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Abstract

A simple graph is a minor of another if the first is obtained from the
second by deleting vertices, deleting edges, contracting edges, and deleting
loops and parallel edges that are created when we contract edges. A cube
is an internally 4-connected planar graph with eight vertices and twelve
edges corresponding to the skeleton of the cube in the platonic solid, and
the Wagner graph V8 is an internally 4-connected nonplanar graph obtained
from a cube by introducing a twist. A complete characterization of all in-
ternally 4-connected graphs with no V8 minor is given in J. Maharry and N.
Robertson, The structure of graphs not topologically containing the Wagner

graph, J. Combin. Theory Ser. B 121 (2016) 398–420; on the other hand,
only a characterization of 3-connected graphs with no cube minor is given
in J. Maharry, A characterization of graphs with no cube minor, J. Combin.
Theory Ser. B 80 (2008) 179–201. In this paper we determine all inter-
nally 4-connected graphs that contain neither cube nor V8 as minors. This
result provides a step closer to a complete characterization of all internally
4-connected graphs with no cube minor.
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1. Introduction

A graph G is called H-free, where H is a graph, if no minor of G is isomorphic to
H. The structure of H-free graphs can be used to studied other properties of the
class of graphs; in addition, many important problems in graph theory can be
formulated in terms of H-free graphs. For example, the four color theorem can be
equivalently stated as: all K5-free graphs are 4-colorable, where K5 is a complete
graph on five vertices. Hadwiger’s Conjecture states that every Kn-free graph is
n − 1 colorable, where Kn is a complete graph on n vertices. This conjecture is
still open for n ≥ 7 and the main difficulty for proving the conjecture is the lack of
structural information on Kn-free graphs. Determining K6-free graphs is one of
the two most famous problems in this area, and another problem is to determine
Petersen-free graphs, see Figure 1. Notice that both graphs have fifteen edges.
As an attempt to better understand these graphs, we try to exclude 3-connected
graphs H with at most fifteen edges. The complement of a path on seven vertices,
P 7, also has 15 edges and it is the largest graph H for which 4-connected H-free
graphs are completely determined, see [5]. The octahedron with an additional
edge is a graph with 13 edges and its characterization problem is solved in [8].
The octahedron, the cube, and V8 are graphs H with twelve edges and their
characterizations can be found in [3, 6, 7], and [9], respectively. For H with at
most eleven edges, all H-free graphs have been determined and their results are
surveyed in [4].

Let k be a non-negative integer. A k-separation of a graph G is an unordered
pair {G1, G2} of induced subgraphs of G such that V (G1) ∪ V (G2) = V (G),
E(G1)∪E(G2) = E(G), V (G1)− V (G2) 6= ∅, V (G2)− V (G1) 6= ∅, and |V (G1)∩
V (G2)| = k. If G has a k-separation, then there is X ⊆ V (G) such that |X| = k
and G \X has at least two components. A 3-connected graph G on at least five
vertices is said to be internally 4-connected if for every 3-separation {G1, G2} of
G, one of them is isomorphic to K1,3. The characterization of 3-connected cube-
free graphs is solved in [7]; however, the result does not completely determine
all the internally 4-connected cube-free graphs, see the theorem below. For each
integer n ≥ 3, let V2n denote a Möbius ladder, which is a graph obtained from a
cycle on 2n vertices by joining the n pairs of opposite vertices. Notice that V6 is
K3,3. For any graph G, the line graph of G, denoted by L(G), is a graph such
that each vertex of L(G) represents an edge of G, and two vertices of L(G) are
adjacent if and only if their corresponding edges share a common end vertex in
G. The 3-sum is an operation of combining two graphs by identifying a triangle
(C3) of one graph with a triangle of the other graph to produce a new graph.

Theorem 1 [7]. A 3-connected graph G is cube-free if and only if G is a minor of

a graph constructed from L(Petersen), L(V2n) for each integer n ≥ 3 (Figure 1),
and the ten graphs in Figure 2, of order ≤ 8, by 3-sums over the triangles shaded
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or the vertices of the triangle circled.

Figure 1. Petersen graph, L(Petersen), V2n and L(V2n).

Figure 2. The ten graphs of order ≤ 8 in [7].

