Discussiones Mathematicae Graph Theory 41 (2021) 391–408 doi:10.7151/dmgt.2199

H-KERNELS IN UNIONS OF *H*-COLORED QUASI-TRANSITIVE DIGRAPHS

José Manuel Campero-Alonzo¹

AND

Rocío Sánchez-López

Facultad de Ciencias Universidad Nacional Autónoma de México Círcuito Exterior s/n, Coyoacán Ciudad Universitaria, 04510, Ciudad de México, CDMX

e-mail: (Campero-Alonzo) cloud_1993@hotmail.com (Sánchez-López) usagitsukinomx@yahoo.com.mx

Abstract

Let H be a digraph (possibly with loops) and D a digraph without loops whose arcs are colored with the vertices of H (D is said to be an H-colored digraph). For an arc (x, y) of D, its color is denoted by c(x, y). A directed path $W = (v_0, \ldots, v_n)$ in an *H*-colored digraph *D* will be called *H*-path if and only if $(c(v_0, v_1), \ldots, c(v_{n-1}, v_n))$ is a directed walk in H. In W, we will say that there is an obstruction on v_i if $(c(v_{i-1}, v_i), c(v_i, v_{i+1})) \notin A(H)$ (if $v_0 = v_n$ we will take indices modulo n). A subset N of V(D) is said to be an H-kernel in D if for every pair of different vertices in N there is no H-path between them, and for every vertex u in $V(D) \setminus N$ there exists an H-path in D from u to N. Let D be an arc-colored digraph. The color-class digraph of D, $\mathscr{C}_C(D)$, is the digraph such that $V(\mathscr{C}_C(D)) = \{c(a) : a \in A(D)\}$ and $(i, j) \in A(\mathscr{C}_C(D))$ if and only if there exist two arcs, namely (u, v) and (v, w)in D, such that c(u, v) = i and c(v, w) = j. The main result establishes that if $D = D_1 \cup D_2$ is an *H*-colored digraph which is a union of asymmetric quasi-transitive digraphs and $\{V_1, \ldots, V_k\}$ is a partition of $V(\mathscr{C}_C(D))$ with a property P^* such that

- 1. V_i is a quasi-transitive V_i -class for every i in $\{1, \ldots, k\}$,
- 2. either $D[\{a \in A(D) : c(a) \in V_i\}]$ is a subdigraph of D_1 or it is a sudigraph of D_2 for every i in $\{1, \ldots, k\}$,
- 3. D_i has no infinite outward path for every i in $\{1, 2\}$,

¹Corresponding author.

4. every cycle of length three in D has at most two obstructions,

then D has an H-kernel.

Some results with respect to the existence of kernels by monochromatic paths in finite digraphs will be deduced from the main result.

Keywords: quasi-transitive digraph, kernel by monochromatic paths, alternating kernel, H-kernel, obstruction.

2010 Mathematics Subject Classification: 05C20, 05C38, 05C69.

1. INTRODUCTION

Let H be a digraph possibly with loops and D a digraph without loops. An *H*-arc coloring of D is a function $c: A(D) \to V(H)$. D is *H*-colored if D has an *H*-arc coloring. A path $W = (v_0, \ldots, v_n)$ in *D* is said to be an *H*-path if and only if $(c(v_0, v_1), \ldots, c(v_{n-1}, v_n))$ is a walk in H. We are going to consider that an arc is an H-path, that is to say, a singleton vertex is a walk in H. A subset S of V(D) is H-absorbent if for every x in $V(D) \setminus S$ there is an H-path from x to some point of S. A subset I of V(D) is H-independent if there is no H-path between any two distinct vertices of I. A subset N of V(D) is an H-kernel if N is both H-absorbent and H-independent. The concept of H-kernel has its origins in the works carried out by Sands, Sauer and Woodrow [15], Linek and Sands [13] and Arpin and Linek [1]. In [15] Sands, Sauer and Woodrow proved that if the arcs of a finite tournament T are colored with two colors, then there is always a vertex v in T such that for every w in $V(T) \setminus \{v\}$ there exists a monochromatic path from w to v. In [13] Linek and Sands gave an extension of the result of Sands, Sauer and Woodrow, in which the arcs of a tournament T are colored with the elements of a partially ordered set P and in their paper they give the first notion of H-path. In [1] Arpin and Linek work with H-colored digraphs and in their paper they introduce the concept of H-walk where an H-walk is a walk (v_0,\ldots,v_n) in D such that $(c(v_0,v_1),\ldots,c(v_{n-1},v_n))$ is a walk in H. In [1] Arpin and Linek introduce the concept of H-independent set by walks as a subset of vertices I of D such that there is no H-walks between any two different vertices of I. They also define an H-sink as a subset of vertices S of D such that for any u in $V(D) \setminus S$ there is v in S such that there exists an H-walk from u to v. Galeana-Sánchez and Delgado-Escalante were inspired by the work of Arpin and Linek and in [6] they introduced the concept of H-kernels. A subset of vertices Nof D is called H-kernel by walks if N is both an H-independent set by walks and N is an H-sink. Notice that the concept of H-kernel and the concept of H-kernel by walks are different because of that the existence of an H-walk between two vertices does not guarantee the existence of an H-path between those vertices and the concatenation of two *H*-paths is not always an *H*-walk, see Figure 1.

Figure 1. (u, x, y, z, x, v) is a *uv-H*-walk in *G*. The only one *uv*-path in *G* is (u, x, v) but this path is not a *uv-H*-path in *G*. $\{v\}$ is an *H*-kernel by walks in *G*. Every *H*-independent set in *G* consists only of one element but none of these is an *H*-kernel.

Notice that it follows from the definition of H-kernel that when $A(H) = \emptyset$, an H-kernel is a kernel (a subset N of vertices of D such that (1) for every u and v in N it holds that $\{(u, v), (v, u)\} \cap A(D) = \emptyset$ and (2) for every u in $V(D) \setminus N$ there exists v in N such that $(u, v) \in A(D)$; when $A(H) = \{(u, u) : u \in V(H)\},\$ an *H*-kernel is a kernel by monochromatic paths (mp-kernel) (a subset N of vertices of D such that (1) for every u and v in N there exists no monochromatic directed paths between u and v and (2) for every u in $V(D) \setminus N$ there exists v in N such that there exists a monochromatic directed path from u to v) and when H has no loops, an H-kernel is an alternating kernel (a subset N of vertices of D such that (1) for every u and v in N it holds that there exists no directed path between u and v in which consecutive arcs have different colors and (2) for every u in $V(D) \setminus N$ there exists v in N such that there is a directed path from u to v in which consecutive arcs have different colors). In each of these special cases for H, sufficient conditions have been established in order to guarantee the existence of *H*-kernels, see for example [3, 5, 7, 9, 15]. Thus we can see that the concept of H-kernels is a generalization of the concepts of kernels, mp-kernels and alternating kernels.

Due to the difficulty of finding kernels, mp-kernels and alternating kernels in arc-colored digraphs, sufficient conditions for the existence of each of these Hkernels in arc-colored digraphs have been obtained mainly by study special classes of digraphs. A digraph D is quasi-transitive whenever $\{(u, v), (v, w)\} \subseteq A(D)$ implies either $(u, w) \in A(D)$ or $(w, u) \in A(D)$. Quasi-transitive digraphs are of interest because these are a generalization of tournaments (due to Ghouilá-Houri [12]) and those digraphs are a special case of digraphs in which the existence of kernels, mp-kernels and alternating kernels has been studied.

