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Abstract

The crossing number cr(G) of a graph G is the smallest number of edge
crossings in any drawing of G. In this paper, we prove that there exists
a unique 5-regular graph G on 10 vertices with cr(G) = 2. This answers
a question by Chia and Gan in the negative. In addition, we also give a
new proof of Chia and Gan’s result which states that if G is a non-planar
5-regular graph on 12 vertices, then cr(G) ≥ 2.
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1. Introduction

All graphs considered here are simple, finite and undirected. A drawing of a graph
G = (V,E) is a mapping D that assigns to each vertex in V a distinct point in the
plane and to each edge uv in E a continuous arc connecting D(u) and D(v). We
often make no distinction between a graph-theoretical object (such as a vertex,
or an edge) and its drawing. For simplicity, we impose the following conditions
on a drawing: (a) no edge passes through any vertex other than its ends, (b)
no three edges have an interior point in common, and (c) if two edges share an
interior point p, then they cross at p. We denote by crD(G) or (when the graph
is unambiguous) cr(D) the number of crossings in the drawing D of a graph G.
The crossing number cr(G) of a graph G is the smallest number of crossings in
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any drawing of G and the corresponding drawing is called an optimal drawing.
Obviously, an optimal drawing is always a good drawing, meaning that no edge
crosses itself, no two edges cross more than once, and no two edges incident with
the same vertex cross. Throughout this paper, all considered drawings are good
unless otherwise specified. A graph G is said to be planar if cr(G) = 0. A drawing
D is called a plane drawing if cr(D) = 0. A planar graph is called maximal planar

if adding an edge between any two non-adjacent vertices results in a non-planar
graph. For more about crossing number of a graph, see [5] and the references
therein.

Let G(r, n) denote the set of all r-regular connected graphs on n vertices
and let G(r, n, c) denote the set of all r-regular connected graphs on n vertices
having crossing number c. Clearly, G(r, n) =

⋃

c≥0 G(r, n, c). Chia and Gan [2, 3]
attempted to classify 5-regular graphs according to their crossing numbers. In
particular, they showed that cr(G) ≥ 2 for any G ∈ G(5, 10). Because they did
not come across any 5-regular graphs on 10 vertices with crossing number 2, they
put forward the following question.

Question 1 [2]. Is it true that G(5, 10, 2) is an empty set ?

In this note, we prove that there exists a unique 5-regular graph on 10 vertices
with crossing number 2 in Section 3. Thus this answers Question 1 in the negative.
In addition, Chia and Gan [2] mainly proved that cr(G) ≥ 2 for any non-planar
graph G ∈ G(5, 12). In Section 4, we give a simple proof of this result.

2. Preliminaries

Let G = (V,E) be a graph and X be a subset of V or of E. We denote by [X]
the subgraph of G induced by X. The neighborhood of a vertex v in a graph
G, denoted by NG(v) or N(v) when the graph is unambiguous, is the set of
all the vertices adjacent to v in G. Let N [v] = {v} ∪ N(v) denote the closed
neighborhood of v. We denote by d(G) the diameter of a graph G which is the
maximum distance between two vertices in G.

A drawing D of a graph G imposes a circular permutation of the edges
incident with v ∈ V (G), which can be extended to its neighborhood N(v). By
πD(v) we denote the circular permutation of N(v) in D. Similarly, we denote by
πD(p) the circular permutation of the four vertices associated with p in D, where
p is a crossing point in D. For a subgraph H of G, we use D(H) to denote the
subdrawing of D induced by H. For edge-disjoint subgraphs H1 and H2 of G, we
denote by crD(H1, H2) the number of crossings in D between every pair of edges
where one edge is in H1 and the other in H2 in D.

Given a graph G and its a vertex-induced subgraph H, contracting subgraph

H in the graph G, denoted as G/H, is the operation which removes all edges of H



A Note on the Crossing Numbers of 5-Regular Graphs 1129

while simultaneously identifying all vertices of H as a single vertex and replacing
all parallel edges by a single edge. Intuitively, it seems true that cr(G) ≥ cr(G/H).
Actually, there are many examples violating the intuition, e.g., Example 2. Hence,
when we consider the contracting operation, we need to combine the special
drawing of G.

