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(Sánchez-López) usagitsukinomx@yahoo.com.mx

Abstract

Let H be a digraph (possibly with loops) and D a digraph without loops
whose arcs are colored with the vertices of H (D is said to be an H-colored
digraph). For an arc (x, y) of D, its color is denoted by c(x, y). A directed
path W = (v0, . . . , vn) in an H-colored digraph D will be called H-path if
and only if (c(v0, v1), . . . , c(vn−1, vn)) is a directed walk in H. In W , we will
say that there is an obstruction on vi if (c(vi−1, vi), c(vi, vi+1)) /∈ A(H) (if
v0 = vn we will take indices modulo n). A subset N of V (D) is said to be an
H-kernel in D if for every pair of different vertices in N there is no H-path
between them, and for every vertex u in V (D)\N there exists an H-path in
D from u to N . Let D be an arc-colored digraph. The color-class digraph
of D, CC(D), is the digraph such that V (CC(D)) = {c(a) : a ∈ A(D)} and
(i, j) ∈ A(CC(D)) if and only if there exist two arcs, namely (u, v) and (v, w)
in D, such that c(u, v) = i and c(v, w) = j. The main result establishes that
if D = D1 ∪ D2 is an H-colored digraph which is a union of asymmetric
quasi-transitive digraphs and {V1, . . . , Vk} is a partition of V (CC(D)) with
a property P ∗ such that

1. Vi is a quasi-transitive Vi-class for every i in {1, . . . , k},

2. either D[{a ∈ A(D) : c(a) ∈ Vi}] is a subdigraph of D1 or it is a
sudigraph of D2 for every i in {1, . . . , k},

3. Di has no infinite outward path for every i in {1, 2},
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4. every cycle of length three in D has at most two obstructions,

then D has an H-kernel.
Some results with respect to the existence of kernels by monochromatic

paths in finite digraphs will be deduced from the main result.

Keywords: quasi-transitive digraph, kernel by monochromatic paths, al-
ternating kernel, H-kernel, obstruction.
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1. Introduction

Let H be a digraph possibly with loops and D a digraph without loops. An
H-arc coloring of D is a function c : A(D) → V (H). D is H-colored if D has
an H-arc coloring. A path W = (v0, . . . , vn) in D is said to be an H-path if and
only if (c(v0, v1), . . . , c(vn−1, vn)) is a walk in H. We are going to consider that
an arc is an H-path, that is to say, a singleton vertex is a walk in H. A subset
S of V(D) is H-absorbent if for every x in V (D) \ S there is an H-path from x
to some point of S. A subset I of V (D) is H-independent if there is no H-path
between any two distinct vertices of I. A subset N of V (D) is an H-kernel if N
is both H-absorbent and H-independent. The concept of H-kernel has its origins
in the works carried out by Sands, Sauer and Woodrow [15], Linek and Sands [13]
and Arpin and Linek [1]. In [15] Sands, Sauer and Woodrow proved that if the
arcs of a finite tournament T are colored with two colors, then there is always a
vertex v in T such that for every w in V (T ) \ {v} there exists a monochromatic
path from w to v. In [13] Linek and Sands gave an extension of the result of
Sands, Sauer and Woodrow, in which the arcs of a tournament T are colored
with the elements of a partially ordered set P and in their paper they give the
first notion of H-path. In [1] Arpin and Linek work with H-colored digraphs and
in their paper they introduce the concept of H-walk where an H-walk is a walk
(v0, . . . , vn) in D such that (c(v0, v1), . . . , c(vn−1, vn)) is a walk in H. In [1] Arpin
and Linek introduce the concept of H-independent set by walks as a subset of
vertices I of D such that there is no H-walks between any two different vertices
of I. They also define an H-sink as a subset of vertices S of D such that for
any u in V (D) \ S there is v in S such that there exists an H-walk from u to v.
Galeana-Sánchez and Delgado-Escalante were inspired by the work of Arpin and
Linek and in [6] they introduced the concept of H-kernels. A subset of vertices N
of D is called H-kernel by walks if N is both an H-independent set by walks and
N is an H-sink. Notice that the concept of H-kernel and the concept of H-kernel
by walks are different because of that the existence of an H-walk between two
vertices does not guarantee the existence of an H-path between those vertices
and the concatenation of two H-paths is not always an H-walk, see Figure 1.
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Figure 1. (u, x, y, z, x, v) is a uv-H-walk in G. The only one uv-path in G is (u, x, v)
but this path is not a uv-H-path in G. {v} is an H-kernel by walks in G. Every
H-independent set in G consists only of one element but none of these is an H-kernel.

Notice that it follows from the definition of H-kernel that when A(H) = ∅,
an H-kernel is a kernel (a subset N of vertices of D such that (1) for every u and
v in N it holds that {(u, v), (v, u)} ∩ A(D) = ∅ and (2) for every u in V (D) \N
there exists v in N such that (u, v) ∈ A(D)); when A(H) = {(u, u) : u ∈ V (H)},
an H-kernel is a kernel by monochromatic paths (mp-kernel) (a subset N of
vertices of D such that (1) for every u and v in N there exists no monochromatic
directed paths between u and v and (2) for every u in V (D) \N there exists v in
N such that there exists a monochromatic directed path from u to v) and when
H has no loops, an H-kernel is an alternating kernel (a subset N of vertices of
D such that (1) for every u and v in N it holds that there exists no directed
path between u and v in which consecutive arcs have different colors and (2) for
every u in V (D) \N there exists v in N such that there is a directed path from
u to v in which consecutive arcs have different colors). In each of these special
cases for H, sufficient conditions have been established in order to guarantee the
existence of H-kernels, see for example [3, 5, 7, 9, 15]. Thus we can see that the
concept of H-kernels is a generalization of the concepts of kernels, mp-kernels
and alternating kernels.

