T-COLORINGS, DIVISIBILITY AND THE CIRCULAR CHROMATIC NUMBER

Robert Janczewski
Department of Algorithms and Systems Modelling
Gdańsk University of Technology
Narutowicza 11/12, Gdańsk, Poland
e-mail: skalar@eti.pg.gda.pl
Anna Maria Trzaskowska
Department of Applied Informatics in Management
Gdańsk University of Technology
Narutowicza 11/12, Gdańsk, Poland
e-mail: anna.trzaskowska@pg.edu.pl

AND
Krzysztof Turowski
Center for Science of Information
Purdue University West Lafayette, Indiana, USA
e-mail: krzysztof.szymon.turowski@gmail.com

Abstract

Let T be a T-set, i.e., a finite set of nonnegative integers satisfying $0 \in T$, and G be a graph. In the paper we study relations between the T-edge spans $\operatorname{esp}_{T}(G)$ and $\operatorname{esp}_{d \odot T}(G)$, where d is a positive integer and

$$
d \odot T=\{0 \leq t \leq d(\max T+1): d \mid t \Rightarrow t / d \in T\} .
$$

We show that $\operatorname{esp}_{d \odot T}(G)=d \operatorname{esp}_{T}(G)-r$, where $r, 0 \leq r \leq d-1$, is an integer that depends on T and G. Next we focus on the case $T=\{0\}$ and show that

$$
\operatorname{esp}_{d \odot\{0\}}(G)=\left\lceil d\left(\chi_{c}(G)-1\right)\right\rceil
$$

where $\chi_{c}(G)$ is the circular chromatic number of G. This result allows us to formulate several interesting conclusions that include a new formula for the circular chromatic number

$$
\chi_{c}(G)=1+\inf \left\{\operatorname{esp}_{d \odot\{0\}}(G) / d: d \geq 1\right\}
$$

and a proof that the formula for the T-edge span of powers of cycles, stated as conjecture in [Y. Zhao, W. He and R. Cao, The edge span of T-coloring on graph C_{n}^{d}, Appl. Math. Lett. 19 (2006) 647-651], is true.
Keywords: T-coloring, circular chromatic number.
2010 Mathematics Subject Classification: 05C15.

1. Introduction

In the paper we study relations between two different generalizations of ordinary vertex colorings: T-colorings and (k, d)-colorings. Let G be a graph with n-vertex set V and edge set E. Given integers $1 \leq d \leq k$, by a (k, d)-coloring of G we mean any function $c: V \rightarrow[0, k-1]([a, b]:=\{a, a+1, \ldots, b\}$ for any integers $a \leq b$) such that

$$
d \leq|c(u)-c(v)| \leq k-d
$$

whenever $u v \in E$. This notion may be viewed as a generalization of a k-coloring since (k, d)-colorings of G are k-colorings of G and $(k, 1)$-colorings are the same as k-colorings that use colors from the interval $[0, k-1]$. The circular chromatic number, introduced by Vince [12] as a generalization of the chromatic number, is defined by the formula

$$
\chi_{c}(G)=\inf \{k / d: G \text { has a }(k, d) \text {-coloring }\}
$$

The circular chromatic number was studied by many authors, see [14, 15] for a survey of results. It was shown for example [12] that the distance between the circular and ordinary chromatic number does not exceed 1, i.e.

$$
\chi(G)-1<\chi_{c}(G) \leq \chi(G)
$$

In the same paper Vince proved two useful facts: (1) G has a (k, d)-coloring if and only if $\chi_{c}(G) \leq k / d ;(2) \chi_{c}(G)$ is a rational number which has a form k / d, where $k \leq n$. We will use these observations to show that there is a relation between $\chi_{c}(G)$ and $\operatorname{esp}_{T}(G)$ the T-edge span defined below. Given a T-set T, i.e., a finite set that consists of nonnegative integers and satisfies $0 \in T$, by a T-coloring of G we mean any function $c: V \rightarrow \mathbb{Z}$ such that

$$
|c(u)-c(v)| \notin T
$$

whenever $u v \in E . T$-colorings were introduced as a model for the frequency assignment problem in [5]. This notion also may be viewed as a generalization of ordinary vertex colorings since T-colorings are vertex colorings and vertex
colorings are $\{0\}$-colorings. The T-edge span, introduced by Cozzens and Roberts [1], is defined as

