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Abstract

Let T be a T-set, i.e., a finite set of nonnegative integers satisfying 0 € T,
and G be a graph. In the paper we study relations between the T-edge spans
espy(G) and espy.p(G), where d is a positive integer and

doT={0<t<dmaxT+1):d|t=t/deT}.

We show that espyo7(G) = despp(G) —r, where 7, 0 < r < d — 1, is an
integer that depends on T and G. Next we focus on the case T = {0} and
show that

espyoqo}(G) = [d(xc(G) — 1)1,
where x.(G) is the circular chromatic number of G. This result allows us to

formulate several interesting conclusions that include a new formula for the
circular chromatic number

Xc(G) =1 —|—inf{espd®{0}(G)/d: d>1}
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and a proof that the formula for the T-edge span of powers of cycles, stated
as conjecture in [Y. Zhao, W. He and R. Cao, The edge span of T-coloring
on graph C%, Appl. Math. Lett. 19 (2006) 647-651], is true.
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1. INTRODUCTION

In the paper we study relations between two different generalizations of ordinary
vertex colorings: T-colorings and (k, d)-colorings. Let G be a graph with n-vertex
set V' and edge set E. Given integers 1 < d < k, by a (k,d)-coloring of G we
mean any function ¢: V- — [0,k — 1] ([a,b] := {a,a + 1,...,b} for any integers
a < b) such that

d<lc(u) —cv)| <k-d

whenever uv € E. This notion may be viewed as a generalization of a k-coloring
since (k,d)-colorings of G are k-colorings of G' and (k, 1)-colorings are the same
as k-colorings that use colors from the interval [0,k — 1]. The circular chromatic
number, introduced by Vince [12] as a generalization of the chromatic number, is
defined by the formula

Xc(G) = inf {k/d: G has a (k,d)-coloring}.

The circular chromatic number was studied by many authors, see [14, 15] for a
survey of results. It was shown for example [12] that the distance between the
circular and ordinary chromatic number does not exceed 1, i.e.

X(G) —1 < xe(G) < x(G).

In the same paper Vince proved two useful facts: (1) G has a (k, d)-coloring if and
only if x.(G) < k/d; (2) x.(G) is a rational number which has a form k/d, where
k < n. We will use these observations to show that there is a relation between
Xc(G) and espy(G) the T-edge span defined below. Given a T-set T, i.e., a finite
set that consists of nonnegative integers and satisfies 0 € T', by a T'-coloring of
G we mean any function ¢: V' — Z such that

je(u) —c(v)| ¢ T

whenever uwv € FE. T-colorings were introduced as a model for the frequency
assignment problem in [5]. This notion also may be viewed as a generalization
of ordinary vertex colorings since T-colorings are vertex colorings and vertex
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colorings are {0}-colorings. The T-edge span, introduced by Cozzens and Roberts
[1], is defined as

espr(G) = min{esp(c): ¢ is a T-coloring of G},

where esp(c) = max{|c(u) — ¢(v)|: wv € E} is the edge span of ¢ (if G is an
empty graph then esp(c) = 0). If we replace esp(c) by sp(c) (the span of ¢, i.e.,
max{|c(u) — ¢(v)|: u,v € V}) we will receive the T-span of G. Both parameters
were studied by many authors, there are results concerning computational com-
plexity of the problem of computing spy(G) [2, 3], the behaviour of the greedy
algorithm [7] and formulas describing sp(G) and espy(G) for some T-sets T" and
some graphs G [8, 9, 13].

The remainder of the paper is organized as follows. In Section 2 we study
relations between espy(G) and espyo7(G), where d is a positive integer and d ©®
T={0<t<dmaxT+1):d|t = t/d € T}. We show that espy.r(G) =
despp(G) —r, where r, 0 < r < d—1, is an integer that depends on 7" and G. In
Section 3 we study the distance between the T-span and T-edge span and show
that it cannot exceed maxT. We also give examples that prove that this bound
is tight. Section 4 contains our main results. We show that if T is an interval,
ie, T =1[0,d—1] (or equivalently T'= d ® {0}), then (k, d)-colorings (k > d) are
nonnegative T-colorings with span bounded by k£ — 1 and edge span bounded by
k — d. We use this relation to show that

esPao (o} (G) = [d(xe(G) = D]

We also discuss whether it is possible to extend this relation to all T-sets. Using
the above formula we show that

Xe(G) =1 +inf{espd®{0}(G)/d: d>1}

and discuss how these formulas allow us to move known results from the world
of the T-edge span to the world of the circular chromatic number and vice versa.
The last section is devoted to the powers of cycles investigated in [13]. The
authors conjectured and partially proved that

espge(o}(Ch) = pd + [rd/q]

where ¢ > 2 and r are the quotient and the remainder of the division of n by
p + 1, respectively. We show that it is true in general.

