
Discussiones Mathematicae
Graph Theory 41 (2021) 451–468
doi:10.7151/dmgt.2197

DECOMPOSITIONS OF COMPLETE BIPARTITE GRAPHS

AND COMPLETE GRAPHS INTO PATHS, STARS, AND

CYCLES WITH FOUR EDGES EACH

Tay-Woei Shyu

Division of Preparatory Programs for Overseas Chinese Students

National Taiwan Normal University

New Taipei City 24449, Taiwan, R.O.C.

e-mail: twhsu@ntnu.edu.tw

Abstract

Let G be either a complete graph of odd order or a complete bipartite
graph in which each vertex partition has an even number of vertices. In this
paper, we determine the set of triples (p, q, r), with p, q, r > 0, for which
there exists a decomposition of G into p paths, q stars, and r cycles, each of
which has 4 edges.
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1. Introduction

All graphs considered here are finite and undirected, unless otherwise noted.

Let G, H, H1, . . . , Hr be graphs for some integer r. A decomposition of G
is a set of edge-disjoint subgraphs of G whose union is G. An H-decomposition
of G is a decomposition of G into copies of H. If G has an H-decomposition,
we say that G is H-decomposable. An {H1, . . . , Hr}-decomposition of G is a
decomposition of G into copies of H1, . . . , Hr containing at least one copy of
each Hi, for each i = 1, . . . , r. If G has an {H1, . . . , Hr}-decomposition, we say
that G is {H1, . . . , Hr}-decomposable. Moreover, if there is a decomposition of
G containing precisely αi elements isomorphic to Hi, then we say that G has
an {H1

α1 , . . . , Hr
αr}-decomposition or G is {H1

α1 , . . . , Hr
αr}-decomposable. Let

CD(G;H1, . . . , Hr) denote the set of all r-tuples (α1, . . . , αr) of positive integers
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such that G is {H1
α1 , . . . , Hr

αr}-decomposable. Obviously, if we can find an
r-tuple in CD(G;H1, . . . , Hr), then G is {H1, . . . , Hr}-decomposable.

As usual, Kn denotes the complete graph on n vertices, and Km,n denotes
the complete bipartite graph with vertex partitions of sizes m and n. A k-path,
denoted by Pk, is a path with k edges; a k-star, denoted by Sk, is the complete
bipartite graph K1,k; a k-cycle, denoted by Ck, is a cycle of length k.

Decompositions of graphs into isomorphic paths has attracted considerable
attention (see [8, 12–14, 17–19, 28, 40, 42]). Besides, decompositions of graphs
into k-stars have also attracted a fair share of interest (see [9, 25, 39, 41, 43, 44]).
Moreover, decompositions of graphs into k-cycles have been a popular topic of
research in graph theory (see [10, 27] for surveys of this topic).

The study of the {G,H}-decomposition was introduced by Abueida and
Daven in [1]. In [2, 4], they investigated, respectively, the problem of {Kk, Sk}-
decomposition of the complete graph Kn and the problem of the {C4, E2}-decom-
position of several graph products, where E2 is a matching of size 2. Abueida
and O’Neil [3] settled the existence problem for {Ck, Sk−1}-decomposition of
the complete multigraph λKn for k ∈ {3, 4, 5}. Priyadharsini and Muthusamy
[29,30] gave necessary and sufficient conditions for the existence of {G(n), H(n)}-
decompositions of λKn and λKn,n, where G(n), H(n) ∈ {Cn, Pn−1, Sn−1}.

Recently, Lee and Lin [20,21,23,24] established necessary and sufficient con-
ditions for the existence of {Ck, Sk}-decompositions of the complete bipartite
graphs, the complete bipartite multigraphs, the complete bipartite graphs with a
1-factor removed, and the multicrowns, respectively. Besides, Abueida, Lian [5],
and Beggas et al. [7] investigated the problems of {Ck, Sk}-decompositions of
the complete graph Kn and λKn respectively, giving some necessary or sufficient
conditions for such decompositions to exist. In [22], Lee and Chu established nec-
essary and sufficient conditions for the existence of {Pk, Sk}-decompositions of the
balanced complete bipartite graphs. In 2016, Lin and Jou [26] established neces-
sary and sufficient conditions for the existence of {Pk, Ck, Sk}-decompositions of
the balanced complete bipartite graphs.

