DECOMPOSITIONS OF COMPLETE BIPARTITE GRAPHS AND COMPLETE GRAPHS INTO PATHS, STARS, AND CYCLES WITH FOUR EDGES EACH

Tay-Woei Shyu
Division of Preparatory Programs for Overseas Chinese Students National Taiwan Normal University New Taipei City 24449, Taiwan, R.O.C.
e-mail: twhsu@ntnu.edu.tw

Abstract

Let G be either a complete graph of odd order or a complete bipartite graph in which each vertex partition has an even number of vertices. In this paper, we determine the set of triples (p, q, r), with $p, q, r>0$, for which there exists a decomposition of G into p paths, q stars, and r cycles, each of which has 4 edges.

Keywords: complete graph, complete bipartite graph, path, star, cycle, decomposition.
2010 Mathematics Subject Classification: 05C38, 05C51.

1. Introduction

All graphs considered here are finite and undirected, unless otherwise noted.
Let $G, H, H_{1}, \ldots, H_{r}$ be graphs for some integer r. A decomposition of G is a set of edge-disjoint subgraphs of G whose union is G. An H-decomposition of G is a decomposition of G into copies of H. If G has an H-decomposition, we say that G is H-decomposable. An $\left\{H_{1}, \ldots, H_{r}\right\}$-decomposition of G is a decomposition of G into copies of H_{1}, \ldots, H_{r} containing at least one copy of each H_{i}, for each $i=1, \ldots, r$. If G has an $\left\{H_{1}, \ldots, H_{r}\right\}$-decomposition, we say that G is $\left\{H_{1}, \ldots, H_{r}\right\}$-decomposable. Moreover, if there is a decomposition of G containing precisely α_{i} elements isomorphic to H_{i}, then we say that G has an $\left\{H_{1}{ }^{\alpha_{1}}, \ldots, H_{r}{ }^{\alpha_{r}}\right\}$-decomposition or G is $\left\{H_{1}{ }^{\alpha_{1}}, \ldots, H_{r}{ }^{\alpha_{r}}\right\}$-decomposable. Let $\mathcal{C D}\left(G ; H_{1}, \ldots, H_{r}\right)$ denote the set of all r-tuples $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ of positive integers
such that G is $\left\{H_{1}{ }^{\alpha_{1}}, \ldots, H_{r}{ }^{\alpha_{r}}\right\}$-decomposable. Obviously, if we can find an r-tuple in $\mathcal{C D}\left(G ; H_{1}, \ldots, H_{r}\right)$, then G is $\left\{H_{1}, \ldots, H_{r}\right\}$-decomposable.

As usual, K_{n} denotes the complete graph on n vertices, and $K_{m, n}$ denotes the complete bipartite graph with vertex partitions of sizes m and n. A k-path, denoted by P_{k}, is a path with k edges; a k-star, denoted by S_{k}, is the complete bipartite graph $K_{1, k}$; a k-cycle, denoted by C_{k}, is a cycle of length k.

Decompositions of graphs into isomorphic paths has attracted considerable attention (see $[8,12-14,17-19,28,40,42]$). Besides, decompositions of graphs into k-stars have also attracted a fair share of interest (see [9, 25, 39, 41, 43, 44]). Moreover, decompositions of graphs into k-cycles have been a popular topic of research in graph theory (see $[10,27]$ for surveys of this topic).

The study of the $\{G, H\}$-decomposition was introduced by Abueida and Daven in [1]. In [2, 4], they investigated, respectively, the problem of $\left\{K_{k}, S_{k}\right\}$ decomposition of the complete graph K_{n} and the problem of the $\left\{C_{4}, E_{2}\right\}$-decomposition of several graph products, where E_{2} is a matching of size 2. Abueida and O'Neil [3] settled the existence problem for $\left\{C_{k}, S_{k-1}\right\}$-decomposition of the complete multigraph λK_{n} for $k \in\{3,4,5\}$. Priyadharsini and Muthusamy $[29,30]$ gave necessary and sufficient conditions for the existence of $\{G(n), H(n)\}-$ decompositions of λK_{n} and $\lambda K_{n, n}$, where $G(n), H(n) \in\left\{C_{n}, P_{n-1}, S_{n-1}\right\}$.

Recently, Lee and Lin $[20,21,23,24]$ established necessary and sufficient conditions for the existence of $\left\{C_{k}, S_{k}\right\}$-decompositions of the complete bipartite graphs, the complete bipartite multigraphs, the complete bipartite graphs with a 1 -factor removed, and the multicrowns, respectively. Besides, Abueida, Lian [5], and Beggas et al. [7] investigated the problems of $\left\{C_{k}, S_{k}\right\}$-decompositions of the complete graph K_{n} and λK_{n} respectively, giving some necessary or sufficient conditions for such decompositions to exist. In [22], Lee and Chu established necessary and sufficient conditions for the existence of $\left\{P_{k}, S_{k}\right\}$-decompositions of the balanced complete bipartite graphs. In 2016, Lin and Jou [26] established necessary and sufficient conditions for the existence of $\left\{P_{k}, C_{k}, S_{k}\right\}$-decompositions of the balanced complete bipartite graphs.

For the $\left\{G^{p}, H^{q}\right\}$-decompositions of a graph, Jeevadoss and Muthusamy [15, 16] determined the set of ordered pairs (p, q) of positive integers for which there exists a $\left\{P_{k}{ }^{p}, C_{k}{ }^{q}\right\}$-decomposition of $\lambda K_{m, n}$ when $\lambda=1$ and $k \equiv 0(\bmod 4)$; $\lambda=2$ and $k \equiv 0(\bmod 2)$; for some positive integers λ, m, n, and k. Jeevadoss and Muthusamy [15] also determined the set of ordered pairs (p, q) of positive integers for which there exists a $\left\{P_{k}{ }^{p}, C_{k}{ }^{q}\right\}$-decomposition of K_{n} when k is even and n is odd with $n>4 k$. Fu et al. [11] determined the set of ordered pairs (p, q) of positive integers for which there exists a $\left\{C_{3}{ }^{p}, S_{3}{ }^{q}\right\}$-decomposition of K_{n}. The author also determined the set of ordered pairs (p, q) of positive integers for which there exists a $\left\{P_{k}{ }^{p}, S_{k}{ }^{q}\right\}$-decompositon of K_{n} when $n \geq 4 k$ [36]; there exists a $\left\{P_{k}{ }^{p}, C_{k}{ }^{q}\right\}$-decomposition of K_{n} when k is even, n is odd, and $n>5 k$ [33]; there
exists a $\left\{C_{k}{ }^{p}, S_{k}{ }^{q}\right\}$-decomposition of K_{n} for some k and n [35]; there exists a $\left\{P_{k}{ }^{p}, S_{k}{ }^{q}\right\}$-decomposition of $K_{m, n}$ when $m>k$ and $n \geq 3 k$ [36]. In [37], the author also investigated the $\left\{H^{p}, K^{q}\right\}$-decomposition of the complete bipartite digraphs and the complete digraphs, where H and K are, respectively, directed paths and directed cycles with k edges each.

In this paper, we determine the set of triples (p, q, r) of positive integers for which there exists a $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}, C_{4}{ }^{r}\right\}$-decomposition of K_{n} and $K_{m, l}$ when n is odd, and both m and l are even.

2. Preliminaries

In this section we collect some needed terminologies and notations, and present some results which are useful for our discussions.

Let $|V(G)|$ and $e(G)$ denote, respectively, the order of a graph G and the number of edges in G; and let us call a graph even if all its vertex degrees are even. Let G_{1} and G_{2} be graphs. The union $G_{1} \cup G_{2}$ of G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

The following theorem gives necessary conditions for the existence of a decomposition of an even graph into specified numbers of paths, cycles, and stars with same number of edges each.

Theorem 1. Let G be an even graph and let k, p, q, and r be positive integers with $k \geq 3$. If G can be decomposed into p copies of P_{k}, q copies of S_{k}, and r copies of C_{k}, then $|V(G)| \geq k+1 ; k(p+q+r)=e(G)$ and $p \geq\left\lceil\frac{k}{2}\right\rceil$ when $q=1$.

Proof. Conditions $|V(G)| \geq k+1$ and $k(p+q+r)=e(G)$ are trivial. Assume \mathcal{D} is an arbitrary decomposition of G into p copies of P_{k}, one copy of S_{k}, and r copies of C_{k}. Let H be the only S_{k} and $C^{(1)}, \ldots, C^{(r)}$ denote those r copies of C_{k} in \mathcal{D}. Then, there are $2\left\lceil\frac{k}{2}\right\rceil$ vertices with odd degree in $G-E\left(H \cup C^{(1)} \cup \cdots \cup C^{(r)}\right)$. Since $G-E\left(H \cup C^{(1)} \cup \cdots \cup C^{(r)}\right)$ has to decompose into p copies of P_{k}, and there are exactly two vertices with odd degree in a path, $p \geq\left\lceil\frac{k}{2}\right\rceil$.

Let $\mathcal{D}\left(G ; P_{k}, S_{k}, C_{k}\right)$ denote the set of all triples (m, n, l) of non-negative integers such that a decomposition of a graph G into m copies of P_{k}, n copies of S_{k}, and l copies of C_{k} exists. Note that $(m, n, 0) \in \mathcal{D}\left(G ; P_{k}, S_{k}, C_{k}\right)$ if $(m, n) \in$ $\mathcal{C D}\left(G ; P_{k}, S_{k}\right) ;(m, 0, l) \in \mathcal{D}\left(G ; P_{k}, S_{k}, C_{k}\right)$ if $(m, l) \in \mathcal{C D}\left(G ; P_{k}, C_{k}\right) ;(0, n, l) \in$ $\mathcal{D}\left(G ; P_{k}, S_{k}, C_{k}\right)$ if $(n, l) \in \mathcal{C D}\left(G ; S_{k}, C_{k}\right) ;\left(\frac{e(G)}{k}, 0,0\right),\left(0, \frac{e(G)}{k}, 0\right),\left(0,0, \frac{e(G)}{k}\right) \in$ $\mathcal{D}\left(G ; P_{k}, S_{k}, C_{k}\right)$ if G can be decomposed into $\frac{e(G)}{k}$ copies of $P_{k}\left(S_{k}, C_{k}\right)$.