In [10] Galeana-Sánchez and Rojas-Monroy proved that if $D = D_1 \cup D_2$ (possibly $A(D_1) \cap A(D_2) \neq \emptyset$) where D_i is a quasi-transitive digraph which contains no asymmetric infinite outward path (in D_i) for i in $\{1, 2\}$, and that every directed cycle of length 3 contained in D has at least two symmetric arcs, then D has a kernel.

A chromatic class of D is the set of arcs of a same color. We say that a chromatic class C is quasi-transitive if D[C] is a quasi-transitive digraph. Let $D = D_1 \cup D_2$ be a digraph. We will say that D is a union of asymmetric quasi-transitive digraphs if (1) D_i is a quasi-transitive digraph for every i in $\{1, 2\}$, (2) D_i is asymmetric for every i in $\{1, 2\}$ and (3) $A(D_1) \cap A(D_2) = \emptyset$.

In [11] Galeana-Sánchez *et al.* worked with a finite *m*-colored multidigraph (a digraph with parallel arcs) $D = D_1 \cup D_2$ which is a union of asymmetric quasi-transitive digraphs, and they proved that if D satisfies that

- 1. every chromatic class induces a quasi-transitive digraph,
- 2. every chromatic class is contained in D_i for some i in $\{1, 2\}$ and
- 3. D contains neither 3-colored directed triangles nor 3-colored transitive subtournaments of order 3,

then D has an mp-kernel.

In [7], recently, Delgado-Escalante *et al.* proved the following.

Theorem 1. If D is a finite m-colored quasi-transitive digraph such that every directed cycle of length 3 contained in D is 3-colored, then D has an alternating kernel.

Basically the spirit of the conditions that guarantee the existence of kernels or mp-kernels in [10] and [11], respectively, arises from structural properties of 2-colored digraphs which were studied in [15] by Sands *et al.*

On the other hand, in [8] Galeana-Sánchez defined the *color-class digraph* $\mathscr{C}_{C}(D)$ of D as the digraph whose vertices are the colors represented in the arcs of D and $(i, j) \in A(\mathscr{C}_{C}(D))$ if and only if there exist two arcs, namely (u, v) and (v, w) in D, such that (u, v) has color i and (v, w) has color j (notice that $\mathscr{C}_{C}(D)$) can have loops by definition). Because of that in an H-colored digraph D, it holds that $V(\mathscr{C}_{C}(D)) \subseteq V(H)$, we can establish structural properties on $\mathscr{C}_{C}(D)$, with respect to H, in order to guarantee the existence of H-kernels.

Let *H* be a digraph, *D* an *H*-colored digraph and (v_0, v_1, \ldots, v_n) a walk in *D*. We will say that there is an *obstruction* on v_i if $(c(v_{i-1}, v_i), c(v_i, v_{i+1})) \notin A(H)$ (if $v_0 = v_n$ we will take indices modulo *n*).

In this paper we continue with the study of the existence of H-kernels in unions of quasi-transitive digraphs and for this we will need the following definitions.

Definition. Let H be a digraph, D an H-colored digraph and $\{V_1, \ldots, V_k\}$ a partition of $V(\mathscr{C}_C(D))$. We will say that $\{V_1, \ldots, V_k\}$ has the property P^* if the following conditions are satisfied.

- 1. $\mathscr{C}_C(D)[V_i]$ is a subdigraph of H for every i in $\{1, \ldots, k\}$.
- 2. If $(u, v) \in A(\mathscr{C}_C(D))$, for some u in V_i and for some v in V_j with $i \neq j$, then $(u, v) \notin A(H)$.

Definition. Let H be a digraph, D an H-colored digraph and $\{V_1, \ldots, V_k\}$ a partition of $V(\mathscr{C}_C(D))$. V_i is said to be a quasi-transitive V_i -class if $D[\{a \in A(D) : c(a) \in V_i\}]$ is a quasi-transitive digraph for every i in $\{1, \ldots, k\}$.

The main result establishes that if H is a digraph, $D = D_1 \cup D_2$ is an Hcolored digraph which is a union of asymmetric quasi-transitive digraphs and $\{V_1, \ldots, V_k\}$ is a partition of $V(\mathscr{C}_C(D))$ with the property P^* such that

- 1. V_i is a quasi-transitive V_i -class for every i in $\{1, \ldots, k\}$,
- 2. either $D[\{a \in A(D) : c(a) \in V_i\}]$ is a subdigraph of D_1 or it is a sudigraph of D_2 for every i in $\{1, \ldots, k\}$,
- 3. D_i has no infinite outward path for every i in $\{1, 2\}$,
- 4. every directed cycle of length three in D_i has at most two obstructions,

then D has an H-kernel.

With the main result of this paper we show that the main result in [11] can be reduced for digraphs as follows.

Let $D = D_1 \cup D_2$ be a finite *m*-colored digraph which is a union of asymmetric quasi-transitive digraphs such that

- 1. every chromatic class is quasi-transitive,
- 2. if \mathcal{C} is a chromatic class, then $\mathcal{C} \subseteq A(D_j)$ for some j in $\{1,2\}$ and
- 3. D does not contain 3-colored directed cycles of length three.

Then D has an mp-kernel.

In terms of *H*-kernels Theorem 1 says that if *H* is a complete digraph without loops and *D* is a finite *H*-colored quasi-transitive digraph such that every directed cycle of length 3 contained in *D* has no obstructions, then *D* has an *H*-kernel. However, the above is not true if *H* is not complete; consider the directed cycle of length 3, C_3 , whose arcs are colored with three different vertices of *H*, with $A(H) = \emptyset$, it is clear that C_3 has no *H*-kernel. In this paper we will deduce from the main result the following.

Let H be a digraph (possibly with loops), D an H-colored asymmetric quasitransitive digraph and $\{V_1, \ldots, V_k\}$ a partition of $V(\mathscr{C}_C(D))$ with the property P^* . Suppose that

- 1. V_i is a quasi-transitive V_i -class for every i in $\{1, \ldots, k\}$,
- 2. D has no infinite outward path,
- 3. every cycle of length three in D has at most two obstructions.

Then D has an H-kernel.

We will need the following result.

Corollary 2 ([2], p. 53). If a quasi-transitive digraph D has an xy-path but $(x, y) \notin A(D)$, then either $(y, x) \in A(D)$ or there exists vertices u and v in $V(D) \setminus \{x, y\}$ such that (x, u, v, y) and (y, u, v, x) are paths in D.