$$
\operatorname{esp}_{T}(G)=\min \{\operatorname{esp}(c): c \text { is a } T \text {-coloring of } G\},
$$

where $\operatorname{esp}(c)=\max \{|c(u)-c(v)|: u v \in E\}$ is the edge span of c (if G is an empty graph then $\operatorname{esp}(c)=0$). If we replace $\operatorname{esp}(c)$ by $\operatorname{sp}(c)$ (the span of c, i.e., $\max \{|c(u)-c(v)|: u, v \in V\})$ we will receive the T-span of G. Both parameters were studied by many authors, there are results concerning computational complexity of the problem of computing $\mathrm{sp}_{T}(G)[2,3]$, the behaviour of the greedy algorithm [7] and formulas describing $\operatorname{sp}_{T}(G)$ and $\operatorname{esp}_{T}(G)$ for some T-sets T and some graphs $G[8,9,13]$.

The remainder of the paper is organized as follows. In Section 2 we study relations between $\operatorname{esp}_{T}(G)$ and $\operatorname{esp}_{d \odot T}(G)$, where d is a positive integer and $d \odot$ $T=\{0 \leq t \leq d(\max T+1): d \mid t \Rightarrow t / d \in T\}$. We show that $\operatorname{esp}_{d \odot T}(G)=$ $d \operatorname{esp}_{T}(G)-r$, where $r, 0 \leq r \leq d-1$, is an integer that depends on T and G. In Section 3 we study the distance between the T-span and T-edge span and show that it cannot exceed $\max T$. We also give examples that prove that this bound is tight. Section 4 contains our main results. We show that if T is an interval, i.e., $T=[0, d-1]$ (or equivalently $T=d \odot\{0\}$), then (k, d)-colorings ($k \geq d$) are nonnegative T-colorings with span bounded by $k-1$ and edge span bounded by $k-d$. We use this relation to show that

$$
\operatorname{esp}_{d \odot\{0\}}(G)=\left\lceil d\left(\chi_{c}(G)-1\right)\right\rceil
$$

We also discuss whether it is possible to extend this relation to all T-sets. Using the above formula we show that

$$
\chi_{c}(G)=1+\inf \left\{\operatorname{esp}_{d \odot\{0\}}(G) / d: d \geq 1\right\}
$$

and discuss how these formulas allow us to move known results from the world of the T-edge span to the world of the circular chromatic number and vice versa. The last section is devoted to the powers of cycles investigated in [13]. The authors conjectured and partially proved that

$$
\operatorname{esp}_{d \odot\{0\}}\left(C_{n}^{p}\right)=p d+\lceil r d / q\rceil,
$$

where $q \geq 2$ and r are the quotient and the remainder of the division of n by $p+1$, respectively. We show that it is true in general.

2. T-Edge Span and $d \odot T$-Edge Span

The operation \odot was introduced in [6], where it was shown that $\operatorname{sp}_{d \odot T}(G)=$ $d \mathrm{sp}_{T}(G)$. Below we prove a similar formula for the T-edge span, but before we proceed we need to recall the following result.

Lemma 1 (Lemma 2.2(i) of [6]). If a and b are real numbers, then $\lfloor|a-b|\rfloor \leq$ $|\lfloor a\rfloor-\lfloor b\rfloor| \leq\lceil|a-b|\rceil$.

Lemma 2. Let G be a graph, T be a T-set and d be a positive integer.
(1) If c is a T-coloring of G, then dc is a $d \odot T$-coloring of G.
(2) If c is a $d \odot T$-coloring of G, then $\lfloor c / d\rfloor$ is a T-coloring of G.

Proof. Let $u v$ be an edge of G (if G is empty, then our claim is obvious).
(1) If $|c(u)-c(v)| \geq \max T+1$, then $|d c(u)-d c(v)| \geq d(\max T+1)=\max d \odot$ $T+1$. If $|c(u)-c(v)|<\max T+1$ and $|d c(u)-d c(v)| \in d \odot T$, then the definition of $d \odot T$ gives $|c(u)-c(v)| \in T$, a contradiction. Hence $|d c(u)-d c(v)| \notin d \odot T$ in both cases.
(2) If $|c(u)-c(v)| \geq \max d \odot T+1=d(\max T+1)$, then $|\lfloor c(u) / d\rfloor-\lfloor c(v) / d\rfloor| \geq$ $\lfloor|c(u)-c(v)| / d\rfloor \geq \max T+1$ by Lemma 1. If $|c(u)-c(v)|<\max d \odot T+1$, then the definition of $d \odot T$ gives $d \| c(u)-c(v) \mid$ and, by Lemma $1,|\lfloor c(u) / d\rfloor-\lfloor c(v) / d\rfloor|=$ $|c(u)-c(v)| / d \notin T$. Hence $|\lfloor c(u) / d\rfloor-\lfloor c(v) / d\rfloor| \notin T$ in both cases.

