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Abstract

Given a simple connected graph G(V,E), the edge metric dimension,
denoted edim(G), is the least size of a set S ⊆ V that distinguishes every
pair of edges of G, in the sense that the edges have pairwise different tuples
of distances to the vertices of S. In this paper we prove that the edge metric
dimension of the Erdős-Rényi random graph G(n, p) with constant p is given
by

edim(G(n, p)) = (1 + o(1))
4 log n

log(1/q)
,

where q = 1− 2p(1− p)2(2− p).

Keywords: random graph, edge dimension, Suen’s inequality.

2010 Mathematics Subject Classification: 05C12, 05C80.

1. Introduction

Let G(V,E) be a finite, simple, connected graph, and define the distance d(x, y)
between two vertices x, y ∈ V to be the length of the shortest path connecting x
and y. The metric dimension of G(V,E), denoted dim(G(V,E)), is the minimal
cardinality of a set S ⊆ V such that for any distinct x, y ∈ V there exists v ∈ S
which satisfies d(v, x) 6= d(v, y).

The metric dimension was introduced by Slater [12] in 1975 in connection
with the problem of uniquely recognizing the location of an intruder in a net-
work, and independently by Harary and Melter in [5] a year later. Graphs with
dim(G) = 1 and 2 were characterized in [9], and graphs with dim(G) = |V | − 1
and |V |−2 were described in [3]. This graph invariant is useful in areas like robot
navigation [9], image processing [10], and chemistry [2, 3, 7].
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In [1], Bollobás, Mitsche and Pralat computed the asymptotic behavior at
infinity of the metric dimension of the Erdős-Rényi random graph for a wide
range of probabilities p(n) (viewed as functions of n). For instance, for constant
p ∈ (0, 1), it was shown that

dim(G(n, p)) = (1 + o(1))
2 log n

log(1/Q)
,

where Q = p2 + (1 − p)2. In this paper we generalize those calculations to a
variation on the metric dimension called the edge metric dimension, introduced
by Kelenc, Tratnik and Yero in [8] in 2016. While the metric dimension is about
uniquely identifying the vertices of a graph in terms of distances to a set, the
edge metric dimension is about identifying the edges of a graph in the same way.

For an edge e = xy ∈ E and a vertex v ∈ V , let d(e, v) = min{d(x, v), d(y, v)}.
The edge metric dimension (denoted edim) of a graph G(V,E) is defined as the
minimal cardinality of a set S ⊆ V such that for any distinct e1, e2 ∈ E, there
exists v ∈ S satisfying d(v, e1) 6= d(v, e2).

Kelenc, Tratnik and Yero computed the edge metric dimension of a range of
families of graphs, showed edim(G) can be less, equal to, or more than dim(G),
and showed computing edim(G) is NP-hard in general ([8]). Zubrilina ([13])
showed that the edim(G)/ dim(G) ratio is not bounded from above and classified
graphs G with edim(G) = |V | − 1. Kratica, Filipović and Kartelj studied the
edge metric dimension of the generalized Petersen graph GP (n, k) in [4]. In this
paper, we prove the following theorem.

Theorem 1.1. Let G(n, p) be the Erdős-Rényi random graph with constant p.
Then

edim(G(n, p)) = (1 + o(1))
4 logn

log(1/q)
,

where q = 1− 2p(1− p)2(2− p).

For a set R = {r1, . . . , r|R|} ⊆ V , we define the distance tuple dR : V ∪ E →

N
|R| via (dR(x))i = d(x, ri). We say R distinguishes v1, v2 ∈ V if dR(v1) 6= dR(v2),

and similarly that R distinguishes e1, e2 ∈ E if dR(e1) 6= dR(e2). R is a generating

set of G if it distinguishes any two distinct vertices, and an edge generating set

if it distinguishes any two distinct edges of G.

We say f(n) = O(g(n)) if there exists a constant C > 0 such that |f(n)| ≤
C |g(n)|, and f(n) = o(g(n)) if f = g · o(1), where o(1) −→

n→∞
0.

We say a property holds asymptotically almost surely (denoted a.a.s.) for the
random graph if the probability that it holds for G(n, p) goes to 1 as n goes to
infinity. We denote probability with P and expected value with E. All the graphs
are assumed to be finite, simple, connected and undirected.
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2. The Upper Bound

In this section we prove the following theorem.