2. Terminology and Notation

For general concepts we refer the reader to [2] and [4]. An arc of the form (x, x)is a loop. An arc (u, v) in A(D) is asymmetric if $(v, u) \notin A(D)$. We will say that a digraph D is asymmetric if every arc of D is asymmetric. We will say that two digraphs D_1 and D_2 are equal, denoted by $D_1 = D_2$, if $A(D_1) = A(D_2)$ and $V(D_1) = V(D_2)$. A directed walk is a sequence $W = (v_0, v_1, \ldots, v_n)$ such that $(v_i, v_{i+1}) \in A(D)$ for each i in $\{0, \ldots, n-1\}$. The number n is the length of the walk. We will say that the directed walk (v_0, v_1, \ldots, v_n) is closed if $v_0 = v_n$. If $v_i \neq v_j$ for all i and j such that $\{i, j\} \subseteq \{0, \ldots, n\}$ and $i \neq j$, it is called a directed path. A directed cycle is a directed walk $(v_1, v_2, \ldots, v_n, v_1)$ such that $v_i \neq v_j$ for all i and j such that $\{i, j\} \subseteq \{1, \ldots, n\}$ and $i \neq j$, this will be denoted by C_n . If D is an infinite digraph, an infinite outward path is an infinite sequence (v_1, v_2, \ldots) of distinct vertices of D such that $(v_i, v_{i+1}) \in A(D)$ for each $i \in \mathbb{N}$. In this paper we are going to write walk, path, cycle, instead of directed walk, directed path, directed cycle, respectively. The union of walks will be denoted with \cup . Let $W = (v_0, v_1, \ldots, v_n)$ be a walk and $\{v_i, v_i\} \subseteq V(W)$, with i < j. Then the $v_i v_j$ -walk $(v_i, v_{i+1}, \ldots, v_{j-1}, v_j)$ contained in W will be denoted by (v_i, W, v_j) . For a subset S of V(D) the subdigraph of D induced by S, denoted by D[S], has V(D[S]) = S and $A(D[S]) = \{(u, v) \in A(D) : \{u, v\} \subseteq S\}$. A subset S of V(D)is said to be *independent* if the only arcs in D[S] are loops. For a subset B of A(D) the subdigraph of D induced by B, denoted by D[B], has A(D[B]) = Band $V(D[B]) = \{v \in V(D) : (u, v) \in B \text{ or } (v, u) \in B \text{ for some } u \in V(D)\}$. A pair of digraphs D and G are *isomorphic* if there exists a bijection $f: V(D) \to V(G)$ such that $(x,y) \in A(D)$ if and only if $(f(x), f(y)) \in A(G)$ (f will be called isomorphism). We will say that a digraph D is complete if for every pair of different vertices u and v in V(D) it holds that $\{(u, v), (v, u)\} \subseteq A(D)$.

A digraph D is said to be *m*-colored if the arcs of D are colored with m colors. A path is called *monochromatic* if all of its arcs are colored alike.

3. Previous Results

For the rest of the work H is a digraph possibly with loops and D is a, possibly infinite, digraph without loops.

We need to introduce some notation in order to present our proofs more compactly.

Let *H* be a digraph and *D* an *H*-colored digraph. Consider $\{u, v\}$ and *S* two subsets of V(D). We will write $u \xrightarrow{H}_{D} v$ if there exists a uv-*H*-path in *D*; $u \xrightarrow{H}_{D} S$ if there exists a uS-*H*-path in *D*; $u \xrightarrow{H}_{D} v$ is the denial of $u \xrightarrow{H}_{D} v$; $u \xrightarrow{H}_{D} S$ is

the denial of $u \xrightarrow{H} S$.

We will start with some results which will be useful.

From now on, the set $\{a \in A(D) : c(a) \in V_i\}$ will be denoted by B_i for every i in $\{1, \ldots, k\}$.

Lemma 3. Let H be a digraph and D an H-colored digraph. Suppose that $\{V_1, \ldots, V_k\}$ is a partition of $V(\mathscr{C}_C(D))$ with the property P^* . Then the following properties are satisfied.

- 1. Let i be an index in $\{1, \ldots, k\}$. Every finite path in $D[B_i]$ is an H-path in $D[B_i]$.
- 2. If P is a finite H-path in D, then there exists i in $\{1, \ldots, k\}$ such that P is contained in $D[B_i]$.

Proof. Let $P = (u_0, \ldots, u_m)$ be a path in $D[B_i]$. We will prove that P is an H-path in D. It follows from the definition of color-class digraphs that $P' = (c(u_0, u_1), \ldots, c(u_{m-1}, u_m))$ is a walk in $\mathscr{C}_C(D)$. Since $c(u_j, u_{j+1}) \in V_i$ for every j in $\{0, \ldots, m-1\}$, then P' is a walk in $\mathscr{C}_C(D)[V_i]$, which implies that P' is a walk in H (because $\mathscr{C}_C(D)[V_i]$ is a subdigraph of H). Therefore P is an H-path in $D[B_i]$.

On the other hand, let $P = (v_0, \ldots, v_n)$ be an *H*-path in *D*. Then, it follows from the definition of *H*-paths and the definition of color-class digraphs that $(c(v_{j-1}, v_j), c(v_j, v_{j+1})) \in A(H) \cap A(\mathscr{C}_C(D))$ for every j in $\{1, \ldots, n-1\}$. Therefore, we get from 2 in definition of P^* that there exists i in $\{1, \ldots, k\}$ such that $c(v_j, v_{j+1}) \in V_i$ for every j in $\{0, \ldots, n-1\}$. Thus P is contained in $D[B_i]$.

Lemma 4. Let H be a digraph, D an H-colored digraph and $\{w, z\} \subseteq V(D)$. Suppose that $\{V_1, \ldots, V_k\}$ is a partition of $V(\mathscr{C}_C(D))$ such that V_i is a quasitransitive V_i -class for every i in $\{1, \ldots, k\}$. If there exists a wz-path in $D[B_j]$ and there exists no zw-path in $D[B_j]$ for some j in $\{1, \ldots, k\}$, then $(w, z) \in A(D[B_j])$.

Proof. It follows from Corollary 2.

We can obtain an extension of Lemma 4 as follows.

Lemma 5. Let H be a digraph and $D = D_1 \cup D_2$ an H-colored digraph. Suppose that $\{V_1, \ldots, V_k\}$ is a partition of $V(\mathscr{C}_C(D))$ with the property P^* such that

- 1. V_i is a quasi-transitive V_i -class for every i in $\{1, \ldots, k\}$,
- 2. either $D[B_i]$ is a subdigraph of D_1 or it is a sudigraph of D_2 for every i in $\{1, \ldots, k\}$.

Let r be an index in {1,2}. If $x \xrightarrow[D_r]{H} z$ and $z \xrightarrow[D_r]{H} x$, then $(x,z) \in A(D_r)$.

Proof. Let P be an xz-H-path in D_r . It follows from Lemma 3 that there exists i in $\{1, \ldots, k\}$ such that P is contained in $D[B_i]$. The hypothesis implies that $D[B_i]$ is a subdigraph of D_r (because P is in D_r). On the other hand, since $z \xrightarrow[D_r]{H} x$, there exists no zx-H-path in $D[B_i]$, which implies that there exists no zx-path in $D[B_i]$ (by 1 in Lemma 3). Therefore, we get from Lemma 4 that $(x, z) \in A(D[B_i])$. So, $(x, z) \in A(D_r)$.

The following result will be useful in what follows.

Lemma 6. Let H be a digraph, $D = D_1 \cup D_2$ an H-colored digraph and $\{V_1, \ldots, V_k\}$ a partition of $V(\mathscr{C}_C(D))$ with the property P^* . If either $D[B_i]$ is a subdigraph of D_1 or it is a sudigraph of D_2 for every i in $\{1, \ldots, k\}$, then there exists a partition of $V(\mathscr{C}_C(D_r))$ with the property P^* for every r in $\{1, 2\}$.