For the {Gp, Hq}-decompositions of a graph, Jeevadoss and Muthusamy [15,
16] determined the set of ordered pairs (p, q) of positive integers for which there
exists a {Pk

p, Ck
q}-decomposition of λKm,n when λ = 1 and k ≡ 0 (mod 4);

λ = 2 and k ≡ 0 (mod 2); for some positive integers λ, m, n, and k. Jeevadoss
and Muthusamy [15] also determined the set of ordered pairs (p, q) of positive
integers for which there exists a {Pk

p, Ck
q}-decomposition of Kn when k is even

and n is odd with n > 4k. Fu et al. [11] determined the set of ordered pairs (p, q)
of positive integers for which there exists a {C3

p, S3
q}-decomposition of Kn. The

author also determined the set of ordered pairs (p, q) of positive integers for which
there exists a {Pk

p, Sk
q}-decompositon of Kn when n ≥ 4k [36]; there exists a

{Pk
p, Ck

q}-decomposition of Kn when k is even, n is odd, and n > 5k [33]; there
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exists a {Ck
p, Sk

q}-decomposition of Kn for some k and n [35]; there exists a
{Pk

p, Sk
q}-decomposition of Km,n when m > k and n ≥ 3k [36]. In [37], the

author also investigated the {Hp,Kq}-decomposition of the complete bipartite
digraphs and the complete digraphs, where H and K are, respectively, directed
paths and directed cycles with k edges each.

In this paper, we determine the set of triples (p, q, r) of positive integers for
which there exists a {P4

p, S4
q, C4

r}-decomposition of Kn and Km,l when n is odd,
and both m and l are even.

2. Preliminaries

In this section we collect some needed terminologies and notations, and present
some results which are useful for our discussions.

Let |V (G)| and e(G) denote, respectively, the order of a graph G and the
number of edges in G; and let us call a graph even if all its vertex degrees are
even. Let G1 and G2 be graphs. The union G1 ∪G2 of G1 and G2 is the graph
with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2).

The following theorem gives necessary conditions for the existence of a de-
composition of an even graph into specified numbers of paths, cycles, and stars
with same number of edges each.

Theorem 1. Let G be an even graph and let k, p, q, and r be positive integers

with k ≥ 3. If G can be decomposed into p copies of Pk, q copies of Sk, and r
copies of Ck, then |V (G)| ≥ k + 1; k(p+ q + r) = e(G) and p ≥

⌈

k
2

⌉

when q = 1.

Proof. Conditions |V (G)| ≥ k+1 and k(p+q+r) = e(G) are trivial. Assume D
is an arbitrary decomposition of G into p copies of Pk, one copy of Sk, and r copies
of Ck. Let H be the only Sk and C(1), . . . , C(r) denote those r copies of Ck in D.
Then, there are 2

⌈

k
2

⌉

vertices with odd degree in G− E
(

H ∪ C(1) ∪ · · · ∪ C(r)
)

.

Since G − E
(

H ∪ C(1) ∪ · · · ∪ C(r)
)

has to decompose into p copies of Pk, and

there are exactly two vertices with odd degree in a path, p ≥
⌈

k
2

⌉

.

Let D(G;Pk, Sk, Ck) denote the set of all triples (m,n, l) of non-negative
integers such that a decomposition of a graph G into m copies of Pk, n copies of
Sk, and l copies of Ck exists. Note that (m,n, 0) ∈ D(G;Pk, Sk, Ck) if (m,n) ∈
CD(G;Pk, Sk); (m, 0, l) ∈ D(G;Pk, Sk, Ck) if (m, l) ∈ CD(G;Pk, Ck); (0, n, l) ∈

D(G;Pk, Sk, Ck) if (n, l) ∈ CD(G;Sk, Ck);
(

e(G)
k

, 0, 0
)

,
(

0, e(G)
k

, 0
)

,
(

0, 0, e(G)
k

)

∈

D(G;Pk, Sk, Ck) if G can be decomposed into e(G)
k

copies of Pk (Sk, Ck).
Let G be an even graph, and let k, p, q, and r be positive integers with k ≥ 3,

|V (G)| ≥ k + 1, and k(p + q + r) = e(G). If k = 4, by Theorem 1, p ≥
⌈

k
2

⌉

= 2

if q = 1, and hence CD(G;P4, S4, C4) ⊂
{

(p, q, r) : p, q, r > 0, p + q + r = e(G)
4 ,
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(p, q) 6= (1, 1)
}

