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Abstract

Let G be a 4-connected graph. We call an edge e of G removable if the
following sequence of operations results in a 4-connected graph: delete e
from G; if there are vertices with degree 3 in G− e, then for each (of the at
most two) such vertex x, delete x from G− e and turn the three neighbors
of x into a clique by adding any missing edges (avoiding multiple edges). In
this paper, we continue the study on the distribution of removable edges in
a 4-connected graph G, in particular outside a cycle of G or in a spanning
tree or on a Hamilton cycle of G. We give examples to show that our results
are in some sense best possible.
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1. Introduction

All graphs considered here are finite and simple. For notations and terminology
not defined here, we refer the reader to [2].

We start off by repeating the definition of the central concept of this paper.
Let G be a 4-connected graph and let e be an edge of G. Then e is called
removable if the following operations result in a 4-connected graph: delete e from
G; if there are vertices with degree 3 in G−e, then for every vertex x with degree
3 in G − e, delete x from G − e and turn the three neighbors of x into a clique
by adding any missing edges (avoiding multiple edges). We denote the resulting
graph by G⊖ e. Note that there are at most two vertices with degree 3 in G− e,
and that G ⊖ e is simply the graph G − e if there are no such vertices. If e is
not removable, we also call it unremovable. The set of all removable edges of G
is denoted by ER(G), whereas the set of all unremovable edges of G is denoted
by EN (G). The number of removable edges of G is denoted by eR(G).

The concept of removable edges in 4-connected graphs has been introduced
as a tool for alternative methods to construct 4-connected graphs [8], and for
proving properties of 4-connected graphs. Slater [4] gave a method to construct
4-connected graphs by proving that any 4-connected graph can be obtained from
K5 by applying the following operations (that we will not specify here) repeatedly:
(1) adding edges; (2) 4-soldering; (3) 4-point-splitting; (4) 4-line-splitting; (5) 3-
fold-4-point-splitting. Later, Yin [8] gave an alternative method to construct
4-connected graphs by using the concepts of removable edges and contractible
edges in 4-connected graphs. In particular, in [8] Yin proved that there always
exists a removable edge in a 4-connected graph G, unless G is a so-called 2-cyclic
graph with order 5 or 6, i.e., the square of a cycle on 5 or 6 vertices. Ando et

al. [1] and Wu et al. [7] studied the number of contractible edges and removable
edges of a 4-connected graph, respectively. In another paper [6], Wu et al. studied
the distribution of removable edges. Here we continue this research by studying
the distribution of removable edges outside a cycle or on a Hamilton cycle or a
spanning tree of a 4-connected graph. Studying removable edges outside a given
subgraph is motivated by the hope that (large) substructures of a 4-connected
graph stay more or less unaffected after applying the operations involved in the
definition of a removable edge.

In [5], the similar concept of removable edges in 3-connected graphs has
been used to verify two special cases of a well-known conjecture of 1976 due to
Thomassen stating that every longest cycle in a 3-connected graph contains a
chord. In [5] it is proved that Thomassen’s conjecture is true for two classes of
3-connected graphs that have a bounded number of removable edges on or off a
longest cycle. There an edge e of a 3-connected graph G is said to be removable
if G− e is still 3-connected or a subdivision of a 3-connected (multi)graph.
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Such results show that it is natural and can be useful to study the distribution
of removable edges inside or outside a special subgraph. In Section 4 we present
our main results on the distribution of removable edges outside a cycle in a 4-
connected graph, or on a Hamilton cycle or a spanning tree of a 4-connected
graph.

Before we can state our main results we have to introduce some additional
terminology and notation. We also have to present some known graph classes,
and we have to summarize several known results that we need for the proofs.
This is done in Sections 2 and 3, respectively.

We complete this section with some general terminology. Without any spec-
ification, in the following G always denotes a 4-connected graph. The vertex set
and edge set of G are denoted by V (G) and E(G), respectively. The order and
size of G are denoted by |G| = |V (G)| and |E(G)|, respectively. For x ∈ V (G),
we simply write x ∈ G. For x ∈ G, the neighborhood of x is denoted by ΓG(x),
and the degree of x is denoted by dG(x) = |ΓG(x)|. If no confusion can arise, we
simply write d(x) for dG(x). If x and y are the two vertices incident with an edge
e, we write e = xy. For a nonempty subset F of E(G), or N of V (G), the in-
duced subgraph by F or N in G is denoted by [F ] or [N ]. For V1, V2 ⊂ V (G) with
V1 6= ∅ 6= V2 and V1∩V2 = ∅, we define [V1, V2] = {xy ∈ E(G) | x ∈ V1, y ∈ V2}. If
H is a subgraph of G, we say that G contains H. For a proper subset S of V (G),
G−S denotes the graph obtained by deleting all the vertices of S from G together
with all the incident edges, so G− S = [V (G) \ S]. If G− S is disconnected, we
say that S is a vertex cut of G; if |S| = s for such a vertex cut S, we say that S
is an s-cut. A cycle of G with length ℓ is simply called an ℓ-cycle of G.

It is easy to check and folklore knowledge that for every edge e of a 4-
connected graph G, the graph G− e is at least 3-connected. Moreover, if in this
case G− e has a 3-cut S, then G− e−S consists of precisely two components. If
one of these components has only one vertex, this vertex has degree 3 in G − e
and will disappear in G⊖ e. This motivated the following definitions.

Let xy = e ∈ E(G), and let S ⊂ V (G) with |S| = 3. If G− e−S has exactly
two components, say A and B, such that |A| ≥ 2, |B| ≥ 2 and x ∈ A, y ∈ B,
then we say that (e, S) is a separating pair and (e, S;A,B) is a separating group;
in that case, A and B are called the fragments; if, moreover |A| = 2, then A is
called an atom.

Let A be an atom, and suppose A = {x, z}, S = {a, b, c}. If ax, bx ∈
E(G), cx 6∈ E(G), then A is called a 1-atom; if ax, bx, cx ∈ E(G), then A is
called a 2-atom. It is easy to check that any atom is either a 1-atom or a 2-atom.

Let E0 ⊂ EN (G) such that E0 6= ∅, and let (xy, S;A,B) be a separating
group of G with x ∈ A and y ∈ B. If xy ∈ E0, then A and B are called
E0-fragments. Similarly, if A is an E0-fragment and |A| = 2, then A is called
an E0-atom. An E0-fragment is called an E0-end-fragment of G if it does not
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contain any other E0-fragment of G as a proper subset. It is easy to see that any
E0-fragment of G contains such an E0-end-fragment.

2. Special Subgraphs and Their Properties

The following definitions of several special families of subgraphs of a 4-connected
graph can be found in [7]. However, since these subgraphs play a crucial role in
the sequel, for convenience we repeat the definitions here.

Definition 2.1. LetG be a 4-connected graph, and letH be a subgraph ofG with
V (H) = {a, x1, x2, x3, x4, v1, v2, v3, v4} and E(H) = {ax1, ax2, ax3, ax4, x1x2,
x2x3, x3x4, x4x1, x1v1, x2v2, x3v3, x4v4}. The subgraph H is called a helm if it
satisfies the following conditions:

(i) dG(a) = 4 and dG(xi) = 4 for i = 1, 2, 3, 4,

(ii) ax1, ax2, ax3, ax4 ∈ EN (G) and x1x2, x2x3, x3x4, x4x1 ∈ ER(G).

The vertices a and xi for i = 1, 2, 3, 4 of a helm H are called the inner vertices

of H.

Definition 2.2. LetG be a 4-connected graph, and letH be a subgraph ofG with
V (H) = {a, b, x1, x2, . . . , xl+3} and E(H) = {x1x2, x2x3, . . . , xl+2xl+3, ax2, ax3,
. . . , axl+2, bx2, bx3, . . . , bxl+2}, where l ≥ 1. The subgraph H is called an l-bi-fan
if it satisfies the following conditions:

(i) xixi+1 ∈ EN (G) for i = 1, 2, . . . , l + 2,

(ii) axj , bxj ∈ ER(G) for j = 2, 3, . . . , l + 2,

(iii) dG(xj) = 4 for j = 2, 3, . . . , l + 2.

An l-bi-fan H is said to be maximal if ΓG(x1) 6= {a, b, x2, u} and ΓG(xl+3) 6=
{a, b, xl+2, v} for any u, v ∈ G. The vertices of an l-bi-fan or a maximal l-bi-fan
H satisfying condition (iii) are called the inner vertices of H.

Definition 2.3. Let G be a 4-connected graph, and let H be a subgraph of
G with V (H) = {x1, x2, . . . , xl+2, y1, y2, . . . , yl+2} and E(H) = E1(H) ∪ E2(H),
where E1(H) = {x1x2, x2x3, . . . , xl+1xl+2, y1y2, y2y3, . . . , yl+1yl+2} and E2(H) =
{y1x2, x2y2, y2x3, . . . , ylxl+1, xl+1yl+1, yl+1xl+2}. Then H is called an l-belt if the
following conditions are satisfied:

(i) E1(H) ⊂ EN (H) and E2(H) ⊂ ER(H),

(ii) dG(xi) = dG(yj) = 4 for i = 2, 3, . . . , l + 1; j = 2, 3, . . . , l + 1.

An l-belt H is said to be maximal if ΓG(y1) 6= {x1, x2, y2, u} and ΓG(xl+2) 6=
{xl+1, yl+1, yl+2, v} for any u, v ∈ G. The vertices of an l-belt or a maximal l-belt
H satisfying condition (ii) are called the inner vertices of H.
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Definition 2.4. LetG be a 4-connected graph, and letH be a subgraph ofG with
V (H) = {x1, x2, . . . , xl+2, xl+3, y1, y2, . . . , yl+2} and E(H) = E1(H) ∪ E2(H),
where E1(H) = {x1x2, x2x3, . . . , xl+1xl+2, xl+2xl+3, y1y2, y2y3, . . . , yl+1yl+2} and
E2(H) = {y1x2, x2y2, y2x3, . . . , ylxl+1, xl+1yl+1, yl+1xl+2, xl+2yl+2}. Then H is
called an l-co-belt if the following conditions are satisfied:

(i) E1(H) ⊂ EN (H) and E2(H) ⊂ ER(H),

(ii) dG(xi) = dG(yj) = 4 for i = 2, 3, . . . , l + 1, l + 2; j = 2, 3, . . . , l + 1.

An l-co-belt H is said to be maximal if ΓG(y1) 6= {x1, x2, y2, u} and ΓG(yl+2) 6=
{xl+2, yl+1, xl+3, v} for any u, v ∈ G. The vertices of an l-co-belt or a maximal
l-co-belt H satisfying condition (ii) are called the inner vertices of H.

Definition 2.5. LetG be a 4-connected graph, and letH be a subgraph ofG with
V (H) = {x1, x2, x3, y1, y2, y3, y4} and E(H) = {x1x2, x2x3, y1y2, y2y3, y3y4, x1y2,
x2y2, x2y3, x3y3}. Then H is called a W -framework if the following conditions
are satisfied:

(i) xixi+1 ∈ EN (G) for i = 1, 2,

(ii) dG(x2) = dG(y2) = dG(y3) = 4,

(iii) y2y3, x1y2, x2y2, x2y3, x3y3 ∈ ER(G).

The vertex x2 of a W -framework H is called the inner vertex of H.

Definition 2.6. LetG be a 4-connected graph, and letH be a subgraph ofG with
V (H) = {x1, x2, x3, y1, y2, y3, y4} and E(H) = {x1x2, x2x3, x1x3, y1y2, y2y3, y3y4,
x1y2, x2y2, x2y3, x3y3}. Then H is called a W ′-framework if the following condi-
tions are satisfied:

(i) xixi+1 ∈ EN (G) for i = 1, 2,

(ii) dG(x2) = dG(x3) = dG(y2) = dG(y3) = 4 and dG(x1) ≥ 5,

(iii) y2y3, x1y2, x2y3, x3y3, x1x3 ∈ ER(G), x2y2 ∈ EN (G).

The vertices x2 and x3 of a W ′-framework H are called the inner vertices of H.

For convenience, we denote by ℜ(G) (or simply ℜ if no confusion can arise)
the set of all helms, maximal l-bi-fans, maximal l-belts, maximal l-co-belts, W -
frameworks and W ′-frameworks of a 4-connected graph G.