Proof. Suppose that $\{V_1, \ldots, V_t\}$ is such that $D[B_i]$ is a subdigraph of D_1 for every i in $\{1, \ldots, t\}$ and $\{V_{t+1}, \ldots, V_k\}$ is such that $D[B_j]$ is a subdigraph of D_2 for every j in $\{t + 1, \ldots, k\}$. Then, considering that D_1 and D_2 are also H-colored digraphs, it follows that $\{V_1, \ldots, V_t\}$ is a partition of $V(\mathscr{C}_C(D_1))$ with the property P^* and $\{V_{t+1}, \ldots, V_k\}$ is a partition of $V(\mathscr{C}_C(D_2))$ with the property P^* (this follows from the fact that $\mathscr{C}_C(D_r)$ is a subdigraph of $\mathscr{C}_C(D)$ for every r in $\{1, 2\}$ and the fact that either $V_i \subseteq V(\mathscr{C}_C(D_1))$ or $V_i \subseteq V(\mathscr{C}_C(D_2))$ for every i in $\{1, \ldots, k\}$).

Proposition 7. Let H be a digraph, $D = D_1 \cup D_2$ an H-colored digraph which is a union of asymmetric quasi-transitive digraphs, r an index in $\{1, 2\}, \{x, y\} \subseteq$ V(D) and $\{V_1, \ldots, V_k\}$ a partition of $V(\mathscr{C}_C(D))$ with the property P^* . Suppose that

- 1. V_i is a quasi-transitive V_i -class for every i in $\{1, \ldots, k\}$,
- 2. either $D[B_i]$ is a subdigraph of D_1 or it is a sudigraph of D_2 for every i in $\{1, \ldots, k\}$,
- 3. every cycle of length three in D_i has at most two obstructions for every i in $\{1, 2\},\$

4.
$$x \xrightarrow{H} y$$
 and $y \xrightarrow{H} x$.

If z is a vertex in V(D) such that $y \xrightarrow{H}_{D_r} z$, then $(x, z) \in A(D_r)$; if $z \xrightarrow{H}_{D_r} x$, then $(z, y) \in A(D_r)$.

Proof. Notice that it follows from Lemma 5 and hypothesis 4 of this proposition that $(x, y) \in A(D_r)$.

If $y \xrightarrow{H} D_r$, then let $(y = w_0, \ldots, w_m = z)$ be a yz-H-path in D_r . We will prove that $(x, z) \in A(D_r)$ by induction on m.

If m = 0, it is clear that $(x, z) \in A(D_r)$ (because in this case $y = w_0 = z$).

Suppose that if $(y = u_0, \ldots, u_{m-1})$ is a yu_{m-1} -H-path in D_r with length m-1, then $(x, u_{m-1}) \in A(D_r)$.

Let $P = (y = \alpha_0, \ldots, \alpha_m)$ be a $y\alpha_m$ -H-path in D_r with length m. We will prove that $(x, \alpha_m) \in A(D_r)$. Since (y, P, α_{m-1}) is a $y\alpha_{m-1}$ -H-path in D_r with length m-1, it follows from the induction hypothesis that $(x, \alpha_{m-1}) \in$ $A(D_r)$. Since $\{(x, \alpha_{m-1}), (\alpha_{m-1}, \alpha_m)\} \subseteq A(D_r)$ and D_r is a quasi-transitive digraph, it follows that $\{(x, \alpha_m), (\alpha_m, x)\} \cap A(D_r) \neq \emptyset$. If $(\alpha_m, x) \in A(D_r)$, then $\gamma = (x, \alpha_{m-1}, \alpha_m, x)$ is a cycle of length three in D_r which has at most two obstructions by hypothesis 3 of this proposition. If there is no obstruction on α_{m-1} , we have that $P' = (x, \alpha_{m-1}, \alpha_m)$ is an *H*-path in D_r , then we get by Lemma 6 and by Lemma 3 that there exists i in $\{1, \ldots, k\}$ such that $D[B_i]$ is a subdigraph of D_r and P' is contained in $D[B_i]$, respectively. Since $D[B_i]$ is a quasi-transitive digraph, P' is a path with length two in $D[B_i], (\alpha_m, x) \in A(D_r)$ and D_r is an asymmetric digraph, we get that $(\alpha_m, x) \in A(D[B_i])$. This implies that γ is contained in $D[B_i]$. In the same way, we can conclude that γ is contained in $D[B_i]$ for some j in $\{1, \ldots, k\}$ if either there is no obstruction on x or there is no obstruction on α_m . Therefore, in particular, we get from Lemma 3 that $(\alpha_{m-1}, \alpha_m, x)$ is an *H*-path in D_r , that is $(c(\alpha_{m-1}, \alpha_m), c(\alpha_m, x)) \in A(H)$. Thus $P \cup (\alpha_m, x)$ is an yx-H-path in D_r , a contradiction with hypothesis 4 of this proposition. Therefore, $(\alpha_m, x) \notin A(D_r)$, which implies that $(x, \alpha_m) \in A(D_r)$.

If $z \xrightarrow{H}_{D_r} x$, then we can consider the converse of D and the converse of H(where the converse of a digraph G is the digraph \overleftarrow{G} which one obtains from G by reversing all arcs). It is clear that the digraph $\overleftarrow{D} = \overleftarrow{D_1} \cup \overleftarrow{D_2}$ is an \overleftarrow{H} colored digraph which is a union of asymmetric quasi-transitive digraphs and $\{V_1, \ldots, V_k\}$ is a partition of $V(\mathscr{C}_C(\overleftarrow{D}))$ with the property P^* , with respect to \overleftarrow{H} . In addition, the hypothesis 1, 2 and 3 fulfill in this digraph \overleftarrow{H} -colored, in the context of the new related digraphs associated, and hypothesis 4 says that $y \xrightarrow{\overleftarrow{H}}_{\overrightarrow{D_r}} x$ and $x \xrightarrow{\overleftarrow{H}}_{\overrightarrow{D_r}} y$. Since in \overleftarrow{D} we have that $x \xrightarrow{\overleftarrow{H}}_{\overrightarrow{D_r}} z$, then we conclude from the previous case that $(y, z) \in A(\overleftarrow{D_r})$. Therefore, $(z, y) \in A(D_r)$.

Notice that, since an arc (w,t) in D_r defines a wt-H-path in D_r , we also can conclude from Proposition 7 that $x \xrightarrow[D_r]{H} z$ if $(x, z) \in A(D_r)$ or $z \xrightarrow[D_r]{H} y$ if $(z, y) \in A(D_r)$.

Proposition 8. Let H be a digraph, $D = D_1 \cup D_2$ an H-colored digraph which is a union of asymmetric quasi-transitive digraphs and $\{V_1, \ldots, V_k\}$ a partition of $V(\mathscr{C}_C(D))$ with the property P^* . Suppose that

1. V_i is a quasi-transitive V_i -class for every i in $\{1, \ldots, k\}$,

- 2. either $D[B_i]$ is a subdigraph of D_1 or it is a sudigraph of D_2 for every i in $\{1, \ldots, k\},\$
- 3. every cycle of length three in D_i has at most two obstructions.

Then there exists no cycle $\gamma = (u_0, u_1, \dots, u_n, u_0)$ in D_r , with r in $\{1, 2\}$, such that $u_{i+1} \xrightarrow[D_r]{} u_i$ for every i in $\{0, \dots, n\}$ (indices modulo n + 1).