Example 2. For i = 1, 2, let Gi be the graph shown in Figure 1. Clearly, G2 =
G1/v1v2. The drawing of G1 shown in Figure 1 indicates that cr(G1) ≤ 1. How-
ever, we know that cr(G2) = 2 from Lemma 5 in [4]. Thus, cr(G2) ≥ cr(G1).

v1
v2

G1 G2

Figure 1. Contracting the edge v1v2.

The responsibility, rD(v), of a vertex v in a drawing D is defined as the total
number of crossings on all edges incident with v. The responsibility, rD(e), of an
edge e in a drawing D is defined as the total number of crossings on e. Because
each crossing is in the responsibility of four vertices and of two edges respectively,
it follows that

∑

rD(v) = 2
∑

rD(e) = 4cr(D).

A vertex v (respectively an edge e) is called to be clean in the drawing D if
rD(v) = 0 (respectively rD(e) = 0), unclean otherwise. A graph H is called to be
clean in the drawing D if all edges of H are clean in D, unclean otherwise.

We now introduce a technique, called adding arc operation, which will be
used throughout this paper.

Definition. Let D be a drawing of a graph G and w ∈ V (G). Assume that
v1, v2 are neighbors in πD(w) but v1v2 6∈ E(G). By adding an arc joining v1
to v2 around w in D, we mean drawing a new edge from v1 to v2 in D by the
following way: first depart from vertex v1 near the edge v1w, then bypass vertex
w in N(D(w), ε), and finally connect to v2 near to the edge v2w (see Figure 2(I),
where the circuit C denotes the boundary of N(D(w), ε)). Notice that the vertex
w may be considered to be a crossing point. It is not hard to see that the arc is
not crossed in the resulting drawing if v1w and v2w both are clean in D.

The following result, which can be easily obtained by Euler’s formula, is
usually used in the proofs of our results.
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w

v1
v2

C

(I) Adding an arc around w (II) The graph F and its drawing

Figure 2. The operation of adding arc and the graph F .

Proposition 3. For any graph G = (V,E) with |V | ≥ 3, we have

cr(G) ≥ |E| − 3|V |+ 6.

Let fk(∆) be the maximum number of vertices in a planar graph with diam-
eter k and maximum degree ∆. Let gk(∆) be the maximum number of vertices in
a maximal planar graph with diameter k and maximum degree ∆. The following
two results are useful to achieve our partial results.

Lemma 4 [6]. g2(5) = 9, g2(6) = 11, g2(7) = 12, f2(4) = 9, f2(5) = 10, f2(6) =
11, f2(7) = 12.

For two disjoint subsets V1, V2 ⊆ V (G), let E(V1, V2) denote the set of edges
in G whose ends are in V1 and V2, respectively.

Lemma 5. Let G = (V,E) be an r-regular graph with V = V1∪V2 and V1∩V2 = ∅.
Then |E([V1])| − |E([V2])| = r(|V1| − |V2|)/2.

Proof. By Hand-Shaking Lemma, we have 2|E([Vi])| = r|Vi| − |E(V1, V2)| for
i = 1, 2. Then we can obtain the desired result by eliminating |E(V1, V2)|.

3. G(5, 10)

Lemma 6. Let G = (V,E) ∈ G(5, 10). Then the following properties hold.

(i) If xy 6∈ E, then |N(x) ∩N(y)| ≥ 2.

(ii) d(G) = 2.

(iii) If xy ∈ E and |N(x) ∩N(y)| ≥ 1, then d(G− xy) = 2.

(iv) Assume that ei = xiyi ∈ E and |N(xi) ∩N(yi)| ≥ 1 for i = 1, 2. If e1 and

e2 are non-adjacent in G and there is no 4-cycle containing both e1 and e2,
then d(G− {e1, e2}) = 2.
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Proof. (i) Suppose to contrary that |N(x) ∩ N(y)| ≤ 1. Then |N [x] ∩ N [y]| =
|N(x) ∩N(y)| ≤ 1. Thus

|V | ≥ |N [x] ∪N [y]| = |N [x]|+ |N [y]| − |N [x] ∩N [y]| ≥ 11.

This is absurd because |V | = 10.

(ii) The claim directly holds by (i).

(iii) Let G′ = G − xy and u, v ∈ V (G′). Assume that uv 6∈ E. Then, by (i)
we have |N(u) ∩ N(v)| = |NG′(u) ∩ NG′(v)| ≥ 2. Assume that uv ∈ E. Then
|N(u) ∩ N(v)| = |NG′(u) ∩ NG′(v)| ≥ 1 if uv = xy, and uv ∈ E(G′) otherwise.
Thus the conclusion holds.