Due to the difficulty of finding kernels, mp-kernels and alternating kernels in
arc-colored digraphs, sufficient conditions for the existence of each of these H-
kernels in arc-colored digraphs have been obtained mainly by study special classes
of digraphs. A digraph D is quasi-transitive whenever {(u, v), (v, w)} ⊆ A(D)
implies either (u,w) ∈ A(D) or (w, u) ∈ A(D). Quasi-transitive digraphs are of
interest because these are a generalization of tournaments (due to Ghouilá-Houri
[12]) and those digraphs are a special case of digraphs in which the existence of
kernels, mp-kernels and alternating kernels has been studied.

In [10] Galeana-Sánchez and Rojas-Monroy proved that if D = D1∪D2 (pos-
sibly A(D1) ∩ A(D2) 6= ∅) where Di is a quasi-transitive digraph which contains
no asymmetric infinite outward path (in Di) for i in {1, 2}, and that every di-
rected cycle of length 3 contained in D has at least two symmetric arcs, then D
has a kernel.
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A chromatic class of D is the set of arcs of a same color. We say that a
chromatic class C is quasi-transitive if D[C] is a quasi-transitive digraph. Let
D = D1 ∪D2 be a digraph. We will say that D is a union of asymmetric quasi-
transitive digraphs if (1) Di is a quasi-transitive digraph for every i in {1, 2}, (2)
Di is asymmetric for every i in {1, 2} and (3) A(D1) ∩A(D2) = ∅.

In [11] Galeana-Sánchez et al. worked with a finite m-colored multidigraph
(a digraph with parallel arcs) D = D1 ∪ D2 which is a union of asymmetric
quasi-transitive digraphs, and they proved that if D satisfies that

1. every chromatic class induces a quasi-transitive digraph,

2. every chromatic class is contained in Di for some i in {1, 2} and

3. D contains neither 3-colored directed triangles nor 3-colored transitive sub-
tournaments of order 3,

then D has an mp-kernel.

In [7], recently, Delgado-Escalante et al. proved the following.

Theorem 1. If D is a finite m-colored quasi-transitive digraph such that every
directed cycle of length 3 contained in D is 3-colored, then D has an alternating
kernel.

Basically the spirit of the conditions that guarantee the existence of kernels
or mp-kernels in [10] and [11], respectively, arises from structural properties of
2-colored digraphs which were studied in [15] by Sands et al.

On the other hand, in [8] Galeana-Sánchez defined the color-class digraph
CC(D) of D as the digraph whose vertices are the colors represented in the arcs
of D and (i, j) ∈ A(CC(D)) if and only if there exist two arcs, namely (u, v) and
(v, w) in D, such that (u, v) has color i and (v, w) has color j (notice that CC(D)
can have loops by definition). Because of that in an H-colored digraph D, it
holds that V (CC(D)) ⊆ V (H), we can establish structural properties on CC(D),
with respect to H, in order to guarantee the existence of H-kernels.

Let H be a digraph, D an H-colored digraph and (v0, v1, . . . , vn) a walk in D.
We will say that there is an obstruction on vi if (c(vi−1, vi), c(vi, vi+1)) /∈ A(H)
(if v0 = vn we will take indices modulo n).

In this paper we continue with the study of the existence of H-kernels in
unions of quasi-transitive digraphs and for this we will need the following defini-
tions.

Definition. Let H be a digraph, D an H-colored digraph and {V1, . . . , Vk} a
partition of V (CC(D)). We will say that {V1, . . . , Vk} has the property P ∗ if the
following conditions are satisfied.

1. CC(D)[Vi] is a subdigraph of H for every i in {1, . . . , k}.

2. If (u, v) ∈ A(CC(D)), for some u in Vi and for some v in Vj with i 6= j, then
(u, v) /∈ A(H).
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Definition. Let H be a digraph, D an H-colored digraph and {V1, . . . , Vk} a
partition of V (CC(D)). Vi is said to be a quasi-transitive Vi-class if D[{a ∈
A(D) : c(a) ∈ Vi}] is a quasi-transitive digraph for every i in {1, . . . , k}.

The main result establishes that if H is a digraph, D = D1 ∪ D2 is an H-
colored digraph which is a union of asymmetric quasi-transitive digraphs and
{V1, . . . , Vk} is a partition of V (CC(D)) with the property P ∗ such that

1. Vi is a quasi-transitive Vi-class for every i in {1, . . . , k},

2. either D[{a ∈ A(D) : c(a) ∈ Vi}] is a subdigraph of D1 or it is a sudigraph
of D2 for every i in {1, . . . , k},

3. Di has no infinite outward path for every i in {1, 2},

4. every directed cycle of length three in Di has at most two obstructions,

then D has an H-kernel.

With the main result of this paper we show that the main result in [11] can
be reduced for digraphs as follows.

LetD = D1∪D2 be a finitem-colored digraph which is a union of asymmetric
quasi-transitive digraphs such that

1. every chromatic class is quasi-transitive,

2. if C is a chromatic class, then C ⊆ A(Dj) for some j in {1, 2} and

3. D does not contain 3-colored directed cycles of length three.

Then D has an mp-kernel.

In terms of H-kernels Theorem 1 says that if H is a complete digraph without
loops and D is a finite H-colored quasi-transitive digraph such that every directed
cycle of length 3 contained in D has no obstructions, then D has an H-kernel.
However, the above is not true if H is not complete; consider the directed cycle
of length 3, C3, whose arcs are colored with three different vertices of H, with
A(H) = ∅, it is clear that C3 has no H-kernel. In this paper we will deduce from
the main result the following.