Theorem 2.1. For the random graph G(n, p) with p constant, we have

edim(G(n, p)) ≤ (1 + o(1))
4 logn

log(1/q)
,

where q = 1− 2p(1− p)2(2− p).

In order to prove Theorem 2.1, we will need some lemmas.

Lemma 2.2. Let G = G(n, p) be the random graph, and let V,E denote its

vertex and edge sets. Let ω ∈ {1, . . . , n} be such that for any two distinct edges

e1, e2 ∈ E, a uniformly random subset W ⊆ V of size |W | = ω satisfies

P(Wdoes not distinguish e1, e2) ≤ 1/n4p2.

Then

edim(G) ≤ ω.

Proof. We use the probabilistic method. Note that

E[|E|] = p

(

n

2

)

< pn2/2,

so the expected number of distinct pairs of edges is no more than
(

pn2/2
2

)

≤
p2n4/8. Then by our hypothesis the expected number of pairs not distinguished
by some W ⊆ V with |W | = ω is less than p2n4/8p2n4 = 1/8. Since this is
strictly less than 1, there must be at least one such set W that distinguishes all
the pairs.

Lemma 2.3. In G(n, p), the probability that a vertex v doesn’t distinguish two

uniformly random edges e1, e2 is (1 + o(1))q, where q = 1− 2p(1− p)2(2− p).

Proof. There are two types of distinct edge pairs.

1. ab, bc for some a, b, c ∈ V .
2. ab, cd for a, b, c, d ∈ V and {a, b} ∩ {c, d} = ∅.

Note that

the expected number of type 2 pairs = 3

(

n

4

)

p2 =
n4p2

8
(1 + o(1)),

and

the expected number of type 1 pairs ≤ n3 = o

(

n4p2

8

)

.



592 N. Zubrilina

Thus, we can neglect the type 1 pairs. Let xy, zt be a type 2 pair and v a uniformly

random vertex. Clearly, P(v ∈ {x, y, z, t}) = o
(

n4p2

8

)

, so we can assume v is not

a vertex of xy or zt. Since the random graph has diameter 2 a.a.s. (see [11]),
v has distance 1 or 2 to x, y, z, t a.a.s.; moreover, P(d(v, x) = 1) = p, so a.a.s.
P(d(v, x) = 2) = 1− p. It is easy to see that v has distance 1 to xy and 2 to zt if
and only if one of the following cases holds.

1. (d(v, x), d(v, y), d(v, z), d(v, t)) = (1, 1, 2, 2) (with probability p2(1− p)2).

2. (d(v, x), d(v, y), d(v, z), d(v, t)) = (1, 2, 2, 2) (with probability p(1− p)3).

3. (d(v, x), d(v, y), d(v, z), d(v, t)) = (2, 1, 2, 2) (with probability p(1− p)3).

The same probabilities hold for xy and zt switched. Thus, a.a.s.

P(v distinguishes xy, zt) = (1 + o(1)) · 2(p2(1− p)2 + 2p(1− p)3)

= (1 + o(1)) · 2p(1− p)2(2− p) = (1 + o(1))(1− q).

This gives us the desired result.

Lemma 2.4. Let V,E be the vertex and edge sets of G(n, p). Consider a uni-

formly random subset W ⊆ V with

|W | = (1 + o(1))
4 log n

log(1/q)
.

Then for uniformly random e1 and e2 ∈ E,

P(W does not distinguish e1, e2) ≤ (1 + o(1))/n4p2.

Proof. Using Lemma 2.3, we see that

P(Wdoesn’t distinguish e1, e2)

≤ (1 + o(1))P(uniformly random vertex v doesn’t distinguish e1, e2)
|W |

≤ (1 + o(1))q
(1+o(1)) 4 logn

log(1/q) = (1 + o(1))q− logq(n
4)

= (1 + o(1))
1

n4
≤ (1 + o(1))

1

p2n4
.

Proof of Theorem 2.1. Combining Lemmas 2.4 and 2.2, we see that
edim(G(n, p)) is at most

(1 + o(1))
4 logn

log(1/q)
,

which concludes the proof of Theorem 2.1.
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3. The Lower Bound

The goal of this section is to prove the following theorem.

Theorem 3.1. For the random graph G(n, p) with p constant, we have

edim(G(n, p)) ≥ (1 + o(1))
4 logn

log(1/q)
,

where q = 1− 2p(1− p)2(2− p).