. Note that both CD(G;P4, S4, C4) and {(p, q, r) : p, q, r > 0, p +

q+r = e(G)
4 , (p, q) 6= (1, 1)} are empty if e(G) is not divisible by 4. If we can prove

that CD(G;P4, S4, C4) ⊃
{

(p, q, r) : p, q, r > 0, p + q + r = e(G)
4 , (p, q) 6= (1, 1)

}

,

then CD(G;P4, S4, C4) =
{

(p, q, r) : p, q, r > 0, p+ q + r = e(G)
4 , (p, q) 6= (1, 1)

}

,
and hence we determine the set of triples (p, q, r) of positive integers for which
there exists a {P4

p, S4
q, C4

r}-decomposition of G.
If X1, . . . , Xn are n sets of triples of non-negative integers, then X1+ · · ·+Xn

denotes the set {(p1, q1, r1)+ · · ·+(pn, qn, rn) : (p1, q1, r1) ∈ X1, . . . , (pn, qn, rn) ∈
Xn}. The following two lemmas will be used for proving the main theorems.

Lemma 2. Let n, l, and s be positive integers, and let X and Y be sets of triples

of non-negative integers such that X ⊃ {(p, q, r) : p, q, r > 0, p + q + r = s,
(p, q) 6= (1, 1)} and Y ⊃ {(al, bl, cl) : a, b, c ≥ 0, a + b + c = n}. If l ≥ 2 and

s ≥ 3l, then X + Y ⊃ {(p, q, r) : p, q, r > 0, p+ q + r = s+ nl, (p, q) 6= (1, 1)}.

Proof. Let (p∗, q∗, r∗) be a triple of positive integers such that p∗ + q∗ + r∗ =
s + nl and (p∗, q∗) 6= (1, 1). Clearly, (p∗, q∗, r∗) = (αl + p′, βl + q′, γl + r′) with
1 ≤ p′, q′, r′ ≤ l and α, β, γ ≥ 0. It is not difficult to check that s = s′ + n′l
where s′ = p′ + q′ + r′ ≤ 3l ≤ s and n′ ≥ 0. Let (αl + p′, βl + q′, γl + r′) =
(α′l+ p′, β′l+ q′, γ′l+ r′)+ ((α−α′)l, (β−β′)l, (γ− γ′)l), where α′ = min{α, n′},
β′ = min{β, n′−α′}, and γ′ = n′−α′−β′. Clearly, (α′l+p′)+(β′l+q′)+(γ′l+r′) =
s and ((α− α′)l, (β − β′)l, (γ − γ′)l) ∈ Y .

It is left to show that (α′l+ p′, β′l+ q′) 6= (1, 1). Assume for a contradiction
that α′l+p′ = β′l+q′ = 1. It follows that p′ = q′ = 1 and α′ = β′ = 0. Therefore,
either n′ = 0 or α = β = 0. If n′ = 0, then s = s′ = 2+ r′ ≤ 2 + l ≤ 2 + s

3 , hence
s ≤ 3 which is a contradiction since s ≥ 6. If α = β = 0, then (p∗, q∗) = (p′, q′) =
(1, 1) which contradicts our assumption. Hence (α′l + p′, β′l + q′) 6= (1, 1), thus
(p∗, q∗, r∗) ∈ X + Y .

Lemma 3. Let s1 and s2 be positive integers with s1, s2 ≥ 9 and let X1 and X2

be sets of triples of non-negative integers such that X1 ⊃ {(a, b, c) : a, b, c ≥ 0,
a+b+c = s1, (a, b, c) 6= (1, 1, c), (1, 0, c), (0, 1, c) when c ≥ 1} and X2 ⊃ {(p, q, r) :
p, q, r > 0, p+ q + r = s2, (p, q) 6= (1, 1)}. Then X1 +X2 ⊃ {(p, q, r) : p, q, r > 0,
p+ q + r = s1 + s2, (p, q) 6= (1, 1)}.

Proof. Let (p∗, q∗, r∗) be a triple of positive integers such that p∗ + q∗ + r∗ =
s1 + s2 and (p∗, q∗) 6= (1, 1). We consider three cases as follows.