This theorem contains an (possibly printing) error in the second last graph,
that contains two triangles shaded. Performing two 3-sums of K4’s over these
triangles results in a cube-minor.

By a graph we mean a finite, simple, undirected graph. All undefined ter-
minology can be found in [2]. In this paper, we consider internally 4-connected
{cube, V8}-free graphs. To state our main result we need a few definitions. Let
Km,n be a complete bipartite graph with partitions of m and n vertices. Let K
consist of internally 4-connected nonplanar graphs that are obtained from span-
ning subgraphs of some K4,n (n ≥ 4) by adding edges to the color class of size
four.

Theorem 2. Let G be an internally 4-connected {cube, V8}-free graph. Then G
satisfies one of the following:

(i) G has at most seven vertices,

(ii) G is isomorphic to L(K3,3),

(iii) G is isomorphic to K3,n for some n ≥ 5,

(iv) G is a graph in K, which is one of the six types of graph shown in Figure 3.

We close this section by providing an outline of the rest of the paper. In
the next section, we introduce a characterization of internally 4-connected V8-
free graphs and a chain theorem for internally 4-connected graphs. Our proof of
Theorem 2 will be divided into two parts, Sections 3 and 4. First, we determine
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Figure 3. The six-type of graph in Theorem 2(iv).

all internally 4-connected nonplanar {cube, V8}-free graphs. Then we prove The-
orem 2 by showing that all internally 4-connected planar graphs on at least eight
vertices contains a cube-minor.

2. Basic Lemmas

All internally 4-connected graphs V8-free graphs are determined in [9]. To state
the theorem we need to define a few classes of graphs. For each integer n ≥ 3, a
double-wheel, DWn (n ≥ 3), is a graph on n + 2 vertices obtained from a cycle
Cn by adding two nonadjacent vertices u, v and joining them to all vertices on
the cycle. An alternating double-wheel AW2n is a subgraph of DW2n (n ≥ 3)
such that u and v are alternately adjacent to every vertex in C2n. Notice that
AW6 is a cube, see Figure 4. For each integer n ≥ 3, let DW+

n and AW+
2n be

graphs obtained from DWn and AW2n, respectively, by joining u and v. Let
D+ = {DW+

n : n ≥ 3} ∪ {AW+
2n : n ≥ 3}. Then every graph in D+ is nonplanar.

Theorem 3 [9]. Every internally 4-connected V8-free graph G satisfies one of the

following conditions:

(i) G is planar,

(ii) G has at most seven vertices,

(iii) G is isomorphic to L(K3,3),

(iv) G \ {w, x, y, z} has no edges for some w, x, y, z ∈ V (G), or G is in D+.

This result suggests a process for determining all internally 4-connected non-
planar {cube, V8}-free graphs. We also need the following lemma from [9].

Lemma 4 [9]. If G is an internally-4-connected graph, then either G contains

two disjoint cycles, each of which contains at least four edges, or G has at most

seven vertices, or G is isomorphic to L(K3,3).

This lemma implies that L(K3,3) is {cube, V8}-free. Another main tool is a
chain theorem for internally 4-connected graphs. To explain this result we need
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a few definitions. For each integer n ≥ 5, let C2
n be a graph obtained from a

cycle Cn by joining all pairs of vertices of distance two on the cycle. Notice that
C2
5 = DW+

3
= K5, see Figure 4. Let terrahawk be the graph shown in Figure 4,

which can be obtained from a cube by adding a new vertex and joining it to four
vertices in the same C4. We denote the number of edges of a graph G by ‖G‖.

Figure 4. Graphs DW6, AW6, C
2

6
, and terrahawk.

Let G \ e denote the graph obtained from G by deleting an edge e. The
reverse operation of deleting an edge is adding an edge, that is G obtained from
G \ e by adding edge e. We use G/e denote the graph obtained from G by first
contracting an edge e then deleting all but one edge from each parallel family.
The reverse operation of contracting an edge is splitting a vertex. To be precise,
suppose v is a vertex with degree at least four in a graph G. Let NG(v) denote
the set of neighbors of v, which are vertices adjacent to v. Let X,Y ⊆ NG(v) such
that X∪Y = NG(v) and |X|, |Y | ≥ 2. The splitting v results in the new graph G′

obtained from G\v by adding two new adjacent vertices x, y then joining x to all
vertices in X and y to all vertices in Y . We call G′ a split of G, v a predecessor

of x and y, and the other vertex in G a predecessor of itself in G′. Note that
G′/xy = G and G′ is 3-connected as long as G is. To investigate internally 4-
connected graphs, the following chain theorem of Chun, Mayhew and Oxley [1]
will be useful in creating an algorithm that generates all internally 4-connected
graphs.