(iv) Let G′′ = G− {e1, e2}. Let u, v ∈ V (G′′) and uv 6∈ E(G′′). Assume first
that uv 6∈ E. As there is no 4-cycle containing both e1 and e2, it follows from
(i) that |NG′′(u) ∩NG′′(v)| ≥ |N(u) ∩N(v)| − 1 ≥ 1. Assume now that uv ∈ E.
Then uv = e1 or e2. Thus |N(u) ∩N(v)| ≥ 1. Since e1 and e2 are non-adjacent
in G, |NG′′(u) ∩NG′′(v)| = |N(u) ∩N(v)| ≥ 1. Thus the claim follows.

A previous proof of Lemma 7 can be found in [3]. Here we shall give a shorter
proof.

Lemma 7 [3]. For any G ∈ G(5, 10), we have cr(G) ≥ 2.

Proof. As |V (G)| = 10 and |E(G)| = 25 for any G ∈ G(5, 10), it follows from
Proposition 3 that cr(G) ≥ 1. Hence, we only need to prove that cr(G) 6= 1 for
any G ∈ G(5, 10). Suppose now to the contrary that there exists G ∈ G(5, 10)
with cr(G) = 1, and let D be an optimal drawing of G. Assume that e1 =
v1v2, e2 = u1u2 ∈ E(G) cross at p in D.

We first prove that [{v1, v2, u1, u2}] ∼= K4. Suppose not. Then one can obtain
a drawing D′ from D by adding an arc around p in D such that cr(D′) = cr(D) =
1. ButD′ has 10 vertices and 26 edges, implying that cr(D′) ≥ 2 by Proposition 3,
a contradiction. Hence, by Lemma 6(ii) and (iii) we have d(G− e1) = 2.

On the other hand, clearly, G − e1 is a planar graph with 10 vertices and
24 edges. Moreover, G − e1 is a maximal planar graph with maximum degree
∆(G− e1) = 5. Thus, Lemma 4 implies that d(G− e1) 6= 2, a contradiction.

Theorem 8. Let G ∈ G(5, 10). Then cr(G) ≥ 2 and the equality holds if and

only if G is the graph F shown in Figure 2(II).

Proof. By Lemma 7 and the drawing of F shown in Figure 2(II), we have cr(F ) =
2. Let G ∈ G(5, 10, 2) and D be an optimal drawing of G. By Lemma 7, it is
sufficient to show that G ∼= F .

Claim 9. If G contains K2,3 as a subgraph, then K2,3 is unclean in D.
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Proof. Suppose to the contrary that K2,3 is clean in D. Let V1 = V (K2,3) and
V2 = V (G) \ V1. Assume first that [V2] is connected. As K2,3 is clean in D,
all vertices of V2 must lie in the same region of D(K2,3). Hence, we can obtain
a plane drawing of K1,2,3 from D by contracting [V2] into a vertex. But it is
impossible because cr(K1,2,3) = 1. Thus we now may assume that [V2] is not
connected. Let H1, H2, . . . , Hk be the connected components of [V2] with νi ≤
νi+1 for i = 1, 2, . . . , k − 1, where νi = |V (Hi)| and k ≥ 2. Clearly,

∑k
i=1 νi = 5.

Two cases now are considered, depending on whether ν1 = 1 or not.

Suppose ν1 = 1. Clearly, [V1 ∪ V (H1)] contains K1,2,3 as a subgraph. As
cr(K1,2,3) = 1 and no two edges incident with the same vertex cross in D, it is
impossible that K2,3 is clean in D.

Suppose ν1 ≥ 2. It follows from Lemma 5 that |E([V1])| = |E([V2])| ≥ 6.
Thus,

6 ≤ |E([V2])| =
k

∑

i=1

|E(Hi)| ≤
k

∑

i=1

1

2
νi(νi − 1) ≤ 4,

which is absurd.

Thereby, the claim follows.

Claim 10. If G contains K4 as a subgraph, then K4 is unclean in D.