Let G be an even graph, and let k, p, q, and r be positive integers with $k \geq 3$, $|V(G)| \geq k+1$, and $k(p+q+r)=e(G)$. If $k=4$, by Theorem $1, p \geq\left\lceil\frac{k}{2}\right\rceil=2$ if $q=1$, and hence $\mathcal{C D}\left(G ; P_{4}, S_{4}, C_{4}\right) \subset\left\{(p, q, r): p, q, r>0, p+q+r=\frac{e(G)}{4}\right.$,
$(p, q) \neq(1,1)\}$. Note that both $\mathcal{C D}\left(G ; P_{4}, S_{4}, C_{4}\right)$ and $\{(p, q, r): p, q, r>0, p+$ $\left.q+r=\frac{e(G)}{4},(p, q) \neq(1,1)\right\}$ are empty if $e(G)$ is not divisible by 4 . If we can prove that $\mathcal{C D}\left(G ; P_{4}, S_{4}, C_{4}\right) \supset\left\{(p, q, r): p, q, r>0, p+q+r=\frac{e(G)}{4},(p, q) \neq(1,1)\right\}$, then $\mathcal{C D}\left(G ; P_{4}, S_{4}, C_{4}\right)=\left\{(p, q, r): p, q, r>0, p+q+r=\frac{e(G)}{4},(p, q) \neq(1,1)\right\}$, and hence we determine the set of triples (p, q, r) of positive integers for which there exists a $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}, C_{4}{ }^{r}\right\}$-decomposition of G.

If X_{1}, \ldots, X_{n} are n sets of triples of non-negative integers, then $X_{1}+\cdots+X_{n}$ denotes the set $\left\{\left(p_{1}, q_{1}, r_{1}\right)+\cdots+\left(p_{n}, q_{n}, r_{n}\right):\left(p_{1}, q_{1}, r_{1}\right) \in X_{1}, \ldots,\left(p_{n}, q_{n}, r_{n}\right) \in\right.$ $\left.X_{n}\right\}$. The following two lemmas will be used for proving the main theorems.

Lemma 2. Let n, l, and s be positive integers, and let X and Y be sets of triples of non-negative integers such that $X \supset\{(p, q, r): p, q, r>0, p+q+r=s$, $(p, q) \neq(1,1)\}$ and $Y \supset\{(a l, b l, c l): a, b, c \geq 0, a+b+c=n\}$. If $l \geq 2$ and $s \geq 3 l$, then $X+Y \supset\{(p, q, r): p, q, r>0, p+q+r=s+n l,(p, q) \neq(1,1)\}$.

Proof. Let $\left(p^{*}, q^{*}, r^{*}\right)$ be a triple of positive integers such that $p^{*}+q^{*}+r^{*}=$ $s+n l$ and $\left(p^{*}, q^{*}\right) \neq(1,1)$. Clearly, $\left(p^{*}, q^{*}, r^{*}\right)=\left(\alpha l+p^{\prime}, \beta l+q^{\prime}, \gamma l+r^{\prime}\right)$ with $1 \leq p^{\prime}, q^{\prime}, r^{\prime} \leq l$ and $\alpha, \beta, \gamma \geq 0$. It is not difficult to check that $s=s^{\prime}+n^{\prime} l$ where $s^{\prime}=p^{\prime}+q^{\prime}+r^{\prime} \leq 3 l \leq s$ and $n^{\prime} \geq 0$. Let $\left(\alpha l+p^{\prime}, \beta l+q^{\prime}, \gamma l+r^{\prime}\right)=$ $\left(\alpha^{\prime} l+p^{\prime}, \beta^{\prime} l+q^{\prime}, \gamma^{\prime} l+r^{\prime}\right)+\left(\left(\alpha-\alpha^{\prime}\right) l,\left(\beta-\beta^{\prime}\right) l,\left(\gamma-\gamma^{\prime}\right) l\right)$, where $\alpha^{\prime}=\min \left\{\alpha, n^{\prime}\right\}$, $\beta^{\prime}=\min \left\{\beta, n^{\prime}-\alpha^{\prime}\right\}$, and $\gamma^{\prime}=n^{\prime}-\alpha^{\prime}-\beta^{\prime}$. Clearly, $\left(\alpha^{\prime} l+p^{\prime}\right)+\left(\beta^{\prime} l+q^{\prime}\right)+\left(\gamma^{\prime} l+r^{\prime}\right)=$ s and $\left(\left(\alpha-\alpha^{\prime}\right) l,\left(\beta-\beta^{\prime}\right) l,\left(\gamma-\gamma^{\prime}\right) l\right) \in Y$.

It is left to show that $\left(\alpha^{\prime} l+p^{\prime}, \beta^{\prime} l+q^{\prime}\right) \neq(1,1)$. Assume for a contradiction that $\alpha^{\prime} l+p^{\prime}=\beta^{\prime} l+q^{\prime}=1$. It follows that $p^{\prime}=q^{\prime}=1$ and $\alpha^{\prime}=\beta^{\prime}=0$. Therefore, either $n^{\prime}=0$ or $\alpha=\beta=0$. If $n^{\prime}=0$, then $s=s^{\prime}=2+r^{\prime} \leq 2+l \leq 2+\frac{s}{3}$, hence $s \leq 3$ which is a contradiction since $s \geq 6$. If $\alpha=\beta=0$, then $\left(p^{*}, q^{*}\right)=\left(p^{\prime}, q^{\prime}\right)=$ $(1,1)$ which contradicts our assumption. Hence $\left(\alpha^{\prime} l+p^{\prime}, \beta^{\prime} l+q^{\prime}\right) \neq(1,1)$, thus $\left(p^{*}, q^{*}, r^{*}\right) \in X+Y$.

Lemma 3. Let s_{1} and s_{2} be positive integers with $s_{1}, s_{2} \geq 9$ and let X_{1} and X_{2} be sets of triples of non-negative integers such that $X_{1} \supset\{(a, b, c): a, b, c \geq 0$, $a+b+c=s_{1},(a, b, c) \neq(1,1, c),(1,0, c),(0,1, c)$ when $\left.c \geq 1\right\}$ and $X_{2} \supset\{(p, q, r)$: $\left.p, q, r>0, p+q+r=s_{2},(p, q) \neq(1,1)\right\}$. Then $X_{1}+X_{2} \supset\{(p, q, r): p, q, r>0$, $\left.p+q+r=s_{1}+s_{2},(p, q) \neq(1,1)\right\}$.

Proof. Let $\left(p^{*}, q^{*}, r^{*}\right)$ be a triple of positive integers such that $p^{*}+q^{*}+r^{*}=$ $s_{1}+s_{2}$ and $\left(p^{*}, q^{*}\right) \neq(1,1)$. We consider three cases as follows.

Case 1. $p^{*}, q^{*} \geq 3$. If $r^{*} \geq s_{2}-3$, then let $\left(p^{*}, q^{*}, r^{*}\right)=\left(p^{*}-1, q^{*}-\right.$ $\left.2, r^{*}-\left(s_{2}-3\right)\right)+\left(1,2, s_{2}-3\right)$. Clearly, $\left(p^{*}-1, q^{*}-2, r^{*}-\left(s_{2}-3\right)\right) \in X_{1}$ and $\left(1,2, s_{2}-3\right) \in X_{2}$. If $r^{*} \leq s_{2}-4$, then $p^{*}+q^{*} \geq s_{1}+4$. Since $p^{*}, q^{*} \geq 3$ with $p^{*}+q^{*} \geq s_{1}+4$, there exist positive integers $p_{1}^{*}, p_{2}^{*}, q_{1}^{*}$ and q_{2}^{*} with $p_{1}^{*} \geq 1$, $p_{2}^{*} \geq 2, q_{1}^{*} \geq 2$, and $q_{2}^{*} \geq 1$ such that $p^{*}=p_{1}^{*}+p_{2}^{*}, q^{*}=q_{1}^{*}+q_{2}^{*}, p_{1}^{*}+q_{1}^{*}=s_{1}$, and
$p_{2}^{*}+q_{2}^{*}+r^{*}=s_{2}$. Let $\left(p^{*}, q^{*}, r^{*}\right)=\left(p_{1}^{*}, q_{1}^{*}, 0\right)+\left(p_{2}^{*}, q_{2}^{*}, r^{*}\right)$. It is easy to check that $\left(p_{1}^{*}, q_{1}^{*}, 0\right) \in X_{1}$ and $\left(p_{2}^{*}, q_{2}^{*}, r^{*}\right) \in X_{2}$. Hence $\left(p^{*}, q^{*}, r^{*}\right) \in X_{1}+X_{2}$.

Case 2. $p^{*}, q^{*} \leq 2$. Let $\left(p^{*}, q^{*}, r^{*}\right)=\left(0,0, s_{1}\right)+\left(p^{*}, q^{*}, r^{*}-s_{1}\right)$. In this case, $r^{*} \geq s_{1}+s_{2}-4$ and $\left(p^{*}, q^{*}\right) \neq(1,1)$. It implies that $\left(0,0, s_{1}\right) \in X_{1}$ and $\left(p^{*}, q^{*}, r^{*}-s_{1}\right) \in X_{2}$. Hence $\left(p^{*}, q^{*}, r^{*}\right) \in X_{1}+X_{2}$.

Case 3. Either $p^{*} \leq 2, q^{*} \geq 3$ or $p^{*} \geq 3, q^{*} \leq 2$. Assume $p^{*} \leq 2$ and $q^{*} \geq 3$. If $q^{*} \leq s_{2}-3$, then $p^{*}+q^{*} \leq s_{2}-1$, and hence $r^{*} \geq s_{1}+1$. Let $\left(p^{*}, q^{*}, r^{*}\right)=$ $\left(0,0, s_{1}\right)+\left(p^{*}, q^{*}, r^{*}-s_{1}\right)$. Clearly, $\left(0,0, s_{1}\right) \in X_{1}$ and $\left(p^{*}, q^{*}, r^{*}-s_{1}\right) \in X_{2}$.