Theorem 5 [1]. Let G be an internally 4-connected graph such that G is not K3,3,

terrahawk, C2
n (n ≥ 5), or AW2n (n ≥ 3). Then G has an internally 4-connected

minor H with 1 ≤ ‖G‖ − ‖H‖ ≤ 3.

This theorem says that every internally 4-connected can be obtained from
K3,3, terrahawk, C

2
n (n ≥ 5), or AW2n (n ≥ 3) by repeatedly adding edges and

splitting vertices. Equivalently, for every internally 4-connected graph G, there
exists a sequence of internally 4-connected graphs G0, G1, G2, . . . , Gk such that

(i) Gk
∼= G and G0 is K3,3, terrahawk, C

2
n (n ≥ 5), or AW2n (n ≥ 3), and

(ii) Gi (i = 2, . . . , k) is obtained from Gi−1 by adding edges or splitting vertices
at most three times.
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3. Nonplanar {cube, V8}-Free Graphs

The cube and V8 can be obtained from two disjoint cycles C4 by connecting them
with four edges that preserves the ordering of the cycles; however, V8 is nonplanar.
To determine all internally 4-connected nonplanar {cube, V8}-free graphs, we will
follow the characterization in Theorem 3. All graphs with at most seven vertices
have no cube and V8 minors.

We now consider the case that an internally 4-connected graph G satisfies the
condition (iv) in Theorem 3. Let X be a subset of V (G) of at most four vertices
such that G \X has no edges, and let Y = V (G)−X consisting of y1, y2, . . . , yn
for some n ∈ N. Then all vertices in Y are nonadjacent. Since G is internally
4-connected, |X| ≥ 3 and each yi is adjacent to at least three vertices in X.
Moreover, if |X| = 3, then G is K3,n for some n ≥ 5. We will show that K3,n is
cube-free. We denote the classes of graphs in Figure 5 as follows: KI = {K3,n :
n ≥ 5}, KII = {K ′

3,n : n ≥ 5}, KIII = {K ′′

3,n : n ≥ 5}, KIV = {K ′

2,n : n ≥ 6}, and
KV = {K1,n : n ≥ 7}. Let KU = KI ∪KII ∪KIII ∪KIV ∪KV . To study a graph in
these classes, a new vertex obtained from contracting an edge xy for x ∈ X and
y ∈ Y will be put in the partition set X to keep the number of vertices in X.

Figure 5. Graphs K3,n, K
′

3,n
, K ′′

3,n
, K ′

2,n
, and K1,n.

Lemma 6. For any G ∈ KU , G is cube-free.

Proof. Let G ∈ KU . Since all vertices in Y are nonadjacent, if the cube is a
subgraph of G, each disjoint C4 of the cube must contain two vertices of X.
However, |X| ≤ 3, G does not contain a cube-subgraph. If the cube is a minor
of G, then the minor can be obtained from G by a sequence of vertex deletions,
edge deletions, and edge contractions, where the order of operations is irrelevant.
Suppose that a sequence of edge contractions is performed on G first. Notice that
there are two types of edge in G; an edge connecting between X and Y , and an
edge connecting vertices inX. Then for all x ∈ X and y ∈ Y , G/xy ∈ KU , and for
xi, xj ∈ X, G/xixj ∈ KU . After performing the sequence of edge contractions on
G, the resulting graph G∗ is in KU . Then G∗ does not contain a cube-subgraph.
Hence, G is cube-free.

From Theorem 3 and Lemma 6, we obtain the following lemma.
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Lemma 7. For n ≥ 5, K3,n is {cube, V8}-free.