Proof. Suppose to the contrary that K4 is clean in D. Let V1 = V (K4) and
V2 = V (G) \ V1. Assume that [V2] is connected. As K4 is clean in D, all vertices
of V2 lie in the same region of D(K4). Consequently, one can obtain a plane
drawing of K5 from D by contracting [V2] into a vertex. But it is absurd because
cr(K5) = 1. So [V2] is not connected. Let H1, H2, . . . , Hk be the connected
components of [V2] with νi ≤ νi+1 for i = 1, 2, . . . , k − 1, where νi = |V (Hi)| and
k ≥ 2. Clearly,

∑k
i=1 νi = 6. As |E([V1])| = 6, it follows from Lemma 5 that

|E([V2])| = 11. Thus,

11 = |E([V2])| =
k

∑

i=1

|E(Hi)| ≤
k

∑

i=1

1

2
νi(νi − 1) ≤ 10,

which is impossible. Therefore, the claim follows.

Claim 11. Every edge of G is crossed at most once in D.

Proof. Suppose that e = xy ∈ E(G) is exactly crossed twice in D. Then it is not
hard to find that D must contain one of the two subdrawings shown in Figure 3
(ignore the dotted lines). Two cases now arise.

Case 1. D contains the subdrawing shown in Figure 3(I). We first conclude
that |N(x) ∩ N(y)| ≥ 1. Because otherwise one can obtain a drawing D′ from
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D by adding an arc around p1 or p2, see the dotted lines in Figure 3(I). Clearly,
cr(D′−e) = 0. But D′−e has 10 vertices and 25 edges, implying that cr(D′−e) ≥
1 by Proposition 3, a contradiction. Hence, we now have d(G− e) = 2 by Lemma
6(iii). It is not hard to see that G− e is a maximal planar graph with 10 vertices
and maximum degree ∆(G− e) = 5. This contradicts the fact that g2(5) = 9 by
Lemma 4.

Case 2. D contains the subdrawing shown in Figure 3(II). We construct a
plane drawing D′ from D by the following way: first treat p1 and p2 as two true
vertices, then add two arcs joining p1 to v1 and v2 around p2, see the dotted lines
in Figure 3(II). Clearly, the resulting drawing D′ is planar. However, there are
12 vertices and 31 edges in D′. This implies that cr(D′) ≥ 1 by Proposition 3, a
contradiction.

p1 p2 p1 p2
x y x y

e e

(I) (II)

v1

v2

Figure 3. Two possible subdrawings of D.

Claim 12. Adding two edges in D between any two pairs of non-adjacent vertices

results in a drawing D′ with cr(D′) ≥ 3.

Proof. As D′ has 10 vertices and 27 edges, it follows from Proposition 3 that
cr(D′) ≥ 3.

Claim 13. Let x, y be two clean vertices in D and xy 6∈ E(G). Then |N(x) ∩
N(y)| = 2.

Proof. As x, y both are clean in D, it follows from Claim 9 that |N(x)∩N(y)| ≤
2. The reverse inequality holds by Lemma 6(i).

Claim 14. If there are exactly two clean vertices in D, then they are non-adjacent

in G.

Proof. Let x1 and x2 be the two clean vertices in D and let X = {x1, x2}.
Suppose to the contrary that x1x2 ∈ E(G). Assume that y1y3 ∈ E(G) and y2y4 ∈
E(G) (respectively, z1z3 ∈ E(G) and z2z4 ∈ E(G)) cross at p1 (respectively, p2)
in D. Let Y = {yi : 1 ≤ i ≤ 4} and Z = {zi : 1 ≤ i ≤ 4}. Note that there are
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exactly two clean vertices in D. Thus |Y ∪ Z| = |V (G)| − 2 = 8. This implies
that Y ∩ Z = ∅.

We now claim that either both [Y ] and [Z] are isomorphic to K4 or they are
isomorphic to K4 and K4 − e respectively. Otherwise we can add at least two
arcs around p1 and p2 in D without producing new crossings, see the dotted lines
in Figure 4(I), contradicting Claim 12. Without loss of generality, assume that
[Y ] ∼= K4.

Next we shall show that |N(x1) ∩ Y | ≤ 2. Suppose not. Let V1 = {x1} ∪ Y
and V2 = {x2} ∪ Z. By Lemma 5, we have |E([V1])| = |E([V2])| ≥ 9, implying
that [V1] and [V2] both are connected. Note that crD([V1], [V2]) = 0. Thus all
vertices of V2 must lie in the same region of D([V1]). This enforces that the edges
of [V1] are crossed by the edges in E(V1, V2), a contradiction.