3. Some Known Results

First of all, we list some known results on removable edges of 4-connected graphs
from [6, 7, 8] that will be applied in the sequel.

Theorem 3.1 [8]. Let G be a 4-connected graph with |G| ≥ 7. An edge e of G
is unremovable if and only if there is a separating pair (e, S) (and hence a sepa-

rating group (e, S;A,B)) in G.
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Theorem 3.2 [8]. Let G be a 4-connected graph with |G| ≥ 8, and let (xy, S;A,B)
be a separating group of G with x ∈ A, y ∈ B and |A| ≥ 3. Then every edge of

[{x}, S] is removable.

Corollary 3.1 [8]. Let G be a 4-connected graph with |G| ≥ 8. Then every 3-
cycle of G contains at least one removable edge.

Theorem 3.3 [8]. Let G be a 4-connected graph with |G| ≥ 8. If xy is an un-

removable edge with a separating group (xy, S;A,B), then all the edges in E([S])
are removable.

Lemma 3.1 [7]. Let G be a 4-connected graph, and let P = y1y2 · · · yk be a

path of [EN (G)] with k ≥ 3. Consider a nonempty subset D of V (G). Suppose

that (y1y2, S1;A1, B1) is a separating group of G such that y1 ∈ B1, y2 ∈ A1 and

D∩B1 6= ∅. For i ∈ {1, 2, . . . , k} we consider a separating group (yiyi+1, S;A,B)
such that yi ∈ B, yi+1 ∈ A,D∩B 6= ∅, and |A| is as small as possible. If i ≤ k−2,
we consider another separating group (yi+1yi+2, S

′;A′, B′) such that yi+1 ∈ B′,
yi+2 ∈ A′, and |A′| is as small as possible. Then one of the following conclusions

holds:

(i) A∩B′ = {yi+1}, A∩A′ = {yi+2}, A∩S′ = {a}, B′∩S = {b}, S∩S′ = ∅, yi ∈
B ∩B′, |B ∩ S′| = |A′ ∩ S| = 2, A′ ∩ S = {u, v}, where yi+2u, yi+2v, yi+2a ∈
ER(G) and a, b, u, v ∈ G.

(ii) A ∩ A′ = {yi+2}, yi+1 ∈ A ∩ B′, S ∩ S′ = ∅ = A′ ∩ B, B ∩ S′ = {d} =
D ∩B,D ∩B′ = ∅, A′ ∩ S = {c}, |B′ ∩ S| = |A ∩ S′| = 2, yi ∈ B ∩B′, where

d, c ∈ G.

(iii) A∩A′ = {yi+2}, yi+1 ∈ A∩B′, S∩S′ = {w}, D∩B = {d} = B∩S′, D∩B′ =
∅ = B∩A′, A′∩S = {c}, |B′∩S| = |A∩S′| = 1, yi ∈ B∩B′, where d, c ∈ G.

(iv) ℜ(G) 6= ∅ and at least one inner vertex of one of the graphs of ℜ(G) is on P .

Lemma 3.2 [7]. Let G be a 4-connected graph, and let (xy, S;A,B) be a sep-

arating group of G with x ∈ B, y ∈ A. If there exists an edge yz ∈ EN (G), we
consider its separating group (yz, S′;A′, B′) with y ∈ A′, z ∈ B′. If the following

conditions hold for the four vertices a, b, u, v ∈ G:

(i) A ∩A′ = {y}, A ∩B′ = {z}, A ∩ S′ = {a}, A′ ∩ S = {b}, B′ ∩ S = {u, v},

(ii) {zu, zv} ∩ EN (G) 6= ∅,

then au, av cannot both be edges of G.

A 2-cyclic graph G of order n is defined to be the square of the cycle Cn, C
2
n

is obtained from Cn by adding edges between all pairs of vertices of Cn which are
at distance 2 in Cn.

Theorem 3.4 [7]. Let G be a 4-connected graph of order at least 5. If G is

neither C2
5 nor C2

6 , then eR(G) ≥ (4|G|+ 16)/7.
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Definition 3.1. Let C be a cycle of a 4-connected graph G, and let H ∈ ℜ(G)
6= ∅. If C contains at least one inner vertex of H, then we say that C passes

through H.

Theorem 3.5. [6]. Let G be a 4-connected graph, and let C be a cycle of G. If

C passes through only one graph of ℜ(G), then C contains at least one removable

edge of G.

Lemma 3.3 [6]. Let G be a 4-connected graph, let (xy, S;A,B) be a separating

group of G, and let A be a 2-atom, say A = {x, z} and S = {a, b, c}. Then, ax,
bx, cx, xz ∈ ER(G).

Theorem 3.6 [7]. Let G be a 4-connected graph with |G| ≥ 8, and let C be a

cycle of G. If C does not contain any removable edges of G, then G has one of

the following structures as its subgraph: l-belt, l-bi-fan (l ≥ 1), W -framework,

W ′-framework or helm, such that at least one inner vertex of one of these graphs

is on C.

Corollary 3.2 [7]. Let G be a 4-connected graph, and let (xy, S;A,B) be a

separating group of G with x ∈ A, y ∈ B, S = {a, b, c}. Let A be a 1-atom, say

A = {x, z}. If {xa, xb, xz} ∩ EN (G) 6= ∅, then x is an inner vertex of one of the

following subgraphs in G: helm, l-co-belt, l-belt, W ′-framework, W -framework or

l-bi-fan.

In the following section we shall obtain lower bounds on the number of re-
movable edges outside a cycle, in a spanning tree, and on a Hamilton cycle in a
4-connected graph (which is assumed to be Hamiltonian in the latter case).

4. Main Results

Before we present and prove our main results, we first prove the following technical
lemma.

Lemma 4.1. Let G be a 4-connected graph, E0 ⊂ EN (G) and E0 6= ∅. Let (xy,
S;A,B) be a separating group of G such that x ∈ A, y ∈ B,S = {a, b, c}, xy ∈ E0.

If A is an E0-end-fragment of G, and |A| ≥ 3, then one of the following con-

clusions (i), (ii) or (iii) holds.

(i) (E(A) ∪ [A,S]) ∩ E0 = ∅.

(ii) There exists a separating group (x′y′, S′;A′, B′) of G such that x′ ∈ A′, y′ ∈
B′ ∩A, x′y′ ∈ E0, B

′ is a 1-atom, and |A ∩B′| = |B′ ∩ S| = 1.

(iii) There exists a separating group (xy′, S′;A′, B′) of G such that x ∈ A′, y′ ∈
B′, xy′ ∈ E0, A∩A′ = {x}, |A∩S′| = 1 = |A′∩S|, A∩B′ = {y′}, |B′∩S| = 2.
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Proof. Suppose conclusion (i) does not hold. Next we prove that one of the
conclusions (ii) or (iii) holds. Now either E(A) ∩ E0 6= ∅ or [A,S] ∩ E0 6= ∅. We
will distinguish these two cases to complete the proof.

Case 1. There exists an edge uz ∈ E(A) ∩ E0. We consider the separating
group (uz, T ;C,D) such that u ∈ C, z ∈ D. Then we have that u ∈ A ∩ C, z ∈
A ∩D. Let

X1 = (C ∩ S) ∪ (S ∩ T ) ∪ (A ∩ T ),

X2 = (A ∩ T ) ∪ (S ∩ T ) ∪ (D ∩ S),

X3 = (D ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T ),

X4 = (B ∩ T ) ∪ (S ∩ T ) ∪ (C ∩ S).

Next we distinguish the subcases that x 6= u and that x = u.

Subcase 1.1. x 6= u. Then we have that x ∈ A ∩ C, A ∩ T , or A ∩D. These
subcases are treated separately.

(1) Let x ∈ A∩C. Then we have that y ∈ B ∩C or B ∩ T . We again treat these
subcases separately.

(1.1) Suppose y ∈ B ∩ C. Since A ∩D 6= ∅, we have that X2 is a vertex cut of
G−uz. Since G is 4-connected, |X2| ≥ 3. By a similar argument, we can get that
|X4| ≥ 3. Noting that |X2|+ |X4| = |S|+ |T | = 6, we have that |X2| = |X4| = 3,
and so |S ∩ C| = |A ∩ T |, |B ∩ T | = |D ∩ S|. First, we claim that A ∩D = {z};
otherwise, |A∩D| ≥ 2. Let A1 = A∩D,S1 = X2, B1 = G− uz − S1 −A1. Then
(uz, S1;A1, B1) is a separating group of G. Since uz ∈ E0, A1 is an E0-fragment
contained in A, contradicting that A is an E0-end-fragment. Hence A∩D = {z}.
Since |D| ≥ 2 and D is a connected subgraph of G, D ∩ S 6= ∅. Next we deal
with all possibilities for |D ∩ S| as follows.

(1.1.1) |D ∩ S| = |B ∩ T | = 3. Noting that |S| = |T | = 3, it is easy to see that
|X1| = 0. Then {z, y} would be a 2-cut of G, a contradiction.

(1.1.2) |D∩S| = |B ∩T | = 2. Since X1 is a vertex cut of G−uz−xy and G is 4-
connected, we have |X1| ≥ 2, which implies that |S∩C| = |A∩T | = 1, |S∩T | = 0.
Noting that x, u ∈ A ∩ C, we have |A ∩ C| ≥ 2. Let A1 = A ∩ C, S1 = {z} ∪X1,
B1 = G− xy − S1 −A1. Then (xy, S1;A1, B1) is a separating group of G. Since
xy ∈ E0, A1 is an E0-fragment contained in A, which contradicts that A is an
E0-end-fragment.

(1.1.3) |D∩S| = |B ∩T | = 1. Obviously, |S ∩T | ≤ 2. We claim that |S ∩T | 6= 2;
otherwise, if |S ∩ T | = 2, then |C ∩ S| = |A ∩ T | = 0. Let A1 = A ∩ C, S1 =
(S∩T )∪{z}, B1 = G−xy−S1−A1. Then (xy, S1;A1, B1) is a separating group
of G. Since xy ∈ E0, A1 is an E0-fragment contained in A, contradicting that
A is an E0-end-fragment. Hence |S ∩ T | 6= 2, i.e., |S ∩ T | ≤ 1. Then we have
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that |X3| ≤ 3, and so B ∩ D = ∅. It is easy to see that D is a 1-atom, and
|A∩D| = 1, |S ∩D| = 1, |B ∩T | = 1. Let D = B′, T = S′, C = A′, u = x′, z = y′.
Then conclusion (ii) holds.

(1.2) Suppose y ∈ B ∩ T . Since A ∩ D 6= ∅, X2 is a vertex cut of G − uz. So
|X2| ≥ 3, and hence |D ∩ S| ≥ |B ∩ T | ≥ 1. Since |S| = 3, we have |C ∩ S| ≤ 2.
Noting that |X2| + |X4| = |S| + |T | = 6, we have |X4| ≤ 3. Since G is 4-
connected, we have that B ∩ C = ∅. If C ∩ S = ∅, then C = A ∩ C. It is
easy to see that C is an E0-fragment contained in A, contradicting that A is
an E0-end-fragment. Hence C ∩ S 6= ∅. If S ∩ T 6= ∅, then |S ∩ T | = 1, and
|C ∩S| = |D∩S| = 1. Since |D∩S| ≥ |B ∩T |, we have B ∩T = {y}. Obviously,
here we have that |X3| = 3, and so B ∩D = ∅. Hence B = B ∩ T = {y}, which
contradicts |B| ≥ 2, and so S ∩ T = ∅. If |C ∩ S| = 2, then |D ∩ S| = 1, and so
|B ∩ T | = 1. Here we have that |X3| = 2. So B ∩ D = ∅, and hence B = {y},
which contradicts that |B| ≥ 2. Hence, |C ∩ S| = 1, and so |S ∩D| = 2. Since
|S ∩ D| ≥ |B ∩ T | ≥ 1, we have |B ∩ T | = 1 or 2. If |B ∩ T | = 1, then we
have |X3| = 3. and so B ∩D = ∅. Hence B = B ∩ T = {y}, which contradicts
|B| ≥ 2. Hence, |B ∩ T | = 2. Then |A ∩ T | = 1, and so |X1| = 2. Noting that
|A ∩ C| ≥ 2, we let A1 = A ∩ C, S1 = X1 ∪ {z}, B1 = G − xy − S1 − A1. Then
(xy, S1;A1, B1) is a separating group of G. Since xy ∈ E0, A1 is an E0-fragment
contained in A, contradicting that A is an E0-end-fragment. So (1.2) does
not occur.

