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Abstract

Metric properties of Hanoi graphs Hn
p are not as well understood as those

of the closely related, but structurally simpler Sierpiński graphs Sn
p . The

most outstanding open problem is to find the domination number of Hanoi
graphs. Here we concentrate on the first non-trivial case of H3

4 , which con-
tains no 1-perfect code. The metric dimension and the dominator chromatic
number of H3

4 will be determined as well. This leads to various conjectures
for the general case and will thus provide an orientation for future research.
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0. Outline

The purpose of this note is to approach the question of domination in Hanoi
graphs. Although we will only deal with a specific example, we nevertheless be-
lieve this to be worthwhile in view of the unsolved general case. Our investigation
demonstrates that already this seemingly simple instance is quite non-trivial, but
that our techniques might lead to a solution in other cases.
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In Section 1 we introduce Hanoi graphs and some of their properties. Sec-
tion 2 is devoted to a brief description of the concept of domination in graphs to
set the stage for domination in Hanoi graphs as addressed in Section 3. The last
section will give an outline for further research.

1. Hanoi Graphs

Hanoi graphs Hn
p were introduced as a mathematical model for the Tower of

Hanoi game with 3 ≤ p ∈ N pegs and n ∈ N0 discs.1 They have reached a
certain popularity already. Therefore and in order to keep this note as brief as
possible, we will not give a formal definition nor a complete overview of results and
relations to other mathematical objects, for which we refer to the comprehensive
monograph [5]. Suffice it here to say that Hanoi graphs can be defined recursively
on the set of vertices s ∈ [p]n0 , [p]0 = {0, . . . , p− 1}, consisting of n-tuples written
as s = sn · · · s1, where s stands for the state of the puzzle with discs d numbered
from 1 to n according to increasing size, and sd referring to the peg, labelled from
0 to p− 1, where disc d is lying. Starting with n = 0 for a single vertex labelled
by the empty word e, H1+n

p is constructed from p copies of graphs iHn
p , where

the i ∈ [p]0 indicates the variable concatenated to the left of each vertex in Hn
p ,

linked by suitable edges corresponding to legal moves of the Tower of Hanoi game.
It is obvious from the definition that Hanoi graphs are connected; the canonical
distance function, defined by the length of shortest paths between vertices, is
denoted by d. The classical case is p = 3, but since in this note we concentrate
on p = 4, we present the first two steps of this construction in Figure 1.

There is also an explicit definition of the edge sets E(Hn
p ), for which we refer

to [5, (5.44)]. Apart from the trivial H0
p = ({e}, ∅), we see that H1

p
∼= Kp, the

complete graph of order p. So (almost) everything is known for them.2 This also
applies to a large extent to the original Hanoi graphs Hn

3 which are isomorphic to
the Sierpiński graphs Sn

3 [5, Chapter 4]. Since the general Sierpiński graphs Sn
p

are obtained recursively by taking p copies of the graph Sn−1
p (with S0

p = ({e}, ∅))
and linking each pair of these copies by exactly one edge, they can be viewed as
iterated complete graphs. Many properties, metric and topological, are therefore
known for them; we refer to the seminal paper [7]. But although the order of
these graphs is |Sn

p | = pn = |Hn
p |, we have for the size∥∥Sn

p

∥∥ =
p

2

(
pn − 1

)
<
p(p− 1)

4

(
pn − (p− 2)n

)
=
∥∥Hn

p

∥∥
as soon as p > 3 and n > 1, whence Hn

p and Sn
p are not isomorphic anymore in

these cases; cf. [5, Proposition 5.42]. (Obviously, S0
p = H0

p and S1
p
∼= Kp

∼= H1
p .)

1The case n = 0 is considered just to have a simple base case for induction proofs.
2The “almost” refers, e.g., to the crossing numbers.
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Figure 1. The graphs H0
4 , H1

4 , and H2
4 (see [5, Figure 5.6]).