Next, we consider an internally 4-connected graph G satisfying the condition
(iv) in Theorem 3 with |X| = 4. Then G ∈ K and |Y | ≥ 4. Since G is internally
4-connected, at most one pair of vertices in X can be adjacent. Notice that
for x ∈ X and y ∈ Y , G/xy is not internally 4-connected. To study this type of
graph, we relax the connectivity of G to 3-connected. Let L consist of 3-connected
spanning subgraphs of some K4,n, n ≥ 4. Then L ⊆ K. The cube is also in L,
see Figure 6.

Figure 6. The cube in L.

Lemma 8. A graph G in L contains a cube-subgraph if and only if there are

y1, y2, y3, y4 ∈ Y such that {a, b, c} ⊆ N(y1), {a, b, d} ⊆ N(y2), {a, c, d} ⊆ N(y3),
and {b, c, d} ⊆ N(y4).

Proof. Let G ∈ L. If there are y1, y2, y3, y4 ∈ Y such that {a, b, c} ⊆ N(y1),
{a, b, d} ⊆ N(y2), {a, c, d} ⊆ N(y3), and {b, c, d} ⊆ N(y4), then there are two
disjoint C4’s, C4,1 : a, y1, b, y2 and C4,2 : y3, c, y4, d, which four edges ay3, y1c,
by4, and y2d preserve the ordering of the cycles. These form a cube-subgraph in
G. Suppose that G contains a cube-subgraph. Since both X and Y consist of
mutually nonadjacent vertices, each disjoint C4 of the cube must contain exactly
two vertices in X and two vertices in Y ; C4,1 : a, y1, b, y2 and C4,2 : y3, c, y4, d.
We assume without loss of generality that edges ay3, y1c, by4, and y2d are edges
in G which orderly join C4,1 and C4,2. Thus, {a, b, c} ⊆ N(y1), {a, b, d} ⊆ N(y2),
{a, c, d} ⊆ N(y3), and {b, c, d} ⊆ N(y4).

Let L′ be a class of 3-connected graphs that are obtained from spanning
subgraphs of some K4,n (n ≥ 4) by adding edges to the color class of size four.
Then L ⊆ K ⊆ L′.

Lemma 9. Let G ∈ L′. Then the following statements are equivalent.

(i) G contains a cube-subgraph.

(ii) G \ E(G[X]) contains a cube-subgraph, where G[X] is an induced subgraph

of G with vertex set X, the color class of size four.
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(iii) There are y1, y2, y3, y4 ∈ Y such that {a, b, c} ⊆ N(y1), {a, b, d} ⊆ N(y2),
{a, c, d} ⊆ N(y3), and {b, c, d} ⊆ N(y4).

Proof. (i)⇒(ii) Since G contains a cube-subgraph, if an edge uv joining two
disjoint C4’s of the cube is in E(G[X]), we have that u, v ∈ X, and there is
another edge wz joining those two C4’s such that w, z ∈ Y . This contradicts
with the fact that all vertices in Y are nonadjacent. So G \ E(G[X]) contains a
cube-subgraph.

(ii)⇒(iii) Since G \ E(G[X]) ∈ L, by Lemma 8, we obtain (iii).
(iii)⇒(i) From Lemma 8, G \E(G[X]) contains a cube-subgraph, so does G.

Lemma 10. Let G ∈ L′. Then G contains a cube-subgraph if and only if G
contains a cube-minor.

Proof. The forward direction is obvious. Suppose that G contains a cube-minor.
We first perform all edge contractions in constructing the cube. Let G∗ be the
resulting graph. Then G∗ contains a cube-subgraph. Note that contracting an
edge in G[X] leads to a graph in KU , by Lemma 6, it is cube-free. Thus, only
edges connecting X and Y are contracted. By putting the new vertex obtaining
from each edge contraction to the partite set X, G∗ is in L′. By Lemma 9, the
cube is a subgraph G∗ \ E(G∗[X]), which is a subgraph of G \ E(G[X]). So G
contains a cube-subgraph.

From Lemma 10, to find an internally 4-connected cube-free graph G with the
condition (iv), we have to find a graph with condition (iv) and no cube-subgraph.

Lemma 11. An internally 4-connected graph G ∈ K with X = {a, b, c, d} con-

tains a cube-minor if and only if there are vertices y1, y2, y3, y4 ∈ Y such that

{a, b, c} ⊆ N(y1), {a, b, d} ⊆ N(y2), {a, c, d} ⊆ N(y3), and {b, c, d} ⊆ N(y4).