Theorem 3. Let G be a graph, T be a T-set and d be a positive integer. There is an integer $0 \leq r \leq d-1$ such that $\operatorname{esp}_{d \odot T}(G)=d \operatorname{esp}_{T}(G)-r$.

Proof. Let c be a T-coloring of G such that $\operatorname{esp}(c)=\operatorname{esp}_{T}(G)$. By Lemma 2, $d c$ is a $d \odot T$-coloring of G. Hence

$$
\begin{equation*}
\operatorname{esp}_{d \odot T}(G) \leq \operatorname{esp}(d c)=d \operatorname{esp}(c)=d \operatorname{esp}_{T}(G) \tag{1}
\end{equation*}
$$

Let c^{\prime} be a $d \odot T$-coloring of G such that $\operatorname{esp}\left(c^{\prime}\right)=\operatorname{esp}_{d \odot T}(G)$. By Lemma 2, $\left\lfloor c^{\prime} / d\right\rfloor$ is a T-coloring of G. Let $u v$ be an edge of G such that $\operatorname{esp}\left(\left\lfloor c^{\prime} / d\right\rfloor\right)=$ $\left\lfloor\left\lfloor c^{\prime}(u) / d\right\rfloor-\left\lfloor c^{\prime}(v) / d\right\rfloor \mid\right.$ (if G is empty our claim is obvious). Then

$$
\begin{align*}
d \operatorname{esp}_{T}(G)-d & \leq d \operatorname{esp}\left(\left\lfloor c^{\prime} / d\right\rfloor\right)-d=d\left\lfloor\left\lfloor c^{\prime}(u) / d\right\rfloor-\left\lfloor c^{\prime}(v) / d\right\rfloor \mid-d\right. \\
& \leq d\left\lceil\left|c^{\prime}(u)-c^{\prime}(v)\right| / d\right\rceil-d \leq d\left\lceil\operatorname{esp}\left(c^{\prime}\right) / d\right\rceil-d \tag{2}\\
& =d\left\lceil\operatorname{esp}_{d \odot T}(G) / d\right\rceil-d<\operatorname{esp}_{d \odot T}(G) .
\end{align*}
$$

To complete the proof it suffices to combine (1) with (2).
The open problem is a formula for r. Later we will show how to compute r provided that $T=\{0\}$ and that r can be any integer from $[0, d-1]$.

Corollary 4. Let G be a graph, T be a T-set and d be a positive integer. Then $\operatorname{esp}_{T}(G)=\left\lceil\operatorname{esp}_{d \odot T}(G) / d\right\rceil$.

3. The Distance Between the T-Span and T-Edge Span

It is known [1] that $\operatorname{esp}_{T}(G) \leq \operatorname{sp}_{T}(G)$. We are going to show that $\operatorname{sp}_{T}(G) \leq$ $\operatorname{esp}_{T}(G)+\max T$ and give examples in which the difference $\operatorname{sp}_{T}(G)-\operatorname{esp}_{T}(G)$ equals $\max T$.

Lemma 5. Let G be a graph and T be a T-set. If $c^{\prime}: V \rightarrow \mathbb{Z}$ is a T-coloring of G and $c: V \rightarrow \mathbb{Z}$ is the remainder of the division of c^{\prime} by $\operatorname{esp}\left(c^{\prime}\right)+\max T+1$, i.e., $c(v)=c^{\prime}(v) \bmod \left(\operatorname{esp}\left(c^{\prime}\right)+\max T+1\right)$ for $v \in V$, then
(1) c is a T-coloring of G.
(2) $\operatorname{sp}(c) \leq \operatorname{esp}\left(c^{\prime}\right)+\max T$.
(3) $\operatorname{esp}(c) \leq \operatorname{esp}\left(c^{\prime}\right)+\max T+1-\min (\mathbb{N} \backslash T)$.