(2) Let x ∈ A ∩ T . From Theorem 3.3, we know that y /∈ B ∩ T . By symmetry,
we may assume that y ∈ B ∩ C. Since A ∩D 6= ∅, X2 is a vertex cut of G− uz,
and so |X2| ≥ 3. By a similar argument, we can get that |X4| ≥ 3. Since
|X2| + |X4| = |S| + |T | = 6, we have that |X2| = |X4| = 3, and so |S ∩ C| =
|A ∩ T |, |B ∩ T | = |D ∩ S|. We claim that A ∩D = {z}; otherwise, |A ∩D| ≥ 2.
Let A1 = A ∩ D,S1 = X2, B1 = G − uz − S1 − A1. Then (uz, S1;A1, B1) is a
separating group of G. Since uz ∈ E0, A1 is an E0-fragment contained in A,
contradicting that A is an E0-end-fragment. Hence we have that A ∩D = {z}.
Since |D| ≥ 2 and D is a connected subgraph of G, we have that D ∩ S 6= ∅.
Since A ∩C 6= ∅, we have that X1 is a vertex cut of G− uz. Then |X1| ≥ 3, and
so |S ∩ C| ≥ |B ∩ T |, |A ∩ T | ≥ |D ∩ S|. Since |X1| + |X3| = |S| + |T | = 6, we
have that |X3| ≤ 3. Since G is 4-connected, we have that B∩D = ∅. Noting that
|A ∩ T | ≥ |D ∩ S|, |S ∩ C| ≥ |B ∩ T |, we have |D ∩ S| = |B ∩ T | = 1. Obviously,
here D is a 1-atom. Let D = B′, T = S′, C = A′, u = x′, z = y′. Then conclusion
(ii) holds.

(3) Let x ∈ A∩D. By symmetry, analogous arguments as used in (1) lead to the
conclusion.

Subcase 1.2. x = u. Then we have that x ∈ A ∩ C, y ∈ B ∩ C or B ∩ T . We
distinguish these subcases separately.
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(1) Let y ∈ B ∩ C. Since A ∩ D 6= ∅, X2 is a vertex cut of G − xz. Since
G is 4-connected, we have |X2| ≥ 3. By a similar argument, we can get that
|X4| ≥ 3. Noting that |X2| + |X4| = |S| + |T | = 6, we have |X2| = |X4| = 3,
and so |S ∩ C| = |A ∩ T |, |B ∩ T | = |D ∩ S|. First, we claim that A ∩D = {z};
otherwise, |A∩D| ≥ 2. Let A1 = A∩D,S1 = X2, B1 = G− xz − S1 −A1. Then
(xz, S1;A1, B1) is a separating group of G. Since xz ∈ E0, A1 is an E0-fragment
contained in A, contradicting that A is an E0-end-fragment. Hence A∩D = {z}.
Since |D| ≥ 2 and D is a connected subgraph, we have that S ∩ D 6= ∅. If
|D ∩ S| = |B ∩ T | = 3, then it is easy to see that {y, z} would be a 2-cut of G,
a contradiction. So, |D ∩ S| = |B ∩ T | ≤ 2. We deal with the two possibilities
separately.

(1.1) |B∩T | = |D∩S| = 2. Since X1 is a vertex cut of G−xy−xz, we have that
|X1| ≥ 2. Note that |S| = |T | = 3 only if |S∩C| = |A∩T | = 1, S∩T = ∅. Here we
claim that A∩C = {x}; otherwise, |A∩C| ≥ 2. Then it is easy to see that {x}∪X1

would be a 3-cut of G, a contradiction. Let z = y′, C = A′, T = S′, D = B′. Then
conclusion (iii) holds.

(1.2) |B ∩ T | = |D ∩S| = 1. If |S ∩ T | = 2, then |C ∩S| = |A∩ T | = 0. We claim
that A ∩ C = {x}; otherwise, |A ∩ C| ≥ 2. Then it is easy to see that {x} ∪X1

would be a 3-cut of G, a contradiction. Since A ∩D = {z}, here we would have
that |A| = 2, which contradicts that |A| ≥ 3. Hence, we get that |S ∩ T | ≤ 1. So
|X3| ≤ 3, and hence B ∩D = ∅. Here D is a 1-atom, and |A ∩D| = |D ∩ S| = 1.
Let x = x′, z = y′, C = A′, T = S′, D = B′. Then conclusion (ii) holds.

(2) Let y ∈ B ∩ T . From Theorem 3.2, we have that |C| = 2. We claim that
C ∩ S 6= ∅; otherwise, S ∩C = ∅. Since C is a connected subgraph, we have that
B ∩ C = ∅. Then C = A ∩ C, and C would be an E0-fragment contained in A,
contradicting that A is an E0-end-fragment. So, |A ∩ C| = |S ∩ C| = 1. Noting
that |S| = 3, we have |S ∩ (D ∪ T )| = 2. If B ∩ T = {y}, then we have that
|X3| = 3, and so B ∩ D = ∅. Obviously, B = {y}, which contradicts |B| ≥ 2.
Hence |B ∩ T | ≥ 2. If |B ∩ T | = 3, then T ∩ (A ∪ S) = ∅, and so |X1| = 1.
Then X1 ∪ {y, z} would be a 3-cut of G, a contradiction. So, |B ∩ T | = 2, and
|A ∩ C| = |S ∩ C| = 1. Let x = y′, z = x′, C = B′, T = S′, D = A′. Then con-
clusion (ii) holds. This completes Case 1.

Case 2. There exists an edge uz ∈ [A,S] ∩ E0. Obviously, u 6= x; otherwise,
u = x, and then from Theorem 3.2, we have that |A| = 2, which contradicts
|A| ≥ 3. Analogously, we consider the separating group (uz, T ;C,D) such that
u ∈ C, z ∈ D. It is easy to see that u ∈ A ∩ C, z ∈ S ∩D. Let X1, X2, X3, X4 be
defined in the same way as in Case 1. We distinguish the following six subcases,
according to the different locations for x and y, to complete the proof of the
lemma.

Subcase 2.1. x ∈ A ∩ C, y ∈ B ∩ C. Since B ∩ C 6= ∅, X4 is a vertex cut of
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G− xy, and so |X4| ≥ 3. Since |X2|+ |X4| = |S|+ |T | = 6, we have|X2| ≤ 3, and
so A ∩D = ∅. First suppose A ∩ T = ∅. Then A = A ∩ C, and so |A ∩ C| ≥ 3.
Since X1 is a vertex cut of G − uz − xy, then |X1| ≥ 2. Note that D ∩ S 6= ∅
only if |X1| = |S ∩ (C ∪ T )| = 2. We let A1 = A − {u}, S1 = X1 ∪ {u}, B1 =
G − xy − S1 − A1. Then (xy, S1;A1, B1) is a separating group of G, and A1 is
an E0-fragment contained in A, contradicting that A is an E0-end-fragment. So,
A ∩ T 6= ∅, and hence |T ∩ (B ∪ S)| ≤ 2. If S ∩D = {z}, then |X3| ≤ 3, and so
B ∩D = ∅ and D = {z}, which contradicts |D| ≥ 2. Hence, |D ∩ S| ≥ 2. Then
|S ∩ (C ∪ T )| ≤ 1. Noting that |X4| ≥ 3, we have |B ∩ T | ≥ 2, which implies that
|B ∩ T | = 2, |A ∩ T | = 1, and we have S ∩ T = ∅. Here we have that |X1| = 2.
Let A1 = A ∩C, S1 = X1 ∪ {z}, B1 = G− xy − S1 −A1. Then (xy, S1;A1, B1) is
a separating group of G, and A1 is an E0-fragment contained in A, contradicting
that A is an E0-end-fragment. Therefore, Subcase 2.1 does not occur.

Subcase 2.2. x ∈ A∩C, y ∈ B∩T . Since X1 is a vertex cut of G−xy−uz, we
have |X1| ≥ 2. First, we show that A ∩ T = ∅. If A ∩ T 6= ∅, then we claim that
|X1| ≥ 3. Otherwise, |X1| = 2. Obviously, |A ∩ C| ≥ 2. Let A1 = A ∩ C, S1 =
X1 ∪ {z}, B1 = G− xy − S1 −A1. Then (xy, S1;A1, B1) is a separating group of
G, and A1 is an E0-fragment contained in A, contradicting that A is an E0-end-
fragment. So, |X1| ≥ 3, and |C ∩ S| ≥ |B ∩ T | ≥ 1, |A ∩ T | ≥ |D ∩ S| ≥ 1, which
implies that |B ∩ T | = |D ∩ S| = 1. Since |X1|+ |X3| = 6, we have |X3| ≤ 3, and
so B ∩D = ∅. From |D| ≥ 2, we know that A ∩D 6= ∅. Then |X2| ≥ 4, and so
|X4| ≤ 2. Then |B ∩C| = 0, and B = {y}, which contradicts |B| ≥ 2. Therefore,
A∩T = ∅. Since A is a connected subgraph, A∩D = ∅, and so |A| = |A∩C| ≥ 3.
Since D ∩ S 6= ∅ and |S| = 3, we have that |X1| = |S ∩ (C ∪ T )| = 2. We let
A1 = A − u, S1 = X1 ∪ {u}, B1 = G − xy − S1 − A1. Then (xy, S1;A1, B1) is a
separating group of G, and A1 is an E0-fragment contained in A, contradicting
that A is an E0-end-fragment. Therefore, Subcase 2.2 does not occur.

Subcase 2.3. x ∈ A ∩ T, y ∈ B ∩ C. Since B ∩ C 6= ∅, X4 is a vertex cut of
G−xy, and then |X4| ≥ 3. Since |X2|+|X4| = |S|+|T | = 6, we have|X2| ≤ 3, and
so A∩D = ∅. Analogously, since X1 is a vertex cut of G− uz, we have |X1| ≥ 3.
Noting that |X1| + |X3| = 6, we have that |X3| ≤ 3, and so B ∩D = ∅. Hence,
|D| = |D∩S| ≥ 2. Noting that |S| = 3, we have |S∩(C∪T )| ≤ 1. From |X4| ≥ 3,
we can get that |B ∩ T | ≥ 2. Then it is easy to see that |A ∩ T | = 1, S ∩ T = ∅.
Obviously, we have that |X1| ≤ 2, which contradicts that |X1| ≥ 3. So, Subcase
2.3 does not occur.

Subcase 2.4. x ∈ A∩T, y ∈ B∩D. Since X1 is a vertex cut of G−uz, we have
|X1| ≥ 3. Similarly, we have that |X3| ≥ 3. Since |X1|+ |X3| = |S|+ |T | = 6, we
have that |X1| = |X3| = 3. Then we can get that |A ∩ T | = |D ∩ S|, |C ∩ S| =
|B ∩ T |. First, we claim that A ∩ C = {u}; otherwise, |A ∩ C| ≥ 2. Then we
let A1 = A ∩ C, S1 = X1, B1 = G − uz − S1 − A1. Then (uz, S1;A1, B1) is a



570 J. Wu, H. Broersma, Y. Mao and Q. Ma

separating group of G, and A1 is an E0-fragment contained in A, contradicting
that A is an E0-end-fragment. So, A∩C = {u}. Since C is a connected subgraph
and |C| ≥ 2, we have that |C ∩ S| = |B ∩ T | ≥ 1. If |C ∩ S| = |B ∩ T | = 2, then
S ∩ T = ∅, |A ∩ T | = |D ∩ S| = 1, and we have that |X2| = 2. Then A ∩D = ∅.
Here we have that |A| = 2, which contradicts |A| ≥ 3. So |S ∩ C| = |B ∩ T | = 1,
and we have that C is a 1-atom, and |A ∩ C| = |C ∩ S| = 1. Let u = y′, z =
x′, C = B′, T = S′, D = A′. Then conclusion (ii) holds.