Remark 12. Let G be an internally 4-connected cube-free graph in K. Then
G misses a neighbor set in Lemma 11. Since G is internally 4-connected, if X
contains two pairs of adjacent vertices, G contains K4,n as a subgraph for some
n ≥ 4. So at most two vertices in X are adjacent. Then G can be classified as
follows.

1. All vertices in X are nonadjacent and there is only one vertex y1 in Y
whose neighbor set is X. Then G\y1 misses two neighbor sets in Lemma 11. We
may assume that there are no vertices in Y \ y1 containing neighbor sets {a, b, d}
and {a, c, d}, see Figure 3(a).

2. All vertices in X are nonadjacent and |N(yi)| = 3 for i = 1, . . . , n. Then
G misses at most two neighbor sets in Lemma 11. We may assume that there are
no vertices in Y containing neighbor sets {a, b, d} or {a, c, d}, see Figures 3(b)
and (c).
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3. Two vertices in X are adjacent, say a and b. There are three different
cases.

(a) There are only two vertices in Y , say y1 and y2, such that N(y1) = N(y2) =
X. Then G \ {y1, y2} misses three neighbor sets in Lemma 11, and all yi’s,
3 ≤ i ≤ n, have the same neighbor set. We may assume that N(yi) = {b, c, d}
for i = 3, . . . , n, see Figure 3(d).

(b) There is only one vertex in Y , say y1, such that N(y1) = X. Then G \ y1
misses two neighbor sets in Lemma 11. We may assume that there are no
vertices in Y \ y1 containing neighbor sets {a, b, c} and {a, b, d}, see Figure
3(e).

(c) For i = 1, . . . , n, |N(yi)| = 3. ThenGmisses only two neighbor sets in Lemma
11. We may assume that there are no vertices in Y containing neighbor sets
{a, b, c} and {a, b, d}, see Figure 3(f).

We now consider graphs in D+. Notice that DW+
6

contains a cube-minor by
deleting edge uv, and AW+

2n is a subgraph of DW+
2n for each n ≥ 3. The following

lemma follows directly from the structure of cube-free graphs in Theorem 1.

Lemma 13. For each integer n ≥ 3, DW+
n+3

and AW+
2n contain a cube-minor.

4. Proof of Theorem 2

To prove Theorem 2, we claim that all internally 4-connected planar graphs with
at least eight vertices contain a cube-minor. From Theorem 5, this statement can
be implied by the following lemma.

Lemma 14. The only internally 4-connected planar cube-free graphs are C2
6 and

DW5.

Proof. Let G be an internally 4-connected planar cube-free graph. Suppose, on
contrary, that G is neither C2

6 nor DW5. From Theorem 5, there is a sequence of
internally 4-connected graphs G0, G1, . . . , Gk satisfying the chain theorem such
that Gk is isomorphic to G, and G0 is isomorphic to K3,3, terrahawk, C

2
n (n ≥ 5)

or AW2n (n ≥ 3). Notice that Gi is a minor of Gj for all i < j. Then for
each i, Gi is a planar cube-free graph. Since both terrahawk and AW2n (n ≥ 3)
contain a cube-minor, G0 is not isomorphic to these two graphs. From Kuratowski
Theorem, a graph is planar if and only if it contains neither K5 (or C2

5 ) nor K3,3

as a minor. So G0 is not isomorphic to both C2
5 and K3,3. We now consider C2

n

(n > 5). Let {v1, v2, . . . , vn} be the vertex set of C2
n such that for all 1 ≤ i ≤

n, N(vi) = {vi−2, vi−1, vi+1, vi+2}, where the indices are taken modulo n. By
contracting edges v1v3 and v2v4, we obtain C2

n−2. For all odd n > 5, C2
n contains

C2
5 as a minor, so C2

n is nonplanar. Thus, G0 is not isomorphic to C2
n, for all odd
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n > 5. Since a cube can be obtained from C2
8 by deleting edges v1v2, v3v4, v5v6

and v7v8, C
2
8 contains a cube-minor, and so does C2

n for all even n ≥ 10. So we
only need to consider planar graphs constructed from C2

6 by adding edges and
splitting vertices.