Proof. Observe that (2) follows immediately from the definition of c. To prove (1) and (3), take an edge $u v$ of G (if G is empty, our claim is obvious). Let q be the quotient of the division of c^{\prime} by $\operatorname{esp}\left(c^{\prime}\right)+\max T+1$. Without loss of generality we may assume that $q(u) \geq q(v)$. It is easy to see that $q(u) \leq q(v)+1$ since otherwise

$$
\begin{aligned}
\operatorname{esp}\left(c^{\prime}\right) & \geq\left|c^{\prime}(u)-c^{\prime}(v)\right| \\
& =\left|\left(\operatorname{esp}\left(c^{\prime}\right)+\max T+1\right)(q(u)-q(v))+c(u)-c(v)\right| \\
& \geq\left(\operatorname{esp}\left(c^{\prime}\right)+\max T+1\right)|q(u)-q(v)|-|c(u)-c(v)| \\
& \geq 2\left(\operatorname{esp}\left(c^{\prime}\right)+\max T+1\right)-\operatorname{esp}\left(c^{\prime}\right)-\max T \\
& =\operatorname{esp}\left(c^{\prime}\right)+\max T+2>\operatorname{esp}\left(c^{\prime}\right) .
\end{aligned}
$$

Hence there are two cases to consider.
(a) $q(u)=q(v)+1$. Then $\left|c^{\prime}(u)-c^{\prime}(v)\right|=\mid\left(\operatorname{esp}\left(c^{\prime}\right)+\max T+1\right)(q(u)-q(v))+$ $(c(u)-c(v))\left|=\left|\operatorname{esp}\left(c^{\prime}\right)+\max T+1+(c(u)-c(v))\right|\right.$. Since $\operatorname{esp}\left(c^{\prime}\right)+\max T+1>$ $\operatorname{esp}\left(c^{\prime}\right) \geq\left|c^{\prime}(u)-c^{\prime}(v)\right|$ and $|c(u)-c(v)| \leq \operatorname{esp}\left(c^{\prime}\right)+\max T$, we have $|c(u)-c(v)|=$ $\operatorname{esp}\left(c^{\prime}\right)+\max T+1-\left|c^{\prime}(u)-c^{\prime}(v)\right|$. This gives $|c(u)-c(v)| \geq \max T+1$ and $|c(u)-c(v)| \leq \operatorname{esp}\left(c^{\prime}\right)+\max T+1-\min (\mathbb{N} \backslash T)$ since $\left|c^{\prime}(u)-c^{\prime}(v)\right| \notin T$ implies $\left|c^{\prime}(u)-c^{\prime}(v)\right| \geq \min (\mathbb{N} \backslash T)$.
(b) $q(u)=q(v)$. Then $\left|c^{\prime}(u)-c^{\prime}(v)\right|=|c(u)-c(v)|$, which gives $|c(u)-c(v)| \notin$ T and $|c(u)-c(v)| \leq \operatorname{esp}\left(c^{\prime}\right) \leq \operatorname{esp}\left(c^{\prime}\right)+\max T+1-\min (\mathbb{N} \backslash T)$.

Corollary 6. Let G be a graph and T be a T-set. Then
(1) There is a T-coloring c of G such that $\operatorname{sp}(c) \leq \operatorname{esp}_{T}(G)+\max T$ and $\operatorname{esp}(c) \leq$ $\operatorname{esp}_{T}(G)+\max T+1-\min (\mathbb{N} \backslash T)$.
(2) If T is an interval, then there is a T-coloring c of G such that $\operatorname{esp}(c)=$ $\operatorname{esp}_{T}(G)$ and $\operatorname{sp}(c) \leq \operatorname{esp}_{T}(G)+\max T$.
(3) $\operatorname{esp}_{T}(G) \leq \operatorname{sp}_{T}(G) \leq \operatorname{esp}_{T}(G)+\max T$.

Proof. (1) Let c^{\prime} be a T-coloring of G satisfying $\operatorname{esp}\left(c^{\prime}\right)=\operatorname{esp}_{T}(G)$ and c be the remainder of the division of c^{\prime} by $\operatorname{esp}_{T}(G)+\max T+1$. The claim follows from Lemma 5.
(2) Follows from (1) since $\min (\mathbb{N} \backslash T)=\max T+1$ if T is an interval.
(3) Follows from (1) and the definition of the T-span.