So we cannot profit from our knowledge about Sierpiński graphs when interested
in Hanoi graphs, e.g., with respect to metric properties (cf. [4]). On the other
hand, some topological properties are accessible for both classes of graphs. For
instance, for n ∈ N, they are all hamiltonian [5, Exercises 4.5 and 5.10], connec-
tivity is the same: κ(Sn

p ) = p− 1 = κ(Hn
p ) [5, Exercise 4.8 and Proposition 5.49],

independent of n their automorphism groups are, respectively, isomorphic to the
permutation group on p elements [5, Theorems 4.13 and 5.53], they share the
same range of parameters for planarity [9], and basic colorings can be obtained
[10]. But many questions remain open for Hanoi graphs, cf. [3].

The first case to consider is n = 2. Here virtually everything can be deter-
mined just by inspection, except, e.g., complexity, i.e., the number of spanning
subgraphs, the number of (perfect) matchings and, for p ≥ 5, the questions of
crossing number and genus. For instance, perfect codes exist, leading to the dom-
ination number (see below) and even power domination and propagation radius
could be approached for any H2

p [15, Theorems 3.1 and 3.2]. For p = 4 center and
periphery, i.e., the sets of vertices with minimal or maximal eccentricity,3 respec-
tively, coincide with the whole vertex set. The median, i.e., the set of vertices
with minimal average distance to the other vertices,4 consists of all non-perfect
vertices,5 M(H2

4 ) = Q2 \ {ii | i ∈ Q}, where Q = {0, 1, 2, 3}, and prox(H2
4 ) = 9

5 ,
rem(H2

4 ) = 11
5 ; the average distance6 is 19

10 . For some other numerical values, see
[8, Table 2].

3These values are called radius rad and diameter diam.
4This value is called proximity prox; the corresponding maximum is the remoteness rem.
5Vertices in in Hn

p , i ∈ [p]0, are called perfect.
6Average taken over all pairs (s, t) with s 6= t.
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Since there is currently no chance to approach the graphs H3
p for general p >

3, we will from now on concentrate on the graph H3
4 whose order is |H3

4 | = 64, size
‖H3

4‖ = 168, minimal degree δ(H3
4 ) = 3, maximal degree ∆(H3

4 ) = 6, chromatic
number χ(H3

4 ) = 4, chromatic index χ′(H3
4 ) = 6, and total chromatic number

χ′′(H3
4 ) = 7. Figure 2 shows a drawing of H3

4 in the plane with 72 crossings,
thus showing that for the crossing number we have cr(H3

4 ) ≤ 72; whether this
upper bound is optimal is not known. Note that the corresponding S3

4 is the only
non-planar Sierpiński graph with n ≥ 3 for which the crossing number has been
determined: cr(S3

4) = 12, see [12, Proposition 3.2].

Figure 2. The graph H3
4 (cf. [5, Figure 5.13]).
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Let us define F =
{
ijk ∈ Q3 | |{i, j, k}| = 3

}
, the set of vertices correspond-

ing to “flat” states where no two discs lie on the same peg. Note that this set
induces a K3,3-subdivision, showing that H3

4 is not planar. Obviously |F | = 24
and we have the following facts about eccentricities.

Theorem 1. If s ∈ F , then ε(s) = 4, otherwise ε(s) = 5, i.e., rad(H3
4 ) =

4 = ε(012), diam(H3
4 ) = 5 = ε(000); in particular, the average eccentricity is

ε(H3
4 ) = 37

8 . The center of H3
4 is C(H3

4 ) = F and the periphery is P(H3
4 ) = Q3\F .

Proof. In an easy case analysis it suffices for symmetry reasons to show that
d(012, t) ≤ 4 = d(012, 111) and d(000, t) ≤ 5 = d(000, 111) for all t ∈ Q3. Then
for s ∈ {001, 010, 011} we also have d(s, t) ≤ 5 = d(s, 111) because all these
vertices s have a flat neighbor and the distance to state 111 can be checked
easily.

Although these metric properties are very basic, H3
4 is the prototype for the

Peripheral phenomenon which cannot be explained yet; see [5, p. 227]. Moreover,
proximity, remoteness and the median have not been determined yet; the average
distance is approximately 3.083 (see [8, Table 2]).