Case 1. p∗, q∗ ≥ 3. If r∗ ≥ s2 − 3, then let (p∗, q∗, r∗) = (p∗ − 1, q∗ −
2, r∗ − (s2 − 3)) + (1, 2, s2 − 3). Clearly, (p∗ − 1, q∗ − 2, r∗ − (s2 − 3)) ∈ X1 and
(1, 2, s2 − 3) ∈ X2. If r∗ ≤ s2 − 4, then p∗ + q∗ ≥ s1 + 4. Since p∗, q∗ ≥ 3 with
p∗ + q∗ ≥ s1 + 4, there exist positive integers p∗1, p

∗

2, q
∗

1 and q∗2 with p∗1 ≥ 1,
p∗2 ≥ 2, q∗1 ≥ 2, and q∗2 ≥ 1 such that p∗ = p∗1+ p∗2, q

∗ = q∗1 + q∗2, p
∗

1+ q∗1 = s1, and
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p∗2 + q∗2 + r∗ = s2. Let (p∗, q∗, r∗) = (p∗1, q
∗

1, 0) + (p∗2, q
∗

2, r
∗). It is easy to check

that (p∗1, q
∗

1, 0) ∈ X1 and (p∗2, q
∗

2, r
∗) ∈ X2. Hence (p∗, q∗, r∗) ∈ X1 +X2.

Case 2. p∗, q∗ ≤ 2. Let (p∗, q∗, r∗) = (0, 0, s1) + (p∗, q∗, r∗ − s1). In this
case, r∗ ≥ s1 + s2 − 4 and (p∗, q∗) 6= (1, 1). It implies that (0, 0, s1) ∈ X1 and
(p∗, q∗, r∗ − s1) ∈ X2. Hence (p∗, q∗, r∗) ∈ X1 +X2.

Case 3. Either p∗ ≤ 2, q∗ ≥ 3 or p∗ ≥ 3, q∗ ≤ 2. Assume p∗ ≤ 2 and q∗ ≥ 3.
If q∗ ≤ s2 − 3, then p∗ + q∗ ≤ s2 − 1, and hence r∗ ≥ s1 + 1. Let (p∗, q∗, r∗) =
(0, 0, s1) + (p∗, q∗, r∗ − s1). Clearly, (0, 0, s1) ∈ X1 and (p∗, q∗, r∗ − s1) ∈ X2.

If q∗ ≥ s2−2 and r∗ ≥ 6, then let (p∗, q∗, r∗) = (0, s1−(r∗−5), r∗−5)+(p∗, s2−
(p∗+5), 5). Since 1 ≤ p∗ ≤ 2, s1+ s2− 2 ≤ q∗+ r∗ ≤ s1+ s2− 1. Moreover, since
q∗ ≥ s2 − 2, r∗ ≤ s1 + 1, and hence s1 − (r∗ − 5) ≥ 4. Besides, s2 − (p∗ + 5) ≥ 2
since s2 ≥ 9 and p∗ ≤ 2. It implies that (0, s1 − (r∗ − 5), r∗ − 5) ∈ X1 and
((p∗, s2 − (p∗ + 5), 5) ∈ X2.

If q∗ ≥ s2−2 and r∗ ≤ 5, then let (p∗, q∗, r∗) = (0, s1, 0)+(p∗, s2−(p∗+r∗), r∗).
Since s2 ≥ 9, p∗ ≤ 2, and r∗ ≤ 5, s2 − (p∗ + r∗) ≥ 2. Clearly, (0, s1, 0) ∈ X1 and
(p∗, s2 − (p∗ + r∗), r∗) ∈ X2. Hence (p∗, q∗, r∗) ∈ X1 +X2.

The case where p∗ ≥ 3 and q∗ ≤ 2 is similar to the case p∗ ≤ 2 and q∗ ≥ 3,
therefore we omit its proof.

3. {P4
p, S4

q, C4
r}-Decomposition of Km,n

In this section we study the {P4
p, S4

q, C4
r}-decomposition of Km,n when both m

and n are even. In particular, we prove that CD(Km,n;P4, S4, C4) = {(p, q, r) :
p, q, r > 0; m + n ≥ 6; 4(p + q + r) = mn; (p, q) 6= (1, 1); q is even when
m = 2; (p, q, r) 6= (1, 2, 1) when m = n = 4}. We first recall three results on
Pk-decomposition, Sk-decomposition, and Ck-decomposition of Km,n as follows.

Theorem 4 (Parker [28]). Let k, m, and n be positive integers. There exists a

Pk-decomposition of Km,n if and only if mn ≡ 0 (mod k) and one of cases in

Table 1 occurs.