If $q^{*} \geq s_{2}-2$ and $r^{*} \geq 6$, then let $\left(p^{*}, q^{*}, r^{*}\right)=\left(0, s_{1}-\left(r^{*}-5\right), r^{*}-5\right)+\left(p^{*}, s_{2}-\right.$ $\left.\left(p^{*}+5\right), 5\right)$. Since $1 \leq p^{*} \leq 2, s_{1}+s_{2}-2 \leq q^{*}+r^{*} \leq s_{1}+s_{2}-1$. Moreover, since $q^{*} \geq s_{2}-2, r^{*} \leq s_{1}+1$, and hence $s_{1}-\left(r^{*}-5\right) \geq 4$. Besides, $s_{2}-\left(p^{*}+5\right) \geq 2$ since $s_{2} \geq 9$ and $p^{*} \leq 2$. It implies that $\left(0, s_{1}-\left(r^{*}-5\right), r^{*}-5\right) \in X_{1}$ and $\left(\left(p^{*}, s_{2}-\left(p^{*}+5\right), 5\right) \in X_{2}\right.$.

If $q^{*} \geq s_{2}-2$ and $r^{*} \leq 5$, then let $\left(p^{*}, q^{*}, r^{*}\right)=\left(0, s_{1}, 0\right)+\left(p^{*}, s_{2}-\left(p^{*}+r^{*}\right), r^{*}\right)$. Since $s_{2} \geq 9, p^{*} \leq 2$, and $r^{*} \leq 5, s_{2}-\left(p^{*}+r^{*}\right) \geq 2$. Clearly, $\left(0, s_{1}, 0\right) \in X_{1}$ and $\left(p^{*}, s_{2}-\left(p^{*}+r^{*}\right), r^{*}\right) \in X_{2}$. Hence $\left(p^{*}, q^{*}, r^{*}\right) \in X_{1}+X_{2}$.

The case where $p^{*} \geq 3$ and $q^{*} \leq 2$ is similar to the case $p^{*} \leq 2$ and $q^{*} \geq 3$, therefore we omit its proof.

3. $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}, C_{4}{ }^{r}\right\}$-Decomposition of $K_{m, n}$

In this section we study the $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}, C_{4}{ }^{r}\right\}$-decomposition of $K_{m, n}$ when both m and n are even. In particular, we prove that $\mathcal{C D}\left(K_{m, n} ; P_{4}, S_{4}, C_{4}\right)=\{(p, q, r)$: $p, q, r>0 ; m+n \geq 6 ; 4(p+q+r)=m n ;(p, q) \neq(1,1) ; q$ is even when $m=2 ;(p, q, r) \neq(1,2,1)$ when $m=n=4\}$. We first recall three results on P_{k}-decomposition, S_{k}-decomposition, and C_{k}-decomposition of $K_{m, n}$ as follows.

Theorem 4 (Parker [28]). Let k, m, and n be positive integers. There exists a P_{k}-decomposition of $K_{m, n}$ if and only if $m n \equiv 0(\bmod k)$ and one of cases in Table 1 occurs.

Theorem 5 (Yamamoto et al. [44]). Let k, m, and n be positive integers with $m \leq n$. There exists an S_{k}-decomposition of $K_{m, n}$ if and only if one of the following conditions holds.
(1) $m \geq k$ and $m n \equiv 0(\bmod k)$;
(2) $m<k \leq n$ and $n \equiv 0(\bmod k)$.

Theorem 6 (Sotteau [38]). Let k, m, and n be positive integers. $K_{m, n}$ has a $C_{2 k}$-decomposition if and only if m and n are even, $k \geq 2, m \geq k, n \geq k$, and $m n \equiv 0(\bmod 2 k)$.

Case	k	m	n	Characterization
1.	even	even	even	$k \leq 2 m, k \leq 2 n$, not both equalities
2.	even	even	odd	$k \leq 2 m-2, k \leq 2 n$
3.	even	odd	even	$k \leq 2 m, k \leq 2 n-2$
4.	odd	even	even	$k \leq 2 m-1, k \leq 2 n-1$
5.	odd	even	odd	$k \leq 2 m-1, k \leq n$
6.	odd	odd	even	$k \leq m, k \leq 2 n-1$
7.	odd	odd	odd	$k \leq m, k \leq n$

Table 1. Necessary and Sufficient Conditions for P_{k}-Decomposition of $K_{m, n}$.
Before going into more detail, we need the following lemma.
Lemma 7 ([36, Theorem 2.10]). Let p and q be non-negative integers, and let k, m, and s be positive integers such that k is even and $m<k$. There exists a decomposition of $K_{\text {sk,m }}$ into p copies of P_{k} and q copies of S_{k} if and only if $k(p+q)=e\left(K_{s k, m}\right)$, and there is $t \in\{0, \ldots, s\}$ such that $\left\lceil\frac{t k}{2}\right\rceil \leq p \leq t m$.

Let $\left(x_{1}, \ldots, x_{k}\right)$ and $\left(x_{1}, \ldots, x_{k}, x_{1}\right)$ denote, respectively, the k-path and the k-cycle through vertices x_{1}, \ldots, x_{k} in order, and let $\left(y ; x_{1}, \ldots, x_{k}\right)$ denote the k star with center y and leafs x_{1}, \ldots, x_{k}. An internal vertex of a path is a vertex of degree 2 . In the following lemma, we determine the set of ordered pairs (p, q) of positive integers for which there exists a $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}\right\}$-decomposition of $K_{2,2 n}$.

Lemma 8. Let n, p, and q be positive integers. $(p, q) \in \mathcal{C D}\left(K_{2,2 n} ; P_{4}, S_{4}\right)$ if and only if $n \geq 2 ; p+q=n$ and q is even.

Proof. Let n, p, and q be positive integers. Assume that $(p, q) \in \mathcal{C D}\left(K_{2,2 n}\right.$; $\left.P_{4}, S_{4}\right)$. It is easily seen that $n \geq 2$ and $p+q=n$.

Let \mathcal{D} be an arbitrary decomposition of $K_{2,2 n}$ into p copies of P_{4} and q copies S_{4}. Let (A, B) be the bipartition of $K_{2,2 n}$ where $A=\left\{a_{0}, a_{1}\right\}$ and $B=$ $\left\{b_{0}, b_{1}, \ldots, b_{2 n-1}\right\}$. It is easily seen that each S_{4} in \mathcal{D} has to center at either a_{0} or a_{1}, and each P_{4} in \mathcal{D} has to contain both a_{0} and a_{1} as its internal vertices. It implies that the number of copies of S_{4} centered in a_{0} in \mathcal{D} is the same as the number of copies of S_{4} centered in a_{1} in \mathcal{D}, and hence q is even.

Conversely, assume that $n \geq 2 ; p+q=n$ and q is even. If $2 n=4 s$ for some integer s, by Lemma 7 , then $(p, n-p) \in \mathcal{C D}\left(K_{2,2 n} ; P_{4}, S_{4}\right)$ for each $p \in$ $\{2,4, \ldots, 2 s\}$ (i.e., $q=n-p \in\{2,4, \ldots, 2 s\}$). Assume $2 n=4 s+2$ for some integer s. For each $q \in\{2,4, \ldots, 2(s-1)\}$, the graph $K_{2,4 s+2}$ is the edge-disjoint union of a copy H_{1}^{q} of $K_{2,2 q}$ and a copy H_{2}^{q} of $K_{2,4 s-2 q+2}$. By Theorem $5, H_{1}^{q}$ is S_{4}-decomposable, and by Theorem $4, H_{2}^{q}$ is P_{4}-decomposable. If $q=2 s$, then let $K_{2,4 s+2}$ decompose into $K_{2,4 s-4}$ and $K_{2,6}$. As mentioned above, $K_{2,4 s-4}$ can be decomposed into $2 s-2$ copies of S_{4}. Besides, $K_{2,6}$ can be decomposed into one
copy of P_{4} and two copies of S_{4} as follows: $\left(b_{0}, a_{1}, b_{5}, a_{0}, b_{4}\right),\left(a_{0} ; b_{0}, b_{1}, b_{2}, b_{3}\right)$, $\left(a_{1} ; b_{1}, b_{2}, b_{3}, b_{4}\right)$.

In the following lemma, we determine the set of triples (p, q, r) of positive integers for which there exists a $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}, C_{4}{ }^{r}\right\}$-decomposition of $K_{2,2 n}$.

Lemma 9. Let n, p, q, and r be positive integers with $n \geq 3$. $(p, q, r) \in \mathcal{C} \mathcal{D}\left(K_{2,2 n}\right.$; P_{4}, S_{4}, C_{4}) if and only if $p+q+r=n$ and q is even.

Proof. Let n, p, q, and r be positive integers with $n \geq 3$. Assume that $(p, q, r) \in$ $\mathcal{C D}\left(K_{2,2 n} ; P_{4}, S_{4}, C_{4}\right)$. It is easily seen that $p+q+r=n$.

Let D be an arbitrary decomposition of $K_{2,2 n}$ into p copies of P_{4}, q copies of S_{4}, and r copies of C_{4}, and let $C^{(1)}, \ldots, C^{(r)}$ denote the r copies of C_{4} in D. It is easily seen that $K_{2,2 n}-E\left(C^{(1)} \cup \cdots \cup C^{(r)}\right) \cong K_{2,2(n-r)}$. It implies that $K_{2,2(n-r)}$ can be decomposed into p copies of P_{4} and q copies of S_{4}, and hence q is even by Lemma 8.

Conversely, assume that $p+q+r=n$ and q is even. Let (A, B) be the bipartition of $K_{2,2 n}$ where $A=\left\{a_{0}, a_{1}\right\}$ and $B=\left\{b_{0}, b_{1}, \ldots, b_{2 n-1}\right\}$, and let $C^{(i)}=\left(b_{2 i-2}, a_{0}, b_{2 i-1}, a_{1}, b_{2 i-2}\right)$ for each $i \in\{1, \ldots, r\}$. It clear that $C^{(i)}$ is a C_{4} and $K_{2,2 n}-E\left(C^{(1)} \cup \cdots \cup C^{(r)}\right) \cong K_{2,2(n-r)}$. By Lemma $8, K_{2,2(n-r)}$ is $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}\right\}$-decomposable.

In the following lemma, we determine the set of triples (p, q, r) of positive integers for which there exists a $\left\{P_{4}{ }^{p}, S_{4}^{q}, C_{4}^{r}\right\}$-decomposition of $K_{4,2 n}$.

Lemma 10. Let n, p, q, and r be positive integers with $n \geq 2$. $(p, q, r) \in$ $\mathcal{C D}\left(K_{4,2 n} ; P_{4}, S_{4}, C_{4}\right)$ if and only if $p+q+r=2 n$ and $(p, q) \neq(1,1) ;(p, q, r) \neq$ $(1,2,1)$.