Subcase 2.5. x ∈ A ∩ D, y ∈ B ∩ T . Since X2 is a vertex cut of G − xy,
we have |X2| ≥ 3. From |X2| + |X4| = |S| + |T | = 6, we know that |X4| ≤ 3.
Then, B ∩ C = ∅. Since X1 is a vertex cut of G − uz, we have |X1| ≥ 3. From
|X1| + |X3| = |S| + |T | = 6, we know that |X3| ≤ 3. Then, we can get that
B ∩D = ∅. Then we have that |B| = |B ∩ T | ≥ 2. Noting that A is a connected
subgraph, we have A ∩ T 6= ∅, which implies that |A ∩ T | = 1, |B ∩ T | = 2 and
S ∩ T = ∅. Since |X2| ≥ 3, we have that |D ∩ S| ≥ 2 and |C ∩ S| ≤ 1. Here
we have that |X1| ≤ 2, which contradicts that X1 is a vertex cut of G− uz. So,
Subcase 2.5 does not occur.

Subcase 2.6. x ∈ A ∩ D, y ∈ B ∩ D. Since X2 is a vertex cut of G − xy,
we have |X2| ≥ 3. From |X2| + |X4| = |S| + |T | = 6, we know that |X4| ≤ 3,
and so B ∩ C = ∅. We claim that C ∩ S 6= ∅; otherwise, it is easy to see that C
is an E0-fragment contained in A, contradicting that A is an E0-end-fragment.
So, C ∩ S 6= ∅. Noting that X1 is a vertex cut of G − uz, we have |X1| ≥ 3.
Similarly, we have that |X3| ≥ 3. From |X1|+ |X3| = |S|+ |T | = 6, we know that
|X1| = |X3| = 3, and so |C∩S| = |B∩T | ≥ 1, |A∩T | = |D∩S| ≥ 1. If |C∩S| = 2,
then |A ∩ T | = |D ∩ S| = 1, and so |X2| = 2, a contradiction. Therefore,
|C ∩ S| = |B ∩ T | = 1. We claim that A ∩ C = {u}; otherwise, if |A ∩ C| ≥ 2,
we let A1 = A ∩ C, S1 = X1, B1 = G − uz − X1 − A1. Then (uz, S1;A1, B1) is
a separating group of G, and A1 is an E0-fragment, contradicting that A is an
E0-end-fragment. So, A ∩ C = {u}. Let z = x′, u = y′, C = B′, T = S′, D = A′.
Then conclusion (ii) holds.

This completes Case 2 and the proof of the lemma.

The following lemma will help us to show under which circumstances a 4-
connected graph has removable edges in a given spanning tree.

Lemma 4.2. Let G be a 4-connected graph with ℜ(G) = ∅, and suppose [EN (G)]
is a tree. Then |[EN (G)]| ≤ |G| − 3.

Proof. By contradiction. Suppose that |[EN (G)]| ≥ |G| − 2. Let x be a vertex
of degree 1 in the tree [EN (G)]. Since dG(x) ≥ 4 and |[EN (G)]| ≥ |G| − 2,
there is a vertex y ∈ [EN (G)] such that xy ∈ ER(G). Let P be the unique path
connecting x and y in [EN (G)]. Then P+xy is a cycle of G that contains only one
removable edge xy. We choose such a cycle C = y1y2 · · · yky1 with y1yk ∈ ER(G)
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and E(C) − {y1yk} ⊂ EN (G) such that the length of C is as small as possible
in G.

Let D = {y1}. Consider the path P = y1y2 · · · yk in [EN (G)]. Consider
a separating group (y1y2, S1;A1, B1) such that y1 ∈ B1, y2 ∈ A1. Obviously,
D ∩ B1 6= ∅. We take the separating group (yiyi+1, S;A,B) such that yi ∈
B, yi+1 ∈ A, i ∈ {1, 2, . . . , k − 1}, D ∩ B 6= ∅ and |A| is as small as possible. We
claim that i+ 1 ≤ k − 1; otherwise, i+ 1 = k. Then yk ∈ A. Since y1yk ∈ E(G),
y1 ∈ A∪S, which contradicts D∩B 6= ∅. So, i+1 ≤ k−1. We take the separating
group (yi+1yi+2, S

′;A′, B′) such that yi+1 ∈ B′, yi+2 ∈ A′ and |A′| is as small as
possible. By Lemma 3.1, we have that one of the conclusions (i), (ii), (iii) or (iv)
of Lemma 3.1 holds.

(1) If conclusion (i) holds, since y1 ∈ B, we have yk ∈ B ∪ S. So yi+2 is not
the end vertex of P , and so yi+2 is incident with at least two unremovable edges
in G, which contradicts conclusion (i).

(2) If conclusion (ii) holds, then d = y1. We let C ′ = A′, T ′ = A ∩ S′ ∪
{yi+1}, D

′ = G − cd − T ′ − C ′. Then (cd, T ′;C ′, D′) is a separating group of
G, and so cd ∈ EN (G). Since y1yk ∈ ER(G), we have c 6= yk. Hence yk ∈
B′ ∩ (B ∪ S). Let A ∩ S′ = {u, v}. Since yi+2 is not an end vertex of P , we have
{cyi+2, uyi+2, vyi+2} ∩ EN (G) 6= ∅. Then, from Corollary 3.2 we know that yi+2

is an inner vertex of some subgraph belonging to ℜ(G), which contradicts the
assumptions of the lemma. Hence, conclusion (ii) does not occur.

(3) If conclusion (iii) holds, then let C ′ = A′, T ′ = (S′ − {d}) ∪ {yi+1}, D
′ =

G−cd−T ′−C ′. Then (cd, T ′;C ′, D′) is a separating group of G. So cd ∈ EN (G),
and hence c 6= yk. Obviously, yi+2 is not an end vertex of P . By analogous
arguments as in (2), we get that conclusion (iii) does not occur.

(4) From the assumptions of the lemma, we immediately get that conclusion
(iv) does not occur.

This completes the proof of the lemma.

4.1. Removable edges in spanning trees

Our first result shows under which circumstances a spanning tree of a 4-connected
graph contains a removable edge. The result follows almost directly from the
above lemma.

Theorem 4.1. Let G be a 4-connected graph with ℜ(G) = ∅. Then any spanning

tree of G contains at least one removable edge.

Proof. First of all, we claim that [EN (G)] does not contain any cycles; otherwise,
using Theorem 3.6, we get that ℜ(G) 6= ∅, contradicting the assumptions of the
theorem.

If [EN (G)] is a tree, then by Lemma 4.2 we have |[EN (G)]| ≤ |G| − 3. Since
|E(T )| = |G| − 1 for any spanning tree T of G, we have |E(T )∩ER(G)| ≥ 2, and
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we are done.

It remains to deal with the case that [EN (G)] is a forest with at least two
components. In that case, the statement of the theorem clearly holds.

We next present an example to show that the lower bound of the theorem
is sharp, i.e., there exists a 4-connected graph G with ℜ(G) = ∅ and a spanning
tree of G containing precisely one removable edge.

Example 4.1. Let H be a helm as in Definition 2.1, such that V (H) = {a, x1, x2,
x3, x4, v1, v2, v3, v4} and E(H) = {ax1, ax2, ax3, ax4, x1x2, x2x3, x3x4, x4x1, x1v1,
x2v2, x3v3, x4v4}. Let L = H − {v1, v2, v3, v4}, and let L′ be a copy of L such
that V (L′) = {a′, x′1, x

′

2, x
′

3, x
′

4}. We construct a graph G as follows. Let V (G) =
V (L)∪V (L′), and let E(G) = E(L)∪E(L′)∪{x1x3, x

′

2x
′

4, x1x
′

1, x2x
′

2, x3x
′

3, x4x
′

4}.
Obviously, G is a 4-connected graph with ℜ(G) = ∅. It is easy to check that
(ax2, {x1, x3, x

′

4}) is a separating pair of G, and so ax2 ∈ EN (G). By symmetry,
ax4, a

′x′1, a
′x′3 ∈ EN (G). Similarly, (x1x

′

1, {x2, x3, x4}) is a separating pair of G,
and hence x1x

′

1 ∈ EN (G). By symmetry, we have x2x
′

2, x3x
′

3, x4x
′

4 ∈ EN (G). Let
T be a spanning tree of G such that E(T ) = {x1x

′

1, x2x
′

2, x3x
′

3, x4x
′

4, a
′x′2, a

′x′3,
ax′1, ax2, ax4}. Then it is easily checked that there is only one removable edge
a′x′2 in T .

4.2. Removable edges avoiding a fixed cycle

Our next results show under which circumstances a 4-connected graph G has
removable edges outside a given cycle of G. The first of these results deals with
arbitrary cycles avoiding l-belts and l-co-belts, in the following sense.

Theorem 4.2. Let G be a 4-connected graph with |G| ≥ 7 and let C be a cycle

of G. If C does not pass through any maximal l-belt or l-co-belt, then there are

at least two removable edges outside C.

Proof. By contradiction. Assume that G and C are as in the theorem, and
suppose there is at most one removable edge outside C. Let F = (E(G)\E(C))∩
ER(G), thus |F | ≤ 1. We denote (E(G) \ E(C)) \ F by E0.

Case 1. First suppose that C does not pass through any subgraphH ofG that
belongs to ℜ(G). We consider a separating group (uw, S′;A′, B′) such that u ∈
A′, w ∈ B′, uw ∈ E0. From |F | ≤ 1, we know that either (E(A′)∪[A′, S′])∩F = ∅
or (E(B′) ∪ [S′, B′]) ∩ F = ∅. Without loss of generality, we may assume that
(E(A′)∪[A′, S′])∩F = ∅. Since A′ is an E0-fragment, A′ must contain an E0-end-
fragment as its subgraph, say A. Then we have that (E(A)∪ [A,S])∩F = ∅, and
we take the corresponding separating group (xy, S;A,B) such that x ∈ A, y ∈ B.

The following observations on |A| are checked.

(1) |A| = 2. Then either A is a 1-atom or a 2-atom.
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(1.1) If A is a 1-atom, let A = {x, z}, S = {a, b, c}. If {xz, xa, xb} ∩ EN (G) 6= ∅,
from Corollary 3.2 we have that x is an inner vertex of some subgraph belonging
to ℜ(G). Since C does not pass through any subgraph H of G that belongs to
ℜ(G), we have x /∈ V (C). It is easily checked that x is associated with at least one
removable edge, which contradicts (E(A)∪ [A,S])∩F = ∅. If xz, xa, xb ∈ ER(G),
since C is a cycle, dC(x) ≤ 2, we have that cycle C does not contain all three
removable edges xz, xa, xb, which contradicts (E(A) ∪ [A,S]) ∩ F = ∅.

(1.2) If A is a 2-atom. From Lemma 3.3, we know {xa, xb, xc, xz} ⊂ ER(G).
Since dC(x) ≤ 2, it is impossible that cycle C contains four removable edges
xa, xb, xc, xz, which contradicts (E(A) ∪ [A,S]) ∩ F = ∅.

(2) |A| ≥ 3. Since C is a cycle of G, We have dC(x) ≤ 2. Since (E(A)∪ [A,S])∩
F = ∅, there exists xz ∈ E0 ∩ (E(A) ∪ [A,S]). Obviously z 6∈ S; otherwise, from
Theorem 3.2 we know |A| = 2, contradicting |A| ≥ 3. We take the separating
group (xz, S1;A1, B1) such that x ∈ A1, z ∈ B1. Then x ∈ A ∩ A1, z ∈ A ∩ B1.
Using Lemma 4.1 we conclude that one of the three conclusions of Lemma 4.1
holds.

(2.1) Since xz ∈ E0 ∩ (E(A) ∪ [A,S]), conclusion (i) does not occur.

(2.2) Suppose that conclusion (ii) holds. Then we have that B′ is a 1-atom. If
vertex z is associated with another unremovable edge except xz, from Corollary
3.2 we know that z is an inner vertex of subgraph H of G that belongs to ℜ(G).
Since C does not pass through any subgraph H of G that belongs to ℜ(G), we
know z /∈ V (C), and vertex z is associated with at least one removable edge,
which contradicts F ∩ (E(A) ∪ [A,S]) = ∅. If vertex z is associated with three
removable edges, it is easily checked that contradicts F ∩ (E(A) ∪ [A,S]) = ∅.