Another interesting graph parameter is metric dimension, i.e., the size of a
smallest resolving set.7 For Sierpiński graphs it has been determined by Klavžar
and Zemljič in [13, Corollary 6] to be µ(Sn

p ) = p − 1 for n ∈ N with any p − 1
out of the vertices in, i ∈ [p]0, forming a minimal resolving set. The same is true
for H2

p ; see [3, Section 6]. However, even the set of all perfect vertices does not
constitute a resolving set for H3

4 ; e.g., 100 and 101 have the same distance vector
with respect to {iii | i ∈ Q}. No resolving set U ⊂ Q3 can have less than 3
elements: let U 3 u = ijk, then ij`, ` 6= k, all have distance 1 to u and if v ∈ U
not all d(ij`, v) can be different, because otherwise

d(ij`1, v) < d(ij`2, v) < d(ij`3, v) ≤ d(ij`3, ij`1) + d(ij`1, v) = 1 + d(ij`1, v),

a contradiction. Schlosser [14] has found the resolving set {001, 121, 202, 311} of
size 4 and was able to exclude all triples of vertices as resolving sets with the aid
of a computer program. So we have the following result.

Theorem 2. µ(H3
4 ) = 4 > 3 = µ(S3

4).

This has been confirmed by Petr whose calculations lead to the following.

Conjecture. For every p ≥ 3 and n ≥ 2 we have that
µ(Hn

p ) = p− 1 + (p− 3)(n− 2) = µ(Sn
p ) + (p− 3) (n− 2).

We now turn to domination numbers.
7A subset {r1, . . . , rm}, m ∈ N0, of the vertex set is called resolving, if the distance vector

(d(v, r1), . . . , d(v, rm)) determines every vertex v uniquely.



1100 A.M. Hinz and N. Movarraei

2. Domination

The results in this section are well-known, but we present them nevertheless to
keep this note as self-contained as possible.

Let G be a simple graph and define the (closed) neighborhood of a vertex
u ∈ V (G) by

N [u] = {u} ∪ {v ∈ V (G) | {u, v} ∈ E(G)} .

Moreover, the (closed) neighborhood of a subset U of V (G) is N [U ] =
⋃

u∈U N [u].
We say that v ∈ V (G) is dominated by d ∈ V (G) (or by D ⊂ V (G)), if v ∈ N [d]
(or v ∈ N [D]). A D ⊂ V (G) is called (a G-)dominating (set) if N [D] = V (G),
i.e., if all v ∈ V (G) are dominated by D. Since obviously V (G) is dominating, it
makes sense to define the domination number of G as

γ(G) = min {|D| | D ⊂ V (G), N [D] = V (G)} .

An immediate upper bound is γ(G) ≤ |G| with equality if and only if ∆(G) = 0.
(γ(G) = |G| means that V (G) is the only dominating set. If ∆(G) = 0, then no
vertex can be dominated by any other vertex. If ∆(G) ∈ N, then delete some v
with deg(v) 6= 0 such that other vertices are dominated by themselves and v by
its neighbor(s), whence V (G) is not minimal.) For a lower bound we have the
following.

Proposition 3. If C ⊂ V (G) is 1-error correcting, i.e., for every {c, c′} ∈
(
C
2

)
we have that N [c] ∩N [c′] = ∅,8 and D is G-dominating. Then |C| ≤ |D|.

Proof. Let |C| = k and C = {c1, . . . , ck} and let D = {d1, . . . , d`} with |D| = `.
Then for every i ∈ [k] there is a j ∈ [`] such that dj ∈ N [ci]. By taking, e.g.,
the minimal such j, we get a mapping from [k] to [`], which is injective because
N [c] ∩N [c′] = ∅ if {c, c′} ∈

(
C
2

)
. Therefore k ≤ ` by the Pigeonhole principle.

An immediate consequence is the following.

Corollary 4. If C is a perfect code9 of G, then γ(G) = |C|. In particular, all
perfect codes of G have the same cardinality.

