(2^{k}-2\right)}$ and a path $P_{2^{k}-1}=w_{1} \cdots w_{2^{k}-1}$. Note that $\left|V\left(P_{2^{k}-1}\right)\right|$ is odd. Let u be an arbitrary vertex of $K_{n-\left(2^{k}-2\right)}$. Now, we identify the vertex u with the vertex w_{1}. It can be readily observed that the resulting graph G has order n, and size $|E(G)|=\binom{n-\left(2^{k}-2\right)}{2}+2^{k}-2$. Next, we prove that $v c f c(G) \geq k+1$.

Note that, by our construction above, there is an unique path between any two vertices w_{i}, w_{j}, where $w_{i}, w_{j} \in V\left(P_{2^{k}-1}\right)$. It follows that $P_{2^{k}-1}$ is conflictfree vertex-connected. By Theorem 4, we must use at least k colours in order to make $P_{2^{k}-1}$ conflict-free vertex-connected since $\left|V\left(P_{2^{k}-1}\right)\right|=2^{k}-1$. Hence, $v \operatorname{vfc}(G) \geq k$. Now, suppose to the contrary, that we are able to use exactly k colours to colour all the vertices of G in order to make it conflict-free vertexconnected. By the concept of conflict-free vertex-connection, there must be an unique colour on $P_{2^{k}-1}$, say k, that is assigned to a vertex w_{i}. We show that $c\left(w_{2^{k-1}}\right)=k$. Otherwise, without loss of generality, we may assume that $c\left(w_{i}\right)=$ k, where $i \in\left[2^{k}-1\right] \backslash\left[2^{k-1}\right]$ since $P_{2^{k}-1}$ is symmetry by $w_{2^{k-1}}$. By Theorem $4, \operatorname{vcfc}\left(w_{1} P_{2^{k}-1} w_{2^{k-1}}\right)=k$. Hence, the colour k appears at least two times on the path $P_{2^{k}-1}$, a contradiction. Thus, $c\left(w_{2^{k-1}}\right)=k$ and all vertices in $V\left(w_{1} P_{2^{k}-1} w_{2^{k-1}-1}\right)$ can receive the colours from $[k-1]$. On the other hand, by Theorem 4, $\operatorname{vcfc}\left(w_{1} P_{2^{k}-1} w_{2^{k-1}-1}\right)=k-1$. Similarly, a unique colour, say $k-1$, on the path $w_{1} P_{2^{k}-1} w_{2^{k-1}-1}$ must be assigned to $w_{2^{k-2}}$. We continue these steps by decreasing k to 2 . Hence, by Theorem $4, \operatorname{vcfc}\left(w_{1} P_{2^{k}-1} w_{3}\right)=2$. It follows that we can use two colours from [2] to colour all the vertices of the subgraph $H=G-\left\{w_{4}, w_{5}, \ldots, w_{2^{k}-1}\right\}$ to make it conflict-free vertex-connected. Note that H has two cut-vertices. By Corollary 15, $v c f c(H)=3$, a contradiction. Hence, k is not enough to make G conflict-free vertex-connected. Therefore, $v c f c(G) \geq k+1$. This completes our proof.

Clearly, when $k=3$ we immediately obtain Proposition 21.
Now we are able to prove our main result. Recall its statement here.
Theorem 20. Let G be a connected graph of order $n \geq 8$. If $|E(G)| \geq\binom{ n-6}{2}+7$, then $v c f c(G) \leq 3$.

Proof. We prove our theorem by several claims as follows. Let G be a connected graph of order n and $|E(G)| \geq\binom{ n-6}{2}+7$.

Claim 23. G has at most 5 cut-vertices.
Proof. Let t be the number of cut-vertices of G. By Lemma $12,|E(G)| \leq$ $\binom{n-t}{2}+t$. If $t=6$, then $|E(G)| \leq\binom{ n-6}{2}+6$, a contradiction.

If $t \geq 7$, then by Lemma 8

$$
|E(G)| \leq\binom{ n-t}{2}+t \leq\binom{ n-6}{2}-n+7+t .
$$

Note that $n \geq t+2$ since G has order n and t cut-vertices. Hence, $|E(G)| \leq$ $\binom{n-6}{2}+5$, a contradiction.