(2.3) Suppose that conclusion (iii) holds. Let B′ ∩ S = {x1, x2}, A ∩ S′ = {x3}.
Clearly, A ∩ B′ = {z}. First we claim that zx1, zx2 ∈ ER(G). Otherwise,
{zx1, zx2} ∩ EN (G) 6= ∅, from Lemma 3.2 we know x3x1, x3x2 cannot both be
edges of G. We may assume that x3x2 6∈ E(G), let A′′ = A− z, S′′ = S ∪ {z} −
x2, B

′′ = G−xz−S′′−A′′, then A′′ is an E0-fragment contained in A, contradicting
that A is an E0-end-fragment. Therefore, we have that zx1, zx2 ∈ ER(G). Since
|B′| ≥ 3, using Theorem 3.2, we obtain that zx3 ∈ ER(G). Then vertex z is
associated with at least three removable edges. Note that C is a cycle of G,
dC(z) ≤ 2, then there exists at least one removable edge outside cycle C, which
contradicts F ∩ (E(A) ∪ [A,S]) = ∅.

Case 2. Suppose that C passes through a subgraph H of G that belongs to
ℜ(G). Note that H is neither an l-belt nor an l-co-belt.

Subcase 2.1. Suppose that H is a maximal l-bi-fan (l ≥ 1). From the as-
sumption |F | ≤ 1 we know only l = 1 holds. If C ⊂ E(H), since |F | ≤ 1, we
have that eR(G) ≤ 5. Since |G| ≥ 7, from Theorem 3.4 we have that eR(G) ≥
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(4|G| + 16)/7 > 5, a contradiction. So, according to the assumption, we have
that F ∩ E(H) 6= ∅. Since |F | ≤ 1, we may assume that ax2, bx2 ∈ E(C), then
x1x2 ∈ E0. By letting S′ = {a, b, x4}, e = x2x1, B

′ = {x2, x3}, A
′ = G−e−S′−B′,

we get that (e, S′;A′, B′) is a separating group of G such that A′ does not con-
tain any inner vertex of the maximal l-bi-fan, and F ∩ (E(A′) ∪ [A′, S′]) = ∅.
Since A′ is an E0-fragment, A′ must contain an E0-end-fragment as its sub-
graph, say A. We take the corresponding separating group (xy, S;A,B) such
that x ∈ A, y ∈ B. Clearly, A does not contain any inner vertex of the maximal
l-bi-fan and (E(A) ∪ [A,S]) ∩ F = ∅.

We make some observations on |A| as follows.

(1) |A| = 2. Then either A is a 1-atom or a 2-atom.

(1.1) If A is a 1-atom, let A = {x, z}, S = {a, b, c}. If {xz, xa, xb} ∩ EN (G) 6= ∅,
from Corollary 3.2 we have that x is an inner vertex of some subgraph belonging
to ℜ(G). From (E(A) ∪ [A,S]) ∩ F = ∅, we know that all the removable edges
in H are covered by cycle C. However, since H is neither l-belt nor l-co-belt, it
is easily checked that no matter what subgraph H is, cycle C cannot cover all of
removable edges in H, a contradiction. If xz, xa, xb ∈ ER(G), since C is a cycle,
we have dC(x) ≤ 2, cycle C cannot contain three removable edges xa, xb, xz,
which contradicts (E(A) ∪ [A,S]) ∩ F = ∅.

(1.2) If A is a 2-atom, then vertex x is associated with four removable edges. It
is easily checked that F ∩ (E(A) ∪ [A,S]) 6= ∅, a contradiction.

(2) |A| ≥ 3. Since C is a cycle of G, and (E(A) ∪ [A,S]) ∩ F = ∅, there exists
xz ∈ E0∩(E(A)∪[A,S]). Obviously z 6∈ S; otherwise, from Theorem 3.2 we know
|A| = 2, contradicting |A| ≥ 3. We take the separating group (xz, S1;A1, B1) such
that x ∈ A1, z ∈ B1. Then x ∈ A∩A1, z ∈ A∩B1. Using Lemma 4.1 we conclude
that one of the three conclusions of Lemma 4.1 holds.

(2.1) Since xz ∈ E0 ∩ (E(A) ∪ [A,S]), conclusion (i) does not occur.

(2.2) Suppose that conclusion (ii) holds. B′ is a 1-atom, if z is associated with
three removable edges, we have that there exists at least one removable edges
outside cycle C, contradicting F ∩ (E(A) ∪ [A,S]) = ∅. If vertex z is associated
with one unremovable edge except xz, from Corollary 3.2 we have that z is an
inner vertex of some subgraph belonging to ℜ(G). Note that H is neither l-belt
nor l-co-belt, it is easily checked that no matter which subgraph H is, cycle C
cannot cover all of removable edges in H, a contradiction.

(2.3) Suppose that conclusion (iii) holds. Let B′ ∩ S = {x1, x2}, A ∩ S′ = {x3}.
Clearly, A ∩ B′ = {z}. First we claim that zx1, zx2 ∈ ER(G). Otherwise,
{zx1, zx2} ∩ EN (G) 6= ∅, from Lemma 3.2 we know x3x1, x3x2 cannot both be
edges of G. We may assume that x3x2 6∈ E(G), let A′′ = A− z, S′′ = S ∪ {z} −
x2, B

′′ = G−xz−S′′−A′′, then A′′ is an E0-fragment contained in A, contradicting
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that A is an E0-end-fragment. Therefore, we have that zx1, zx2 ∈ ER(G). Since
|B′| ≥ 3, using Theorem 3.2, we obtain that zx3 ∈ ER(G). Note that C is a cycle
of G, C cannot contain all three removable edges zx1, zx2, zx3, which contradicts
F ∩ (E(A) ∪ [A,S]) = ∅.

Subcase 2.2. If H is a helm. If E(C) ⊂ E(H), then according to the assump-
tion |F | ≤ 1, we have that eR(G) ≤ 5, obviously, |G| ≥ 9. From Theorem 3.4
we have that eR(G) ≥ (4|G| + 16)/7 > 5, a contradiction. So, according to the
assumption, we have that F ∩ E(H) 6= ∅. Since |F | ≤ 1, we may assume that
x4x1, x1x2 ∈ E(C), then x1v1 ∈ E0. By letting e = x1v1, S

′ = {v2, v3, v4}, B
′ =

{a, x1, x2, x3, x4}, A
′ = G− e− S′ −B′, we get that (e, S′;A′, B′) is a separating

group of G such that A′ does not contain any inner vertex of the helm H, and
F ∩ (E(A′) ∪ [A′, S′]) = ∅. Since A′ is an E0-fragment, A′ must contain an E0-
end-fragment as its subgraph, say A. Then we take the corresponding separating
group (xy, S;A,B) such that x ∈ A, y ∈ B. Obviously, we have that A does not
contain any inner vertex of the helm H and (E(A) ∪ [A,S]) ∩ F = ∅.

Similarly, we will make some observations on |A| as used in Subcase 2.1.

(1) |A| = 2. Then either A is a 1-atom or a 2-atom.

(1.1) If A is a 1-atom, let A = {x, z}, S = {a, b, c}. If {xz, xa, xb} ∩ EN (G) 6= ∅,
from Corollary 3.2 we have that x is an inner vertex of a subgraph H belonging
to ℜ(G). Note that H is neither l-belt nor l-co-belt, it is impossible for cycle C
to cover all of removable edges in H, which contradicts F ∩ (E(A) ∪ [A,S]) = ∅.
If xz, xa, xb ∈ ER(G), cycle C cannot contain three removable edges xa, xb, xz,
which contradicts (E(A) ∪ [A,S]) ∩ F = ∅.

(1.2) If A is a 2-atom, then vertex x is associated with four removable edges. It
is impossible that F ∩ (E(A) ∪ [A,S]) = ∅, a contradiction.

(2) |A| ≥ 3. Since C is a cycle of G, and (E(A) ∪ [A,S]) ∩ F = ∅, there exists
xz ∈ E0 ∩ (E(A) ∪ [A,S]). Since |A| ≥ 3, from Theorem 3.2 we know z 6∈ S.
We take the separating group (xz, S1;A1, B1) such that x ∈ A1, z ∈ B1. Then
x ∈ A ∩ A1, z ∈ A ∩ B1. Using Lemma 4.1 we conclude that one of the three
conclusions of Lemma 4.1 holds.

(2.1) Since xz ∈ E0 ∩ (E(A) ∪ [A,S]), conclusion (i) does not occur.

(2.2) Suppose that conclusion (ii) holds. Since B′ is a 1-atom, we can use a
similar argument as used in (2.2) of Subcase 2.1 to get two possible conclusions:
(i) vertex z is associated with three removable edges, then there exists at least
one removable edge outside cycle C, contradicting F ∩ (E(A) ∪ [A,S]) = ∅;
(ii) vertex z is is an inner vertex of some subgraph H belonging to ℜ(G). In
this case cycle C cannot cover all of removable edges in H, which contradicts
(E(A) ∪ [A,S]) ∩ F = ∅.
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(2.3) Suppose that conclusion (iii) holds. Let B′ ∩ S = {x1, x2}, A ∩ S′ = {x3}.
Clearly, A∩B′ = {z}. We can use a similar argument as used in (2.3) of Subcase
2.1 to get zx1, zx2 ∈ ER(G). Since |B′| ≥ 3, we have that zx3 ∈ ER(G). Clearly,
it is impossible that C contains all three removable edges zx1, zx2, zx3, which
contradicts F ∩ (E(A) ∪ [A,S]) = ∅.

Subcase 2.3. If H is a W -framework, then according to the assumption, we
must have that F = {y2y3}, and x1x2 ∈ E0. In this case, by letting e = x1x2, S

′ =
{x3, y4, y2}, B

′ = {x2, y3}, A
′ = G − e − S′ − B′, we get that (e, S′;A′, B′) is a

separating group of G such that A′ does not contain any inner vertex of the W -
framework, and F ∩ (E(A′) ∪ [A′, S′]) = ∅. Since A′ is an E0-fragment, A′ must
contain an E0-end-fragment as its subgraph, say A. Then we have that (E(A) ∪
[A,S]) ∩ F = ∅, and we take the corresponding separating group (xy, S;A,B)
such that x ∈ A, y ∈ B.

Similarly, we will make some observations on |A| as used in Subcase 2.1.

(1) |A| = 2. Then either A is a 1-atom or a 2-atom.

(1.1) If A is a 1-atom, let A = {x, z}, S = {a, b, c}. We use a similar argument
as used in (1.1) of Subcase 2.1 to get the following two possible conclusions: (i)
vertex x is an inner vertex of a subgraph H belonging to ℜ(G); (ii) vertex x
is associated with three removable edges xz, xa, xb. From the argument used in
(1.1) of Subcase 2.1, we know that no matter which conclusion is true, it will
contradict (E(A) ∪ [A,S]) ∩ F = ∅.

(1.2) If A is a 2-atom, then vertex x is associated with four removable edges. It
is impossible that F ∩ (E(A) ∪ [A,S]) 6= ∅, a contradiction.

(2) |A| ≥ 3. We use a similar argument as used in (2) of Subcase 2.1 to get
that there exists xz ∈ E0 ∩ (E(A) ∪ [A,S]). We take the separating group
(xz, S1;A1, B1) such that x ∈ A1, z ∈ B1. Then x ∈ A ∩ A1, z ∈ A ∩ B1.
Since |A| ≥ 3, we have z 6∈ S. Using Lemma 4.1 we conclude that one of the
three conclusions of Lemma 4.1 holds.

(2.1) Since xz ∈ E0 ∩ (E(A) ∪ [A,S]), conclusion (i) does not occur.

(2.2) Suppose that conclusion (ii) holds. Since B′ is a 1-atom, similarly, we have
two possible conclusions hold: (i) vertex z is associated with three removable
edges, then there exists at least one removable edges outside cycle C, contradict-
ing F ∩ (E(A) ∪ [A,S]) = ∅; (ii) vertex z is an inner vertex of some a subgraph
H belonging to ℜ(G). In this case, cycle C cannot cover all of removable edges
in H, which contradicts (E(A) ∪ [A,S]) ∩ F = ∅.

(2.3) Suppose that conclusion (iii) holds. Let B′ ∩ S = {x1, x2}, A ∩ S′ =
{x3}. We can use a similar argument as used in (2.3) of Subcase 2.1 to get
zx1, zx2, zx3 ∈ ER(G). Clearly, it is impossible that C contains all three remov-
able edges zx1, zx2, zx3, which contradicts F ∩ (E(A) ∪ [A,S]) = ∅.
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Subcase 2.4. If H is a W ′-framework, according to the assumption, we have
E(C) ⊂ E(H) and F ⊂ E(H). Then ER(G) = 5. However, since |G| ≥ 7, from
Theorem 3.4 we have that eR(G) ≥ (4|G|+ 16)/7 > 5, a contradiction.