Similarly, we can deduce that |N(x2)∩Y | ≤ 2 and |N(xi)∩Z| ≤ 2 for i = 1, 2.
Moreover, as |N(xi)∩(Y ∪Z)| = 4, we conclude that |N(xi)∩Y | = |N(xi)∩Z| = 2
for i = 1, 2.

Let H1 = [X ∪ Y ]. As |E(H1)| = 11, we have |E([Z])| = 6 by Lemma 5,
implying that [Z] ∼= K4. It is not hard to verify that there are only three possible
drawings for D(H1), see Figure 4(II)(III)(IV). We first may exclude D1 because
there is a clean K4, contradicting Claim 10. For D2, as [Z] is connected and
crD(H1, [Z]) = 0, all vertices of Z must lie in the same region of D2. But the
edges in E(H1) will be crossed by the edges in E(X ∪ Y, Z), a contradiction.
Thus, D3 is the only possible drawing for D(H1). Let H2 = [X ∪ Z]. With the
symmetry, we can also deduce that D3 is the only possible drawing for D(H2).
Thus D(H1 ∪H2) must be D4 shown in Figure 4(V). However, in this case it is a
routine exercise to show that there exists a pair of edges in G but not in H1 ∪H2

such that they cross each other in D, a contradiction.

p1

y1 y2

y3y4

x1 x2

p1

x1 x2

x1

x2

p2

z1 z2

z3z4

p1 p2

(I) Adding arcs around p1 and p2
(II) D1

(III) D2 (IV) D3

x1

x2

p2

(V) D4

Figure 4. Adding arcs and the possible subdrawings of D.
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Claim 15. If there are exactly three clean vertices in D, then two of these vertices

are not adjacent in G.

Proof. Let x1, x2 and x3 be the three clean vertices in D. Let X = {x1, x2, x3}
and Y = V (G) \ X. Assume that a1a3 ∈ E(G) and a2a4 ∈ E(G) (respectively,
b1b3 ∈ E(G) and b2b4 ∈ E(G)) cross at p1 (respectively, p2) in D. Let A = {ai :
1 ≤ i ≤ 4} and B = {bi : 1 ≤ i ≤ 4}. Note that Y = A ∪ B and |Y | = 7. Thus
|A∪B| = |A|+ |B|− |A∩B| = 7. This implies that |A∩B| = 1, further implying
that D([Y ]) contains a subdrawing shown in Figure 5(I). Moreover, we claim
that D([Y ]) contains a subdrawing shown in Figure 5(II). Because otherwise one
can add at least two arcs around two crossing points p1 and p2 in D without
introducing additional crossings, contradicting Claim 12.

Now we proceed by contradiction. Suppose that x1, x2 and x3 are adjacent
each other in G. We now distinguish two cases.

Case 1. wv 6∈ E(G). As degG(u) = 5, uv 6∈ E(G). This implies that there
is no 4-cycle containing both e1 and e2. Thus we have d(G − {e1, e2}) = 2 by
Lemma 6(iv). Let D′ be the drawing obtained from D by adding an arc joining
u to v around p2 while simultaneously deleting e1 and e2. Clearly, D′ is a plane
drawing with 10 vertices and 24 edges. This means that D′ is a maximal planar
graph with maximum degree 5. But this is impossible because g2(5) = 9 by
Lemma 4.

Case 2. wv ∈ E(G). Clearly, D([Y ]) contains a subdrawing shown in Fig-
ure 5(III). Note that [X] is connected and clean in D, thus x1, x2, x3 must be
placed in the same region of D([Y ]). However, it is not hard to verify that no
matter in which region of D([Y ]) x1, x2, x3 are placed, the edges in [Y ] will be
crossed by the edges in E(X,Y ), again a contradiction.

p1 p2 p1 p2

uw

v

p1 p2

uw

v

(I) (II) (III)

e1

e2 e1

e2

Figure 5. The possible subdrawings of D([Y ]).

Claim 16. There exist two clean and non-adjacent vertices in D.

Proof. By the definition of responsibility, we have
∑

v∈V (G)

rD(v) = 4crD(G) = 8,
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which implies that there are at least two clean vertices in D. By Claims 14 and
15, we only need to consider the case that there are at least four clean vertices
in D. Suppose that all clean vertices in D are adjacent each other in G. Then G
contains K4 as a subgraph which is clean in D, contradicting Claim 10.