Proof. (Necessity) By Theorem 1, condition $p+q+r=2 n$ and $(p, q) \neq(1,1)$ holds.

On the contrary, suppose $(1,2,1) \in \mathcal{C} \mathcal{D}\left(K_{4,4} ; P_{4}, S_{4}, C_{4}\right)$. Let D be an arbitrary decomposition of $K_{4,4}$ into one copy of P_{4}, two copies of S_{4}, and one copy of C_{4}; and let $S^{(1)}, S^{(2)}$, and C denote, respectively, the two copies of S_{4} and the copy of C_{4} in D. It is easily seen that $K_{4,4}-E\left(S^{(1)} \cup S^{(2)}\right) \cong K_{2,4}$ and $K_{2,4}-E(C) \cong K_{2,2}$. It follows that $K_{4,4}-E\left(S^{(1)} \cup S^{(2)} \cup C\right)$ is not P_{4}-decomposable, a contradiction.
(Sufficiency) By assumption, $\mathcal{C D}\left(K_{4,2 n} ; P_{4}, S_{4}, C_{4}\right) \subset\{(p, q, r): p, q, r>0$, $p+q+r=2 n,(p, q) \neq(1,1) ;(p, q, r) \neq(1,2,1)\}$, and hence $\mathcal{C} \mathcal{D}\left(K_{4,4} ; P_{4}, S_{4}\right.$, $\left.C_{4}\right) \subset\{(2,1,1)\}$. Let (A, B) be the bipartition of $K_{4,4}$ where $A=\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{0}, b_{1}, b_{2}, b_{3}\right\}$. $K_{4,4}$ can be decomposed into two copies of P_{4}, one copy of S_{4}, and one copy of C_{4} as follows: $\left(b_{0}, a_{0}, b_{1}, a_{1}, b_{2}\right),\left(b_{1}, a_{2}, b_{2}, a_{0}, b_{3}\right)$, $\left(a_{3} ; b_{0}, b_{1}, b_{2}, b_{3}\right),\left(b_{0}, a_{1}, b_{3}, a_{2}, b_{0}\right)$.

Assume $n=3$. We show that $\mathcal{C D}\left(K_{4,6} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, q, r): p, q, r>0$, $p+q+r=6,(p, q) \neq(1,1)\}=\{(1,2,3),(1,3,2),(1,4,1),(2,1,3),(2,2,2),(2,3,1)$, $(3,1,2),(3,2,1),(4,1,1)\}$.

We decompose $K_{4,6}$ into one copy of $K_{4,4}$ and one copy of $K_{4,2}$. By Theorems 4,5 , and $6, K_{4,2}$ is P_{4}-decomposable, S_{4}-decomposable, and C_{4}-decomposable, respectively. Since $(2,1,1) \in \mathcal{C} \mathcal{D}\left(K_{4,4} ; P_{4}, S_{4}, C_{4}\right),\{(2,1,1)+(2,0,0),(2,1,1)+$ $(0,2,0),(2,1,1)+(0,0,2)\}=\{(4,1,1),(2,3,1),(2,1,3)\} \subset \mathcal{C D}\left(K_{4,6} ; P_{4}, S_{4}, C_{4}\right)$. Besides, it is easy to check that $K_{4,4}$ is $\left\{P_{4}{ }^{2}, C_{4}{ }^{2}\right\}$-decomposable, $\left\{P_{4}{ }^{3}, C_{4}{ }^{1}\right\}$ decomposable, and $\left\{P_{4}^{3}, S_{4}^{1}\right\}$-decomposable, respectively. Thus $\{(2,0,2)+(0,2$, $0),(3,0,1)+(0,2,0),(3,1,0)+(0,0,2)\}=\{(2,2,2),(3,2,1),(3,1,2)\} \subset \mathcal{C D}\left(K_{4,6} ;\right.$ $\left.P_{4}, S_{4}, C_{4}\right)$. We now turn our attention to the case $(1,2,3)$. The graph $K_{4,6}$ is the edge-disjoint union of two copies of $K_{2,6}$. By Lemma 8 and Theorem $6, K_{2,6}$ is $\left\{P_{4}{ }^{1}, S_{4}{ }^{2}\right\}$-decomposable and C_{4}-decomposable, respectively. Thus $(1,2,3) \in \mathcal{C} \mathcal{D}\left(K_{4,6} ; P_{4}, S_{4}, C_{4}\right)$. Let (A, B) be the bipartition of $K_{4,6}$ where $A=$ $\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$. We now show that $(1,4,1),(1,3,2) \in$ $\mathcal{C D}\left(K_{4,6} ; P_{4}, S_{4}, C_{4}\right)$ as follows: $\left(b_{0}, a_{3}, b_{4}, a_{0}, b_{5}\right),\left(a_{0} ; b_{0}, b_{1}, b_{2}, b_{3}\right),\left(a_{1} ; b_{1}, b_{2}, b_{3}\right.$, $\left.b_{4}\right),\left(a_{2} ; b_{1}, b_{2}, b_{3}, b_{4}\right),\left(a_{3} ; b_{1}, b_{2}, b_{3}, b_{5}\right),\left(b_{0}, a_{1}, b_{5}, a_{2}, b_{0}\right) ;\left(b_{0}, a_{1}, b_{1}, a_{3}, b_{3}\right),\left(a_{0} ; b_{0}\right.$, $\left.b_{1}, b_{2}, b_{3}\right),\left(a_{1} ; b_{2}, b_{3}, b_{4}, b_{5}\right),\left(a_{2} ; b_{1}, b_{3}, b_{4}, b_{5}\right),\left(a_{0}, b_{4}, a_{3}, b_{5}, a_{0}\right),\left(b_{0}, a_{2}, b_{2}, a_{3}, b_{0}\right)$.

Assume $n \geq 4$. We decompose $K_{4,2 n}$ into one copy of $K_{4,6}$ and one copy of $K_{4,2(n-3)}$, and then we decompose $K_{4,2(n-3)}$ into $(n-3)$ copies of $K_{4,2}$. By Theorems 4, 5 and $6,\{(2,0,0),(0,2,0),(0,0,2)\} \subset \mathcal{D}\left(K_{4,2} ; P_{4}, S_{4}, C_{4}\right)$, and thus $\left.\mathcal{D}\left(K_{4,2(n-3)} ; P_{4}, S_{4}, C_{4}\right) \supset\{(2 a, 2 b, 2 c): a, b, c \geq 0, a+b+c=n-3)\right\}$. Moreover, since $\mathcal{C} \mathcal{D}\left(K_{4,6} ; P_{4}, S_{4}, C_{4}\right)=\{(p, q, r): p, q, r>0, p+q+r=6,(p, q) \neq(1,1)\}$, $\mathcal{C D}\left(K_{4,2 n} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, q, r): p, q, r>0, p+q+r=2 n,(p, q) \neq(1,1)\}$ by Lemma 2, and hence $\mathcal{C D}\left(K_{4,2 n} ; P_{4}, S_{4}, C_{4}\right)=\{(p, q, r): p, q, r>0, p+q+r=$ $2 n,(p, q) \neq(1,1)\}$.

In the following lemma, we determine the set of triples (p, q, r) of positive integers for which there exists a $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}, C_{4}{ }^{r}\right\}$-decomposition of $K_{6,2 n}$.

Lemma 11. Let n, p, q, and r be positive integers with $n \geq 3$. $(p, q, r) \in$ $\mathcal{C D}\left(K_{6,2 n} ; P_{4}, S_{4}, C_{4}\right)$ if and only if $p+q+r=3 n$ and $(p, q) \neq(1,1)$.

Proof. (Necessity) By Theorem 1, condition $p+q+r=3 n$ and $(p, q) \neq(1,1)$ holds.
(Sufficiency) Assume $n=3$. It is easily seen that $K_{6,6}$ can be decomposed into one copy of $K_{4,6}$ and one copy of $K_{2,6}$. By Lemma $10, \mathcal{C D}\left(K_{4,6} ; P_{4}, S_{4}, C_{4}\right)$ $=\{(p, q, r): p, q, r>0, p+q+r=6,(p, q) \neq(1,1)\}$. By Theorem 4, 6 and Lemma $8,\left\{(3,0,0),(0,0,3),((1,2,0)\} \subset \mathcal{D}\left(K_{2,6} ; P_{4}, S_{4}, C_{4}\right)\right.$. Besides, $K_{2,6}-E\left(C_{4}\right)$ $\cong K_{2,4}$, hence $\{(2,0,1),(0,2,1)\} \subset \mathcal{D}\left(K_{2,6} ; P_{4}, S_{4}, C_{4}\right)$ by Theorems 4,5 . We show that $\mathcal{C} \mathcal{D}\left(K_{6,6} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, q, r): p, q, r>0, p+q+r=9,(p, q) \neq$ $(1,1)\}$ as follows.

Suppose $q=1$ or 2 . If $p>r$, then let $(p, q, r)=(p-3, q, r)+(3,0,0)$, and if $p \leq r$ then let $(p, q, r)=(p, q, r-3)+(0,0,3)$. Since $\{(p-3, q, r)$, $(p, q, r-3)\} \subset \mathcal{C D}\left(K_{4,6} ; P_{4}, S_{4}, C_{4}\right)$ and $\{(3,0,0),(0,0,3)\} \subset \mathcal{D}\left(K_{2,6} ; P_{4}, S_{4}, C_{4}\right)$, $(p, q, r) \in \mathcal{C D}\left(K_{6,6} ; P_{4}, S_{4}, C_{4}\right)$.

Suppose $q=3,4$, or 5 . If $r \geq 4$, then let $(p, q, r)=(p, q, r-3)+(0,0,3)$; if $2 \leq r \leq 3$, then let $(p, q, r)=(p, q-2, r-1)+(0,2,1)$ (note that $p \geq 3$ if $q=3$); if $r=1$, then let $(p, q, r)=(p-1, q-2, r)+(1,2,0)$ (note that $p \geq 3$). Since $\{(p, q, r-3),(p, q-2, r-1),(p-1, q-2, r)\} \subset \mathcal{C D}\left(K_{4,6} ; P_{4}, S_{4}, C_{4}\right)$ and $\{(0,0,3),(0,2,1),(1,2,0)\} \subset \mathcal{D}\left(K_{2,6} ; P_{4}, S_{4}, C_{4}\right),(p, q, r) \in \mathcal{C D}\left(K_{6,6} ; P_{4}, S_{4}, C_{4}\right)$.