Therefore, we deduce that $t \leq 5$.

Let B_{1}, \ldots, B_{l} be the blocks of G which contain at least two cut-vertices of G, and let Q_{1}, \ldots, Q_{k} be the other blocks (the end-blocks) of G.

By Theorem 6, Corollary 15 and Lemma 16, now we consider that G has at least 4 cut-vertices.

Claim 24. If G has 4 cut-vertices, then $\operatorname{vcfc}(G)=3$.
Proof. Let $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be the set of cut-vertices of G. By Lemma 16, we can assume that there are at most two vertices of S in the same block. By Lemma 13 , there always exist a subset of at least three cut-vertices that are connected by a path. Hence, two cases are considered as follows. Let B_{i}, where $i \in[3]$, be three blocks containing exactly two cut-vertices of G.

Case 1. At most three cut-vertices are connected by a path. Renaming vertices if necessary, we may assume that $v_{1}, v_{2} \in B_{1}, v_{2}, v_{3} \in B_{2}$ and $v_{2}, v_{4} \in B_{3}$, see Figure 2. Clearly, G must contain several other blocks. We assign colour 1 to the vertex v_{2}, colour 2 to all three vertices v_{1}, v_{3}, v_{4} and colour 3 to all uncoloured vertices of G. By simple case to case analysis, it can be observed that G is conflict-free vertex-connected with three colours. Hence, $v c f c(G) \leq 3$.

At most 3 cut-vertices in a path.

All 4 cut-vertices in a path.

Figure 2. Graph G has 4 cut-vertices.
Case 2. All four cut-vetices are connected by a path. Renaming vertices if necessary, we may assume that $v_{i}, v_{i+1} \in B_{i}$, where $i \in[3]$, see Figure 2. Since v_{1}, v_{4} are cut-vertices of G, there are at least two end-blocks Q_{i}, i.e., $k \geq 2$. Let v_{1}, v_{4} belong to Q_{1}, Q_{2}, respectively. Hence,

$$
n=\sum_{i=1}^{k}\left(n_{Q_{i}}-1\right)+\sum_{i=1}^{3}\left(n_{B_{i}}-2\right)+4=\sum_{i=1}^{k} n_{Q_{i}}+\sum_{i=1}^{3} n_{B_{i}}-k-2
$$

Now, $|E(G)|=\sum_{i=1}^{k}\left|E\left(Q_{i}\right)\right|+\sum_{i=1}^{3}\left|E\left(B_{i}\right)\right|$. By Lemma 10, after some manipulations we get

$$
|E(G)| \leq\binom{ n-(k+2)}{2}+k+2
$$

By Lemma 8 and $n \geq k+4$, we conclude that $k \leq 3$. By the symmetry of induced subgraph $G\left[V(G) \backslash V\left(Q_{3}\right)\right]$, when $k=3$, renaming vertices if necessary,
there are two following cases: $v_{1} \in Q_{3}$ or $v_{2} \in Q_{3}$. Now we assign colour 1 to the vertex v_{2}, colour 2 to two vertices v_{1}, v_{4}, and colour 3 to all uncoloured vertices of G. By simple case to case analysis, it can be observed that G is conflict-free vertex-connected with three colours. Hence, $\operatorname{vcfc}(G) \leq 3$.

On the other hand, by Corollary 7, $v c f c(G) \geq 3$. Therefore, $v c f c(G)=3$. This completes our proof.

Claim 25. If G has 5 cut-vertices, then $v c f c(G)=3$.
Proof. Let $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ be the set of cut-vertices of G. Again by Lemma 16, we can assume there are at most three vertices of S in the same block. Now, we consider two following cases.

Case 1. If three vertices of S are in the same block, then there are three subcases, see Figure 3.

(a) Two blocks contain 3 cut-vertices.
(b)-(d) One block contains 3 cut-vertices.