Now we continue to the proof of the theorem. By Claim 16, let us assume
that u0, v0 ∈ V (G) are two clean vertices in D and u0v0 6∈ E(G). Then, |N(u0)∩
N(v0)| = 2 by Claim 13. Thus, D contains a subdrawing shown in Figure 6(I).

We first claim that any two vertices in N(u0) (respectively, N(v0)) are not
adjacent in G unless they are neighbors in πD(u0) (respectively, πD(v0)). Because
otherwise the edge joining them is crossed at least twice in D, contradicting
Claim 11. Thus, v1 must be adjacent to u0, v0, u1, u4 and v2; and u1 must be
adjacent to u0, v0, v1, v4 and u2, see Figure 6(II).

We now claim that u4v4 6∈ E(G). Otherwise, observe that v2 and v3 both
must be adjacent to at least one of u2 and u3. This enforces that u4v4 is crossed
at least twice, contradicting Claim 11. Similarly, we may claim that u2v2 6∈ E(G).
Thus, we can conclude the following statement, cf. Figure 6(III).

(i) v2 is adjacent to v0, v1, v3, u4 and u3;

(ii) u2 is adjacent to u0, u1, u3, v4 and v3;

(iii) v4 is adjacent to v0, u1, u2, v3 and u3;

(iv) u4 is adjacent to u0, v1, v2, u3 and v3.

Therefore, G ∼= F and the proof is done.

u0

u1

u2

u3

u4

v1

v2

v3

v4

v0 u0

u1

u2

u3

u4

v1

v2

v3

v4

v0

(I) (III)

u0

u1

u2

u3

u4

v1

v2

v3

v4

v0

(II)

Figure 6. The possible subdrawings of D.

4. G(5, 12)

Chia and Gan [2] mainly showed that if G is a non-planar 5-regular graph on 12
vertices, then cr(G) ≥ 2. In the rest of the paper, we give a simple proof for this
result.
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Theorem 17. cr(G) ≥ 2 for any G ∈ G(5, 12) except for the planar graph icosa-

hedron.

Proof. For any G ∈ G(5, 12), it is well-known that cr(G) = 0 if and only if G
is the icosahedron (see [1]). Thus, it suffices to prove that cr(G) 6= 1 for any
G ∈ G(5, 12). We proceed by contradiction. Suppose that there exists a graph
G ∈ G(5, 12) with cr(G) = 1, and let D be an optimal drawing of G. Assume that
e1 = x1x3 and e2 = x2x4 cross at p in D, see Figure 7(I). Let X = {xi : 1 ≤ i ≤ 4}
and Y = V (G) \X = {yi : 1 ≤ i ≤ 8}.

x1 x2

x3x4

x1
x2

x3x4

x1
x2

x3x4

x1 x2

x3x4

p p

p p

y1

y2

y1

y2

(I) (II) (III)

Figure 7. Some possible subdrawings of D.

Claim 18. If G contains K2,3 as a subgraph, then K2,3 is unclean in D.

Proof. Suppose to the contrary that K2,3 is clean in D. Let V1 = V (K2,3)
and V2 = V (G) \ V1. Assume first that [V2] is connected. As K2,3 is clean,
all vertices of V2 lie in the same region of D(K2,3). This means that we can
obtain a plane drawing of K1,2,3 from D by contracting [V2] into a vertex. But
it is impossible because cr(K1,2,3) = 1. It remains to consider that [V2] is not
connected. Let H1, H2, . . . , Hk be the connected components of [V2] with νi ≤
νi+1 for i = 1, 2, . . . , k − 1, where νi = |V (Hi)| and k ≥ 2. Two cases now arise,
depending on whether ν1 = 1 or not.

Suppose ν1 = 1. Then [V1 ∪ V (H1)] contains K1,2,3 as a subgraph. As
cr(K1,2,3) = 1 and no two edges incident with the same vertex cross in D, it
is impossible that K2,3 is clean in D.

Suppose ν1 ≥ 2. As |E([V1])| ≥ 6, we have |E([V2])| ≥ 11 by Lemma 5. Thus,

11 ≤ |E([V2])| =
k

∑

i=1

|E(Hi)| ≤
k

∑

i=1

1

2
νi(νi − 1) ≤ 11,

which implies that k = 2, ν1 = 2, ν2 = 5 and |E(H2)| = 10, further implying
that H2

∼= K5. So the unique crossing in D is from two edges of H2. Note that
[V1 ∪ V (H1)] is connected, thus all vertices of V1 ∪ V (H1) must lie in the same
region of D(H2). Hence, we can obtain a drawing D′ of K6 from D by contracting
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[V1 ∪ V (H1)] into a vertex such that cr(D′) = 1. But it is impossible because
cr(K6) = 3.