The above inequalities are tight. It is known [1] that $\operatorname{esp}_{T}(G)=\operatorname{sp}_{T}(G)$ for all weakly perfect graphs and all T-sets T. It is also easy to see that if T is an interval, then $\mathrm{sp}_{T}\left(C_{2 n+1}\right)=2 \max T+2\left(\operatorname{sp}_{T}(G)=(\max T+1)(\chi(G)-1)\right.$ if T is an interval, see [1]) and $\operatorname{esp}_{T}\left(C_{2 n+1}\right)=\lceil(\max T+1)(1+1 / n)\rceil$ (see Theorem $8)$ which gives $\operatorname{sp}_{T}\left(C_{2 n+1}\right)=\operatorname{esp}_{T}\left(C_{2 n+1}\right)+\max T$ provided that $n \geq \max T+1$.

4. The Relation Between (k, d)-Colorings and T-Colorings

Now we are ready to prove that there is a relation between (k, d)-colorings and T-colorings provided that T is an interval.

Lemma 7. Let G be a graph and d be a positive integer. If $T=[0, d-1]$, then for every function $c: V \rightarrow \mathbb{Z}$ and every integer $k \geq d$ the following conditions are equivalent:
(1) c is a T-coloring of G such that $\operatorname{sp}(c) \leq k-1$ and $\operatorname{esp}(c) \leq k-d$.
(2) $c-\min c(V)$ is a (k, d)-coloring of G.

Proof. Let $u v$ be an edge of G (our claim is obvious if G is empty) and $c^{\prime}=$ $c-\min c(V)$.
$(\Rightarrow) c$ is a T-coloring of G and T is an interval, so $\left|c^{\prime}(u)-c^{\prime}(v)\right|=\mid c(u)-$ $c(v) \mid \geq d$. Moreover, $\left|c^{\prime}(u)-c^{\prime}(v)\right|=|c(u)-c(v)| \leq \operatorname{esp}(c) \leq k-d$ and $c^{\prime}(V) \subseteq$ $[0, \operatorname{sp}(c)] \subseteq[0, k-1]$.
$(\Leftarrow) c^{\prime}$ is a (k, d)-coloring of G, so $|c(u)-c(v)|=\left|c^{\prime}(u)-c^{\prime}(v)\right| \geq d$ and $|c(u)-c(v)|=\left|c^{\prime}(u)-c^{\prime}(v)\right| \leq k-d$. This proves that c is a T-coloring and gives $\operatorname{esp}(c) \leq k-d$. To complete the proof it suffices to observe that $c^{\prime}(V) \subseteq[0, k-1]$ implies $\operatorname{sp}(c)=\operatorname{sp}\left(c^{\prime}\right) \leq k-1$.

Theorem 8. Let G be a graph and d be a positive integer. If $T=[0, d-1]$, then

$$
\operatorname{esp}_{T}(G)=\left\lceil d\left(\chi_{c}(G)-1\right)\right\rceil
$$

Proof. Without loss of generality we assume that G is not empty. Then $k=$ $\left\lceil d \chi_{c}(G)\right\rceil-1 \geq d$. If $\operatorname{esp}_{T}(G) \leq k-d$, then, by Corollary 6 , there is a T-coloring c of G such that $\operatorname{esp}(c)=\operatorname{esp}_{T}(G) \leq k-d$ and $\operatorname{sp}(c) \leq \operatorname{esp}_{T}(G)+d-1 \leq k-1$.

Lemma 7 implies now that $c-\min c(V)$ is a (k, d)-coloring, which finally gives $d \chi_{c}(G) \leq k$, a contradiction. Hence

$$
\operatorname{esp}_{T}(G) \geq k-d+1
$$

On the other hand, $(k+1) / d \geq \chi_{c}(G)$ so there exists a $(k+1, d)$-coloring c of G. Without loss of generality we assume that $\min c(V)=0$. By Lemma $7, c$ has to be a T-coloring of G with $\operatorname{esp}(c) \leq k-d+1$. This gives

$$
\operatorname{esp}_{T}(G) \leq k-d+1
$$

Combining these inequalities together, we get $\operatorname{esp}_{T}(G)=k-d+1=\left\lceil d \chi_{c}(G)\right\rceil-$ $d=\left\lceil d\left(\chi_{c}(G)-1\right)\right\rceil$.

Since T is an interval, we know that $|T|=\max T+1$ and the above formula may be expressed as

$$
\operatorname{esp}_{T}(G)=\left\lceil|T|\left(\chi_{c}(G)-1\right)\right\rceil .
$$

This resembles Tesman's inequality $\operatorname{sp}_{T}(G) \leq|T|(\chi(G)-1)$ which holds for all T-sets T and all graphs G [11], so it is interesting to ask the following question.