This completes the proof of the last case and hence of the theorem.

Next we present an example to show that the lower bound on the number of
removable edges given in the conclusion of Theorem 4.2 is sharp.

Example 4.2. Let H be a helm as in Definition 2.1, such that V (H) = {a, x1,
x2, x3, x4, v1, v2, v3, v4} and E(H) = {ax1, ax2, ax3, ax4, x1x2, x2x3, x3x4, x4x1,
x1v1, x2v2, x3v3, x4v4}. Let L = H−{v1, v2, v3, v4}, and let L′ be a copy of L such
that V (L′) = {a′, x′1, x

′

2, x
′

3, x
′

4}. We construct a graph G as follows. Let V (G) =
V (L) ∪ V (L′), E(G) = E(L) ∪ E(L′) ∪ {x1x

′

1, x2x
′

2, x3x
′

3, x4x
′

4}. Obviously, G
is a 4-connected graph. It is easy to see that (ax2, {x1, x3, x

′

4}) is a separating
pair of G, and so ax2 ∈ EN (G). By symmetry, ax4, ax1, ax3, a

′x′1, a
′x′2, a

′x′3, a
′x′4

∈ EN (G). Similarly, (x1x
′

1, {x2, x3, x4}) is a separating pair of G, and hence
x1x

′

1 ∈ EN (G). By symmetry, we have x2x
′

2, x3x
′

3, x4x
′

4 ∈ EN (G). Consider the
cycle C = x1x4x3x2x

′

2x
′

3x
′

4x
′

1x1 of G. Then C does not pass through any l-belt
or l-co-belt. Moreover, it is easy to check that outside C there are exactly two
removable edges x1x2, x

′

1x
′

2.

In the next result we allow a cycle to pass through (at most) one l-belt or l-co-
belt, and show that we can still guarantee the existence of at least one removable
edge outside the cycle, but not two, as shown by examples following the proof of
the next theorem.

Theorem 4.3. Let G be a 4-connected graph with |G| ≥ 7 and let C be a cycle

of G. If C passes through exactly one of the maximal l-belt or l-co-belt (l ≥ 1),
then there is at least one removable edge outside C.

Proof. By contradiction. Suppose that there is no removable edge outside C.
Let E0 = E(G) − E(C). We may assume that H is either an maximal l-belt or
a maximal l-co-belt. If H is a maximal l-belt as in Definition 2.3, then from the
assumptions it is easy to conclude that E2 ⊂ E(C), and x2x1 ∈ E0. By letting
S′ = {yl+2, xl+2, y1}, e = x2x1, B

′ = {x2, . . . , xl+1, y2, . . . , yl+1}, A
′ = G−e−S′−

B′, Since H is a maximal l-belt, we have x1y1 /∈ E(G). Since d(x1) ≥ 4, there
exits a vertex u /∈ B′ such that x1u ∈ E(G), we have |A′| ≥ 2. We get that
(e, S′;A′, B′) is a separating group of G such that A′ does not contain any inner
vertex of the maximal l-belt (l ≥ 1). Since x2x1 ∈ E0, A

′ is an E0-fragment; If
H is a maximal l-co-belt, similarly, we have that x1x2 ∈ E0. By letting S′ =
{yl+2, xl+3, y1}, e = x2x1, B

′ = {x2, . . . , xl+2, y2, . . . , yl+1}, A
′ = G− e− S′ − B′.

Since H is a maximal l-co-belt, we have x1y1 /∈ E(G). Since d(x1) ≥ 4, there
exits a vertex v /∈ B′ such that x1v ∈ E(G), we have |A′| ≥ 2. We get that
(e, S′;A′, B′) is a separating group of G such that A′ does not contain any inner
vertex of the maximal l-co-belt (l ≥ 1), and A′ is an E0-fragment.



578 J. Wu, H. Broersma, Y. Mao and Q. Ma

Since A′ is an E0-fragment, A′ must contain an E0-end-fragment as its sub-
graph, say A. Then we have that (E(A) ∪ [A,S]) ∩ F = ∅, and we take the
corresponding separating group (xy, S;A,B) such that x ∈ A, y ∈ B.

The following observations on |A| are easy to check.

(1) |A| = 2. Then either A is a 1-atom or a 2-atom.

(1.1) If A is a 1-atom, let A = {x, z}, S = {a, b, c}. If {xz, xa, xb} ∩ EN (G) 6= ∅,
from Corollary 3.2 we have that x is an inner vertex of some subgraph H of G
belonging to ℜ(G). Noting that H is neither maximal l-belt nor maximal l-co-
belt. It is easily checked that regardless of which subgraph H is, it is impossible
for cycle C to contain all the removable edges of H, then there exists at least one
removable edge outside cycle C, a contradiction. If xz, xa, xb ∈ ER(G), since C
is a cycle, it is impossible for cycle C to contain all the three removable edges
xa, xb, xz, a contradiction.

(1.2) If A is a 2-atom, it is easily checked that there exist at least two removable
edges outside cycle C, a contradiction.

(2) |A| ≥ 3. Since C is a cycle of G, and (E(A) ∪ [A,S]) ∩ F = ∅, there exists
xz ∈ E0 ∩ (E(A) ∪ [A,S]). Obviously z 6∈ S; otherwise, |A| = 2, contradicting
|A| ≥ 3. We take the separating group (xz, S1;A1, B1) such that x ∈ A1, z ∈ B1.
Then x ∈ A ∩ A1, z ∈ A ∩ B1. Using Lemma 4.1, we conclude that one of the
three conclusions of Lemma 4.1 holds.

(2.1) Since xz ∈ E0 ∩ (E(A) ∪ [A,S]), conclusion (i) does not occur.

(2.2) Suppose that conclusion (ii) holds. Since B′ is a 1-atom. Using a similar
argument as used in (2.2) of Theorem 4.2, we have two possible conclusions hold:
(i) vertex z is associated with three removable edges, then there exists at least
one removable edges outside cycle C, contradicting F ∩ (E(A) ∪ [A,S]) = ∅; (ii)
vertex z is an inner vertex of some subgraph H belonging to ℜ(G). In this case,
since H is neither l-belt nor l-co-belt, cycle C cannot cover all of removable edges
in H, which contradicts (E(A) ∪ [A,S]) ∩ F = ∅.

(2.3) Suppose that conclusion (iii) holds. Let B′ ∩ S = {x1, x2}, A ∩ S′ = {x3}.
Clearly, A∩B′ = {z}. We claim that zx1, zx2 ∈ ER(G). Otherwise, {zx1, zx2}∩
EN (G) 6= ∅. From Lemma 3.2, we know x3x1, x3x2 cannot both be edges of G.
We may assume that x3x2 6∈ E(G), let A′′ = A − z, S′′ = S ∪ {z} − x2, B

′′ =
G− xz − S′′ −A′′, then A′′ is an E0-fragment contained in A, contradicting that
A is an E0-end-fragment. Therefore, we have that zx1, zx2 ∈ ER(G). Since
|B′| ≥ 3, using Theorem 3.2 we obtain that zx3 ∈ ER(G). Note that C is a cycle
of G, we have dC(z) ≤ 2. Then cycle C does not contain all the removable edges
associated with vertex z, which contradicts (E(A) ∪ [A,S]) ∩ F = ∅.

This completes the proof of the last case and hence of the theorem.

We next present two examples to show that if a cycle of a 4-connected graph
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passes through two l-belts or l-co-belts, then we cannot guarantee the existence
of a removable edge outside the cycle. So, in this sense the conclusion of the
above theorem cannot be strengthened.

Example 4.3. Let H be an l-belt as in Definition 2.3, and let H ′ be a copy of
H such that V (H ′) = {x′1, x

′

2, . . . , x
′

l+2
, y′1, y

′

2, . . . , y
′

l+2
} and E(H ′) = E1(H

′) ∪
E2(H

′), where E1(H
′) = {x′1x

′

2, x
′

2x
′

3, . . . , x
′

l+1
x′l+2

, y′1y
′

2, y
′

2y
′

3, . . . , y
′

l+1
y′l+2

} and
E2(H

′) = {y′1x
′

2, x
′

2y
′

2, y
′

2x
′

3, . . . , y
′

lx
′

l+1
, x′l+1

y′l+1
, y′l+1

x′l+2
}. Identify vertex x1

with y′1, vertex y1 with x′1, vertex yl+2 with x′l+2
, and vertex xl+2 with y′l+2

,
respectively. Join vertex xl+2 and y′1 and vertex x′l+2

and y1 by an edge, respec-
tively. Denote the resulting graph by G. It is straightforward to check that G is a
4-connected graph, and that (x2y

′

1, {y1, x3, y3}) is a separating pair ofG, so x2y
′

1 ∈
EN (G). Similarly, we can show that{y1x

′

2, yl+1x
′

l+2
, y′l+1

xl+2}⊂EN (G). Let C be
the following cycle of G: C = y1x2y2x3 · · ·xl+1yl+2xl+2y

′

1x
′

2y
′

2 · · ·x
′

l+1
y′l+1

x′l+2
y1.

Then it is easy to check that there is no removable edge outside C.

Example 4.4. Let H be an l-co-belt as in Definition 2.4, and let H ′ be a copy
of H such that V (H ′) = {x′1, x

′

2, . . . , x
′

l+2
, x′l+3

, y′1, y
′

2, . . . , y
′

l+2
} and E(H ′) =

E1(H
′)∪E2(H

′), where E1(H
′) = {x′1x

′

2, x
′

2x
′

3, . . . , x
′

l+1
x′l+2

, x′l+2
x′l+3

, y′1y
′

2, y
′

2y
′

3,
. . . , y′l+1

y′l+2
} and E2(H

′) = {y′1x
′

2, x′2y
′

2, y′2x
′

3, . . . , y
′

lx
′

l+1
, x′l+1

y′l+1
, y′l+1

x′l+2
,

x′l+2
y′l+2

}. First, delete the vertices x1, x
′

1, xl+3, x
′

l+3
from H and H ′, respec-

tively. Then, join vertex xl+2 and y′l+2
, vertex y1 and y′1, vertex x′l+2

and yl+2,
vertex x2 and x′2, vertex y1 and y′l+2

, and vertex y′1 and yl+2 by an edge, re-
spectively. Denote the resulting graph by G. It is straightforward to check that
G is a 4-connected graph, and that (y1y

′

1, {yl+2, y
′

l+2
, x′2}) is a separating pair

of G, so y1y
′

1 ∈ EN (G). Similarly, (xl+2y
′

l+2
, {yl, xl+1, yl+2}), (x2x

′

2, {y1, x3, y3})
and (yl+2x

′

l+2
, {x′l+1

, y′l, y
′

l+2
}) are separating pairs of G, and so {xl+2y

′

l+2
, x2x

′

2,
yl+2x

′

l+2
} ⊂ EN (G). Let C be the following cycle of G: C = y1x2y2x3 · · ·

xl+1yl+1xl+2yl+2y
′

1x
′

2y
′

2 · · ·x
′

l+1
y′l+1

x′l+2
y′l+2

y1. Then it is easy to see that there
is no removable edge outside C.

4.3. Removable edges on a fixed (Hamilton) cycle

The next results deal with circumstances that guarantee the existence of remov-
able edges on cycles of 4-connected graphs, in particular on Hamilton cycles.
Before we present these results, we first introduce a definition and prove an aux-
iliary result.

Definition 4.1. Let G be a 4-connected graph, let C be a cycle of G, and let
(xy, S;A,B) be a separating group of G such that A is an atom. We say that C
passes through this atom if x, y ∈ V (C).

The following useful lemma deals with removable edges on a cycle that does
not pass through any atom.
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Lemma 4.2. Let G be a 4-connected graph with |G| ≥ 7, and let C be a cycle

that does not pass through any atom. Then there are at least two removable edges

on C.