Proof. Since C is a G-dominating set, we have γ(G) ≤ |C|. The converse in-
equality follows from Proposition 3.

8
(
C
2

)
is the set of 2-element subsets of C.

9By perfect code we always mean a 1-perfect code C ⊂ V (G) with respect to the canonical
graph distance on connected components of G, i.e., N [C] is a partition of V (G). In other words,
C is G-dominating and 1-error correcting.



The Hanoi Graph H3
4 1101

Another lower bound comes from the obvious fact that

(1) γ(G)(1 + ∆(G)) ≥ |G|.

Here equality holds if and only if all minimal dominating sets are perfect codes
and all their elements have maximal degree. From (1) it follows that

(2) γ(G) ≥
⌈

|G|
1 + ∆(G)

⌉
.

Since the domination number of a graph is the sum of the domination numbers
of its connected components, we may restrict ourselves to connected graphs for
some examples. For ∆(G) = 0 we have G = K0 or G = K1 with γ(K0) = 0
and γ(K1) = 1, respectively. For ∆(G) = 1 we get G = K2 with γ(K2) = 1.
In all these cases there is equality in (1) and (2). Now let ∆(G) = 2. Then G
is either a path Pk or a cycle Ck, k ≥ 3, and γ(Pk) =

⌈
k
3

⌉
= γ(Ck). There is

equality in (2), but equality in (1) only if k is a multiple of 3. Clearly, equality
in (2) and (1) holds for G = Kp, p ∈ N, where |Kp| = p, ∆(Kp) = p − 1, and
γ(Kp) = 1. Therefore, when looking at the somewhat more demanding class of
Sierpiński graphs Sn

p , we may restrict ourselves to p, n ≥ 2. Here |Sn
p | = pn and

∆(Sn
p ) = p. As it is known (see [5, (4.14)]) that

γ(Sn
p ) =

pn + p(n+1) mod 2

p+ 1
,

we have equality in (2), but never in (1). By isomorphy, the same then applies to
Hanoi graphs Hn

3 , but whereas |Hn
p | = pn = |Sn

p |, we have ∆(Hn
p ) =

(
p
2

)
−
(
p−n
2

)
,

if 2 ≤ n < p − 1, and ∆(Hn
p ) =

(
p
2

)
, if 2 ≤ p − 1 ≤ n. Hence, for 2 ≤ n < p − 1

we have

(3)
|Hn

p |
1 + ∆(Hn

p )
=

2pn

n(2p− n− 1) + 2
<

pn

p+ 1
=

|Sn
p |

1 + ∆(Sn
p )
.

For 2 ≤ p− 1 ≤ n, we get

(4)
|Hn

p |
1 + ∆(Hn

p )
=

2pn

p(p− 1) + 2
≤ pn

p+ 1
=

|Sn
p |

1 + ∆(Sn
p )

with equality only if p = 3.

3. Domination of Hanoi Graphs

Special cases for the relation between Hanoi and Sierpiński graphs are (p ≥ 3,
n ∈ N0):

γ(S1
p) = 1 = γ(H1

p ),

γ(S2
p) = p = γ(H2

p ),

γ(Sn
3 ) = 1

4 (3n + 2 + (−1)n) = γ(Hn
3 ),
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where the second identity in the central line follows from Corollary 4 because H2
p

has a perfect code consisting of the perfect vertices (cf. [5, Exercise 5.11]) and the
last identity is a consequence of Hn

3
∼= Sn

3 . We have strict inequalities in both,
(1) and (2), the latter only if p > 3, because for p = 3 and n > 1 strict inequality
only holds for (1), i.e., γ(Hn

3 ) =
⌈
3n

4

⌉
. This is sequence A122983 in the OEIS; its

sequence of differences is 2∗A015518.

So we might conjecture: γ(Hn
p ) = γ(Sn

p ), or, less ambitious,

γ
(
Hn

p

)
≤ γ

(
Sn
p

)
.

The latter is supported by the following result.

Proposition 5. If p ∈ N3 is odd and n ∈ N0, then γ(Hn
p ) ≤ γ(Sn

p ).