Proof. Proceeding by contradiction, suppose that there exists a cycle $\gamma = (u_0, u_1, \ldots, u_n, u_0)$ in D_r , for some r in $\{1, 2\}$, of minimum length such that $u_{i+1} \xrightarrow{H}_{D_r} u_i$ for every i in $\{0, \ldots, n\}$ (indices modulo n + 1). Notice that there exists j_0 in $\{0, \ldots, n\}$ such that there is an obstruction on u_{j_0} in γ , otherwise $u_{i+1} \xrightarrow{H}_{D_r} u_i$ for every i in $\{0, \ldots, n\}$ (indices modulo n + 1), which is a contradiction. Suppose without loss of generality that there is an obstruction on u_1 , that is $(c(u_0, u_1), c(u_1, u_2)) \notin A(H)$. Since $u_0 \xrightarrow{H}_{D_r} u_1$ (because $(u_0, u_1) \in A(D_r)$), $u_1 \xrightarrow{H}_{D_r} u_0$ and $u_1 \xrightarrow{H}_{D_r} u_2$ (because $(u_1, u_2) \in A(D_r)$), we get from Proposition 7 that $(u_0, u_2) \in A(D_r)$. Because of that $\gamma' = (u_0, u_2) \cup (u_2, \gamma, u_0)$ is a cycle with length less than the length of γ , it follows from the choice of γ that $u_2 \xrightarrow{H}_{D_r} u_0$. Therefore, since $u_1 \xrightarrow{H}_{D_r} u_2$ (because $(u_1, u_2) \in A(D_r)$), $u_2 \xrightarrow{H}_{D_r} u_1$ and $u_2 \xrightarrow{H}_{D_r} u_0$, we get from Proposition 7 that $(u_1, u_0) \in A(D_r)$, which is a contradiction.

Therefore, there exists no cycle $\gamma = (u_0, u_1, \dots, u_n, u_0)$ in D_r , with r in $\{1, 2\}$, such that $u_{i+1} \xrightarrow[D_r]{H} u_i$ for every i in $\{0, \dots, n\}$ (indices modulo n+1).

Definition. Let H be a digraph, D an H-colored digraph and G a subdigraph of D. We will say that a subset S of V(D) is an H-semikernel modulo G in D if

- 1. S is an H-independent set in D,
- 2. if some vertex x in $V(D) \setminus S$ is such that $u \xrightarrow{H} x$ for some vertex u $D[A(D) \setminus A(G)]$ in S, then there exists s in S such that $x \xrightarrow{H} D_r s$.

Proposition 9. Let H be a digraph, $D = D_1 \cup D_2$ an H-colored digraph which is a union of asymmetric quasi-transitive digraphs and $\{V_1, \ldots, V_k\}$ a partition of $V(\mathscr{C}_C(D))$ with the property P^* . Suppose that

- 1. V_i is a quasi-transitive V_i -class for every i in $\{1, \ldots, k\}$,
- 2. either $D[B_i]$ is a subdigraph of D_1 or it is a sudigraph of D_2 for every i in $\{1, \ldots, k\}$,
- 3. D_i has no infinite outward path for every i in $\{1, 2\}$,
- 4. every cycle of length three in D_i has at most two obstructions.

Then there exists x in V(D) such that $\{x\}$ is an H-semikernel modulo D_r in D, with r in $\{1,2\}$.

Proof. Suppose without loss of generality that r = 1. Proceeding by contradiction, suppose that for every w in V(D) there exists v_w in $V(D) \setminus \{w\}$ such that $w \xrightarrow{H}_{D_2} v_w$ and $v_w \xrightarrow{H}_{D} w$. Therefore, for every n in \mathbb{N} given w_n in V(D) there exists w_{n+1} in $V(D) \setminus \{w_n\}$ such that $w_n \xrightarrow{H}_{D_2} w_{n+1}$ and $w_{n+1} \xrightarrow{H}_{D} w_n$. So, it follows from Lemma 5 that $(w_n, w_{n+1}) \in A(D_2)$ for every n in \mathbb{N} . If $w_i \neq w_j$ for every i different from j, then $(w_n)_{n \in \mathbb{N}}$ is an infinite outward path in D_2 which is not possible. Therefore, there exist w_i and w_j , with i < j, such that $w_i = w_j$, which implies that $(w_i, w_{i+1}, \ldots, w_j = w_i)$ is a closed walk in D_2 which contains a cycle $\gamma = (w_{i_0}, w_{i_1}, \ldots, w_{i_t}, w_{i_0})$ such that $w_{i_{s+1}} \xrightarrow{H}_{D_2} w_{i_s}$ for every s in $\{0, \ldots, t\}$ (indices modulo t+1), a contradiction with Proposition 8. Therefore, there exists x in V(D) such that $\{x\}$ is an H-semikernel modulo D_1 in D.

4. MAIN RESULT

Theorem 10. Let H be a digraph, $D = D_1 \cup D_2$ an H-colored digraph which is a union of asymmetric quasi-transitive digraphs and $\{V_1, \ldots, V_k\}$ a partition of $V(\mathscr{C}_C(D))$ with the property P^* . Suppose that

- 1. V_i is a quasi-transitive V_i -class for every i in $\{1, \ldots, k\}$,
- 2. either $D[B_i]$ is a subdigraph of D_1 or it is a sudigraph of D_2 for every i in $\{1, \ldots, k\}$,
- 3. D_i has no infinite outward path for every i in $\{1, 2\}$,
- 4. every cycle of length three in D_i has at most two obstructions for every i in $\{1, 2\}$.

Then D has an H-kernel.

Proof. $\mathscr{I} = \{S \subseteq V(D) : S \text{ is } H \text{-independent in } D\}$ and $\mathscr{L} = \{S \in \mathscr{I} : S \text{ is an } H \text{-semikernel modulo } D_1 \text{ in } D\}.$

Since $\{w\}$ is an *H*-independent set for every w in V(D), it follows that $\mathscr{I} \neq \emptyset$; by Proposition 9 we get that $\mathscr{L} \neq \emptyset$.

For sets S, T in \mathscr{L} , put $S \leq T$ if for all s in S there exists t in T such that either s = t, or $s \xrightarrow[D_1]{H} t$ and $t \xrightarrow[D_1]{H} s$.

Claim 1. (\mathscr{L}, \leq) is a poset.

Proof. Consider $\{S, T, R\}$ a subset of \mathscr{L} .

(1.1) \leq is reflexive. Clearly $S \leq S$ for every S in \mathscr{L} .

 $(1.2) \leq \text{is antisymmetric.}$

Suppose that $S \leq T$ and $T \leq S$. We will prove that S = T. Let t be a vertex in T and suppose that $t \notin S$. Then since $T \leq S$, we have that there exists s in S such that $t \xrightarrow{H}_{D_1} s$ and $s \xrightarrow{H}_{D_1} t$. Because of that $s \notin T$ (T is H-independent) and $S \leq T$, it follows that there exists t' in $T \setminus \{t\}$ such that $s \xrightarrow{H}_{D_1} t'$ and $t' \xrightarrow{H}_{D_1} s$. Thus, we get from Proposition 7 that $t \xrightarrow{H}_{D_1} t'$ which contradicts that T is an H-independent set in D. Therefore, $T \subseteq S$ and in the same way we can deduce that $S \subseteq T$. (1.3) \leq is transitive.