Let H be a digraph (possibly with loops), D an H-colored asymmetric quasi-
transitive digraph and {V1, . . . , Vk} a partition of V (CC(D)) with the property
P ∗. Suppose that

1. Vi is a quasi-transitive Vi-class for every i in {1, . . . , k},

2. D has no infinite outward path,

3. every cycle of length three in D has at most two obstructions.

Then D has an H-kernel.

We will need the following result.

Corollary 2 ([2], p. 53). If a quasi-transitive digraph D has an xy-path but
(x, y) /∈ A(D), then either (y, x) ∈ A(D) or there exists vertices u and v in
V (D) \ {x, y} such that (x, u, v, y) and (y, u, v, x) are paths in D.



396 J.M. Campero-Alonzo and R. Sánchez-López

2. Terminology and Notation

For general concepts we refer the reader to [2] and [4]. An arc of the form (x, x)
is a loop. An arc (u, v) in A(D) is asymmetric if (v, u) /∈ A(D). We will say
that a digraph D is asymmetric if every arc of D is asymmetric. We will say
that two digraphs D1 and D2 are equal, denoted by D1 = D2, if A(D1) = A(D2)
and V (D1) = V (D2). A directed walk is a sequence W = (v0, v1, . . . , vn) such
that (vi, vi+1) ∈ A(D) for each i in {0, . . . , n− 1}. The number n is the length of
the walk. We will say that the directed walk (v0, v1, . . . , vn) is closed if v0 = vn.
If vi 6= vj for all i and j such that {i, j} ⊆ {0, . . . , n} and i 6= j, it is called
a directed path. A directed cycle is a directed walk (v1, v2, . . . , vn, v1) such that
vi 6= vj for all i and j such that {i, j} ⊆ {1, . . . , n} and i 6= j, this will be denoted
by Cn. If D is an infinite digraph, an infinite outward path is an infinite sequence
(v1, v2, . . .) of distinct vertices of D such that (vi, vi+1) ∈ A(D) for each i ∈ N.
In this paper we are going to write walk, path, cycle, instead of directed walk,
directed path, directed cycle, respectively. The union of walks will be denoted
with ∪. Let W = (v0, v1, . . . , vn) be a walk and {vi, vj} ⊆ V (W ), with i<j. Then
the vivj-walk (vi, vi+1, . . . , vj−1, vj) contained in W will be denoted by (vi,W, vj).
For a subset S of V (D) the subdigraph of D induced by S, denoted by D[S], has
V (D[S]) = S and A(D[S]) = {(u, v) ∈ A(D) : {u, v} ⊆ S}. A subset S of V (D)
is said to be independent if the only arcs in D[S] are loops. For a subset B of
A(D) the subdigraph of D induced by B, denoted by D[B], has A(D[B]) = B
and V (D[B]) = {v ∈ V (D) : (u, v) ∈ B or (v, u) ∈ B for some u ∈ V (D)}. A pair
of digraphs D and G are isomorphic if there exists a bijection f : V (D)→ V (G)
such that (x, y) ∈ A(D) if and only if (f(x), f(y)) ∈ A(G) (f will be called
isomorphism). We will say that a digraph D is complete if for every pair of
different vertices u and v in V (D) it holds that {(u, v), (v, u)} ⊆ A(D).

A digraph D is said to be m-colored if the arcs of D are colored with m
colors. A path is called monochromatic if all of its arcs are colored alike.

3. Previous Results

For the rest of the work H is a digraph possibly with loops and D is a, possibly
infinite, digraph without loops.

We need to introduce some notation in order to present our proofs more
compactly.

Let H be a digraph and D an H-colored digraph. Consider {u, v} and S two

subsets of V (D). We will write u−
H
−→
D

v if there exists a uv-H-path in D; u−
H
−→
D

S

if there exists a uS-H-path in D; u
H

D
v is the denial of u−

H
−→
D

v; u
H

D
S is
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the denial of u−
H
−→
D

S.

We will start with some results which will be useful.

From now on, the set {a ∈ A(D) : c(a) ∈ Vi} will be denoted by Bi for every
i in {1, . . . , k}.

Lemma 3. Let H be a digraph and D an H-colored digraph. Suppose that
{V1, . . . , Vk} is a partition of V (CC(D)) with the property P ∗. Then the following
properties are satisfied.

1. Let i be an index in {1, . . . , k}. Every finite path in D[Bi] is an H-path in
D[Bi].

2. If P is a finite H-path in D, then there exists i in {1, . . . , k} such that P is
contained in D[Bi].

Proof. Let P = (u0, . . . , um) be a path in D[Bi]. We will prove that P is an
H-path in D. It follows from the definition of color-class digraphs that P ′ =
(c(u0, u1), . . . , c(um−1, um)) is a walk in CC(D). Since c(uj , uj+1) ∈ Vi for every
j in {0, . . . ,m − 1}, then P ′ is a walk in CC(D)[Vi], which implies that P ′ is a
walk in H (because CC(D)[Vi] is a subdigraph of H). Therefore P is an H-path
in D[Bi].

On the other hand, let P = (v0, . . . , vn) be an H-path in D. Then, it fol-
lows from the definition of H-paths and the definition of color-class digraphs that
(c(vj−1, vj), c(vj , vj+1)) ∈ A(H)∩A(CC(D)) for every j in {1, . . . , n− 1}. There-
fore, we get from 2 in definition of P ∗ that there exists i in {1, . . . , k} such that
c(vj , vj+1) ∈ Vi for every j in {0, . . . , n− 1}. Thus P is contained in D[Bi].