Proof. The domination number of a spanning subgraph cannot be smaller than
the domination number of the graph itself. From [6, Theorem 3.1] (cf. [5, The-
orem 5.48]) we know that Sn

p can be embedded isomorphically into Hn
p if (and

only if) p is odd.

The smallest unknown case is p = 4 and n = 3 where γ(S3
4) = 13. From

(2) we know γ(H3
4 ) ≥ 10. The same result follows from Proposition 3 with the

1-error correcting set

C = {000, 011, 022, 033, 101, 111, 202, 222, 303, 333} ⊂ V (H3
4 ) ,

containing 4 vertices of degree 3 and 6 vertices of degree 5 with non-overlapping
neighborhoods; the set C leaves 12 vertices uncovered.

Moreover, with the H3
4 -dominating set

D = {003, 011, 020, 033, 113, 121, 132, 202, 210, 221, 300, 323, 332}

we see that indeed γ(H3
4 ) ≤ 13. The set D contains 11 vertices of degree 5 and

2 vertices of degree 6; it covers 16 vertices twice.

We will now present a combinatorial analysis to decide upon γ(H3
4 ) ∈ {10, 11,

12, 13}. This will be done by distinguishing certain types of vertices, a strategy
which may be employed in the general case of Hn

p as well. This is an advantage
of our analytical approach because computational methods will be limited by the
fact that finding the domination number for general graphs is of NP-complete
complexity (see, e.g., [2, Theorem 1.7]). Of course, it would be interesting to know
whether there is an efficient, i.e., polynomial, algorithm for Hanoi graphs which
could perhaps be constructed on the base of our analysis. In order to appreciate
how complex computations can be for metric properties of Hanoi graphs, the
reader is referred to [5, Section 5.7].
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So let us subdivide iQ2 =
{
ijk | jk ∈ Q2

}
⊂ Q3 = V (H3

4 ), for any fixed
i ∈ Q, into four mutually disjoint subsets, namely

V0 = {iii},
V1 = {iij | j 6= i},
V2 = {iji | j 6= i},
V3 = {ijk | j 6= i 6= k}.

In Figure 2 we have colored, for i = 0, the vertices from V0, V1, V2, and V3 in
red, yellow, orange, and green, respectively. Elements of V0 ∪ V1 ∪ V2 will be
called interior, those from V3 exterior, because the latter are those with adjacent
external vertices in other subgraphs than iH2

4 ⊂ H3
4 , induced by iQ2. Every

H3
4 -dominating set D then contains

1. an element from V0∪V1 (otherwise iii is not covered), where we may assume
that this element is from V1, because replacing iii by some iij, j 6= i, does
not change the size of D, nor its dominating property;

2. (a) either an element from V2

(b) or three elements from V3 with different k
(otherwise the elements from V2 would not be covered).
In Case 2(b) already four vertices of iQ2 lie in D.

So we have shown that |D ∩ iQ2| ≥ 2 for every i ∈ Q. Now assume that
|D| = 12; then the elements of D can be distributed among the iQ2 by the
numbers

12 = 6 + 2 + 2 + 2,(5)

= 5 + 3 + 2 + 2,(6)

= 4 + 4 + 2 + 2,(7)

= 4 + 3 + 3 + 2,(8)

= 3 + 3 + 3 + 3.(9)

We will now analyse whether one of these distributions is indeed possible.
Let us first assume that |D ∩ iQ2| = 2. Then D ∩ iQ2 consists of one element
from V1 and one from V2. It can dominate either 11 or 12 vertices (all in iQ2),
as can be seen from Figure 2.