2. T-EDGE SPAN AND d ® T-EDGE SPAN

The operation ® was introduced in [6], where it was shown that sp.7(G) =
dspy(G). Below we prove a similar formula for the T-edge span, but before we
proceed we need to recall the following result.
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Lemma 1 (Lemma 2.2(i) of [6]). If a and b are real numbers, then [|a —b|] <

L] = [b]] < fla = b]1.

Lemma 2. Let G be a graph, T be a T-set and d be a positive integer.
(1) If ¢ is a T-coloring of G, then dc is a d ® T-coloring of G.
(2) If ¢ is a d ® T-coloring of G, then |c/d] is a T-coloring of G.

Proof. Let uv be an edge of G (if G is empty, then our claim is obvious).

(1) If |e(u) —e(v)| > max T+1, then |de(u) —dc(v)| > d (maxT+1) = maxd®
T+1. If |e(u) —e(v)] < maxT +1 and |de(u) —de(v)] € dOT, then the definition
of d® T gives |c(u) — c¢(v)| € T, a contradiction. Hence |dc(u) — de(v)| ¢ d© T
in both cases.

(2) If |e(u)—c(v)| > maxdOT+1 = d (maxT+1), then || c(u)/d]—|c(v)/d]| >
||e(u)—c(v)|/d] > maxT+1 by Lemma 1. If |c(u) —c(v)| < max d®T+1, then the
definition of d ® T gives d||c(u) — ¢(v)| and, by Lemma 1, ||c(u)/d| — |c(v)/d]| =
le(u) — c(v)|/d ¢ T. Hence ||c(u)/d] — |c(v)/d]| ¢ T in both cases. |

Theorem 3. Let G be a graph, T be a T-set and d be a positive integer. There
is an integer 0 < r < d — 1 such that espyr(G) = despp(G) — 7.

Proof. Let ¢ be a T-coloring of G such that esp(c) = espy(G). By Lemma 2, dc
is a d ® T-coloring of G. Hence

(1) espyor(G) < esp(de) = desp(c) = despr(G).
Let ¢ be a d ® T-coloring of G such that esp(c’) = espgo7(G). By Lemma 2,

|/ /d] is a T-coloring of G. Let uv be an edge of G such that esp(|c'/d]) =
|l (uw)/d] — | (v)/d]| (if G is empty our claim is obvious). Then

despr(G) —d < desp(|d/d]) —d = d||d(u)/d] — | (v)/d]| - d
(2) < df|d(u) = (v)|/d] —d < d[esp(c)/d] — d
= d[espyor(G)/d| — d < espgor(G).
To complete the proof it suffices to combine (1) with (2). |

The open problem is a formula for r. Later we will show how to compute r
provided that T'= {0} and that r can be any integer from [0,d — 1].

Corollary 4. Let G be a graph, T be a T-set and d be a positive integer. Then
espy(G) = (eSdeT(G)/ d} :
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3. THE DISTANCE BETWEEN THE T-SPAN AND T-EDGE SPAN

It is known [1] that espp(G) < spp(G). We are going to show that spy(G) <
espy(G) + max T and give examples in which the difference spy(G) — espp(G)
equals maxT.

Lemma 5. Let G be a graph and T be a T-set. If ¢: V — Z is a T-coloring of
G and c: V — 7 is the remainder of the division of ¢ by esp(c’) + maxT + 1,
i.e., ¢(v) = ¢ (v) mod (esp(¢’) + maxT + 1) forv € V, then

(1) cis a T-coloring of G.

(2) sp(c) <esp(d/) + maxT.

(3) esp(c) <esp(¢) + maxT + 1 —min(N\ T).

Proof. Observe that (2) follows immediately from the definition of ¢. To prove
(1) and (3), take an edge uv of G (if G is empty, our claim is obvious). Let ¢ be
the quotient of the division of ¢ by esp(¢’) +maxT+1. Without loss of generality
we may assume that g(u) > ¢(v). It is easy to see that q(u) < ¢(v) + 1 since
otherwise

v

|/ (u) — /' (v)]

|(esp(c) + max T + 1)(q(u) — q(v)) + c(u) — c(v)]
(esp(c’) + max T + 1)[q(u) — q(v)| — |e(u) — c(v)|
2(esp(c’) + maxT + 1) — esp(c’) — max T

esp(c’) + max T + 2 > esp(c).

esp(c)

(AVANAYS

Hence there are two cases to consider.