Suppose $q=6$. In this case $p+r=3$. If $r=2$, then let $(1,6,2)=(1,4,1)+$ $(0,2,1)$, and if $r=1$, then let $(2,6,1)=(1,4,1)+(1,2,0)$. Since $(1,4,1) \in$ $\mathcal{C D}\left(K_{4,6} ; P_{4}, S_{4}, C_{4}\right)$ and $(0,2,1),(1,2,0) \in \mathcal{D}\left(K_{2,6} ; P_{4}, S_{4}, C_{4}\right),(1,6,2),(2,6,1)$ $\in \mathcal{C D}\left(K_{6,6} ; P_{4}, S_{4}, C_{4}\right)$.

Suppose $q=7$. Let (A, B) be the bipartition of $K_{6,6}$ where $A=\left\{a_{0}, a_{1}, a_{2}, a_{3}\right.$, $\left.a_{4}, a_{5}\right\}$ and $B=\left\{b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$. We show that $(1,7,1) \in \mathcal{C D}\left(K_{6,6} ; P_{4}, S_{4}, C_{4}\right)$ below: $\left(b_{0}, a_{5}, b_{2}, a_{3}, b_{3}\right),\left(a_{0} ; b_{0}, b_{1}, b_{2}, b_{3}\right),\left(a_{1} ; b_{0}, b_{1}, b_{2}, b_{3}\right),\left(a_{2} ; b_{0}, b_{1}, b_{2}, b_{3}\right)$, $\left(a_{3} ; b_{0}, b_{1}, b_{4}, b_{5}\right),\left(a_{4} ; b_{0}, b_{2}, b_{4}, b_{5}\right),\left(b_{4} ; a_{0}, a_{1}, a_{2}, a_{5}\right),\left(b_{5} ; a_{0}, a_{1}, a_{2}, a_{5}\right),\left(b_{1}, a_{4}\right.$, $\left.b_{3}, a_{5}, b_{1}\right)$.

Assume $n \geq 4$. If n is even, then write $n=2 k$ for some integer k with $k \geq 2$. We decompose $K_{6,4 k}$ into one copy of $K_{6,4}$ and one copy of $K_{6,4(k-1)}$, and then we decompose $K_{6,4(k-1)}$ into $3(k-1)$ copies of $K_{2,4}$. By Theorems 4, 5 and $6,\{(2,0,0),(0,2,0),(0,0,2)\} \subset \mathcal{D}\left(K_{4,2} ; P_{4}, S_{4}, C_{4}\right)$, and thus $\mathcal{D}\left(K_{6,4(k-1)} ; P_{4}, S_{4}\right.$, $\left.C_{4}\right) \supset\{(2 a, 2 b, 2 c): a, b, c \geq 0, a+b+c=3(k-1)\}$. By Lemma 10, $\mathcal{C D}\left(K_{6,4} ; P_{4}\right.$, $\left.S_{4}, C_{4}\right) \supset\{(p, q, r): p, q, r>0, p+q+r=6,(p, q) \neq(1,1)\}$, and hence $\mathcal{C D}\left(K_{6,2 n} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, q, r): p, q, r>0, p+q+r=3 n,(p, q) \neq(1,1)\}$ by Lemma 2.

If n is odd, then write $n=2 k+1$ for some integer k with $k \geq 2$, and thus $2 n=4 k+2=4(k-1)+6$. We decompose $K_{6,4 k+2}$ into one copy of $K_{6,6}$ and one copy of $K_{6,4(k-1)}$, and then we decompose $K_{6,4(k-1)}$ into $3(k-1)$ copies of $K_{2,4}$. As mentioned above, $\mathcal{D}\left(K_{6,4(k-1)} ; P_{4}, S_{4}, C_{4}\right) \supset\{(2 a, 2 b, 2 c): a, b, c \geq 0$, $a+b+c=3(k-1)\}$. Since $\mathcal{C D}\left(K_{6,6} ; P_{4}, S_{4}, C_{4}\right)=\{(p, q, r): p, q, r>0$, $p+q+r=9,(p, q) \neq(1,1)\}, \mathcal{C D}\left(K_{6,2 n} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, q, r): p, q, r>0$, $p+q+r=3 n,(p, q) \neq(1,1)\}$, by Lemma 2 .

In the following lemma, we determine the set of triples (p, q, r) of positive integers for which there exists a $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}, C_{4}{ }^{r}\right\}$-decomposition of $K_{m, n}$ when both m and n are positive even integers with $n \geq m \geq 8$.

Lemma 12. Let p, q, and r be positive integers, and let m and n be positive even integers with $n \geq m \geq 8$. $(p, q, r) \in \mathcal{C D}\left(K_{m, n} ; P_{4}, S_{4}, C_{4}\right)$ if and only if $4(p+q+r)=m n$ and $(p, q) \neq(1,1)$.

Proof. (Necessity) By Theorem 1, condition $4(p+q+r)=m n$ and $(p, q) \neq(1,1)$ holds.
(Sufficiency) We divided the proof into two cases as follows.
Case 1. $m \equiv 0(\bmod 4)$. Write $m=4 k$ for some integer k with $k \geq$ 2. We decompose $K_{4 k, n}$ into one copy of $K_{4, n}$ and one copy of $K_{4(k-1), n}$, and then we decompose $K_{4(k-1), n}$ into $\frac{n}{2}(k-1)$ copies of $K_{4,2}$. By Theorems 4,5 and $6,\{(2,0,0),(0,2,0),(0,0,2)\} \subset \mathcal{D}\left(K_{4,2} ; P_{4}, S_{4}, C_{4}\right)$, and thus $\mathcal{D}\left(K_{4(k-1), n}\right.$; $\left.P_{4}, S_{4}, C_{4}\right) \supset\left\{(2 a, 2 b, 2 c): a, b, c \geq 0, a+b+c=\frac{n}{2}(k-1)\right\}$. By Lemma 10, $\mathcal{C D}\left(K_{4, n} ; P_{4}, S_{4}, C_{4}\right)=\{(p, q, r): p, q, r>0, p+q+r=n,(p, q) \neq(1,1)\}$, and hence $\mathcal{C D}\left(K_{m, n} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, q, r): p, q, r>0, p+q+r=k n,(p, q) \neq(1,1)\}$ by Lemma 2.

Case $2 . \quad m \equiv 2(\bmod 4)$. Write $m=4 k+2=4(k-1)+6$ for some integer k with $k \geq 2$. We decompose $K_{4 k+2, n}$ into one copy of $K_{6, n}$ and one copy of $K_{4(k-1), n}$, and then we decompose $K_{4(k-1), n}$ into $\frac{n}{2}(k-1)$ copies of $K_{4,2}$. As mentioned above, $\mathcal{D}\left(K_{4(k-1), n} ; P_{4}, S_{4}, C_{4}\right) \supset\{(2 a, 2 b, 2 c): a, b, c \geq 0$, $\left.a+b+c=\frac{n}{2}(k-1)\right\}$. By Lemma 11, $\mathcal{C D}\left(K_{6, n} ; P_{4}, S_{4}, C_{4}\right)=\{(p, q, r): p, q, r>0$, $\left.p+q+r=\frac{6 n}{4},(p, q) \neq(1,1)\right\}$, and hence $\mathcal{C D}\left(K_{4 k+2, n} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, q, r)$: $\left.p, q, r>0, p+q+r=\frac{(4 k+2) n}{4},(p, q) \neq(1,1)\right\}$ by Lemma 2 .

Now, we are ready for the main result of this section. It is obtained by combining Theorem 1 and Lemmas 9, 10, 11, and 12.

Theorem 13. Let m, n, p, q, and r be positive integers such that both m and n are even, and $m \leq n$. $(p, q, r) \in \mathcal{C} \mathcal{D}\left(K_{m, n} ; P_{4}, S_{4}, C_{4}\right)$ if and only if $m+n \geq 6$; $4(p+q+r)=m n ;(p, q) \neq(1,1) ; q$ is even when $m=2 ;(p, q, r) \neq(1,2,1)$ when $m=n=4$.

4. $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}, C_{4}{ }^{r}\right\}$-DECOMPOSITION OF K_{n}

In this section, we study the $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}, C_{4}{ }^{r}\right\}$-decomposition of K_{n} when n is odd. In particular, we prove that $\mathcal{C D}\left(K_{n} ; P_{4}, S_{4}, C_{4}\right)=\{(p, q, r): p, q, r>0,4(p+$ $\left.q+r)=\binom{n}{2},(p, q) \neq(1,1)\right\}$. Let us begin with three well-known results on P_{k}-decomposition, S_{k}-decomposition, and C_{k}-decomposition of K_{n}, respectively.

Theorem 14 (Tarsi [40]). Let k and n be positive integers. There exists a P_{k} decomposition of K_{n} if and only if $k+1 \leq n$ and $n(n-1) \equiv 0(\bmod 2 k)$.

Theorem 15 (Tarsi [39] and Yamamoto et al. [44]). Let k and n be positive integers. There exists an S_{k}-decomposition of K_{n} if and only if $2 k \leq n$ and $n(n-1) \equiv 0(\bmod 2 k)$.

Theorem 16 (Alspach, Gavlas [6] and Šajna [31]). Let n and k be positive integers. K_{n} has a C_{k}-decomposition if and only if n is odd, $3 \leq k \leq n$, and $n(n-1) \equiv 0(\bmod 2 k)$.

In the following, we will introduce three known results on $\left\{P_{4}{ }^{p}, C_{4}{ }^{r}\right\}$ decomposition, $\left\{S_{4}{ }^{q}, C_{4}{ }^{r}\right\}$-decomposition, and $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}\right\}$-decomposition of K_{n}, respectively.

Theorem 17 [33]. Let p and r be positive integers, and let n be a positive odd integer. $(p, r) \in \mathcal{C D}\left(K_{n} ; P_{4}, C_{4}\right)$ if and only if $4(p+q)=e\left(K_{n}\right)$ and $p \neq 1$.

Theorem 18 [35]. Let q and r be positive integers, and let n be a positive odd integer. $(q, r) \in \mathcal{C D}\left(K_{n} ; S_{4}, C_{4}\right)$ if and only if $4(p+q)=e\left(K_{n}\right)$ and $q \neq 1$.