Lemma 4. Let H be a digraph, D an H-colored digraph and {w, z} ⊆ V (D).
Suppose that {V1, . . . , Vk} is a partition of V (CC(D)) such that Vi is a quasi-
transitive Vi-class for every i in {1, . . . , k}. If there exists a wz-path in D[Bj ] and
there exists no zw-path in D[Bj ] for some j in {1, . . . , k}, then (w, z) ∈ A(D[Bj ]).

Proof. It follows from Corollary 2.

We can obtain an extension of Lemma 4 as follows.

Lemma 5. Let H be a digraph and D = D1∪D2 an H-colored digraph. Suppose
that {V1, . . . , Vk} is a partition of V (CC(D)) with the property P ∗ such that

1. Vi is a quasi-transitive Vi-class for every i in {1, . . . , k},

2. either D[Bi] is a subdigraph of D1 or it is a sudigraph of D2 for every i in
{1, . . . , k}.

Let r be an index in {1, 2}. If x−
H
−→
Dr

z and z
H

Dr

x, then (x, z) ∈ A(Dr).
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Proof. Let P be an xz-H-path in Dr. It follows from Lemma 3 that there exists
i in {1, . . . , k} such that P is contained in D[Bi]. The hypothesis implies that
D[Bi] is a subdigraph of Dr (because P is in Dr). On the other hand, since

z
H

Dr

x, there exists no zx-H-path in D[Bi], which implies that there exists

no zx-path in D[Bi] (by 1 in Lemma 3). Therefore, we get from Lemma 4 that
(x, z) ∈ A(D[Bi]). So, (x, z) ∈ A(Dr).

The following result will be useful in what follows.

Lemma 6. Let H be a digraph, D = D1∪D2 an H-colored digraph and {V1, . . . ,
Vk} a partition of V (CC(D)) with the property P ∗. If either D[Bi] is a subdigraph
of D1 or it is a sudigraph of D2 for every i in {1, . . . , k}, then there exists a
partition of V (CC(Dr)) with the property P ∗ for every r in {1, 2}.

Proof. Suppose that {V1, . . . , Vt} is such that D[Bi] is a subdigraph of D1 for
every i in {1, . . . , t} and {Vt+1, . . . , Vk} is such that D[Bj ] is a subdigraph of
D2 for every j in {t + 1, . . . , k}. Then, considering that D1 and D2 are also H-
colored digraphs, it follows that {V1, . . . , Vt} is a partition of V (CC(D1)) with the
property P ∗ and {Vt+1, . . . , Vk} is a partition of V (CC(D2)) with the property
P ∗ (this follows from the fact that CC(Dr) is a subdigraph of CC(D) for every r
in {1, 2} and the fact that either Vi ⊆ V (CC(D1)) or Vi ⊆ V (CC(D2)) for every
i in {1, . . . , k}).

Proposition 7. Let H be a digraph, D = D1 ∪D2 an H-colored digraph which
is a union of asymmetric quasi-transitive digraphs, r an index in {1, 2}, {x, y} ⊆
V (D) and {V1, . . . , Vk} a partition of V (CC(D)) with the property P ∗. Suppose
that

1. Vi is a quasi-transitive Vi-class for every i in {1, . . . , k},

2. either D[Bi] is a subdigraph of D1 or it is a sudigraph of D2 for every i in
{1, . . . , k},

3. every cycle of length three in Di has at most two obstructions for every i in
{1, 2},

4. x−
H
−→
Dr

y and y
H

Dr

x.

If z is a vertex in V (D) such that y−
H
−→
Dr

z, then (x, z) ∈ A(Dr); if z−
H
−→
Dr

x, then

(z, y) ∈ A(Dr).

Proof. Notice that it follows from Lemma 5 and hypothesis 4 of this proposition
that (x, y) ∈ A(Dr).

If y−
H
−→
Dr

z, then let (y = w0, . . . , wm = z) be a yz-H-path in Dr. We will

prove that (x, z) ∈ A(Dr) by induction on m.
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If m = 0, it is clear that (x, z) ∈ A(Dr) (because in this case y = w0 = z).

Suppose that if (y = u0, . . . , um−1) is a yum−1-H-path in Dr with length
m− 1, then (x, um−1) ∈ A(Dr).

Let P = (y = α0, . . . , αm) be a yαm-H-path in Dr with length m. We
will prove that (x, αm) ∈ A(Dr). Since (y, P, αm−1) is a yαm−1-H-path in Dr

with length m − 1, it follows from the induction hypothesis that (x, αm−1) ∈
A(Dr). Since {(x, αm−1), (αm−1, αm)} ⊆ A(Dr) and Dr is a quasi-transitive
digraph, it follows that {(x, αm), (αm, x)} ∩ A(Dr) 6= ∅. If (αm, x) ∈ A(Dr),
then γ = (x, αm−1, αm, x) is a cycle of length three in Dr which has at most
two obstructions by hypothesis 3 of this proposition. If there is no obstruction
on αm−1, we have that P ′ = (x, αm−1, αm) is an H-path in Dr, then we get by
Lemma 6 and by Lemma 3 that there exists i in {1, . . . , k} such that D[Bi] is
a subdigraph of Dr and P ′ is contained in D[Bi], respectively. Since D[Bi] is a
quasi-transitive digraph, P ′ is a path with length two in D[Bi], (αm, x) ∈ A(Dr)
and Dr is an asymmetric digraph, we get that (αm, x) ∈ A(D[Bi]). This implies
that γ is contained in D[Bi]. In the same way, we can conclude that γ is contained
in D[Bj ] for some j in {1, . . . , k} if either there is no obstruction on x or there
is no obstruction on αm. Therefore, in particular, we get from Lemma 3 that
(αm−1, αm, x) is an H-path in Dr, that is (c(αm−1, αm), c(αm, x)) ∈ A(H). Thus
P ∪ (αm, x) is an yx-H-path in Dr, a contradiction with hypothesis 4 of this
proposition. Therefore, (αm, x) /∈ A(Dr), which implies that (x, αm) ∈ A(Dr).