Claim 19. Adding two edges in D between any two pairs of non-adjacent vertices

results in a drawing D′ with cr(D′) ≥ 2.

Proof. As D′ has 12 vertices and 32 edges, it follows from Proposition 3 that
cr(D′) ≥ 2.

Claim 20. [X] 6∼= K4.

Proof. Suppose to the contrary that [X] ∼= K4. We first assert that there are at
most two vertices in Y which are not adjacent to any vertex in X. Otherwise,
without loss of generality, assume that yixj 6∈ E(G), where i = 1, 2, 3 and j =
1, 2, 3, 4. Clearly,

⋃3
i=1N(yi) ⊆ Y and |N(yi)| = 5 for i = 1, 2, 3. By Claim 18,

we know that |N(yi) ∩N(yj)| ≤ 2 for 1 ≤ i < j ≤ 3. Thus,

|Y | ≥

∣

∣

∣

∣

∣

⋃

1≤i≤3

N(yi)

∣

∣

∣

∣

∣

=
∑

1≤i≤3

|N(yi)| −
∑

1≤i<j≤3

|N(yi) ∩N(yj)|+

∣

∣

∣

∣

∣

⋂

1≤i≤3

N(yi)

∣

∣

∣

∣

∣

≥ 15− 6 = 9,

which is absurd because |Y | = 8. Thus, we have |E(X,Y )| ≥ 6.

Let D′ be a drawing obtained from D by contracting [X] into a vertex. As
[X] is connected and [Y ] is clean in D, it is easy to see that cr(D′) = 0. On the
other hand, it follows from Lemma 5 that |E([Y ])| = |E([X])|+ 10 = 16. So D′

has 8+1 = 9 vertices and at least 16+6 = 22 edges. Moreover, by Proposition 3,
we have

cr(D′) ≥ 22− 3× 9 + 6 = 1,

which yields a contradiction.

Claim 21. [X] 6∼= K4 − e.

Proof. Suppose to the contrary that [X] ∼= K4 − e. Without loss of generality,
assume that x3x4 6∈ E(G) and x1yi ∈ E(G) for i = 1, 2, see Figure 7(II). Let
L = [N [x1]] and R = G − L. We claim that any neighbors in πD(x1) except for
x3 and x4 are adjacent in G. Because otherwise we can obtain a drawing D∗

from D by adding two arcs around x1 and p such that cr(D∗) = 1, contradicting
Claim 19. Thus D(L) contains a subdrawing shown in Figure 7(III).

Let s be the number of vertices in R which are adjacent to at least one vertex
of L in G. Consider a drawing D′ obtained from D by contracting L into a vertex.
Observe that L is connected and R is clean in D, thus cr(D′) = 0. On the other
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hand, Lemma 5 implies that |E(R)| = |E(L)| ≥ 10. So D′ has 6 + 1 = 7 vertices
and at least 10 + s edges. Thus, it follows from Proposition 3 that

cr(D′) ≥ 10 + s− 3× 7 + 6 = s− 5.

This means that s ≤ 5, implying that there exists at least one vertex of R, say y3,
which is not adjacent to any vertex of L in G. Thus N [y3] = V (R). Clearly, all
vertices of R must lie in the same region of D(L). We claim that x3yi 6∈ E(G) for
i = 1, 2. Because otherwise x3yi is crossed by the edges in E(V (L), V (R)). Thus
degL(x3) = 2, implying that x3 is adjacent to exactly three vertices of R which
are also in N(y3). This means that [N [x3] ∪N [y3]] contains K2,3 as a subgraph
which is clean in D, contradicting Claim 18.

Now we continue to the proof of the theorem. Assume that there are k pairs
of neighbors in πD(p) which are non-adjacent in G. Then, one can obtain a
drawing D′ from D by adding k arcs around p such that cr(D′) = 1, see the
dotted lines in Figure 7 (I). Observe that D′ has 12 vertices and 30 + k edges,
thus it follows from Proposition 3 that

1 = cr(D′) ≥ 30 + k − 12× 3 + 6 = k,

which implies that k = 0 or 1. Thus [X] ∼= K4 or K4−e, contradicting Claims 20
and 21. Hence, the proof is complete.
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