Suppose that $S \leq T$ and $T \leq R$. We will prove that $S \leq R$, that is, for all s in S there exists r in R such that either s = r or $\left[s \frac{H}{D_1} r \text{ and } r \frac{H}{D_1} s\right]$. Let s be a vertex in S. Then $S \leq T$ implies that there exists t in T such that either s = t or $\left[s \frac{H}{D_1} t \text{ and } t \frac{H}{D_1} s\right]$; because of $T \leq R$ we get that for t in T there exists r in R such that t = r or $\left[t \frac{H}{D_1} r \text{ and } r \frac{H}{D_1} t\right]$. If s = t, then we have that s = r or $\left[s \frac{H}{D_1} r \text{ and } r \frac{H}{D_1} s\right]$. If $s \neq t$ and t = r, then $s \frac{H}{D_1} r$ and $r \frac{H}{D_1} s$. If $s \neq t$ and t = r, then $s \frac{H}{D_1} r$ and $r \frac{H}{D_1} s$. If $s \neq t$ and $t \neq r$, then $s \frac{H}{D_1} t$, $t \frac{H}{D_1} s$, $t \frac{H}{D_1} r$ and Proposition 7 implies that $s \frac{H}{D_1} r$. Because of $t \frac{H}{D_1} s$ and $s \frac{H}{D_1} t$ it follows from Proposition 7 that $r \frac{H}{D_1} s$ (because $r \frac{H}{D_1} t$).

Claim 2. (\mathscr{L}, \leq) has maximal elements.

Proof. (2.1) Any chain in \mathscr{L} has an upper bound in \mathscr{L} . Let \mathscr{C} be a chain in (\mathscr{L}, \leq) , consider the following sets.

For S in \mathscr{C} , let N_S be the set defined as $\{T \text{ in } \mathscr{C} : S \leq T\}$. Notice that

 $N_S \neq \emptyset \text{ because } S \in N_S.$ $\mathscr{S}^{\infty} = \left\{ s \in \bigcup_{A \in \mathscr{C}} A : \text{ there exists } S \text{ in } \mathscr{C} \text{ such that } s \in T \text{ for every } T \text{ in } N_S \right\}.$ (2.2) $\mathscr{S}^{\infty} \neq \emptyset.$

Proceeding by contradiction, suppose that $\mathscr{S}^{\infty} = \emptyset$. Let S_0 be in \mathscr{C} and s_0 in S_0 . Since $s_0 \notin \mathscr{S}^{\infty}$, there exists S_1 in N_{S_0} such that $s_0 \notin S_1$. Because of $S_0 \leq S_1$ we get that there exists s_1 in S_1 such that $s_0 \xrightarrow{H}{D_1} s_1$ and $s_1 \xrightarrow{H}{D_1} s_0$. Since $s_1 \notin \mathscr{S}^{\infty}$, there exists S_2 in N_{S_1} such that $s_1 \notin S_2$. Thus, $S_1 \leq S_2$ implies that there exists s_2 in S_2 such that $s_1 \xrightarrow{H}_{D_1} s_2$ and $s_2 \xrightarrow{H}_{D_1} s_1$. Therefore, for every n in \mathbb{N} given S_n in \mathscr{C} and s_n in S_n there exist S_{n+1} in N_{S_n} and s_{n+1} in S_{n+1} such that $s_n \notin S_{n+1}$, $s_n \xrightarrow{H}_{D_1} s_{n+1}$ and $s_{n+1} \xrightarrow{H}_{D_1} s_n$. Then for every n in \mathbb{N} it follows from Lemma 5 that $(s_n, s_{n+1}) \in A(D_1)$. If $s_i \neq s_j$ for every i different from j, then $(s_n)_{n \in \mathbb{N}}$ is an infinite outward path in D_1 which is not possible. Therefore, there exist s_i and s_j , with i < j, such that $s_i = s_j$, which implies that $(s_i, s_{i+1}, \ldots, s_j = s_i)$ is a closed walk in D_1 which contains a cycle $\gamma = (s_{i_0}, s_{i_1}, \ldots, s_{i_t}, s_{i_0})$ such that $s_{i_{s+1}} \xrightarrow{H}_{D_2} s_{i_s}$ for every s in $\{0, \ldots, t\}$ (indices modulo t+1), a contradiction with Proposition 8. Therefore, $\mathscr{S}^{\infty} \neq \emptyset$.

(2.3) \mathscr{S}^{∞} is an *H*-independent set in *D*.

Proceeding by contradiction, suppose that there exists a subset $\{u, v\}$ of \mathscr{S}^{∞} , $u \neq v$, such that $u \xrightarrow{H}_{D} v$. Since $\{u, v\} \subseteq \mathscr{S}^{\infty}$, there exists a subset $\{S_0, T_0\}$ of \mathscr{C} such that $u \in S$ for every S in N_{S_0} and $v \in T$ for every T in N_{T_0} . Since \mathscr{C} is a chain, we can suppose without loss of generality that $S_0 \leq T_0$. Thus, because of $T_0 \in N_{S_0}$ we get that $u \in T_0$, which contradicts that T_0 is an H-independent set in D (because $v \in T_0$). Therefore, \mathscr{S}^{∞} is an H-independent set in D.

(2.4) $\mathscr{S}^{\infty} \in \mathscr{L}$.

Suppose that there exist u in $V(D) \setminus \mathscr{S}^{\infty}$ and s in \mathscr{S}^{∞} such that $s \xrightarrow{H}{D_2} u$. We will prove that there exists w in \mathscr{S}^{∞} such that $u \xrightarrow{H}{D} w$. Proceeding by contradiction, suppose that $u \xrightarrow{H}{D} \mathscr{S}^{\infty}$.

Consider S_1 in \mathscr{C} such that $s \in S_1$. Since $S_1 \in \mathscr{L}$, there exists s_1 in S_1 such that $u \xrightarrow{H}{D} s_1$. Because of $u \xrightarrow{H}{D} \mathscr{I}^{\infty}$ we get that $s_1 \notin \mathscr{I}^{\infty}$; it follows from the fact $s \xrightarrow{H}{D_2} u$, the fact that S_1 is an H-independent set, and by Proposition 7 that $u \xrightarrow{H}{D_2} s_1$, which implies that $u \xrightarrow{H}{D_1} s_1$. Since $s_1 \notin \mathscr{I}^{\infty}$, there exists S_2 in N_{S_1} such that $s_1 \notin S_2$. Thus, $S_1 \leq S_2$ implies that there exists s_2 in S_2 such that $s_1 \xrightarrow{H}{D_1} s_2$ and $s_2 \xrightarrow{H}{D_1} s_1$. Then, we get from Proposition 7 that $u \xrightarrow{H}{D_1} s_2$ (because $u \xrightarrow{H}{D_1} s_1$), which implies that $s_2 \notin \mathscr{I}^{\infty}$ (because $u \xrightarrow{H}{D} \mathscr{I}^{\infty}$). Hence, since $s_2 \notin \mathscr{I}^{\infty}$, we get that there exists S_3 in N_{S_2} such that $s_2 \notin S_3$; the fact $S_2 \leq S_3$ implies that there exists s_3 in S_3 such that $s_2 \xrightarrow{H}{D_1} s_3$, which implies that $s_3 \notin \mathscr{I}^{\infty}$ (because $u \xrightarrow{H}{D_1} s_2$, we get that $u \xrightarrow{H}{D_1} s_3$, which implies that $s_3 \notin \mathscr{I}^{\infty}$ (because $u \xrightarrow{H}{D_1} s_2$). With this procedure we have that for every n in N given S_n in \mathscr{C} and s_n in $V(D) \setminus \mathscr{I}^{\infty}$ such that $s_n \in S_n$ there exist