If z−
H
−→
Dr

x, then we can consider the converse of D and the converse of H

(where the converse of a digraph G is the digraph
←−
G which one obtains from

G by reversing all arcs). It is clear that the digraph
←−
D =

←−
D1 ∪

←−
D2 is an

←−
H -

colored digraph which is a union of asymmetric quasi-transitive digraphs and

{V1, . . . , Vk} is a partition of V (CC(
←−
D)) with the property P ∗, with respect to

←−
H . In addition, the hypothesis 1, 2 and 3 fulfill in this digraph

←−
H -colored, in

the context of the new related digraphs associated, and hypothesis 4 says that

y−
←−
H
−→←−
Dr

x and x
←−
H

←−
Dr

y. Since in
←−
D we have that x−

←−
H
−→←−
Dr

z, then we conclude from

the previous case that (y, z) ∈ A(
←−
Dr). Therefore, (z, y) ∈ A(Dr).

Notice that, since an arc (w, t) in Dr defines a wt-H-path in Dr, we also

can conclude from Proposition 7 that x−
H
−→
Dr

z if (x, z) ∈ A(Dr) or z−
H
−→
Dr

y if

(z, y) ∈ A(Dr).

Proposition 8. Let H be a digraph, D = D1 ∪D2 an H-colored digraph which
is a union of asymmetric quasi-transitive digraphs and {V1, . . . , Vk} a partition
of V (CC(D)) with the property P ∗. Suppose that

1. Vi is a quasi-transitive Vi-class for every i in {1, . . . , k},
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2. either D[Bi] is a subdigraph of D1 or it is a sudigraph of D2 for every i in
{1, . . . , k},

3. every cycle of length three in Di has at most two obstructions.

Then there exists no cycle γ = (u0, u1, . . . , un, u0) in Dr, with r in {1, 2}, such
that ui+1

H

Dr

ui for every i in {0, . . . , n} (indices modulo n+ 1).

Proof. Proceeding by contradiction, suppose that there exists a cycle γ = (u0,
u1, . . . , un, u0) in Dr, for some r in {1, 2}, of minimum length such that
ui+1

H

Dr

ui for every i in {0, . . . , n} (indices modulo n + 1). Notice that there

exists j0 in {0, . . . , n} such that there is an obstruction on uj0 in γ, otherwise

ui+1−
H
−→
Dr

ui for every i in {0, . . . , n} (indices modulo n + 1), which is a contra-

diction. Suppose without loss of generality that there is an obstruction on u1,

that is (c(u0, u1), c(u1, u2)) /∈ A(H). Since u0−
H
−→
Dr

u1 (because (u0, u1) ∈ A(Dr)),

u1
H

Dr

u0 and u1−
H
−→
Dr

u2 (because (u1, u2) ∈ A(Dr)), we get from Propo-

sition 7 that (u0, u2) ∈ A(Dr). Because of that γ′ = (u0, u2) ∪ (u2, γ, u0) is a
cycle with length less than the length of γ, it follows from the choice of γ that

u2−
H
−→
Dr

u0. Therefore, since u1−
H
−→
Dr

u2 (because (u1, u2) ∈ A(Dr)), u2
H

Dr

u1

and u2−
H
−→
Dr

u0, we get from Proposition 7 that (u1, u0) ∈ A(Dr), which is a

contradiction.
Therefore, there exists no cycle γ = (u0, u1, . . . , un, u0) inDr, with r in {1, 2},

such that ui+1
H

Dr

ui for every i in {0, . . . , n} (indices modulo n+ 1).

Definition. Let H be a digraph, D an H-colored digraph and G a subdigraph
of D. We will say that a subset S of V (D) is an H-semikernel modulo G in D if

1. S is an H-independent set in D,

2. if some vertex x in V (D) \ S is such that u H
GGGGGGGGGGGGA

D[A(D) \A(G)]

x for some vertex u

in S, then there exists s in S such that x−
H
−→
Dr

s.

Proposition 9. Let H be a digraph, D = D1 ∪D2 an H-colored digraph which
is a union of asymmetric quasi-transitive digraphs and {V1, . . . , Vk} a partition
of V (CC(D)) with the property P ∗. Suppose that

1. Vi is a quasi-transitive Vi-class for every i in {1, . . . , k},

2. either D[Bi] is a subdigraph of D1 or it is a sudigraph of D2 for every i in
{1, . . . , k},

3. Di has no infinite outward path for every i in {1, 2},

4. every cycle of length three in Di has at most two obstructions.
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Then there exists x in V (D) such that {x} is an H-semikernel modulo Dr in D,
with r in {1, 2}.

Proof. Suppose without loss of generality that r = 1. Proceeding by contradic-
tion, suppose that for every w in V (D) there exists vw in V (D) \ {w} such that

w−
H
−→
D2

vw and vw
H

D
w. Therefore, for every n in N given wn in V (D) there

exists wn+1 in V (D) \ {wn} such that wn−
H
−→
D2

wn+1 and wn+1
H

D
wn. So, it

follows from Lemma 5 that (wn, wn+1) ∈ A(D2) for every n in N. If wi 6= wj for
every i different from j, then (wn)n∈N is an infinite outward path in D2 which is
not possible. Therefore, there exist wi and wj , with i < j, such that wi = wj ,
which implies that (wi, wi+1, . . . , wj = wi) is a closed walk in D2 which contains a
cycle γ = (wi0 , wi1 , . . . , wit , wi0) such that wis+1

H

D2

wis for every s in {0, . . . , t}

(indices modulo t+1), a contradiction with Proposition 8. Therefore, there exists
x in V (D) such that {x} is an H-semikernel modulo D1 in D.