Figure 3. Graph G has 5 cut-vertices, where 3 cut-vertices are in the same block.
For subcase 1 (a), $4 \leq k \leq n-5$ since $v_{1}, v_{3}, v_{4}, v_{5}$ are cut-vertices and $l=2$. Hence, $n=\sum_{i=1}^{k} n_{Q_{i}}+n_{B_{1}}+n_{B_{2}}-k-1$. Now, $|E(G)| \leq\binom{ n-(k+1)}{2}+k+1$. As in the proof of Claim 24, one can easily see that $k \leq 4$. Hence, $k=4$ and $v_{2} \notin Q_{i}$ for all $i \in[4]$. We assign colour 1 to the vertex v_{2}, colour 2 to all uncoloured vertices of B_{1} and B_{2}, and colour 3 to all uncoloured vertices of G.

For subcases 1 (b) and $1(\mathrm{c}), 3 \leq k \leq n-5$ since v_{1}, v_{4}, v_{5} are cut-vertices and $l=3$. Hence, $n=\sum_{i=1}^{k} n_{Q_{i}}+\sum_{i=1}^{3} n_{B_{i}}-k-2$. Now $|E(G)| \leq\binom{ n-(k+2)}{2}+k+2$. As in the proof of Claim 24, one can easily see that $k \leq 3$. Hence, $k=3$ and $v_{2}, v_{3} \notin Q_{i}$ for all $i \in[3]$. Renaming vertices if necessary, we may assume that $v_{1} \in Q_{1}, v_{4} \in Q_{2}$ and $v_{5} \in Q_{3}$. We assign colour 1 to the vertex v_{2}, colour 2 to the vertex v_{5}, all uncoloured vertices in $V\left(Q_{2}\right) \backslash\left\{v_{4}\right\}$ and $V\left(Q_{1}\right) \backslash v_{1}$, and colour 3 to all remaining uncoloured vertices of G.

For subcase $1(\mathrm{~d}), 4 \leq k \leq n-5$ since $v_{1}, v_{3}, v_{4}, v_{5}$ are cut-vertices and $l=3$. Hence, $n=\sum_{i=1}^{k} n_{Q_{i}}+n_{B_{1}}+n_{B_{2}}+n_{B_{3}}-k-2$. Now, $|E(G)| \leq\left({ }_{2}^{n-(k+2)}\right)+k+2$. As in the proof of Claim 24, one can easily see that $k \leq 3$, a contradiction.

By simple case to case analysis, it can be readily observed that G is conflictfree vertex-connected. Hence, $v c f c(G) \leq 3$.

Case 2. Now we consider the last case that at most two vertices of S are in the same block. It can be readily observed that there are 4 blocks B_{i} containing exactly two cut-vertices of G. Hence, $n=\sum_{i=1}^{k} Q_{i}+\sum_{i=1}^{4} B_{i}-k-3$, where $2 \leq k \leq n-5$. Now $|E(G)| \leq\binom{ n-(k+3)}{2}+k+3$. As in the proof of Claim 24, one can easily see that $k \leq 2$. Hence, $k=2$, i.e., there are only two blocks Q_{i} such that Q_{i} contains only one cut-vertex of G, where $i \in[2]$. Therefore, there always exist a path in G that connects all five cut-vertives of G, see Figure 4. We assign colour 1 to the vertex v_{3}, colour 2 to two vertices v_{1}, v_{5} and colour 3 to all remaining uncoloured vertices of G.

Figure 4. Graph G has 5 cut-vertices, where at most 2 cut-vertices are in the same block.
By simple case to case analysis, it can be readily observed that G is conflictfree vertex-connected. Hence, $\operatorname{vcfc}(G) \leq 3$.

On the other hand, by Corollary $7, v c f c(G) \geq 3$. Therefore, $v c f c(G)=3$. This completes our proof.

The proof is obtained.
By Theorem 22 and Theorem 20, we pose the following conjecture.
Conjecture 26. Let $k \geq 3$ be an integer, and G be a connected graph of order n. If $|E(G)| \geq\left(\begin{array}{c}n-\left(2^{k}-2\right)\end{array}\right)+2^{k}-1$, then $v c f c(G) \leq k$.