Does $\operatorname{esp}_{T}(G) \leq\left\lceil|T|\left(\chi_{c}(G)-1\right)\right\rceil$ for all T-sets T and all graphs G ?
Unfortunately, the answer is negative even for odd cycles. To show this, let us consider integers $1 \leq k \leq n-1$ and set $T=\{0,2, \ldots, 2 k\}$ and $G=C_{2 n+1}$. Then $\left\lceil|T|\left(\chi_{c}(G)-1\right)\right\rceil=\lceil(k+1)(1+1 / n)\rceil=k+2$ and $\operatorname{esp}_{T}\left(C_{2 n+1}\right) \geq 2 k+2$ since otherwise the differences of colors assigned to adjacent vertices of G in any T-coloring of G with minimal edge span would be odd and their sum would not be 0 , a contradiction.

Theorem 8 shows also that the value of integer r of Theorem 3 can be arbitrary. Indeed, if we take $0 \leq r \leq d-1$ and a planar graph G such that $\chi_{c}(G)=3-r / d($ which exists by $[10])$, then $\chi(G)=3$ and $\operatorname{esp}_{d \odot\{0\}}(G)=$ $\left\lceil d\left(\chi_{c}(G)-1\right)\right\rceil=\lceil d(2-r / d)\rceil=2 d-r=d(\chi(G)-1)-r=d \operatorname{esp}_{\{0\}}(G)-r$. The open question is if this is true for all T-sets T.

Theorem 9. Let G be a graph. Then

$$
\chi_{c}(G)=1+\inf \left\{\operatorname{esp}_{d \odot\{0\}}(G) / d: d \geq 1\right\} .
$$

Moreover, if $\chi_{c}(G)=k / d(1 \leq d \leq k)$, then $\chi_{c}(G)=1+\operatorname{esp}_{d \odot\{0\}}(G) / d$.
Proof. $\chi_{c}(G)-1 \leq \operatorname{esp}_{d \odot\{0\}}(G) / d$ by Theorem 8. To complete the proof it suffices to observe that if $\chi_{c}(G)=k / d$, then the same theorem gives $\chi_{c}(G)-1=$ $\operatorname{esp}_{d \odot\{0\}}(G) / d$.

Theorems 8 and 9 have two important consequences. Firstly, if we know a formula for $\chi_{c}(G)$, then we can easily obtain a formula for $\operatorname{esp}_{T}(G)$ for all T sets T that are intervals. For example, Fan [4] proved that $\chi_{c}(G)=\chi(G)$ if the complement of G is non-Hamiltonian, which gives

Corollary 10. If G is a graph whose complement is non-Hamiltonian, then

$$
\operatorname{esp}_{d \odot\{0\}}(G)=d(\chi(G)-1)=\operatorname{sp}_{d \odot\{0\}}(G)
$$

for every $d \geq 1$.
Secondly, if the problem of computing $\chi_{c}(G)$ for graphs G from a certain class \mathcal{G} is polynomially solvable, then we can compute $\operatorname{esp}_{T}(G)$ for $G \in \mathcal{G}$ and any interval T in a polynomial time, too.

5. Powers of Cycles

Let $p \geq 1$ and $n \geq 2 p+2$ be integers. Let q and r are the quotient and the remainder of the division of n by $p+1$, respectively.

Zhao et al. in [13] proved the following theorem.
Theorem 11. If $q=p l+t$ for $l \geq 0,0 \leq t \leq p-1$ such that $p \geq t d$, then

$$
\operatorname{esp}_{d \odot\{0\}}\left(C_{n}^{p}\right)=p d+\lceil r d / q\rceil .
$$

Moreover, they conjectured that this equality holds for any $n \geq 2 p+2$, not only when $p \geq t d$. We will show that it is true. Recall that it is known that if G is a n-vertex graph, then $\chi_{c}(G) \geq n / \alpha(G)$, where $\alpha(G)$ is the independence number of G.