4. Main Result

Theorem 10. Let H be a digraph, D = D1 ∪D2 an H-colored digraph which is
a union of asymmetric quasi-transitive digraphs and {V1, . . . , Vk} a partition of
V (CC(D)) with the property P ∗. Suppose that

1. Vi is a quasi-transitive Vi-class for every i in {1, . . . , k},

2. either D[Bi] is a subdigraph of D1 or it is a sudigraph of D2 for every i in
{1, . . . , k},

3. Di has no infinite outward path for every i in {1, 2},

4. every cycle of length three in Di has at most two obstructions for every i in
{1, 2}.

Then D has an H-kernel.

Proof. I = {S ⊆ V (D) : S is H-independent in D} and L = {S ∈ I : S is an
H-semikernel modulo D1 in D}.

Since {w} is anH-independent set for every w in V (D), it follows that I 6= ∅;
by Proposition 9 we get that L 6= ∅.

For sets S, T in L , put S ≤ T if for all s in S there exists t in T such that

either s = t, or s−
H
−→
D1

t and t
H

D1

s.

Claim 1. (L ,≤) is a poset.

Proof. Consider {S, T,R} a subset of L .
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(1.1) ≤ is reflexive.
Clearly S ≤ S for every S in L .

(1.2) ≤ is antisymmetric.
Suppose that S ≤ T and T ≤ S. We will prove that S = T . Let t be a vertex in
T and suppose that t /∈ S. Then since T ≤ S, we have that there exists s in S

such that t−
H
−→
D1

s and s
H

D1

t. Because of that s /∈ T (T is H-independent) and

S ≤ T , it follows that there exists t′ in T \ {t} such that s−
H
−→
D1

t′ and t′
H

D1

s.

Thus, we get from Proposition 7 that t−
H
−→
D1

t′ which contradicts that T is an

H-independent set in D. Therefore, T ⊆ S and in the same way we can deduce
that S ⊆ T .

(1.3) ≤ is transitive.
Suppose that S ≤ T and T ≤ R. We will prove that S ≤ R, that is, for all s in

S there exists r in R such that either s = r or
[

s−
H
−→
D1

r and r
H

D1

s
]

. Let s be

a vertex in S. Then S ≤ T implies that there exists t in T such that either s = t

or
[

s−
H
−→
D1

t and t
H

D1

s
]

; because of T ≤ R we get that for t in T there exists

r in R such that t = r or
[

t−
H
−→
D1

r and r
H

D1

t
]

. If s = t, then we have that

s = r or
[

s−
H
−→
D1

r and r
H

D1

s
]

. If s 6= t and t = r, then s−
H
−→
D1

r and r
H

D1

s.

If s 6= t and t 6= r, then s−
H
−→
D1

t, t
H

D1

s, t−
H
−→
D1

r and Proposition 7 implies

that s−
H
−→
D1

r. Because of t
H

D1

s and s−
H
−→
D1

t it follows from Proposition 7 that

r
H

D1

s
(

because r
H

D1

t
)

. 2

Claim 2. (L , ≤) has maximal elements.

Proof. (2.1) Any chain in L has an upper bound in L .
Let C be a chain in (L , ≤), consider the following sets.

For S in C , let NS be the set defined as {T in C : S ≤ T}. Notice that
NS 6= ∅ because S ∈ NS .
S∞ =

{

s ∈
⋃

A∈C
A : there exists S in C such that s ∈ T for every T in NS

}

.

(2.2) S∞ 6= ∅.
Proceeding by contradiction, suppose that S∞ = ∅. Let S0 be in C and s0 in S0.
Since s0 /∈ S∞, there exists S1 in NS0

such that s0 /∈ S1. Because of S0 ≤ S1 we

get that there exists s1 in S1 such that s0−
H
−→
D1

s1 and s1
H

D1

s0. Since s1 /∈ S∞,

there exists S2 in NS1
such that s1 /∈ S2. Thus, S1 ≤ S2 implies that there exists
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s2 in S2 such that s1−
H
−→
D1

s2 and s2
H

D1

s1. Therefore, for every n in N given Sn

in C and sn in Sn there exist Sn+1 in NSn
and sn+1 in Sn+1 such that sn /∈ Sn+1,

sn−
H
−→
D1

sn+1 and sn+1
H

D1

sn. Then for every n in N it follows from Lemma

5 that (sn, sn+1) ∈ A(D1). If si 6= sj for every i different from j, then (sn)n∈N
is an infinite outward path in D1 which is not possible. Therefore, there exist
si and sj , with i<j, such that si = sj , which implies that (si, si+1, . . . , sj = si)
is a closed walk in D1 which contains a cycle γ = (si0 , si1 , . . . , sit , si0) such that
sis+1

H

D2

sis for every s in {0, . . . , t} (indices modulo t+1), a contradiction with

Proposition 8. Therefore, S∞ 6= ∅.

(2.3) S∞ is an H-independent set in D.

Proceeding by contradiction, suppose that there exists a subset {u, v} of S∞,

u 6= v, such that u−
H
−→
D

v. Since {u, v} ⊆ S∞, there exists a subset {S0, T0} of C

such that u ∈ S for every S in NS0
and v ∈ T for every T in NT0

. Since C is a
chain, we can suppose without loss of generality that S0 ≤ T0. Thus, because of
T0 ∈ NS0

we get that u ∈ T0, which contradicts that T0 is an H-independent set
in D (because v ∈ T0). Therefore, S∞ is an H-independent set in D.