Clearly, Conjecture 26 is true for $k=3$ by Theorem 20.

References

[1] S.A. van Aardt, C. Brause, A.P. Burger, M. Frick, A. Kemnitz and I. Schiermeyer, Proper connection and size of graphs, Discrete Math. 340 (2017) 2673-2677. doi:10.1016/j.disc.2016.09.021
[2] E. Andrews, E. Laforge, C. Lumduanhom and P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput. 97 (2016) 189-207.
[3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero and Zs. Tuza, Proper connection of graphs, Discrete Math. 312 (2012) 2550-2560. doi:10.1016/j.disc.2011.09.003
[4] H. Chang, T.D. Doan, Z. Huang, S. Jendrol', X. Li and I. Schiermeyer, Graphs with conflict-free connection number two, Graphs Combin. 34 (2018) 1553-1563. doi:10.1007/s00373-018-1954-0
[5] H. Chang, Z. Huang, X. Li, Y. Mao and H. Zhao, Nordhaus-Gaddum-type theorem for conflict-free connection number of graphs. arXiv:1705.08316v1[math.CO].
[6] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[7] P. Cheilaris, B. Keszegh and D. Pálvölgyi, Unique-maximum and conflict-free coloring for hypergraphs and tree graphs, SIAM J. Discrete Math. 27 (2013) 1775-1787. doi:10.1137/120880471
[8] L. Chen, X. Li and Y. Shi, The complexity of determining the rainbow vertexconnection of a graph, Theoret. Comput. Sci. 412 (2011) 4531-4535. doi:10.1016/j.tcs.2011.04.032
[9] E. Chizmar, C. Magnant and P.S. Nowbandegani, Note on vertex and total proper connection numbers, AKCE Int. J. Graphs Comb. 13 (2016) 103-106. doi:10.1016/j.akcej.2016.06.003
[10] J. Czap, S. Jendrol' and J. Valiska, Conflict-free connections of graphs, Discuss. Math. Graph Theory 38 (2018) 911-920. doi:10.7151/dmgt. 2036
[11] S. Jendrol', X. Li, Y. Mao, Y. Zhang, H. Zhao and X. Zhu, Conflict-free vertexconnections of graphs, Discuss. Math. Graph Theory 40 (2020) 51-65. doi:10.7151/dmgt. 2116
[12] M. Ji, X. Li and X. Zhu, Conflict-free connections: algorithm and complexity, arXiv:1805.08072 (2018).
[13] H. Jiang, X. Li, Y. Zhang and Y. Zhao, On (strong) proper vertex-connection of graphs, Bull. Malays. Math. Sci. Soc. 41 (2018) 415-425. doi:10.1007/s40840-015-0271-5
[14] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313-320. doi:10.7151/dmgt. 1547
[15] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191. doi:10.1002/jgt. 20418
[16] X. Li and S. Liu, Tight upper bound of the rainbow vertex-connection number for 2-connected graphs, Discrete Appl. Math. 173 (2014) 62-69. doi:10.1016/j.dam.2014.04.002
[17] X. Li and C. Magnant, Properly colored notions of connectivity - a dynamic survey, Theory Appl. Graphs 0(1) (2015) Art. 2. doi:10.20429/tag.2015.000102
[18] X. Li, Y. Mao and Y. Shi, The strong rainbow vertex-connection of graphs, Util. Math. 93 (2014) 213-223.
[19] X. Li and Y. Shi, On the rainbow vertex-connection, Discuss. Math. Graph Theory 33 (2013) 307-313.
doi:10.7151/dmgt. 1664
[20] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1-38.
doi:10.1007/s00373-012-1243-2
[21] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer-Verlag, New York, 2012).
doi:10.1007/978-1-4614-3119-0
[22] Z. Li and B. Wu, Maximum value of conflict-free vertex-connection number of graphs, Discrete Math. Algorithms Appl. 10 (2018) 1850059.
doi:10.1142/S1793830918500593
[23] D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, 2001).

[^0]: ${ }^{1}$ This research is funded by the Hanoi University of Science and Technology (HUST) under project number T2018-PC-120.