Let

ε :=
3 log log n

log n
= o(1).

We will show that a.a.s. there is no edge generating set R of cardinality less than

r :=
(4− ε) log n

log(1/q)
.

To do that we will use a theorem which is a version of Suen’s inequality demon-
strated by Janson in [6]. First we introduce some notation

• {Ii}i∈I — a finite family of indicator random variables;

• Γ — the associated dependency graph (I is the set of vertices of Γ);

• For i, j ∈ I, write i ∼ j if i, j are adjacent in Γ;

• µ :=
∑

i P(Ii = 1);

• ∆ :=
∑

i∼j E[IiIj ];

• δ := maxi
∑

i∼j P(Ij);

• S :=
∑

i Ii.

Theorem 3.2 (Suen’s inequality, Theorem 2 of [6]).

P(S = 0) ≤ exp
(

−µ+∆ε2δ
)

.

We now apply this theorem to our problem.
Let V,E be the vertex and edge sets of G(n, p). Let R ⊆ V with |R| = r.

Let
I := {(xy, zt) |xy, zt ∈ E, xy 6= zt}

be the set of pairs of distinct edges, and for any (xy, zt) ∈ I let Axy,zt be the
event dR(xy) = dR(zt) (with Ixy,zt being the corresponding indicator function).
Let S =

∑

(xy,zt)∈I Ixy,zt. Then

P(R is an edge generating set) = P(S = 0).
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The associated dependency graph has I as vertices and (x1y1, z1t1) ∼ (x2y2, z2t2)
if and only if {x1, y1, z1, t1} ∩ {x2, y2, z2, t2} 6= ∅ (here, again, ∼ denotes adja-
cency). Then by Theorem 3.2,

P(S = 0) ≤ exp(−µ+∆ε2δ),(1)

where
µ =

∑

(e,f)∈I

P(Ae,f ),

∆ =
∑

(e1,f1)∼(e2,f2)

E[Ie1f1Ie2f2 ],

δ = max
(e1,f1)∈I

∑

(e2,f2)∼(e1,f1)

P(Ae2,f2).

We now show the following estimate for µ.

Lemma 3.3 (Evaluation of µ).

µ = (1 + o(1))p2nε/8.

Proof. Using Lemma 2.3, we can derive that that

P(Ae,f ) = (1 + o(1))qr,

so, since the expected number of pairs is (1 + o(1))(n4p2/8), we indeed get

µ = (1 + o(1))n4p2qr/8.

Since r = (4−ε) log n
log(1/q) ,

qr = q−(4−ε) logq(n) = nε−4.(2)

Thus,

(1 + o(1))n4p2qr/8 = (1 + o(1))n4p2nε−4/8 = (1 + o(1))p2nε/8.

This means that, indeed,

µ = (1 + o(1))p2nε/8.

Now we estimate ∆ and show the following.

Lemma 3.4 (Evaluation of ∆).

∆ = o(µ).
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Proof.

Claim 3.5. In calculating ∆, we may only consider the adjacent pairs

(x1y1, z1t1), (x2y2, z2t2) ∈ I

for which

|{x1, y1, z1, t1} ∩ {x2, y2, z2, t2}| = 1.

Proof. Consider two adjacent elements of I : (x1y1, z1t1) ∼ (x2y2, z2t2). Sup-
pose |{x1, y1, z1, t1, x2, y2, z2, t2}| = 7. The expected number of such pairs is

p4
n!

4 · (n− 7)!
= (1 + o(1))p4n7/4.

Now consider two adjacent elements of I with |{x1, y1, z1, t1, x2, y2, z2, t2}| ≤ 6.
There are no more than

n6 = o(p4n7)

such pairs of pairs.

Thus we can and will only consider pairs of elements of I with only one
vertex in common.

We will now compute the probability that I(x1y1,z1t1)I(x1y2,z2t2) = 1. Consider
a uniformly random vertex v. We can neglect the case when v ∈ {x1, y1, z1, t1,
y2, z2, t2} because it happens with probability o(1). Since the random graph has
diameter 2 a.a.s., I(x1y1,z1t1)I(x1y2,z2t2) = 1 in the following cases.

Case 1. dv(x1) = 1. Then v has to have distance 1 to all four edges. v has
distance 1 to z1t1 (or z2t2) with probability p2 + 2p(1 − p) = p(2 − p), and the
distances from v to y1, y2 don’t affect anything, so

P
(

I(x1y1,z1t1)I(x1y2,z2t2) = 1| Case 1 holds
)

= p3(2− p)2.