Proof. By contradiction. Suppose that C does not pass through any atom
of G, and suppose there is at most one removable edge of G in C. Let F =
E(C) ∩ER(G). Then |F | ≤ 1. Denote E(C)− F by E0. We take the separating
group (uw, S′;A′, B′) such that u ∈ A′, w ∈ B′ and uw ∈ E0. From |F | ≤ 1
we know that (E(A′) ∪ [A′, S′]) ∩ F = ∅ or (E(B′) ∪ [S′, B′]) ∩ F = ∅. Without
loss of generality, we may assume that (E(A′) ∪ [A′, S′]) ∩ F = ∅. Since A′ is
an E0-fragment, A′ contains an E0-end-fragment as its subgraph, say A. We
take the corresponding separating group (xy, S;A,B) such that x ∈ A, y ∈ B
with xy ∈ E0. Clearly, we have (E(A) ∪ [A,S]) ∩ F = ∅. Since C does not
pass through any atom, we have |A| ≥ 3. Using Lemma 4.1, we know that one
of the three conclusions of Lemma 4.1 holds. Here we discuss them as follows.
Since (E(A) ∪ [A,S]) ∩ F = ∅, we have that conclusion (i) does not hold. Since
C does not pass through any atom, conclusion (ii) of Lemma 4.1 does not hold
either. So conclusion (iii) of Lemma 4.1 holds. Let A ∩ S′ = {w}, B′ ∩ S =
{u, v},ΓG(y

′) = {w, u, v, x}. Since |B′| ≥ 3, using Theorem 3.2, we conclude that
y′w ∈ ER(G). Noticing that C is a cycle and (E(A) ∪ [A,S]) ∩ F = ∅, we have
{y′u, y′v} ∩ E0 6= ∅. Using Lemma 3.2, we have that wu,wv cannot belong to
E(G) simultaneously. Without loss of generality, we may assume wu /∈ E(G).
Let A0 = A − {y′}, S0 = S ∪ {y′} − u,B0 = G − xy − S0 − A0. Then A0 is an
E0-fragment contained in A, which contradicts that A is an E0-end-fragment. So,
conclusion (iii) does not hold either.

This completes the proof of Lemma 4.2.

In the remainder we will mainly deal with the existence of removable edges
on Hamilton cycles in 4-connected Hamiltonian graphs. Our first result shows
that Hamilton cycles in 4-connected graphs without atoms contain at least six
removable edges.

Theorem 4.4. Let G be a 4-connected Hamiltonian graph with |G| ≥ 7, and

suppose that G does not contain any atom. Then any Hamilton cycle C of G
contains at least six removable edges.

Proof. Let F = E(C) ∩ ER(G), E0 = E(C) ∩ EN (G). If E0 = ∅, then C con-
tains at least seven removable edges, we have theorem holds. So in what follows
we may assume E0 6= ∅. We consider a separating group (uw, S′;A′, B′) such
that u ∈ A′, w ∈ B′, uw ∈ E0. By symmetry, we may assume that |(E(A′) ∪
[A′, S′]) ∩ F | ≤ |(E(B′) ∪ [S′, B′]) ∩ F |. Since A′ is an E0-fragment, A′ must
contain an E0-end-fragment as its subgraph, say A, and we take the corresponding
separating group (xy, S;A,B) such that x ∈ A, y ∈ B and xy ∈ E0. Note that
|(E(A)∪ [A,S])∩F | ≤ |(E(A′)∪ [A′, S′])∩F |. Since C does not pass through any
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atom, we have |A| ≥ 3. From Lemma 4.1 we know that there are three possible
conclusions (i), (ii) or (iii).

First, we suppose that E0 ∩ (E(A) ∪ [A,S]) 6= ∅. From Lemma 4.1 we have
two possible conclusions (ii) or (iii). Since C does not pass through any atom,
conclusion (ii) does not hold. Suppose conclusion (iii) holds. We consider a
separating group of G as in conclusion (iii) of Lemma 4.1. Let B′ ∩ S = {b, c},
A′∩S = {a}, A∩S′ = {d}. Let A1 = {d, y1}, S1 = {b, c, x}, B1 = G−ad−S1−A1,
then (ad, S1;A1, B1) is a separating group of G. However, A1 is an atom, which
contradicts that G does not contain any atom. So conclusion (iii) does not hold.

From the arguments above, we have that only conclusion (i) holds. Since
E0∩ (E(A)∪ [A,S]) = ∅, it is easily checked that |(E(A)∪ [A,S])∩F | ≥ 3. Since
|(E(A)∪[A,S])∩F | ≤ |(E(A′)∪[A′, S′])∩F |, we have that |(E(A′)∪[A′, S′])∩F | ≥
3. Hence |E(C) ∩ ER(G)| = |F | ≥ 6. The proof is complete.

Before we present and prove our next result about removable edges on Hamil-
ton cycles, we first prove the following auxiliary result.

Lemma 4.3. Let G be a 4-connected graph with |G| ≥ 7, and let C be a cycle

of G passing through exactly one inner vertex of some maximal l-bi-fan H of G,

and not passing through any other subgraph belonging to ℜ(G). Then there are

at least two removable edges on C.

Proof. Suppose that there is at most one removable edge on C. Using Theorem
3.5, we conclude that there is exactly one removable edge on C. Let E(C) ∩
ER(G) = {e} = F . Let H be a maximal l-bi-fan defined as in Definition 2.2.
From the assumption |V (C) ∩ {x2, x3, . . . , xl+2}| = 1 and |E(C) ∩ ER(G)| = 1,
it can be checked easily that either x2 ∈ V (C) or xl+2 ∈ V (C). Without loss of
generality, we may assume x2 ∈ V (C) and e = ax2. Letting S′ = {a, b, xl+3}, e

′ =
x2x1, B

′ = {x2, . . . , xl+2}, A
′ = G − e′ − S′ − B′, (e′, S′;A′, B′) is a separating

group of G such that A′∩V (C) does not contain any inner vertex of the maximal
l-bi-fan. Let E0 = E(C) − {ax2}. Then x1x2 ∈ E0 and A′ is an E0-fragment.
Clearly, A′ contains an E0-end-fragment, say A. It is easily checked that A∩V (C)
does not contain any inner vertex of H, and that (E(A) ∪ [A,S]) ∩ F = ∅. We
consider a corresponding separating group (xy, S;A,B) such that x ∈ A, y ∈ B
with xy ∈ E0.

Next, we distinguish a number of cases and subcases.

(1) |A| = 2. Then A is a 1-atom or a 2-atom, say A = {x, z}. Let S = {a, b, c}.

(1.1) A is a 2-atom. Since xy ∈ E(C) and C is a cycle of G, we have {xa, xb, xc,
xz} ∩ E(C) 6= ∅. From Lemma 3.3 we know that {xa, xb, xc, xz} ⊂ ER(G),
contradicting (E(A) ∪ [A,S]) ∩ F = ∅.

(1.2) A is a 1-atom. Noting that C is a cycle of G and x ∈ V (C), we know that
{xa, xb, xz} ∩E(C) 6= ∅. From the assumption (E(A) ∪ [A,S]) ∩ F = ∅, we have
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{xa, xb, xz} ∩ E0 6= ∅. From Corollary 3.2 we know that x is an inner vertex
of one of the graphs of ℜ(G), which contradicts A ∩ V (C) does not contain any
inner vertex of H.

(2) |A| ≥ 3. Using Lemma 4.1 we have three possible conclusions (i), (ii) or (iii).

(2.1) Conclusion (i) holds. Since C is a cycle, we have (E(A)∪ [A,S])∩E(C) 6= ∅.
However, (E(A)∪ [A,S])∩E0 = ∅, it is impossible that (E(A)∪ [A,S])∩ F = ∅,
a contradiction.

(2.2) Conclusion (ii) holds. LetB′ = {y′, z′}, A∩B′ = {y′},ΓG(y
′) = {x′, a′, b′, z′}.

Noting that C is a cycle, and (E(A) ∪ [A,S]) ∩ F = ∅, we have {a′y′, b′y′, y′z′} ∩
E0 6= ∅. From Corollary 3.2 we know that y′ is an inner vertex of one of the
graphs of ℜ(G). Since y′ ∈ V (C), contradicting that A ∩ V (C) does not contain
any inner vertex of H.

(2.3) Conclusion (iii) holds. Let B′ ∩ S = {u, v}, A ∩ S′ = {a}, A ∩ B′ = {y′}.
Since |B′| ≥ 3, from Theorem 3.2 we know ay′ ∈ ER(G). Noting that C is
a cycle and (E(A) ∪ [A,S]) ∩ F = ∅, we have {y′u, y′v} ∩ E(C) 6= ∅, and so
{y′u, y′v} ∩ E0 6= ∅. By Lemma 3.2, we know that au, av cannot both be edges
of G. Without loss of generality, we may assume that au 6∈ E(G), let A′′ =
A− y′, S′′ = S ∪ {y′} − u,B′′ = G− xy′ − S′′ − A′′. Then A′′ is an E0-fragment
contained in A, contradicting the choice of A.

This completes the proof of the lemma.

Theorem 4.5. Let G be a 4-connected Hamiltonian graph with |G| ≥ 7, and let

C be any Hamilton cycle of G. Then, if G contains only one subgraph H of G
that belongs to ℜ(G), but not any maximal l-belt or l-co-belt, then there are at

least two removable edges on C.

Proof. By contradiction. Suppose that G contains only one subgraph H of G
that belongs to ℜ(G), but not any maximal l-belt or l-co-belt, and suppose there
is at most one removable edge on C. Let E0 = E(C)∩EN (G), F = E(C)∩ER(G),
then |F | ≤ 1.

Since H is not any maximal l-belt or l-co-belt, then H is one of the following
four graphs: helm, maximal l-bi-fan, W -fragment, W ′-fragment. Note that H is
the only subgraph in ℜ(G) that C passes through. Next we will discuss them
separately.

Case 1. H is one of the following three subgraphs: helm, W -fragment, W ′-
fragment.

(1) C passes through a helmH. LetH be defined as in Definition 2.1. Since C is a
Hamilton cycle, E(H)∩F 6= ∅. From the assumption |F | ≤ 1, we know that there
is exactly one removable edge on C, then |F | = 1. Without loss of generality, we
may assume F = {x3x4}. Since C is a Hamilton cycle, it is easily checked that
x1v1 ∈ E(C). According to the assumptions, we have E(C) − x3x4 = E0. By



Removable Edges on a Hamilton Cycle or Outside a Cycle ... 583

letting e = x1v1, S
′ = {v2, v3, v4}, B

′ = {a, x1, x2, x3, x4}, A
′ = G − e − S′ − B′,

(e, S′;A′, B′) is a separating group of G such that A′ does not contain any inner
vertex of H and (E(A′)∪ [A′, S′])∩F = ∅. Since x1v1 ∈ E0, A

′ is an E0-fragment
of G. Since A′ contains an E0-end-fragment, say A. clearly, A does not contain
any inner vertex of H, and (E(A) ∪ [A,S]) ∩ F = ∅. We take the corresponding
separating group (xy, S;A,B) such that x ∈ A, y ∈ B with xy ∈ E0.

(2) C passes through a W ′-framework H. Let H be defined as in Definition
2.6. Since C is a Hamilton cycle, we have F 6= ∅, from the assumption, we have
|F | = 1. It can be checked easily that F = {y2y3} and y3y4 ∈ E(C). By letting
S′ = {x1, x3, y1}, B

′ = {x2, y2, y3}, A
′ = G− y3y4−S′−B′, then (y3y4, S

′;A′, B′)
is a separating group of G such that A′ does not contain any inner vertex ofH and
(E(A′) ∪ [A′, S′]) ∩ F = ∅. Since y3y4 ∈ E0, we have that A′ is an E0-fragment.
Since A′ contains an E0-end-fragment, say A. Clearly, A does not contain any
inner vertex of H and (E(A) ∪ [A,S]) ∩ F = ∅. We take the corresponding
separating group (xy, S;A,B) such that x ∈ A, y ∈ B with xy ∈ E0.

(3) C passes through a W -framework H. Let H be defined as in Definition 2.5.
Since C is a Hamilton cycle, it is easy to see that y1y2 ∈ E0 and F = {y2y3}. By
letting S′ = {x1, x3, y4}, B

′ = {x2, y2, y3}, A
′ = G−y1y2−S′−B′, (y1y2, S

′;A′, B′)
is a separating group of G such that A′ does not contain any inner vertex of H,
and (E(A) ∪ [A,S]) ∩ F = ∅. Since y1y2 ∈ E0, we have that A′ is an E0-
fragment. Since A′ contains an E0-end-fragment, say A, as its subgraph. Clearly,
A does not contain any inner vertex of H and (E(A) ∪ [A,S]) ∩ F = ∅. We take
the corresponding separating group (xy, S;A,B) such that x ∈ A, y ∈ B with
xy ∈ E0.