Theorem 12. $\chi_{c}\left(C_{n}^{p}\right)=n / q$.
Proof. Let $v_{0}, v_{1}, \ldots, v_{n-1}$ be a cyclic ordering of vertices of C_{n}^{p}. We claim that a function given by

$$
c\left(v_{i}\right)=(i q) \bmod n
$$

is a (n, q)-coloring of C_{n}^{p}. Indeed, the definition of c gives $0 \leq c \leq n-1$ and, if $v_{i} v_{j}(i>j)$ is an edge of C_{n}^{p}, then either $1 \leq i-j \leq p$ and $\left|c\left(v_{i}\right)-c\left(v_{j}\right)\right|=(i-j) q$ or $1 \leq n+j-i \leq p$ and $\left|c\left(v_{i}\right)-c\left(v_{j}\right)\right|=(n-i+j) q$. In both cases it is easy to verify that $q \leq\left|c\left(v_{i}\right)-c\left(v_{j}\right)\right| \leq q p \leq n-q$.

To complete the proof it suffices to observe that $\alpha\left(C_{n}^{p}\right) \leq q$ and use inequality $\chi_{c}(G) \geq n / \alpha(G)$.

Theorem 13. $\operatorname{esp}_{d \odot\{0\}}\left(C_{n}^{p}\right)=p d+\lceil r d / q\rceil$.
Proof. Follows immediately from Theorems 8 and 12.

6. Conclusion

We proved the general relation between the circular chromatic number and T edge span for $T=d \odot\{0\}$. Moreover, we applied it to solve an open conjecture concerning the T-edge span for powers of cycles C_{n}^{p}.

Possible further fields of research include for example finding the necessary conditions for $\operatorname{esp}_{T}(G) \leq\left\lceil|T|\left(\chi_{c}(G)-1\right)\right\rceil$, or analyzing dependence between $\operatorname{esp}_{T}(G)$ and $\chi_{c}(G)$ on the structure of a set T.

References

[1] M.B. Cozzens and F.S. Roberts, T-colorings of graphs and the channel assigment problem, Congr. Numer. 35 (1982) 191-208.
[2] K. Giaro, R. Janczewski and M. Małafiejski, A polynomial algorithm for finding T span of generalized cacti, Discrete Appl. Math. 129 (2003) 371-382. doi:10.1016/S0166-218X(02)00575-9
[3] K. Giaro, R. Janczewski and M. Małafiejski, The complexity of the T-coloring problem for graphs with small degree, Discrete Appl. Math. 129 (2003) 361-369. doi:10.1016/S0166-218X(02)00576-0
[4] G. Fan, Circular chromatic number and Mycielski graphs, Combinatorica 24 (2004) 127-135.
doi:10.1007/s00493-004-0008-9
[5] W.K. Hale, Frequency assigment: theory and applications, Proc. IEEE 68 (1980) 1497-1514. doi:10.1109/PROC.1980.11899
[6] R. Janczewski, Divisibility and T-span of graphs, Discrete Math. 234 (2001) 171-179. doi:10.1016/S0012-365X(00)00378-2
[7] R. Janczewski, Greedy T-colorings of graphs, Discrete Math. 309 (2009) 1685-1690. doi:10.1016/j.disc.2008.01.049
[8] J.S.-T. Juan, I. Sun and P.-X. Wu, T-coloring on folded hypercubes, Taiwanese J. Math. 13 (2009) 1331-1341. doi:10.11650/twjm/1500405511
[9] A. Raychaudhuri, Further results on T-coloring and frequency assignment problems, SIAM J. Discrete Math. 7 (1994) 605-613. doi:10.1137/S0895480189171746
[10] D. Moser, The star-chromatic number of planar graphs, J. Graph Theory 24 (1997) 33-43.
doi:10.1002/(SICI)1097-0118(199701)24:1 〈33::AID-JGT5)3.0.CO;2-K
[11] B. Tesman, Applications of forbidden difference graphs to T-coloring, Congr. Numer. 74 (1990) 15-24.
[12] A. Vince, Star chromatic number, J. Graph Theory 12 (1988) 551-559. doi:10.1002/jgt. 3190120411
[13] Y. Zhao, W. He and R. Cao, The edge span of T-coloring on graph C_{n}^{d}, Appl. Math. Lett. 19 (2006) 647-651. doi:10.1016/j.aml.2005.08.016
[14] X. Zhu, Circular chromatic number: a survey, Discrete Math. 229 (2001) 371-410. doi:10.1016/S0012-365X(00)00217-X
[15] X. Zhu, Recent developments in circular colouring of graphs, Algorithms Combin. 26 (2006) 497-550.
doi:10.1007/3-540-33700-8_25
Received 19 March 2018
Revised 16 October 2018
Accepted 7 December 2018