(2.4) S∞ ∈ L .

Suppose that there exist u in V (D)\S∞ and s in S∞ such that s−
H
−→
D2

u. We will

prove that there exists w in S∞ such that u−
H
−→
D

w. Proceeding by contradiction,
suppose that u

H

D
S∞.

Consider S1 in C such that s ∈ S1. Since S1 ∈ L , there exists s1 in S1 such

that u−
H
−→
D

s1. Because of u
H

D
S∞ we get that s1 /∈ S∞; it follows from

the fact s−
H
−→
D2

u, the fact that S1 is an H-independent set, and by Proposition

7 that u
H

D2

s1, which implies that u−
H
−→
D1

s1. Since s1 /∈ S∞, there exists S2

in NS1
such that s1 /∈ S2. Thus, S1 ≤ S2 implies that there exists s2 in S2 such

that s1−
H
−→
D1

s2 and s2
H

D1

s1. Then, we get from Proposition 7 that u−
H
−→
D1

s2
(

because u−
H
−→
D1

s1

)

, which implies that s2 /∈ S∞
(

because u
H

D
S∞

)

. Hence,

since s2 /∈ S∞, we get that there exists S3 in NS2
such that s2 /∈ S3; the fact

S2 ≤ S3 implies that there exists s3 in S3 such that s2−
H
−→
D1

s3 and s3
H

D1

s2.

Then, from Proposition 7 and the fact u−
H
−→
D1

s2, we get that u−
H
−→
D1

s3, which

implies that s3 /∈ S∞
(

because u
H

D
S∞

)

. With this procedure we have that

for every n in N given Sn in C and sn in V (D)\S∞ such that sn ∈ Sn there exist
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Sn+1 in NSn
, sn+1 in Sn+1 such that sn+1 /∈ S∞, sn−

H
−→
D1

sn+1, sn+1
H

D1

sn and

u−
H
−→
D1

sn+1. Therefore, we get from Lemma 5 that (sn, sn+1) ∈ A(D1) and since

(sn)n∈N cannot be an infinite outward path in D1, there exist si and sj , with
i<j, such that si = sj , which implies that (si, si+1, . . . , sj = si) is a closed walk
in D1 which contains a cycle γ = (si0 , si1 , . . . , sit , si0) such that sis+1

H

D2

sis for

every s in {0, . . . , t} (indices modulo t + 1), a contradiction with Proposition 8.

Therefore, there exists w in S∞ such that u−
H
−→
D

w.

(2.5) S ≤ S∞ for every S in C .
Let S be in C and u in S. We will prove that there exists w in S∞ such that

u = w or
[

u−
H
−→
D1

w and w
H

D1

u
]

. Suppose that u /∈ S∞. Then there exists

S1 in NS such that u /∈ S1; S ≤ S1 implies that there exists s1 in S1 such that

u−
H
−→
D1

s1 and s1
H

D1

u. If s1 ∈ S∞, then we are done; otherwise since s1 /∈ S∞,

there exists S2 in NS1
such that s1 /∈ S2. Thus, S1 ≤ S2 implies that there exists

s2 in S2 such that s1−
H
−→
D1

s2 and s2
H

D1

s1. Then, we get from Proposition 7

that u−
H
−→
D1

s2

(

because u−
H
−→
D1

s1

)

. Therefore, proceeding in the same way as in

(2.4) and considering that both D1 has no infinite outward paths and D1 has no
cycle as the cycle in Proposition 8, we conclude that there exists a sequence of

vertices s1, s2, . . . , sn, for some n in N, such that sn in S∞, u−
H
−→
D1

sn; for every i in

{1, . . . , n−1} si−
H
−→
D1

si+1, si+1
H

D1

si, si /∈ S∞ and u−
H
−→
D1

si. It remains to prove

that sn
H

D1

u. Proceeding by contradiction, suppose that sn−
H
−→
D1

u. Then in this

case considering that si−
H
−→
D1

si+1 and si+1
H

D1

si for every i in {1, . . . , n − 1},

we can apply n− 1 times Proposition 7 and conclude that sj−
H
−→
D1

u for every j in

{1, . . . , n−1}, in particular s1−
H
−→
D1

u, which is not possible. Therefore, sn
H

D1

u.

Therefore, we have proved that any chain in L has an upper bound in L ,
and so, by Zorn’s Lemma, it follows that (L ,≤) contains a maximal element. 2

Let N be a maximal element of (L ,≤).

Claim 3. N is an H-kernel of D.

Proof. Since N is an H-independent set in D, it remains to prove that N is an
H-absorbent set in D. Proceeding by contradiction, suppose that N is not an

H-absorbent set in D. Then the set X =
{

x ∈ V (D) \ N : x
H

D
N
}

is not

empty.
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(3.1) There exists x0 in X such that if x0−
H
−→
D2

y, for some y in X, then y−
H
−→
D

x0.

The proof of (3.1) is similar to the proof given in Proposition 9.

Consider the sets T =
{

v ∈ N : v−
H
−→
D1

x0

}

, B = N \ T and K = B ∪ {x0}.

(3.2) K is H-independent in D.

SinceB isH-independent inD and x0
H

D
B, it remains to prove thatB

H

D
x0.

It follows from the definition of B that B
H

D1

x0. On the other hand, since N

is an H-semikernel modulo D1 in D (because N ∈ L ), we get that B
H

D2

x0
(

because x0
H

D
N
)

. Therefore, B
H

D
x0 (recall 2 in Lemma 3 and 2 of this

theorem).

(3.3) K /∈ L .