Theorem 19 [36]. Let p, q, and n be positive integers with $n \geq 16$. $(p, q) \in$ $\mathcal{C D}\left(K_{n} ; P_{4}, S_{4}\right)$ if and only if $4(p+q)=e\left(K_{n}\right)$.

Theorem 19 determined the set of ordered pairs (p, q) of positive integers for which there exists a $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}\right\}$-decomposition of K_{n} when $n \geq 16$. In the following lemma, we determine the set of ordered pairs (p, q) of positive integers for which there exists a $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}\right\}$-decomposition of K_{n} when $n<16$ and n is odd, thus we determine the set of ordered pairs (p, q) of positive integers for which there exists a $\left\{P_{4}{ }^{p}, S_{4}{ }^{q}\right\}$-decomposition of K_{n} when n is odd.

Theorem 20. Let p and q be positive integers, and let n be a positive odd integer. $(p, q) \in \mathcal{C D}\left(K_{n} ; P_{4}, S_{4}\right)$ if and only if $4(p+q)=e\left(K_{n}\right)$.

Proof. (Necessity) Condition $4(p+q)=e\left(K_{n}\right)$ is trivial.
(Sufficiency) Observe that $4 \left\lvert\, \frac{n(n-1)}{2}\right.$ implies $8 \mid(n-1)$. It follows that $n=$ $8 m+1$ for some positive integer m. By Theorem 19, we need only consider the case $n=9$. Assume $V\left(K_{9}\right)=\{1, \ldots, 9\}$. We show that $\mathcal{C D}\left(K_{9} ; P_{4}, S_{4}\right) \supset\{(p, q):$ $p, q>0, p+q=9\}$.

Assume $(p, q)=(8,1) . K_{9}$ can be decomposed into 8 copies of P_{4} and one copy of S_{4} as follows: $(3,1,9,2,4),(7,5,9,6,8),(4,3,2,1,5),(5,2,6,1,4)$, $(5,4,6,3,7),(7,4,8,3,5),(1,7,2,8,5),(5,6,7,8,1),(9 ; 3,4,7,8)$.

Assume $(p, q)=(7,2)$. It is easily seen that K_{9} is the edge-disjoint union of a copy H_{1}^{q} of K_{8} and a copy H_{2}^{q} of S_{8}. By Theorem 14, H_{1}^{q} is P_{4}-decomposable, and H_{2}^{q} can be decomposed into two copies of S_{4}. Hence the assertion follows.

Assume $(p, q)=(6,3) . K_{9}$ can be decomposed into 6 copies of P_{4} and 3 copies of S_{4} as follows: $(5,1,3,2,6),(6,3,4,2,5),(3,7,4,5,6),(6,4,8,5,3),(6,9,5,7,1)$, $(1,8,2,7,6),(1 ; 2,4,6,9),(8 ; 3,6,7,9),(9 ; 2,3,4,7)$.

Assume $(p, q)=(5,4) . K_{9}$ can be decomposed into 5 copies of P_{4} and 4 copies of S_{4} as follows: $(2,4,3,6,5),(5,8,4,6,7),(7,5,9,6,2),(2,3,1,5,4),(4,7,3,5,2)$, $(1 ; 4,6,7,8),(2 ; 1,7,8,9),(8 ; 3,6,7,9),(9 ; 1,3,4,7)$.

Assume $(p, q)=(4,5) . K_{9}$ can be decomposed into 4 copies of P_{4} and 5 copies of S_{4} as follows: $(5,1,3,2,6),(6,3,4,2,5),(7,3,5,4,8),(8,5,6,4,7),(1 ; 4,6,8,9)$, $(2 ; 1,7,8,9),(7 ; 1,5,6,9),(8 ; 3,6,7,9),(9 ; 3,4,5,6)$.

Assume $(p, q)=(3,6) . K_{9}$ can be decomposed into 3 copies of P_{4} and 6 copies of S_{4} as follows: $(4,1,2,3,9),(9,4,3,8,7),(7,6,5,8,4),(1 ; 3,5,7,9),(2 ; 4,6,7,9)$, $(5 ; 2,3,4,9),(6 ; 1,3,4,9),(7 ; 3,4,5,9),(8 ; 1,2,6,9)$.

Assume $(p, q)=(2,7) . K_{9}$ can be decomposed into 2 copies of P_{4} and 7 copies of S_{4} as follows: $(1,2,3,4,5),(5,6,7,8,9),(1 ; 3,4,8,9),(2 ; 4,5,8,9),(3 ; 6,7,8,9)$, $(4 ; 6,7,8,9),(5 ; 1,3,8,9),(6 ; 1,2,8,9),(7 ; 1,2,5,9)$.

Assume $(p, q)=(1,8) . \quad K_{9}$ can be decomposed into one copy of P_{4} and 8 copies of S_{4} as follows: $(4,5,6,7,8),(1 ; 2,3,4,5),(2 ; 3,4,5,6),(3 ; 4,6,7,8)$, $(5 ; 3,7,8,9),(6 ; 1,4,8,9),(7 ; 1,2,4,9),(8 ; 1,2,4,9) .(9 ; 1,2,3,4)$.

The following lemma gives sufficient conditions for decomposing an edgedisjoint union of cycles of length k into copies of P_{k}. In fact, the proof of the following lemma is essentially given in [33, Lemma 3.8]. We present it here for completeness.

Lemma 21. Let k and n be integers such that $k \geq 3$ and $n \geq 2$. For each $i \in$ $\{1,2, \ldots, n\}$, let $C(i)$ denote the cycle of length $k,\left(x_{(i, 1)}, x_{(i, 2)}, \ldots, x_{(i, k)}, x_{(i, 1)}\right)$. If $x_{(1,1)}=x_{(2,1)}=\cdots=x_{(n, 1)}, x_{(i-1,2)} \notin V(C(i))$ for each $i \in\{2,3, \ldots, n\}$, and $x_{(n, 2)} \notin V(C(1))$, then $\bigcup_{i=1}^{n} C(i)$ can be decomposed into n paths of length k.
Proof. By assumptions, $\bigcup_{i=1}^{n} C(i)$ can be decomposed into n paths of length k as follows: $\left(x_{(2,2)}, x_{(2,3)}, \ldots, x_{(2, k)}, x_{(2,1)}, x_{(1,2)}\right),\left(x_{(3,2)}, x_{(3,3)}, \ldots, x_{(3, k)}, x_{(3,1)}, x_{(2,2)}\right)$, $\ldots,\left(x_{(n, 2)}, x_{(n, 3)}, \ldots, x_{(n, k)}, x_{(n, 1)}, x_{(n-1,2)}\right),\left(x_{(1,2)}, x_{(1,3)}, \ldots, x_{(1, k)}, x_{(1,1)}, x_{(n, 2)}\right)$.

In the following lemma, we determine the set of triples (p, q, r) of positive integers for which there exists a $\left\{P_{4}{ }^{p}, S_{4}^{q}, C_{4}^{r}\right\}$-decomposition of K_{9}.

Lemma 22. Let p, q, and r be positive integers. $(p, q, r) \in \mathcal{C D}\left(K_{9} ; P_{4}, S_{4}, C_{4}\right)$ if and only if $p+q+r=9$ and $(p, q) \neq(1,1)$.

Proof. (Necessity) The assertion follows immediately from Theorem 1.
(Sufficiency) Let $V\left(K_{9}\right)=\{1, \ldots, 9\}$. We split the proof into 7 cases according to the value of q.

Assume $q=1$ (note that $p \geq 2$ in this case). K_{9} can be decomposed into two copies of P_{4}, one copy of S_{4}, and 6 copies of C_{4} as follows: $(3,1,9,2,4)$, $(7,5,9,6,8),(9 ; 3,4,7,8), C(1)=(1,4,3,2,1), C(2)=(1,5,2,6,1), C(3)=(3,5$, $4,6,3), C(4)=(3,7,4,8,3), C(5)=(8,1,7,2,8), C(6)=(8,5,6,7,8)$. Since $1 \in V(C(1)) \cap V(C(2)), 5 \notin V(C(1))$, and $4 \notin(C(2)), C(1) \cup C(2)$ can be decomposed into two copies of P_{4}, by Lemma 21. By the same argument, $C(3) \cup C(4)$ and $C(5) \cup C(6)$ can also be decomposed into two copies of P_{4}. Hence $\mathcal{C} \mathcal{D}\left(K_{9} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, 1,8-p): 2 \leq p \leq 7$ and p is even $\}$.

On the other hand, K_{9} can be decomposed into three copies of P_{4}, one copy of S_{4}, and 5 copies of C_{4} as follows: ($3,1,9,2,4$), ($9,5,8,6,7$), ($9,8,7,5,6$), $(9 ; 3,4,6,7), C(1)=(1,4,3,2,1), C(2)=(1,5,2,6,1), C(3)=(1,7,2,8,1)$, $C(4)=(3,5,4,6,3), C(5)=(3,7,4,8,3)$. By the same argument mentioned above, $C(1) \cup C(2)$ and $C(4) \cup C(5)$ can be decomposed into two copies of P_{4}. Thus $\mathcal{C D}\left(K_{9} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, 1,8-p): 2 \leq p \leq 7$ and p is odd $\}$.

Assume $q=2 . K_{9}$ can be decomposed into two copies of S_{4}, and 7 copies of C_{4} as follows: $(1 ; 3,4,8,9),(2 ; 3,4,8,9), C(1)=(3,7,1,6,3), C(2)=(3,5,6,4,3)$, $C(3)=(3,8,4,9,3), C(4)=(2,7,5,1,2), C(5)=(2,6,9,5,2), C(6)=(7,6,8$, $9,7), C(7)=(7,4,5,8,7)$, Since $3 \in V(C(1)) \cap V(C(2) \cap V(C(3)), 8 \notin V(C(1))$, $7 \notin V(C(2))$, and $5 \notin V(C(3)), C(1) \cup C(2) \cup C(3)$ can be decomposed into three copies of P_{4}, by Lemma 21. By the same argument, $C(1) \cup C(2), C(4) \cup C(5)$, and $C(6) \cup C(7)$ can also be decomposed into two copies of P_{4}. Hence $\mathcal{C D}\left(K_{9} ; P_{4}\right.$, $\left.S_{4}, C_{4}\right) \supset\{(p, 2,7-p): p=2, \ldots, 6\}$. Besides, K_{9} can also be decomposed into one copy of P_{4}, two copies of S_{4}, and 6 copies of C_{4} as follows: $(4,1,7,3,6)$, (1 ; $3,6,8,9),(2 ; 3,4,8,9),(3,5,6,4,3),(3,8,4,9,3),(2,7,5,1,2),(2,6,9,5,2),(7,6,8$, $9,7),(7,4,5,8,7)$, Thus $(1,2,6) \in \mathcal{C D}\left(K_{9} ; P_{4}, S_{4}, C_{4}\right)$.