From the above arguments we can see that no matter which of the three
subgraphs H is, we always can take the separating group (xy, S;A,B) such that
x ∈ A, y ∈ B with xy ∈ E0. A is an E0-end-fragment such that A does not
contain any inner vertex of H, and (E(A) ∪ [A,S]) ∩ F = ∅.

Next we will distinguish a number subcases to discuss.

Subcase 1.1. |A| = 2. Then A is a 1-atom or a 2-atom, say A = {x, z}. Let
S = {a, b, c}.

(1) A is a 2-atom. Since xy ∈ E(C) and C is a cycle of G, we have {xa, xb, xc, xz}
∩E(C) 6= ∅. From Lemma 3.3 we know that {xa, xb, xc, xz} ⊂ ER(G), contra-
dicting (E(A) ∪ [A,S]) ∩ F = ∅.

(2) A is a 1-atom. Noting that C is a cycle of G and (E(A) ∪ [A,S]) ∩ F = ∅,
we have {xa, xb, xz} ∩ E0 6= ∅. From Corollary 3.2 we know that x is an inner
vertex of one of the graphs in ℜ(G), contradicting that A does not contain any
inner vertex of H.

Subcase 1.2. |A| ≥ 3. Using Lemma 4.1 we have three possible conclusions
(i), (ii) or (iii).
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(1) Conclusion (i) holds. Since C is a Hamilton cycle, we have (E(A) ∪ [A,S]) ∩
E(C) 6= ∅. However, (E(A) ∪ [A,S]) ∩E0 = ∅, and it is impossible that (E(A) ∪
[A,S]) ∩ F = ∅, a contradiction.

(2) Conclusion (ii) holds. Let B′ = {y′, z′}, A∩B′ = {y′},ΓG(y
′) = {x′, a′, b′, z′}.

Noting that C is a Hamilton cycle, and (E(A) ∪ [A,S]) ∩ F = ∅, we have
{a′y′, b′y′, y′z′} ∩ EN (G) 6= ∅. From Corollary 3.2 we know that y′ is an inner
vertex of one of the subgraphs of ℜ(G), contradicting that A does not contain
any inner vertex of H.

(3) Conclusion (iii) holds. Let B′ ∩ S = {u, v}, A ∩ S′ = {a}, A ∩ B′ = {y′}.
Since |B′| ≥ 3, from Theorem 3.2 we know ay′ ∈ ER(G). Noting that C is a cycle
and (E(A) ∪ [A,S]) ∩ F = ∅, we have ay′ /∈ E(C) and {y′u, y′v} ∩ E(C) 6= ∅,
and so {y′u, y′v} ∩ E0 6= ∅. By Lemma 3.2, we know that au, av cannot both
be edges of G. Without loss of generality, we may assume that au 6∈ E(G), let
A′′ = A−y′, S′′ = S∪{y′}−u,B′′ = G−xy′−S′′−A′′. Then A′′ is an E0-fragment
contained in A, contradicting the choice of A.

Case 2. C passes through a maximal l-bi-fan H. Let H be defined as in
Definition 2.2. By assumption we have |E(C)∩{ax2, ax3, . . . , axl+2, bx2, bx3, . . . ,
bxl+2}| ≤ 1. Next we distinguish the following two subcases.

Subcase 2.1. {x1x2, x2x3, . . . , xl+2xl+3} ⊂ E(C). Let C = x1x2 · · ·xl+2xl+3

· · · vau · · ·x1. We let P1 denote the path from a to x2 on C passing through u,
and P2 the path from xl+2 to a on C passing through v. Then both C1 formed by
P1 and ax2, and C2 formed by P2 and axl+2 are cycles containing just one inner
vertex of H and not passing through any other graph of ℜ(G). Using Lemma 4.3
we get that both C1 and C2 contain at least two removable edges, so there are at
least two removable edges on C.

Subcase 2.2. For some i ∈ {2, . . . , l + 2}, either {axi, xixi+1, . . . , xl+2xl+3} ⊂
E(C) or {bxi, xixi+1, . . . , xl+2xl+3} ⊂ E(C). Without loss of generality, we as-
sume {axi, xixi+1, . . . , xl+2xl+3} ⊂ E(C). From |E(C) ∩ {ax2, . . . , axl+2}| ≤ 1,
we get that ({ax2, . . . , axi+2}− {axi})∩E(C) = ∅. It can be checked easily that
only i = 2 is possible. Let C = ax2x3 · · ·xl+2xl+3 · · ·ua. Let P denote the path
from xl+2 to a on C passing through u. Then the cycle C1 formed by P and axl+2

passes through just one inner vertex of H and does not pass through any other
graph of ℜ(G). Using Lemma 4.3 we get that C1 contains at least two removable
edges, and so P contains at least one removable edge. Since ax2 ∈ E(C)−E(C1),
there are at least two removable edges on C.

This completes the proof of Theorem 4.5.

Next we present examples in order to show that in each of the cases in the
above proof of Theorem 4.5 we cannot improve the lower bound on the number
of removable edges. We start with an example to show that in (1) of Case 1 of
(the proof of) Theorem 4.5 the lower bound is sharp.
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Example 4.5. Let H be a helm with V (H) = {a, x1, x2, x3, x4, v1, v2, v3, v4}
and E(H) = {ax1, ax2, ax3, ax4, x1x2, x2x3, x3x4, x4x1, x1v1, x2v2, x3v3, x4v4}.
Let L = H − {v1, v2, v3, v4}, and let L′ be a copy of L such that V (L′) =
{a′, x′1, x

′

2, x
′

3, x
′

4}. We construct a graph G as follows. V (G) = V (L) ∪ V (L′),
and we join vertices x1 and x′1, x2 and x′2, x3 and x′3, x4 and x′4, x

′

2 and x′4 by
an edge, respectively. Now (x1x

′

1, {x2, x3, x4}) is a separating pair of G, hence
x1x

′

1 ∈ EN (G). By symmetry, x2x
′

2, x3x
′

3, x4x
′

4 ∈ EN (G). It is easy to check
that (a′x′1, {x

′

2, x
′

4, x3}) and (a′x′3, {x
′

2, x
′

4, x1}) are also separating pairs of G, so
we conclude that a′x′1, a

′x′3 ∈ EN (G). Let C = x1x
′

1a
′x′3x3x4x

′

4x
′

2x2ax1. Then C
is a Hamilton cycle passing through precisely one helm (and no other graphs of
ℜ(G)) and containing just two removable edges x3x4, x

′

2x
′

4.

Our next example shows the sharpness of the lower bound in (2) of Case 1.

Example 4.6. Let H be a W ′-framework defined as in Definition 2.6, with
V (H) = {x1, x2, x3, y1, y2, y3, y4}. Let L′ be the graph as defined in Example
4.5, with V (L′) = {a′, x′1, x

′

2, x
′

3, x
′

4}. We construct a graph G as follows. Let
V (G) = V (H)− {y1, y4} ∪ V (L′), and let E(G) = E(H)− {y1y2, y3y4} ∪E(L′)∪
{x1x

′

1, y2x
′

4, y3x
′

3, x
′

2x3, x1x
′

3, x
′

1x
′

3}. It is easy to check that G is 4-connected.
Now (x1x

′

1, {x
′

2, x
′

3, x
′

4}), (x′2x3, {x
′

1, x
′

3, x
′

4}), (y2x
′

4, {x
′

1, x
′

2, x
′

3}), (y3x
′

3, {x1, x3,
y2}), (a′x′4, {x

′

1, x
′

3, x3}), and (a′x′2, {y2, x
′

1, x
′

3}) are separating pairs of G, so
x1x

′

1, x
′

2x3, y2x
′

4, y3x
′

3, a
′x′4, a

′x′2 ∈ EN (G). Let C = x1x2x3x
′

2a
′x′4y2y3x

′

3x
′

1x1.
Then C is a Hamilton cycle which passes through only one W ′-framework and
contains two removable edges y2y3, x

′

1x
′

3.

Next we give an example to show the sharpness in (3) of Case 1.

Example 4.7. LetH be aW -framework defined as in Definition 2.5, and let L be
a graph such that V (L) = {a′, x′1, x

′

2, x
′

3, x
′

4} and E(L) = {a′x′1, a
′x′2, a

′x′3, a
′x′4,

x′1x
′

2, x
′

2x
′

3, x
′

3x
′

4, x
′

4x
′

1, x
′

1x
′

3}. We construct a graph G as follows. Let V (G) =
V (L) ∪ V (H)− {y1, y2} and E(G) = E(L) ∪ E(H)− {y1y2, y3y4} ∪ {x1x

′

1, x
′

2x3,
y3x

′

3, y2x
′

4, x1x
′

3, x
′

1x3}. It is easy to check that G is 4-connected. Now (x′2x3, {x
′

1,
x′3, x

′

4}), (y3x
′

3, {x1, x3, y2}), (y2x
′

4, {x
′

1, x
′

2, x
′

3}), (x
′

1x1, {y2, x3, x
′

3}), (a
′x′4, {x

′

1, x
′

3,
x3}), and (a′x′2, {y2, x

′

1, x
′

3}) are separating pairs of G. Let C = x1x2x3x
′

2a
′x′4

y2y3x
′

3x
′

1x1. Clearly, C is a Hamilton cycle which contains two removable edges
x′1x

′

3, y2y3.

The next example discusses the sharpness in Case 2.

Example 4.8. We give an example to show that in Case 4 of the proof the lower
bound cannot be improved. Let H be an l-bi-fan (l ≥ 2) defined as in Defini-
tion 2.2, and let L be a graph such that V (L) = {a′, x′1, x

′

2, x
′

3, x
′

4} and E(L) =
{a′x′1, a

′x′2, a
′x′3, a

′x′4, x
′

1x
′

2, x
′

2x
′

3, x
′

3x
′

4, x
′

4x
′

1, x
′

1x
′

3}. We construct a graph G as
follows. First, we identify the vertex x1 with x′1, and xl+3 with x′4, respectively.
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Then we join the vertices a and x′2, b and x′3, and a and b by an edge. Obvi-
ously, G is a 4-connected graph. Similar arguments as used in Example 4.2 yield
that bx′3, ax

′

2, xl+2x
′

4, x2x
′

1, a
′x′4, a

′x′2 ∈ EN (G). Let C = ax′2a
′x′4xl+2xl+1 · · ·

x2x
′

1x
′

3ba. Then C is a Hamilton cycle which passes through two removable
edges x′1x

′

3 and ab.

Note that in Theorem 4.5, we exclude the case that C passes through only
one maximal l-belt or maximal l-co-belt. In fact, for a Hamilton cycle C that
passes through only one maximal l-belt or maximal l-co-belt, the conclusion of
Theorem 4.5 does not hold in general. We present the following two examples to
show that.

Example 4.9. (1) Let H be a maximal l-belt as in Definition 2.3, and let L be
a graph with V (L) = {a′, x′1, x

′

2, x
′

3, x
′

4} and E(L) = {a′x′1, a
′x′2, a

′x′3, a
′x′4, x

′

1x
′

2,
x′2x

′

3, x
′

3x
′

4, x
′

4x
′

1, x
′

1x
′

3}. Now we construct a graph G as follows. First, we iden-
tify the vertices x1 and x′1, and the vertices yl+2 and x′3, respectively. Then
we join the vertices y1 and x′2, xl+2 and x′4, and y1 and xl+2 by an edge, re-
spectively. It is easy to check that G is a 4-connected graph. Similar argu-
ments as before yield that x′1x2, x

′

2y1, x
′

3yl+1, x
′

4xl+2 ∈ EN (G). Let C = x′1x2x3
· · ·xl+2x

′

4a
′x′2y1y2 · · · yl+1x

′

3x
′

1. Then C is a Hamilton cycle containing only one
removable edge x′1x

′

3.

(2) Let H be a maximal l-co-belt defined as in Definition 2.4, and let L be
defined as in (1). Now we construct the graph G as follows. First, we identify the
vertices xl+3 and x′4, and x1 and x′1, respectively. Then we join the vertices y1
and x′2, y1 and yl+2, and x′3 and yl+2 by an edge, respectively. It is easy to check
that G is a 4-connected graph. Similar arguments as in (1) can be used to show
that C = x′1x2x3 · · ·xl+2x

′

4a
′x′2y1y2 · · · yl+2x

′

3x
′

1 is a Hamilton cycle containing
only one removable edge x′1x

′

3.
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