Now let |D ∩ iQ2| = 3. Then D ∩ iQ2 consists of one element from V1, one
from V2, and one from V3. A somewhat tedious case analysis, albeit facilitated
by the many symmetries of the graph, shows that D∩ iQ2 can dominate at most
16 vertices altogether and that there are only three types of sets of size 3 that do
cover 16 vertices. They are, with {i, j, k, `} = Q,

{iij, iji, ikk} dominates
(
iQ2 \ {i``, i`k}

)
∪ {jkk, `kk},(10)
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{iij, iki, ijj} dominates
(
iQ2 \ {i``, i`k}

)
∪ {kjj, `jj},(11)

{iij, iki, ijk} dominates
(
iQ2 \ {i``}

)
∪ {`jk}.(12)

For |D ∩ iQ2| = 5 we know that at least one of the elements of D ∩ iQ2 is
interior and that among the at most four exterior elements at most three are
linked to two external vertices and then one has only one external neighbor. So
in addition to the 16 elements of D ∩ iQ2 itself, only up to 7 external vertices
can be dominated, all in all at most 23. The same kind of argument shows that
D ∩ iQ2 with |D ∩ iQ2| = 6 can dominate at most 24 vertices, because now there
may be two elements of D ∩ iQ2 with exactly one external neighbor. With what
we have found so far, Cases (5) and (6) can already be excluded, because they
lead to at most 24 + 12 + 12 + 12 = 60 < 64 and 23 + 16 + 12 + 12 = 63 < 64
covered vertices, respectively.

We now look at |D ∩ iQ2| = 4. Here D ∩ iQ2 must contain one interior
vertex and can therefore have at most three exterior ones, potentially leading to
six external vertices covered, whence an upper bound for the number of covered
vertices would be 22. This argument is not sufficient for Cases (7) and (8) though.
It is, however, sufficient if |D| = 11, since then the decomposition is 11 = 5 +
2 + 2 + 2 = 4 + 3 + 2 + 2 = 3 + 3 + 3 + 2, with upper bounds 59, 62, and 60,
respectively. So we have reached the result

γ
(
H3

4

)
∈ {12, 13}.

Next we exclude Case (7). Assume that |D ∩ iQ2| = 2, i ∈ {2, 3}. Then
D ∩ 2Q2 and D ∩ 3Q2 just have two interior vertices each and four vertices of
D ∩ iQ2 are not dominated by these two vertices. A case analysis among the
9 possible pairs of interior vertices shows that only for D ∩ iQ2 = {iik, iki},
k ∈ {0, 1}, the uncovered sets {ikk, ikj, ijk, ijj}, where j = 5− i and k = 1− k,
can be dominated by vertices from (D ∩ 0Q2) ∪ (D ∩ 1Q2), namely kkk, kkj,
kjk, and kjj, where the last vertex may be replaced by kjj. This would require
altogether 8 exterior vertices in (D∩0Q2)∪ (D∩1Q2), but the latter set contains
at most 6 of them, so the covering is not possible. (Note that this is also an
alternative argument for excluding Cases (5) and (6).)

We now turn to (8). Let |D ∩ 0Q2| = 4, |D ∩ 1Q2| = 2, and |D ∩ 2Q2| = 3 =
|D ∩ 3Q2|. We then have, up to symmetry, five cases to be addressed:

D ∩ 1Q2 = {110, 101},(13)

D ∩ 1Q2 = {112, 121},(14)

D ∩ 1Q2 = {110, 121},(15)

D ∩ 1Q2 = {112, 101},(16)

D ∩ 1Q2 = {112, 131}.(17)
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Note that in Cases (13) and (14) D ∩ 1Q2 dominates 12 vertices, while in the
other cases only 11. This means that D ∩ 0Q2 has to dominate at least 20 or
21 vertices, respectively, because otherwise only up to 19 + 12 + 16 + 16 = 63 or
20+11+16+16 = 63 could be dominated by D. For (13) this can only be fulfilled
if D ∩ 0Q2 = {00`, 023, 032, 011} for some `, but then D ∩ iQ2 = {iij, iki, iii},
{i, j} = {2, 3}, i = 5 − i, and k 6= i, respectively. Consequently at least one of
the vertices 200, 210, 213 is not dominated by D.

In Case (14) vertices 203 and 230 must be in D ∩ 2Q2, but this subgraph
cannot contain two exterior vertices of D.

In Case (15) vertices 200 and 300 cannot be in D, because the respective
subgraphs cannot contain additional exterior vertices to 203 and 302; therefore
100 is not dominated by D.