Assume $q=3 . K_{9}$ can be decomposed into three copies of S_{4}, and 6 copies of C_{4} as follows: $(1 ; 2,4,6,9),(8 ; 3,6,7,9),(9 ; 2,3,4,7), C(1)=(2,5,1,3,2)$, $C(2)=(2,6,3,4,2), C(3)=(4,7,3,5,4), C(4)=(4,8,5,6,4), C(5)=(7,6,9$, $5,7), C(6)=(7,1,8,2,7)$. By Lemma 21, both $C(1) \cup C(2)$ and $C(3) \cup C(4)$ can be decomposed into two copies of P_{4}. Hence $\mathcal{C D}\left(K_{9} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, 3$, $6-p): p=2,4\}$. Besides, K_{9} can also be decomposed into one copy of P_{4}, three copies of S_{4}, and 5 copies of C_{4} as follows: $(8,2,7,1,4),(1 ; 2,6,8,9)$, $(8 ; 3,6,7,9),(9 ; 2,3,4,7), C(1)=(3,1,5,2,3), C(2)=(3,6,2,4,3), C(3)=$ $(3,7,4,5,3), C(4)=(5,8,4,6,5), C(5)=(5,9,6,7,5)$. By Lemma 21 again, both $C(1) \cup C(2)$ and $C(4) \cup C(5)$ can be decomposed into two copies of P_{4}. Hence $\mathcal{C D}\left(K_{9} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, 3,6-p): p=1,3,5\}$.

Assume $q=4 . \quad K_{9}$ can be decomposed into 4 copies of S_{4}, and 5 copies of C_{4} as follows: $(1 ; 4,6,7,8),(2 ; 1,7,8,9),(8 ; 3,6,7,9),(9 ; 1,3,4,7), C(1)=$ $(3,1,5,2,3), C(2)=(3,6,2,4,3), C(3)=(3,7,4,5,3), C(4)=(5,8,4,6,5)$, $C(5)=(5,9,6,7,5)$. By Lemma 21, both $C(1) \cup C(2)$ and $C(4) \cup C(5)$ can be decomposed into two copies of P_{4}, and $C(1) \cup C(2) \cup C(3)$ can be decomposed into three copies of P_{4}. Hence $\mathcal{C D}\left(K_{9} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, 4,5-p): p=2,3,4\}$. Besides, K_{9} can also be decomposed into one copy of $P_{4}, 4$ copies of S_{4}, and 4 copies of C_{4} as follows: $(3,2,5,1,4),(1 ; 3,6,7,8),(2 ; 1,7,8,9),(8 ; 3,6,7,9)$, $(9 ; 1,3,4,7),(2,6,3,4,2),(3,7,4,5,3),(4,8,5,6,4),(5,9,6,7,5)$. Hence $(1,4,4) \in$ $\mathcal{C D}\left(K_{9} ; P_{4}, S_{4}, C_{4}\right)$.

Assume $q=5 . K_{9}$ can be decomposed into 5 copies of S_{4}, and 4 copies of C_{4} as follows: $(1 ; 4,6,8,9),(2 ; 1,7,8,9),(7 ; 1,5,6,9),(8 ; 3,6,7,9),(9 ; 3,4,5,6)$, $C(1)=(3,4,2,6,3), C(2)=(3,1,5,2,3), C(3)=(3,7,4,5,3), C(4)=(4,8,5$,

6,4). By Lemma 21, $C(1) \cup C(2)$ can be decomposed into two copies of P_{4}, and $C(1) \cup C(2) \cup C(3)$ can be decomposed into three copies of P_{4}. Hence $\mathcal{C D}\left(K_{9} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, 5,4-p): p=2,3\}$. Besides, K_{9} can also be decomposed into one copy of $P_{4}, 5$ copies of S_{4}, and three copies of C_{4} as follows: $(4,6,5,8,3)$, $(1 ; 4,6,8,9),(2 ; 1,7,8,9),(7 ; 1,5,6,9),(8 ; 4,6,7,9),(9 ; 3,4,5,6),(1,5,2,3,1),(2$, $6,3,4,2),(3,7,4,5,3)$. Hence $(1,5,3) \in \mathcal{C D}\left(K_{9} ; P_{4}, S_{4}, C_{4}\right)$.

Assume $q=6 . K_{9}$ can be decomposed into two copies of $P_{4}, 6$ copies of S_{4}, and one copy of C_{4} as follows: $(4,9,3,8,7),(7,6,5,8,4),(1 ; 3,5,7,9)$, $(2 ; 4,6,7,9),(5 ; 2,3,4,9),(6 ; 1,3,4,9),(7 ; 3,4,5,9),(8 ; 1,2,6,9),(1,2,3,4,1)$. Besides, K_{9} can also be decomposed into one copy of $P_{4}, 6$ copies of S_{4}, and two copies of C_{4} as follows: $(1,8,5,6,7),(1 ; 3,5,7,9),(2 ; 4,6,7,9),(5 ; 2,3,4,9)$, $(6 ; 1,3,4,9),(7 ; 3,4,5,9),(8 ; 2,6,7,9),(1,2,3,4,1),(3,9,4,8,3)$. Thus $\mathcal{C D}\left(K_{9} ;\right.$ $\left.P_{4}, S_{4}, C_{4}\right) \supset\{(2,6,1),(1,6,2)\}$.

Assume $q=7 . K_{9}$ can be decomposed into one copy of $P_{4}, 7$ copies of S_{4}, and one copy of C_{4} as follows: $(2,8,3,9,4),(1 ; 3,7,8,9),(2 ; 5,6,7,9),(4 ; 2,5,6,7)$, $(5 ; 1,3,8,9),(6 ; 1,3,5,9),(7 ; 3,5,6,9),(8 ; 4,6,7,9),(1,2,3,4,1)$. Thus $\mathcal{C D}\left(K_{9} ; P_{4}\right.$, $\left.S_{4}, C_{4}\right) \supset\{(1,7,1)\}$.

Now, we prove the main result of this section.
Theorem 23. Let p, q, and r be positive integers, and let n be a positive odd integer. $(p, q, r) \in \mathcal{C D}\left(K_{n} ; P_{4}, S_{4}, C_{4}\right)$ if and only if $4(p+q+r)=\binom{n}{2}$ and $(p, q) \neq(1,1)$.

Proof. (Necessity) The assertion follows immediately from Theorem 1.
(Sufficiency) Observe that $4 \left\lvert\, \frac{n(n-1)}{2}\right.$ implies $8 \mid(n-1)$. It follows that $n=$ $8 m+1$ for some positive integer m. The proof is by induction on m. By Lemma 22 , the assertion holds for $m=1$. Assume $m \geq 2$. When m is even, write $m=2 k$ for some integer k. It is easily seen that $K_{16 k+1}$ can be decomposed into two copies of $K_{8 k+1}$ and a copy of $K_{8 k, 8 k}$. By the induction hypotheses, $\mathcal{C D}\left(K_{8 k+1} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, q, r): p, q, r>0, p+q+r=k(8 k+1),(p, q) \neq(1,1)\}$. By Theorems 14, 15, 16, 17, 18, and 20, $\mathcal{D}\left(K_{8 k+1} ; P_{4}, S_{4}, C_{4}\right) \supset\{(a, b, c): a, b, c \geq$ 0 with at least one of a, b, c is $0, a+b+c=k(8 k+1),(a, b, c) \neq(1,0, c),(0,1, c)$ when $c \geq 1\}$. Therefore, $\mathcal{D}\left(K_{8 k+1} ; P_{4}, S_{4}, C_{4}\right) \supset\{(a, b, c): a, b, c \geq 0, a+b+$ $c=k(8 k+1),(a, b, c) \neq(1,1, c),(1,0, c),(0,1, c)$ when $c \geq 1\}$. By Lemma 3, $\mathcal{C D}\left(K_{8 k+1} \cup K_{8 k+1} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, q, r): p, q, r>0, p+q+r=2 k(8 k+1)$, $(p, q) \neq(1,1)\}$. Besides, $K_{8 k, 8 k}$ can be decomposed into $8 k^{2}$ copies of $K_{2,4}$, and by Theorems 4,5 , and $6,\{(2,0,0),(0,2,0),(0,0,2)\} \subset \mathcal{D}\left(K_{2,4} ; P_{4}, S_{4}, C_{4}\right)$. Hence $\mathcal{D}\left(K_{8 k, 8 k} ; P_{4}, S_{4}, C_{4}\right) \supset\left\{(2 a, 2 b, 2 c): a, b, c \geq 0, a+b+c=8 k^{2}\right\}$. By Lemma 2, $\mathcal{C D}\left(K_{8 k+1} \cup K_{8 k, 8 k} \cup K_{8 k+1} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, q, r): p, q, r>0,4(p+q+r)=$ $\left.\binom{16 k+1}{2},(p, q) \neq(1,1)\right\}$, that is, $\mathcal{C D}\left(K_{8 m+1} ; P_{4}, S_{4}, C_{4}\right) \supset\{(p, q, r): p, q, r>0$, $\left.4(p+q+r)=\binom{8 m+1}{2},(p, q) \neq(1,1)\right\}$.

When m is odd, write $m=2 k+1$ for some integer k. It is easily seen that $K_{16 k+9}$ can be decomposed into one copy of $K_{8 k+1}$, one copy of $K_{8 k, 8(k+1)}$, and one copy of $K_{8 k+9}$. Besides, $K_{8 k, 8(k+1)}$ can be decomposed into $8 k(k+1)$ copies of $K_{2,4}$. The case where $m=2 k+1$ is similar to the case $m=2 k$, therefore we omit its proof.

Remark. As mentioned on page $3, \mathcal{D}\left(K_{n} ; P_{4}, S_{4}, C_{4}\right)$ denote the set of all triples (a, b, c) of non-negative integers such that a decomposition of K_{n} into a copies of P_{4}, b copies of S_{4}, and c copies of C_{4} exists. In fact, when n is odd, all triples in $\mathcal{D}\left(K_{n} ; P_{4}, S_{4}, C_{4}\right)$ can be determined by combining Theorems 14, 15, 16, 17, 18, 20 and 23.