() 4() = g(v)+1. Then |¢'(u) —¢'(v)] = |(esp(¢’) -+ maxT+1)(g(w) —q(v)) +
(c(u) —c(v))| = |esp(c’) + max T + 1+ (c(u) — ¢(v))|. Since esp(¢’) + maxT +1 >
esp(d) > | (u) = (v)] and |e(u) —c(v)| < esp(¢’) +max T, we have |c(u) —c(v)| =
esp(¢) + maxT + 1 — |/(u) — ¢/(v)|. This gives |¢(u) — ¢(v)] > maxT + 1 and
le(u) — ¢(v)| < esp(d) + maxT + 1 — min(N \ T) since |/ (u) — ¢ (v)| ¢ T implies
| (u) — ¢ (v)] > min(N\ 7).

(b) g(u) = ¢q(v). Then |¢/(u)— (v)| = |e(u) —c(v)|, which gives |c(u)—c(v)| ¢
T and |c(u) — c(v)| < esp(c/) <esp(d) + maxT + 1 — min(N\ 7). |

Corollary 6. Let G be a graph and T be a T-set. Then

(1) There is a T-coloring ¢ of G such that sp(c) < espyp(G)+maxT and esp(c) <
espr(G) + maxT + 1 — min(N \ 7).

(2) If T is an interval, then there is a T-coloring ¢ of G such that esp(c) =
espr(G) and sp(c) < espy(G) + max T

(3) espr(G) < spp(G) < espp(G) + maxT.
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Proof. (1) Let ¢ be a T-coloring of G satisfying esp(c’) = espy(G) and ¢ be the
remainder of the division of ¢’ by espy(G) + maxT 4 1. The claim follows from
Lemma 5.

(2) Follows from (1) since min(N\ 7") = max T + 1 if T" is an interval.

(3) Follows from (1) and the definition of the T-span. |

The above inequalities are tight. It is known [1] that espp(G) = spp(G) for
all weakly perfect graphs and all T-sets T'. It is also easy to see that if T" is an
interval, then spp(Copt1) = 2maxT + 2 (spp(G) = (maxT + 1)(x(G) — 1) if T
is an interval, see [1]) and espp(Caony1) = [(maxT + 1)(1 4+ 1/n)| (see Theorem
8) which gives spy(Can+1) = espp(Cont1) + max T provided that n > max T + 1.

4. THE RELATION BETWEEN (k, d)-COLORINGS AND T-COLORINGS

Now we are ready to prove that there is a relation between (k,d)-colorings and
T-colorings provided that T is an interval.

Lemma 7. Let G be a graph and d be a positive integer. If T = [0,d — 1], then
for every function ¢: V. — Z and every integer k > d the following conditions are
equivalent:

(1) cis a T-coloring of G such that sp(c) < k —1 and esp(c) < k —d.
(2) ¢c—minc(V) is a (k,d)-coloring of G.

Proof. Let uv be an edge of G (our claim is obvious if G is empty) and ¢ =
c¢—minc(V).

(=) cis a T-coloring of G and T is an interval, so |¢/(u) — ¢ (v)| = |e(u) —
c(v)] > d. Moreover, |c/(u) — ' (v)| = |e(u) — ¢(v)| < esp(c) <k —d and (V) C
0,50(c)] € [0,k — 1].

(<) ¢ is a (k,d)-coloring of G, so |c(u) — c(v)] = |¢(u) — ¢(v)| > d and
le(u) —c(v)] = |¢/(u) — ¢ (v)| < k—d. This proves that ¢ is a T-coloring and gives
esp(c) < k—d. To complete the proof it suffices to observe that ¢/(V) C [0,k — 1]
implies sp(c) = sp(c/) < k — 1. ]

Theorem 8. Let G be a graph and d be a positive integer. If T = [0,d — 1], then
espr(G) = [d(x.(G) —1)].
Proof. Without loss of generality we assume that G is not empty. Then k& =

[dx.(G)] —1>d. If espp(G) < k —d, then, by Corollary 6, there is a T-coloring
c of G such that esp(c) = espp(G) < k —d and sp(c) < espp(G)+d—1<k—1.
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Lemma 7 implies now that ¢ — min¢(V) is a (k, d)-coloring, which finally gives
dx.(G) < k, a contradiction. Hence

espr(G) > k—d+ 1.

On the other hand, (k+1)/d > x.(G) so there exists a (k+ 1, d)-coloring ¢ of G.
Without loss of generality we assume that minc(V) = 0. By Lemma 7, ¢ has to
be a T-coloring of G with esp(c) < k —d + 1. This gives

espr(G) <k—d+1.