To exclude Case (16) we note that since 230 and 320 are in D, vertices 233
and 322 are not. Hence D ∩ 0Q2 = {00j, 023, 022, 033} for some j and 010 is not
covered.

Finally, for Case (17) vertices 203 and 320 are in D and therefore 200 and
300 are not. But then 100 is not covered. This concludes Case (8).

So we are left with Case (9) which in principle could lead to a covering of
16+16+16+16 = 64 vertices. Therefore, we have to decide whether it is possible
to combine choices from the alternatives (10) to (12) for each i ∈ Q for which the
sets on the right do not overlap. Note that not all four subgraphs can have triples
from D of type (12) simultaneously, because in each a vertex ijj would not be
dominated by D∩ iQ2, but the same set does not contain a vertex ijj either. So,
making use of symmetries, we may just consider (10) and (11) for the values i = 0,
j = 1, k = 2, and ` = 3. In the first case, because D ∩ 0Q2 = {001, 010, 022}, we
necessarily have D∩ 1Q2 = {112, 121, 132}, resulting in vertex 122 being covered
twice. Similarly, if D ∩ 0Q2 = {001, 020, 011}, we successively get 132 ∈ D,
133 /∈ D, and 233 ∈ D, but then 133 is covered twice. This completes the proof
of

Theorem 6. γ(H3
4 ) = 13 = γ(S3

4).

Finally, we want to prove directly the following statement (cf. [5, p. 262]).

Theorem 7. The graph H3
4 has no perfect code.

Proof. 0. The graph H2
4 has exactly one perfect code C = {ii | i ∈ Q}; for the

proof see [5, p. 383]. In particular, γ(H2
4 ) = 4.

1. Assume that C ⊂ Q3 is a perfect code for H3
4 . Then C ∩ iQ2 is 1-error

correcting in iH2
4 ⊂ H3

4 . From Proposition 3 we get 4 = γ(H2
4 ) = γ(iH2

4 ) ≥
|C ∩ iQ2|, so no subgraph contains more than 4 codewords.

2. Suppose that a subgraph, 0Q2 say, contains 4 codewords. An easy case
analysis shows that the only subset of 0Q2 which is 1-error correcting and has
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size 4 is {0ii | i ∈ Q}. Therefore we have 12j, 13j /∈ C for all j. But then
necessarily 101 ∈ C, which in turn excludes 10j, j 6= 1 from C. Moreover, only
one of the vertices 11j belongs to C. This results in C ∩1Q2 < 3 and similarly in
C ∩ 2Q2 < 3 and C ∩ 3Q2 < 3, whence |C| ≤ 10 or |C| ≤ 4 · 3 = 12, but |C| = 13
would be necessary by virtue of Corollary 4 and Theorem 6.

4. Further Study on Hn
p

Once colorings and domination are known, one might address the question of
dominator coloring (see, e.g., [1] or [11]), which is a proper vertex coloring such
that each vertex dominates all vertices of at least one color class. The smallest
number of colors required for a dominator coloring of graph G is called its dom-
inator chromatic number and denoted by χd(G). This is properly defined and
max{γ(G), χ(G)} ≤ χd(G) ≤ |G|, because choosing one representative from each
color class of a dominator coloring leads to a dominating set and a coloring where
each vertex gets its individual color is obviously a dominator coloring. A non-
trivial example for equality on the left is G = C4 and equality on the right holds
for complete graphs: χd(Kp) = p because there is essentially only one proper
vertex coloring. Another easy upper bound for the dominator chromatic number
is (cf. [1, Theorem 3.3])

(18) χd(G) ≤ γ(G) + χ(G),

because assigning singleton color classes to the elements of a minimal dominating
set and coloring the remaining vertices according to a minimal vertex coloring
will produce a (possibly not minimal) dominator coloring.

For Hanoi graphs we have χ(Hn
p ) = p for n ∈ N [10, Theorem 2]. Inequality

(18) is not sharp for n ≤ 2.

Proposition 8. For every n ∈ {0, 1, 2} we have that
χd(Hn

p ) = γ(Hn
p ) + χ(Hn

p ) −1.