Suppose G0 is isomorphic to C2
6 . Since adding an edge joining two nonadja-

cent vertices in C2
6 gives a nonplanar graph with K3,3-subgraph, we assume that

graph G1 in the sequence is obtained from C2
6 by splitting vertices at least one

time. Up to symmetry, C2
6 has ten splits, one of them is DW5 and six of them

are nonplanar, as illustrated in Figure 7.

Figure 7. Ten splits of C2

6
, where all graphs in the second row are nonplanar.

Figure 8. Splits of DW5 where the first two graphs contain a cube-minor and the last
two graphs contain a K3,3-minor.

From [9], DW5 is the only internally 4-connected planar graph on seven
vertices. If G1 is DW5, then G2 is a split of DW5. Up to symmetry, there are
four splits of DW5 as shown in Figure 8 such that all splits of DW5 contain one of
these graphs as a minor. In these four graphs, two of them contain a cube-minor
and two of them are nonplanar. Since G is a planar cube-free graph, G1 is not
isomorphic to DW5. So G1 is constructed from graph A, B, or D in Figure 7
by splitting vertices at least one times and adding edges. We claim that every
internally 4-connected planar graph constructed from these three graphs by such
methods contains a cube-minor.

For graph A, up to symmetry, every planar one-time split of A contains an
8-vertex graph in Figure 9 as a subgraph. We can construct all planar internally
4-connected graphs on eight vertices from A by adding edges to 8-vertex graphs in
Figure 9 and preserving the planar and the internally 4-connected properties. To
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Figure 9. Planar splits of graph A on eight vertices (set A1).

preserve such properties, if a split has a 3-separation {G1, G2} such that neither
G1 nor G2 is isomorphic to K1,3, then we can add an edge joining two vertices
in G1 and G2 in which their predecessors are adjacent, see 8-vertex graphs with
additional edges in Figure 9. So every planar internally 4-connected graph on
eight vertices constructed from A contains a non-cube-free graph in Figure 9
as a subgraph. Thus, all of these graphs contain a cube-minor. For splitting
A two times, up to symmetry, every planar two-time split of A contains a 9-
vertex graph in Figures 10, 11, and 12 as a subgraph. By the same argument,
every planar internally 4-connected graph on nine vertices constructed from A
contains a cube-minor. So every internally 4-connected planar graph constructed
from A contains a cube-minor. The proof for splits of graphs B is of the same
flavor, see Figures 13, 14, 15, 16, and 17. For graph D, up to symmetry, every
planar one-time split of D contains an 8-vertex graph in Figure 18 as a subgraph.
Since every internally 4-connected graph with K4-subgraph is nonplanar, there
are no internally 4-connected planar graphs on eight and nine vertices that can
be constructed from a graph in the dotted rectangles in Figures 18 and 19 by
adding edges. Then, for the same reason, every internally 4-connected planar
graph constructed from D contains a cube-minor, see Figures 18, 19, and 20.
So G1 contains a cube-minor, and so does G. This is a contradiction since G is
cube-free. Hence, G is isomorphic to either C2

6 or DW5.

Proof of Theorem 2. From Lemmas 4, 7, 11, and 13, we obtain a characteri-
zation of internally 4-connected nonplanar {cube, V8}-free graphs. The result of
Theorem 2 follows from this characterization and Lemma 14.
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Figure 10. Planar splits of graph A on nine vertices (set A2).
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Figure 11. Planar splits of graph A on nine vertices (set A3).
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Figure 12. Planar splits of graph A on nine vertices (set A4).

Figure 13. Planar splits of graph B on eight vertices.



Internally 4-Connected Graphs with no {cube, V8}-Minor 495

Figure 14. Planar splits of graph B on nine vertices.



496 C. Lewchalermvongs and N. Ananchuen

Figure 15. Planar splits of graph B on nine vertices.
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Figure 16. Planar splits of graph B on nine vertices.
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Figure 17. Planar splits of graph B on nine vertices.

Figure 18. Splits of graph D on eight vertices, where graphs in the dotted rectangle
contain a K4-subgraph.
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Figure 19. Splits of graphD on nine vertices, where graphs in the dotted rectangle contain
a K4-subgraph.



500 C. Lewchalermvongs and N. Ananchuen

Figure 20. Splits of graph D on nine vertices.
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