Proceeding by contradiction, suppose that K ∈ L . We will see that N ≤ K.
Let u be in N and suppose that u /∈ K. We will prove that there exists t in K

such that u−
H
−→
D1

t and t
H

D1

u. Since u ∈ T (because N = T ∪ B), we get that

u−
H
−→
D1

x0, and because of x0
H

D
N , we have that x0

H

D1

u. Therefore, x0 is

the vertex desired. Hence N ≤ K, which is not possible because K 6= N and N
is maximal.

Since K /∈ L and K is H-independent in D, it follows from the definition of
L that K is not an H-semikernel modulo D1 in D, that is, there exist v in K

and w in V (D)\K such that v−
H
−→
D2

w and w
H

D
K. Notice that (v, w) ∈ A(D2)

(by Lemma 5).

(3.4) v = x0.

Proceeding by contradiction, suppose that v 6= x0. The fact v ∈ B implies that
w /∈ N . Since N is an H-semikernel modulo D1 in D and w

H

D
K, it follows

that there exists t in T such that w−
H
−→
D

t. The fact t ∈ T implies that t−
H
−→
D1

x0 and

since x0
H

D1

t, we get from Proposition 7 that w
H

D1

t
(

because w
H

D
x0

)

,

which implies that w−
H
−→
D2

t. Therefore, v−
H
−→
D2

w, w
H

D2

v and w−
H
−→
D2

t implies

that v−
H
−→
D2

t (by Proposition 7), which contradicts that N is an H-independent

set in D.

Since v = x0, it follows from the choice of x0 that w /∈ X
(

because w
H

D
x0

)

.

Notice that w /∈ N by definition of X and because x0 ∈ X. Since w ∈ V (D) \

(N∪X), we get from the definition of X that there exists t in T such that w−
H
−→
D

t.
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The fact t in T implies that t−
H
−→
D1

x0, and since x0
H

D1

t, we get from Proposition

7 that w
H

D1

t
(

because w
H

D
x0

)

, which implies that w−
H
−→
D2

t. Therefore,

v−
H
−→
D2

w, w
H

D2

v and w−
H
−→
D2

t implies that v−
H
−→
D2

t (by Proposition 7), which

contradicts that x0
H

D
N .

Therefore, N is H-absorbent in D. Thus, N is an H-kernel of D. 2

5. Some Consequences of Theorem 10

Corollary 11. Let D = D1 ∪ D2 be a finite m-colored which is a union of
asymmetric quasi-transitive digraphs such that

1. every chromatic class is quasi-transitive,

2. if C is a chromatic class, then C ⊆ A(Dj) for some j in {1, 2}, and

3. D has no 3-colored C3.

Then D has an mp-kernel.

Corollary 12. Let H be a digraph, D an H-colored asymmetric quasi-transitive
digraph and {V1, . . . , Vk} a partition of V (CC(D)) with the property P ∗. Suppose
that

1. Vi is a quasi-transitive Vi-class for every i in {1, . . . , k},

2. D has no infinite outward path,

3. every cycle of length three in D has at most two obstructions.

Then D has an H-kernel.

Proof. Let D∗ be an asymmetric quasi-transitive digraph such that D∗ and D
are isomorphic, with V (D) ∩ V (D∗) = ∅, and let H∗ be a digraph such that H∗

and H are isomorphic, with V (H) ∩ V (H∗) = ∅. Consider f : V (D) → V (D∗)
and g : V (H) → V (H∗) two isomorphisms. Suppose that D∗ is an H∗-colored
digraph such that (u, v) has color i in D if and only if (f(u), f(v)) has color g(i)
in D∗. Therefore, it follows that D∗ holds the same hypotheses as D.

Let D′ = D ∪ D∗. Notice that D′ is an H ′-colored digraph (with V (H ′) =
V (H) ∪ V (H∗) and A(H ′) = A(H) ∪ A(H∗)) which is a union asymmetric of
quasi-transitive digraphs. If V ∗i =

{

g(j) : j ∈ Vi

}

for every i in {1, . . . , k}, then
{

V ∗1 , . . . , V
∗
k

}

is a partition of V (CC(D
∗)) which has the property P ∗ and so

{

V1, . . . , Vk, V
∗
1 , . . . , V

∗
k

}

is a partition of V (CC(D
′)) which has the property P ∗.

Now consider that the hypotheses of Theorem 10 fulfill on D′ by the definition
of D∗, the definition of H∗, the H∗-coloring of D∗ and the hypotheses on D.



H-Kernels in Unions of H-Colored Quasi-Transitive Digraphs 407

Therefore, it follows from Theorem 10 that D′ has an H ′-kernel, say N .
Therefore, it follows from the definition of D′ that N ∩ V (D) is an H-kernel
of D.

Corollary 13. Let D be a finite m-colored asymmetric quasi-transitive digraph
such that

1. every chromatic class is quasi-transitive,

2. D has no 3-colored C3.

Then D has an mp-kernel.

Proof. Notice that in this case the arcs of D are colored with the vertices of
H, where V (H) = {1, . . . ,m} and A(H) = {(u, u) : u ∈ V (H)}. Since (a)
{V1 = {1}, . . . , Vm = {m}} is a partition of V (CC(D)) which has the property
P ∗, (b) Vi is a quasi-transitive Vi-class for every i in {1, . . . ,m} (because D[Bi] is
a chromatic class of D), and (c) every cycle with length three in D has at most
two obstructions (by hypothesis in 2), it follows from Corollary 12 that D has an
H-kernel which is an mp-kernel.

Corollary 14. Let T be a finite m-colored tournament such that

1. every chromatic class is quasi-transitive,

2. T has no 3-colored C3.

Then T has an mp-kernel.
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