Proof. For n < 2 this is clear. For n = 2 things get a little more complicated.
A perfect vertex ii, i ∈ [p]0, can only dominate a singleton color class, because
all its neighbors are mutually adjacent. Therefore each subgraph iH1

p contains a
singleton color class {iji} and the subgraph induced by the vertices ij, j 6= ji,
which is a Kp−1 and consequently needs another p − 1 colors. So χd(H2

p ) ≥
2p− 1 = γ(H2

p ) + χ(H2
p )− 1.

It can easily be checked that [p]20 3 ij 7→ (i− j) mod p ∈ [p]0 defines a proper
vertex coloring of H2

p with color class 0 containing only the perfect vertices.
Assigning individual singleton color classes for the p perfect vertices and otherwise
using color classes 1 to p−1 leads to a dominator coloring with p+p−1 = 2p−1
colors.
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For n > 2, inequality (18) is sharp for the classical case p = 3.

Proposition 9. For p = 3 ≤ n we get χd(Hn
3 ) = γ(Hn

3 ) + χ(Hn
3 ) =

⌈
3n

4

⌉
+ 3.

Proof. By virtue of (18) we only have to show that χd(Hn
3 ) ≥ γ(Hn

3 ) + χ(Hn
3 ).

Let c be a (minimal) dominator coloring and C be a 1-perfect code of Hn
3 (cf. [5,

Section 2.3.2]). Then V (Hn
3 ) is a disjoint union of the neighborhoods of elements

from C, each of which must contain at least one singleton color class of c (as can
be seen by an easy combinatorial analysis). The graph Hn

3 has 3n−1 subgraphs
isomorphic to K3, a number which is strictly larger than γ(Hn

3 ) =
⌈
3n

4

⌉
if and only

if n > 2, so that in these cases there is a K3 whose vertices are not in the union
of the singleton classes already fixed. Therefore, at least χ(K3) = 3 = χ(Hn

3 )
more colors are present in c.

We are now tempted to formulate the following.

Conjecture. For every p, n ≥ 3 we have that χd(Hn
p ) = γ(Hn

p ) + χ(Hn
p ).

The Conjecture is supported by the following result.

Theorem 10. χd(H3
4 ) = 17 = γ(H3

4 ) + χ(H3
4 ).

Proof. Again we only have to show that χd(H3
4 ) ≥ 17. Note that by Theorem 7

we do not have a perfect code. We have to start with a (minimal) dominator
coloring c : Q3 → [κ] and to show that it has at least 17 colors, i.e., κ ≥ 17.
Define σ such that for all ρ ∈ [κ]

|c−1(ρ)| = 1⇔ ρ ∈ [σ] ,

i.e., c−1(ρ) for ρ ∈ [σ] are all singleton color classes; the union of these will be
denoted by Σ. We may assume that σ < 17.

For 14 ≤ σ ≤ 16 there exist K3-subgraphs whose vertices have at least 3
different colors in Q3 \ Σ, whence κ ≥ 14 + 3 = 17.

The graph H3
4 comprises 16 subgraphs K4, so at least one of them does

not contain an element from Σ if σ < 16. In particular for σ = 13 this means
κ ≥ 13 + 4 = 17.

For σ < 13 = γ(H3
4 ) the set Σ will not dominate Q3, so there are color classes

with at least 2 elements. Each of these color classes can dominate at most two
vertices as can be seen by looking at the graph carefully. For σ = 12 we would
have at least 14 dominating vertices, but a K3 has not received its 3 colours yet.
For σ = 11 we have 13 or 15 dominating vertices, but with a K4 uncolored so far.
For σ = 10 only at most 4× 5 + 6× 6 vertices would be dominated by Σ (each of
the neighborhoods of a perfect vertex must contain an element of Σ), i.e., 56. So
at least 4 more color classes with at least 2 elements each must be present, and
again a K3 has to receive 3 extra colors. Similarly for σ < 10.
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The question of dominator coloring for general parameters p and n has not
been addressed yet for Sierpiński graphs either.
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