Case 2. dv(x1) = 2. Then v has distance 2 to both x1y1 and z1t1 with
probability (1−p)3 and distance 1 to both x1y1 and z1t1 with probability p2(2−p).
So v is equidistant from the two edges with probability (1−p)3+p2(2−p). Thus,

P
(

I(x1y1,z1t1)I(x1y2,z2t2) = 1| Case 2 holds
)

= (1− p)((1− p)3 + p2(2− p))2.

Hence the total probability

P
(

I(x1y1,z1t1)I(x1y2,z2t2) = 1
)

= (1− p)((1− p)3 + p2(2− p))2 + p3(2− p)2.

We will henceforth refer to this constant as sp.

sp := (1− p)((1− p)3 + p2(2− p))2 + p3(2− p)2.
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It follows that
∆ = (1 + o(1))p4n7srp/4.

Using (2), we get

∆ = (1 + o(1))p4n7srp/4 = (1 + o(1))p4n3nεn4−εsrp/4

= (1 + o(1))2p2n3

(

sp
q

)r p2nε

8
= (1 + o(1))2p2n3

(

sp
q

)r

µ.

Notice that

(

sp
q

)r

=

(

sp
q

)((4−ε) logn)/ log(1/q)

= n
(4−ε) log

(

sp
q

)

/ log(1/q)

= n
(4−ε)

(

− log(sp)

log(q)
+1

)

= n(4−ε)(− logq sp+1) ≤ nε−4

(since q, sp ≤ 1). Thus,

(1 + o(1))2p2n3

(

sp
q

)r

µ ≤ (1 + o(1))2p2n3nε−4µ = o(µ).

This concludes the proof that
∆ = o(µ).

Finally, we estimate δ and show the following.

Lemma 3.6 (Evaluation of δ).

δ = o(1).

Proof. Note that for fixed f1, e1,

P (Ae2,f2 | (e2, f2) uniformly random, (e2, f2) ∼ (e1, f1))

= P(Ae,f | e, f uniformly random).

Thus, the maximum for δ is achieved for (e1, f1) with the largest possible number
of adjacent edge pairs (e2, f2). Clearly, this number is the greatest when e1 and
f1 don’t share vertices. The expected number of adjacent edge pairs in this case
is (1 + o(1))2n3p2. Since qr = P(Ae,f ) for uniformly random edges e, f we have

2δ = (1 + o(1))2n3p2qr.

Using (2), we get
δ = (1 + o(1))2p2nε−1 = o(1).
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We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Substituting the results of Lemmas 3.3, 3.4, 3.6 into
inequality (1), we obtain

log (P(S = 0)) ≤ (1 + o(1))
(

−µ+ o(µ)eo(1)
)

≤ (1 + o(1)) (−µ+ o(µ))

≤ −(1 + o(1))µ ≤ −(1 + o(1))p2nε/8 ≤ −p2nε/16

for sufficiently large n. Then the expected number of edge generating sets of
cardinality r is no greater than

(

n

r

)

exp(−p2nε/16) ≤ nr exp(−p2nε/16)

= O
(

exp[(4− ε) log2(n)/ log(1/q)− p2nε/16]
)

≤ O
(

exp[log2(n)− log3(n)p2/16]
)

= o(1).

This concludes the proof of Theorem 3.1, and together with Theorem 2.1, this
proves the main result, Theorem 1.1.

4. Concluding Remarks

We have shown that

edim(G(n, p)) = (1 + o(1))
4 logn

log(1/q)
,

where
q = 1− 2p(1− p)2(2− p).

As demonstrated by Bollobas et al. in [1],

dim(G(n, p)) = (1 + o(1))
2 log n

log(1/Q)
,

where Q = p2 + (1− p)2. Since 2/ log(1/Q) < 4/ log(1/q), this means that

dim(G(n, p)) < edim(G(n, p))

a.a.s. for all p ∈ (0, 1).
While random graphs with constant edge probability don’t help in resolving

the problem of finding more examples of graphs G for which edim(G) < dim(G)
posed in [8], perhaps this problem could be addressed with random graphs of
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non-constant probability p(n). Because of this it would be interesting to calculate
edim(G(n, p(n)) for non-constant p(n).The analogous results for dim(G(n, p(n)))
can be found in [1].
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