 S_{n+1} in N_{S_n} , s_{n+1} in S_{n+1} such that $s_{n+1} \notin \mathscr{S}^{\infty}$, $s_n \xrightarrow{H}_{D_1} s_{n+1}$, $s_{n+1} \xrightarrow{H}_{D_1} s_n$ and $u \xrightarrow{H}_{D_1} s_{n+1}$. Therefore, we get from Lemma 5 that $(s_n, s_{n+1}) \in A(D_1)$ and since $(s_n)_{n \in \mathbb{N}}$ cannot be an infinite outward path in D_1 , there exist s_i and s_j , with i < j, such that $s_i = s_j$, which implies that $(s_i, s_{i+1}, \ldots, s_j = s_i)$ is a closed walk in D_1 which contains a cycle $\gamma = (s_{i_0}, s_{i_1}, \ldots, s_{i_t}, s_{i_0})$ such that $s_{i_{s+1}} \xrightarrow{H}_{D_2} s_{i_s}$ for every s in $\{0, \ldots, t\}$ (indices modulo t + 1), a contradiction with Proposition 8. Therefore, there exists w in \mathscr{S}^{∞} such that $u \xrightarrow{H}_{D} w$.

(2.5)
$$S \leq \mathscr{S}^{\infty}$$
 for every S in \mathscr{C} .

Let S be in \mathscr{C} and u in S. We will prove that there exists w in \mathscr{S}^{∞} such that u = w or $\left[u \xrightarrow{H}{D_1} w$ and $w \xrightarrow{H}{D_1} u\right]$. Suppose that $u \notin \mathscr{S}^{\infty}$. Then there exists S_1 in N_S such that $u \notin S_1$; $S \leq S_1$ implies that there exists s_1 in S_1 such that $u \xrightarrow{H}{D_1} u$. If $s_1 \in \mathscr{S}^{\infty}$, then we are done; otherwise since $s_1 \notin \mathscr{S}^{\infty}$, there exists S_2 in N_S_1 such that $s_1 \notin \mathscr{S}_2$. Thus, $S_1 \leq S_2$ implies that there exists s_2 in S_2 such that $s_1 \xrightarrow{H}{D_1} s_2$ and $s_2 \xrightarrow{H}{D_1} s_1$. Then, we get from Proposition 7 that $u \xrightarrow{H}{D_1} s_2$ (because $u \xrightarrow{H}{D_1} s_1$). Therefore, proceeding in the same way as in (2.4) and considering that both D_1 has no infinite outward paths and D_1 has no cycle as the cycle in Proposition 8, we conclude that there exists a sequence of vertices s_1, s_2, \ldots, s_n , for some n in \mathbb{N} , such that s_n in $\mathscr{S}^{\infty}, u \xrightarrow{H}{D_1} s_n$; for every i in $\{1, \ldots, n-1\}$ $s_i \xrightarrow{H}{D_1} s_{i+1}, s_{i+1} \xrightarrow{H}{D_1} s_i, s_i \notin \mathscr{S}^{\infty}$ and $u \xrightarrow{H}{D_1} s_i$. It remains to prove that $s_n \xrightarrow{H}{D_1} u$. Proceeding by contradiction, suppose that $s_n \xrightarrow{H}{D_1} u$. Then in this case considering that $s_i \xrightarrow{H}{D_1} s_{i+1}$ and $s_{i+1} \xrightarrow{H}{D_1} s_i$ for every i in $\{1, \ldots, n-1\}$, in particular $s_1 \xrightarrow{H}{D_1} u$, which is not possible. Therefore, $s_n \xrightarrow{H}{D_1} u$.

Therefore, we have proved that any chain in \mathscr{L} has an upper bound in \mathscr{L} , and so, by Zorn's Lemma, it follows that (\mathscr{L}, \leq) contains a maximal element. \Box

Let N be a maximal element of (\mathscr{L}, \leq) .

Claim 3. N is an H-kernel of D.

Proof. Since N is an H-independent set in D, it remains to prove that N is an H-absorbent set in D. Proceeding by contradiction, suppose that N is not an H-absorbent set in D. Then the set $X = \left\{ x \in V(D) \setminus N : x \xrightarrow[D]{H} N \right\}$ is not empty.

(3.1) There exists x_0 in X such that if $x_0 \xrightarrow[D_2]{H} y$, for some y in X, then $y \xrightarrow[D]{H} x_0$. The proof of (3.1) is similar to the proof given in Proposition 9.

Consider the sets $T = \left\{ v \in N : v \xrightarrow{H}_{D_1} x_0 \right\}, B = N \setminus T \text{ and } K = B \cup \{x_0\}.$

(3.2) *K* is *H*-independent in *D*. Since *B* is *H*-independent in *D* and $x_0 \xrightarrow{H}_{D} B$, it remains to prove that $B \xrightarrow{H}_{D} x_0$. It follows from the definition of *B* that $B \xrightarrow{H}_{D_1} x_0$. On the other hand, since *N* is an *H*-semikernel modulo D_1 in *D* (because $N \in \mathscr{L}$), we get that $B \xrightarrow{H}_{D_2} x_0$ (because $x_0 \xrightarrow{H}_{D} N$). Therefore, $B \xrightarrow{H}_{D} x_0$ (recall 2 in Lemma 3 and 2 of this theorem).

(3.3) $K \notin \mathscr{L}$.

Proceeding by contradiction, suppose that $K \in \mathscr{L}$. We will see that $N \leq K$. Let u be in N and suppose that $u \notin K$. We will prove that there exists t in K such that $u \xrightarrow{H}_{D_1} t$ and $t \xrightarrow{H}_{D_1} u$. Since $u \in T$ (because $N = T \cup B$), we get that $u \xrightarrow{H}_{D_1} x_0$, and because of $x_0 \xrightarrow{H}_{D} N$, we have that $x_0 \xrightarrow{H}_{D_1} u$. Therefore, x_0 is the vertex desired. Hence $N \leq K$, which is not possible because $K \neq N$ and N is maximal.

Since $K \notin \mathscr{L}$ and K is H-independent in D, it follows from the definition of \mathscr{L} that K is not an H-semikernel modulo D_1 in D, that is, there exist v in K and w in $V(D) \setminus K$ such that $v \xrightarrow[D_2]{H} w$ and $w \xrightarrow[D]{H} K$. Notice that $(v, w) \in A(D_2)$ (by Lemma 5).

(3.4) $v = x_0$.

Proceeding by contradiction, suppose that $v \neq x_0$. The fact $v \in B$ implies that $w \notin N$. Since N is an H-semikernel modulo D_1 in D and $w \xrightarrow{H}_{D} K$, it follows that there exists t in T such that $w \xrightarrow{H}_{D} t$. The fact $t \in T$ implies that $t \xrightarrow{H}_{D_1} x_0$ and since $x_0 \xrightarrow{H}_{D_1} t$, we get from Proposition 7 that $w \xrightarrow{H}_{D_1} t$ (because $w \xrightarrow{H}_{D} x_0$), which implies that $w \xrightarrow{H}_{D_2} t$. Therefore, $v \xrightarrow{H}_{D_2} w$, $w \xrightarrow{H}_{D_2} v$ and $w \xrightarrow{H}_{D_2} t$ implies that $v \xrightarrow{H}_{D_2} t$ (by Proposition 7), which contradicts that N is an H-independent set in D.