For the set $\mathcal{D}\left(K_{m, n} ; P_{4}, S_{4}, C_{4}\right)$, we can also determine all triples in $\mathcal{D}\left(K_{m, n}\right.$; P_{4}, S_{4}, C_{4}) when both m and n are even. Let p, q, and r be positive integers, and let m and n be positive even integers with $m \leq n$. Jeevadoss and Muthusamy [15] showed that $\mathcal{C D}\left(K_{m, n} ; P_{4}, C_{4}\right)=\{(p, r): m \geq 2$ and $n \geq 4 ; 4(p+r)=m n$ and $p \neq 1\}$. Besides, we proved that $\mathcal{C D}\left(K_{m, n} ; S_{4}, C_{4}\right)=\{(q, r): m \geq 2$ and $n \geq 4 ;$ $4(q+r)=m n$ and $q \neq 1 ; q$ is even when $m=2 ; r \neq 1$ when $m=4\}$ and $\mathcal{C D}\left(K_{m, n} ; P_{4}, S_{4}\right)=\{(p, q): m \geq 2$ and $n \geq 4 ; 4(p+q)=m n ; q$ is even when $m=2 ; p \neq 1$ when $m=4\}$. Because the proofs are rather lengthy and the arguments are similar to the proofs of Lemmas $8,9,10,11$, and 12 , we omit the proofs here. Thus all triples in $\mathcal{D}\left(K_{m, n} ; P_{4}, S_{4}, C_{4}\right)$ can be determined by combining Theorems 4, 5, 6, and 13, $\mathcal{C D}\left(K_{m, n} ; P_{4}, S_{4}\right), \mathcal{C D}\left(K_{m, n} ; P_{4}, C_{4}\right)$, and $\mathcal{C D}\left(K_{m, n} ; S_{4}, C_{4}\right)$.

Acknowledgement

I am extremely grateful for the referees' helpful comments. This work was supported by Ministry of Science and Technology of ROC under grant MOST 104-2115-M-003-006.

References

[1] A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003) 433-447. doi:10.1007/s00373-003-0530-3
[2] A. Abueida and M. Daven, Multidecompositons of the complete graph, Ars Combin. 72 (2004) 17-22.
[3] A. Abueida and T. O'Neil, Multidecomposition of λK_{m} into small cycles and claws, Bull. Inst. Combin. Appl. 49 (2007) 32-40.
[4] A. Abueida and M. Daven, Multidecompositions of several graph products, Graphs Combin. 29 (2013) 315-326. doi:10.1007/s00373-011-1127-x
[5] A. Abueida and C. Lian, On the decompositions of complete graphs into cycles and stars on the same number of edges, Discuss. Math. Graph Theory 34 (2014) 113125. doi:10.7151/dmgt. 1719
[6] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B 81 (2001) 77-99.
doi:10.1006/jctb.2000.1996
[7] F. Beggas, M. Haddad and H. Kheddouci, Decomposition of complete multigraphs into stars and cycles, Discuss. Math. Graph Theory 35 (2015) 629-639. doi:10.7151/dmgt. 1820
[8] A. Bouchet and J. L. Fouquet, Trois types de décomposition d'un graphe en chaînes, Ann. Discrete Math. 17 (1983) 131-141.
[9] D.A. Bryant, S. El-Zanati, C.V. Eyden and D.G. Hoffman, Star decompositions of cubes, Graphs Combin. 17 (2001) 55-59. doi:10.1007/s003730170054
[10] D. Bryant and C.A. Rodger, Cycle Decompositions, in: The CRC Handbook of Combinatorial Designs, 2nd Edition, C.J. Colbourn and J.H. Dinitz (Ed(s)), (CRC Press, Boca Raton, 2007) 373-382.
[11] C.-M. Fu, Y.-L. Lin, S.-W. Lo and Y.-F. Hsu, Decomposition of complete graphs into triangles and claws, Taiwanese J. Math. 18 (2014) 1563-1581.
doi:10.11650/tjm.18.2014.3169
[12] K. Heinrich, Path-decompositions, Le Matematiche 47 (1992) 241-258.
[13] K. Heinrich, J. Liu and M. Yu, P_{4}-decomposition of regular graphs, J. Graph Theory 31 (1999) 135-143.
doi:10.1002/(SICI)1097-0118(199906)31:2 〈135::AID-JGT6 $\rangle 3.0 . \mathrm{CO} ; 2-\mathrm{I}$
[14] M.S. Jacobson, M. Truszczyński and Zs. Tuza, Decompositions of regular bipartite graphs, Discrete Math. 89 (1991) 17-27. doi:10.1016/0012-365X(91)90396-J
[15] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, Discrete Math. 331 (2014) 98-108.
doi:10.1016/j.disc.2014.05.009
[16] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite multigraphs into paths and cycles having k edges, Discuss. Math. Graph Theory 35 (2015) 715-731. doi:10.7151/dmgt. 1830
[17] A. Kotzig, From the theory of finite regular graphs of degree three and four, C̆asopis Pĕst. Mat. 82 (1957) 76-92.
[18] C.S. Kumar, On P_{4}-decomposition of graphs, Taiwanese J. Math. 7 (2003) 657-664. doi:10.11650/twjm/1500407584
[19] H.-C. Lee, M.-J. Lee and C. Lin, Isomorphic path decompositions of $\lambda K_{n, n, n}$ ($\lambda K_{n, n, n}^{*}$) for odd n, Taiwanese J. Math. 13 (2009) 393-402. doi:10.11650/twjm/1500405344
[20] H.-C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin. 108 (2013) 355-364.
[21] H.-C. Lee and J.-J. Lin, Decomposition of the complete bipartite graph with a 1factor removed into cycles and stars, Discrete Math. 313 (2013) 2354-2358. doi:10.1016/j.disc.2013.06.014
[22] H.-C. Lee and Y.-P. Chu, Multidecompositions of the balanced complete bipartite graph into paths and stars, ISRN Combinatorics (2013), Article ID: 398473.
[23] H.-C. Lee, Decomposition of the complete bipartite multigraph into cycles and stars, Discrete Math. 338 (2015) 1362-1369. doi:10.1016/j.disc.2015.02.019
[24] J.-J. Lin, Decompositions of multicrowns into cycles and stars, Taiwanese J. Math. 19 (2015) 1261-1270. doi:10.11650/tjm.19.2015.3460
[25] C. Lin, J.-J. Lin and T.-W. Shyu, Isomorphic star decomposition of multicrowns and the power of cycles, Ars Combin. 53 (1999) 249-256.
[26] J.-J. Lin and M.-J. Jou, $\left\{C_{k}, P_{k}, S_{k}\right\}$-decompositions of balanced complete bipartite Graphs, Open J. Discrete Math. 6 (2016) 174-179. doi:10.4236/ojdm.2016.63015
[27] C.C. Lindner and C.A. Rodger, Decomposition in Cycles II: Cycle Systems, in: Contemporary Design Theory: A Collection of Surveys, J.H. Dinitz and D.R. Stinson (Ed(s)), (New York, Wiley \& Sons, Inc., 1992) 325-369.
[28] C.A. Parker, Complete Bipartite Graph Path Decompositions, Ph.D. Dissertation (Auburn University, Auburn, Alabama, 1998).
[29] H.M. Priyadharsini and A. Muthusamy, $\left(G_{m}, H_{m}\right)$-multifactorization of λK_{m}, J. Combin. Math. Combin. Comput. 69 (2009) 145-150.
[30] H.M. Priyadharsini and A. Muthusamy, $\left(G_{m}, H_{m}\right)$-multifactorization of $K_{m, m}(\lambda)$, Bull. Inst. Combin. Appl. 66 (2012) 42-48.
[31] M. Šajna, Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Des. 10 (2002) 27-78. doi:10.1002/jcd. 1027
[32] T.-W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math. 310 (2010) 2164-2169. doi:10.1016/j.disc.2010.04.009
[33] T.-W. Shyu, Decompositions of complete graphs into paths and cycles, Ars Combin. 97 (2010) 257-270.
[34] T.-W. Shyu, Decomposition of complete graphs into paths of length three and triangles, Ars Combin. 107 (2012) 209-224.
[35] T.-W. Shyu, Decomposition of complete graphs into cycles and stars, Graphs Combin. 29 (2013) 301-313.
doi:10.1007/s00373-011-1105-3
[36] T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with same number of edges, Discrete Math. 313 (2013) 865-871.
doi:10.1016/j.disc.2012.12.020
[37] T.-W. Shyu, Decomposition of complete bipartite digraphs and complete digraphs into directed paths and directed cycles of fixed even length, Graphs Combin. 31 (2015) 1715-1725.
doi:10.1007/s00373-014-1442-0
[38] D. Sotteau, Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$, J. Combin. Theory Ser. B 30 (1981) 75-81. doi:10.1016/0095-8956(81)90093-9
[39] M. Tarsi, Decomposition of complete multigraphs into stars, Discrete Math. 26 (1979) 273-278. doi:10.1016/0012-365X(79)90034-7
[40] M. Tarsi, Decomposition of complete multigraph into simple paths: nonbalanced handcuffied designs, J. Combin. Theory Ser. A 34 (1983) 60-70. doi:10.1016/0097-3165(83)90040-7
[41] S. Tazawa, Decomposition of a complete multipartite graph into isomorphic claws, SIAM J. Algebraic Discrete Methods 6 (1985) 413-417. doi:10.1137/0606043
[42] M. Truszczyński, Note on the decomposition of $\lambda K_{m, n}\left(\lambda K_{m, n}^{*}\right)$ into paths, Discrete Math. 55 (1985) 89-96.
doi:10.1016/S0012-365X(85)80023-6
[43] K. Ushio, S. Tazawa and S. Yamamoto, On claw-decomposition of complete multipartite graphs, Hiroshima Math. J. 8 (1978) 207-210. doi:10.32917/hmj/1206135570
[44] S. Yamamoto, H. Ikeda, S. Shige-ede, K. Ushio and N. Hamada, On claw decomposition of complete graphs and complete bigraphs, Hiroshima Math. J. 5 (1975) 33-42. doi:10.32917/hmj/1206136782