Combining these inequalities together, we get espr(G) =k —d+1 = [dx.(G)] —
d = [d(x.(G) = 1)]. u

Since T is an interval, we know that |T'| = maxT + 1 and the above formula
may be expressed as

espr(G) = [IT](xe(G) = DT

This resembles Tesman’s inequality spp(G) < |T|(x(G) — 1) which holds for all
T-sets T' and all graphs G [11], so it is interesting to ask the following question.

Does espp(G) < [|T)(xc(G) — 1)] for all T-sets T" and all graphs G

Unfortunately, the answer is negative even for odd cycles. To show this, let us
consider integers 1 < k < n — 1 and set T = {0,2,...,2k} and G = Cop41.
Then [|T|(x.(G) —1)] = [(k+1)(1+1/n)] = k+ 2 and espp(Cont+1) > 2k + 2
since otherwise the differences of colors assigned to adjacent vertices of G in any
T-coloring of G with minimal edge span would be odd and their sum would not
be 0, a contradiction.

Theorem 8 shows also that the value of integer r of Theorem 3 can be ar-
bitrary. Indeed, if we take 0 < r < d — 1 and a planar graph G such that
Xc(G) = 3 — r/d (which exists by [10]), then x(G) = 3 and espyo(o(G) =
[d(x(G) = 1)] = [d(2—r/d)] =2d—r =d(x(G) —1) —r = desp;p, (G) —r. The
open question is if this is true for all T-sets T.

Theorem 9. Let G be a graph. Then
Xe(G) =1+ inf { espao o} (G)/d: d > 1}.
Moreover, if x.(G) = k/d (1 < d < k), then x.(G) =1+ espyu0y(G)/d.

Proof. x.(G) — 1 < espyo03(G)/d by Theorem 8. To complete the proof it
suffices to observe that if x.(G) = k/d, then the same theorem gives x.(G) —1 =

espao oy (G)/d. L
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Theorems 8 and 9 have two important consequences. Firstly, if we know a
formula for x.(G), then we can easily obtain a formula for espy(G) for all T-
sets T that are intervals. For example, Fan [4] proved that x.(G) = x(G) if the
complement of GG is non-Hamiltonian, which gives

Corollary 10. If G is a graph whose complement is non-Hamiltonian, then

espge(0}(G) = d(X(G) — 1) = spag 0} (G)
for every d > 1.

Secondly, if the problem of computing x.(G) for graphs G from a certain
class G is polynomially solvable, then we can compute espy(G) for G € G and
any interval 7" in a polynomial time, too.

5. POWERS OF CYCLES

Let p > 1 and n > 2p + 2 be integers. Let ¢ and r are the quotient and the
remainder of the division of n by p + 1, respectively.
Zhao et al. in [13] proved the following theorem.

Theorem 11. Ifg=pl+t forl > 0,0 <t <p—1 such that p > td, then

espae{o}(Ch) = pd + [rd/q] .

Moreover, they conjectured that this equality holds for any n > 2p + 2, not
only when p > td. We will show that it is true. Recall that it is known that if
G is a n-vertex graph, then x.(G) > n/a(G), where a(G) is the independence
number of G.

Theorem 12. x.(Ch) =n/q.

Proof. Let vy, v1,...,v,_1 be a cyclic ordering of vertices of Ch. We claim that
a function given by
c(v;) = (ig) mod n

is a (n, ¢)-coloring of C%. Indeed, the definition of ¢ gives 0 < ¢ < n — 1 and, if
vivj (i > j) is an edge of Ch, then either 1 < i—j < p and |c(v;) —c(vj)| = (i—j)g
orl1<n+j—i<pand |c(v;) —c(vj)] = (n—i+j)g. In both cases it is easy to
verify that ¢ <|c(vi) — c(vj)] < gp <n —q.

To complete the proof it suffices to observe that a(Ch) < ¢ and use inequality
Xc(G) > n/a(G). |

Theorem 13. esp,q 0y (Ch) = pd + [rd/q].

Proof. Follows immediately from Theorems 8 and 12. [
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6. CONCLUSION

We proved the general relation between the circular chromatic number and T-
edge span for T'=d ® {0}. Moreover, we applied it to solve an open conjecture
concerning the T-edge span for powers of cycles Ch.

Possible further fields of research include for example finding the necessary
conditions for espy(G) < [|T|(xc(G) — 1)], or analyzing dependence between
espr(G) and x.(G) on the structure of a set 7.
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