Since $v = x_0$, it follows from the choice of x_0 that $w \notin X$ (because $w \xrightarrow[D]{} x_0$). Notice that $w \notin N$ by definition of X and because $x_0 \in X$. Since $w \in V(D) \setminus (N \cup X)$, we get from the definition of X that there exists t in T such that $w \xrightarrow[D]{} t$. The fact t in T implies that $t \xrightarrow[D_1]{H} x_0$, and since $x_0 \xrightarrow[D_1]{H} t$, we get from Proposition 7 that $w \xrightarrow[D_1]{H} t$ (because $w \xrightarrow[D]{H} x_0$), which implies that $w \xrightarrow[D_2]{H} t$. Therefore, $v \xrightarrow[D_2]{H} w$, $w \xrightarrow[D_2]{H} v$ and $w \xrightarrow[D_2]{H} t$ implies that $v \xrightarrow[D_2]{H} t$ (by Proposition 7), which contradicts that $x_0 \xrightarrow[D_2]{H} N$.

Therefore, N is H-absorbent in D. Thus, N is an H-kernel of D.

5. Some Consequences of Theorem 10

Corollary 11. Let $D = D_1 \cup D_2$ be a finite m-colored which is a union of asymmetric quasi-transitive digraphs such that

- 1. every chromatic class is quasi-transitive,
- 2. if C is a chromatic class, then $C \subseteq A(D_j)$ for some j in $\{1, 2\}$, and
- 3. D has no 3-colored C_3 .

Then D has an mp-kernel.

Corollary 12. Let H be a digraph, D an H-colored asymmetric quasi-transitive digraph and $\{V_1, \ldots, V_k\}$ a partition of $V(\mathscr{C}_C(D))$ with the property P^* . Suppose that

- 1. V_i is a quasi-transitive V_i -class for every i in $\{1, \ldots, k\}$,
- 2. D has no infinite outward path,
- 3. every cycle of length three in D has at most two obstructions.

Then D has an H-kernel.

Proof. Let D^* be an asymmetric quasi-transitive digraph such that D^* and D are isomorphic, with $V(D) \cap V(D^*) = \emptyset$, and let H^* be a digraph such that H^* and H are isomorphic, with $V(H) \cap V(H^*) = \emptyset$. Consider $f : V(D) \to V(D^*)$ and $g : V(H) \to V(H^*)$ two isomorphisms. Suppose that D^* is an H^* -colored digraph such that (u, v) has color i in D if and only if (f(u), f(v)) has color g(i) in D^* . Therefore, it follows that D^* holds the same hypotheses as D.

Let $D' = D \cup D^*$. Notice that D' is an H'-colored digraph (with $V(H') = V(H) \cup V(H^*)$ and $A(H') = A(H) \cup A(H^*)$) which is a union asymmetric of quasi-transitive digraphs. If $V_i^* = \{g(j) : j \in V_i\}$ for every i in $\{1, \ldots, k\}$, then $\{V_1^*, \ldots, V_k^*\}$ is a partition of $V(\mathscr{C}_C(D^*))$ which has the property P^* and so $\{V_1, \ldots, V_k, V_1^*, \ldots, V_k^*\}$ is a partition of $V(\mathscr{C}_C(D'))$ which has the property P^* . Now consider that the hypotheses of Theorem 10 fulfill on D' by the definition of D^* , the definition of H^* , the H^* -coloring of D^* and the hypotheses on D.

406

Therefore, it follows from Theorem 10 that D' has an H'-kernel, say N. Therefore, it follows from the definition of D' that $N \cap V(D)$ is an H-kernel of D.

Corollary 13. Let D be a finite m-colored asymmetric quasi-transitive digraph such that

1. every chromatic class is quasi-transitive,

2. D has no 3-colored C_3 .

Then D has an mp-kernel.

Proof. Notice that in this case the arcs of D are colored with the vertices of H, where $V(H) = \{1, \ldots, m\}$ and $A(H) = \{(u, u) : u \in V(H)\}$. Since (a) $\{V_1 = \{1\}, \ldots, V_m = \{m\}\}$ is a partition of $V(\mathscr{C}_C(D))$ which has the property P^* , (b) V_i is a quasi-transitive V_i -class for every i in $\{1, \ldots, m\}$ (because $D[B_i]$ is a chromatic class of D), and (c) every cycle with length three in D has at most two obstructions (by hypothesis in 2), it follows from Corollary 12 that D has an H-kernel which is an mp-kernel.

Corollary 14. Let T be a finite m-colored tournament such that

- 1. every chromatic class is quasi-transitive,
- 2. T has no 3-colored C_3 .

Then T has an mp-kernel.

Acknowledgements

We thank the referees for their suggestions which improved the rewriting of this paper.

References

- P. Arpin and V. Linek, Reachability problems in edge-colored digraphs, Discrete Math. 307 (2007) 2276–2289. doi:10.1016/j.disc.2006.09.042
- J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2009). doi:10.1007/978-1-84800-998-1
- [3] Y. Bai, S. Fujita and S. Zhang, Kernels by properly colored paths in arc-colored digraphs, Discrete Math. 341 (2018) 1523–1533. doi:10.1016/j.disc.2018.02.014
- [4] C. Berge, Graphs (North-Holland, Amsterdan, 1989).
- C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27–31. doi:10.1016/0012-365X(90)90346-J

- [6] P. Delgado-Escalante and H. Galeana-Sánchez, Restricted domination in arc-colored digraphs, AKCE Int. J. Graphs Comb. 11 (2014) 95–104.
- P. Delgado-Escalante, H. Galeana-Sánchez and E. O'Reilly-Regueiro, Alternating kernels, Discrete Appl. Math. 236 (2018) 153–164. doi:10.1016/j.dam.2017.10.013
- [8] H. Galeana-Sánchez, Kernels by monochromatic paths and the color-class digraph, Discuss. Math. Graph Theory **31** (2011) 273–281. doi:10.7151/dmgt.1544
- H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103–112. doi:10.1016/0012-365X(95)00036-V
- H. Galeana-Sánchez and R. Rojas-Monroy, Kernels in quasi-transitive digraphs, Discrete Math. 306 (2006) 1969–1974. doi:10.1016/j.disc.2006.02.015
- H. Galeana-Sánchez, B. Llano and J.J. Montellano-Ballesteros, Kernels by monochromatic paths in m-colored unions of quasi-transitive digraphs, Discrete Appl. Math. 158 (2010) 461–466. doi:10.1016/j.dam.2009.11.005
- [12] A. Ghouilá-Houri, Caractérisation des graphes non orientés dont on peut orienter les arêtes de manière à obtenir le graphe d'une relation d'ordre, C. R. Math. Acad. Sci. Paris 254 (1962) 1370–1371.
- [13] V. Linek and B. Sands, A note on paths in edge-colored tournaments, Ars Combin. 44 (1996) 225–228.
- [14] K.B. Reid, Monotone reachability in arc-colored tournaments, Congr. Numer. 146 (2000) 131–141.
- [15] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory Ser. B 33 (1982) 271–275. doi:10.1016/0095-8956(82)90047-8

Received 14 March 2018 Revised 6 November 2018 Accepted 7 November 2018