Theorem 5 (Yamamoto et al. [44]). Let k, m, and n be positive integers with

m ≤ n. There exists an Sk-decomposition of Km,n if and only if one of the

following conditions holds.

(1) m ≥ k and mn ≡ 0 (mod k);

(2) m < k ≤ n and n ≡ 0 (mod k).

Theorem 6 (Sotteau [38]). Let k, m, and n be positive integers. Km,n has a

C2k-decomposition if and only if m and n are even, k ≥ 2, m ≥ k, n ≥ k, and
mn ≡ 0 (mod 2k).
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Case k m n Characterization

1. even even even k ≤ 2m, k ≤ 2n, not both equalities
2. even even odd k ≤ 2m− 2, k ≤ 2n
3. even odd even k ≤ 2m, k ≤ 2n− 2
4. odd even even k ≤ 2m− 1, k ≤ 2n− 1
5. odd even odd k ≤ 2m− 1, k ≤ n
6. odd odd even k ≤ m, k ≤ 2n− 1
7. odd odd odd k ≤ m, k ≤ n

Table 1. Necessary and Sufficient Conditions for Pk-Decomposition of Km,n.

Before going into more detail, we need the following lemma.

Lemma 7 ([36, Theorem 2.10]). Let p and q be non-negative integers, and let

k, m, and s be positive integers such that k is even and m < k. There exists

a decomposition of Ksk,m into p copies of Pk and q copies of Sk if and only if

k(p+ q) = e(Ksk,m), and there is t ∈ {0, . . . , s} such that
⌈

tk
2

⌉

≤ p ≤ tm.

Let (x1, . . . , xk) and (x1, . . . , xk, x1) denote, respectively, the k-path and the
k-cycle through vertices x1, . . . , xk in order, and let (y;x1, . . . , xk) denote the k-
star with center y and leafs x1, . . . , xk. An internal vertex of a path is a vertex
of degree 2. In the following lemma, we determine the set of ordered pairs (p, q)
of positive integers for which there exists a {P4

p, S4
q}-decomposition of K2,2n.

Lemma 8. Let n, p, and q be positive integers. (p, q) ∈ CD(K2,2n;P4, S4) if and
only if n ≥ 2; p+ q = n and q is even.

Proof. Let n, p, and q be positive integers. Assume that (p, q) ∈ CD(K2,2n;
P4, S4). It is easily seen that n ≥ 2 and p+ q = n.

Let D be an arbitrary decomposition of K2,2n into p copies of P4 and q
copies S4. Let (A,B) be the bipartition of K2,2n where A = {a0, a1} and B =
{b0, b1, . . . , b2n−1}. It is easily seen that each S4 in D has to center at either a0
or a1, and each P4 in D has to contain both a0 and a1 as its internal vertices. It
implies that the number of copies of S4 centered in a0 in D is the same as the
number of copies of S4 centered in a1 in D, and hence q is even.

Conversely, assume that n ≥ 2; p + q = n and q is even. If 2n = 4s for
some integer s, by Lemma 7, then (p, n − p) ∈ CD(K2,2n;P4, S4) for each p ∈
{2, 4, . . . , 2s} (i.e., q = n − p ∈ {2, 4, . . . , 2s}). Assume 2n = 4s + 2 for some
integer s. For each q ∈ {2, 4, . . . , 2(s− 1)}, the graph K2,4s+2 is the edge-disjoint
union of a copy Hq

1 of K2,2q and a copy Hq
2 of K2,4s−2q+2. By Theorem 5, Hq

1 is
S4-decomposable, and by Theorem 4, Hq

2 is P4-decomposable. If q = 2s, then let
K2,4s+2 decompose into K2,4s−4 and K2,6. As mentioned above, K2,4s−4 can be
decomposed into 2s− 2 copies of S4. Besides, K2,6 can be decomposed into one
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copy of P4 and two copies of S4 as follows: (b0, a1, b5, a0, b4), (a0; b0, b1, b2, b3),
(a1; b1, b2, b3, b4).

In the following lemma, we determine the set of triples (p, q, r) of positive
integers for which there exists a {P4

p, S4
q, C4

r}-decomposition of K2,2n.

Lemma 9. Let n, p, q, and r be positive integers with n ≥ 3. (p, q, r) ∈ CD(K2,2n;
P4, S4, C4) if and only if p+ q + r = n and q is even.

Proof. Let n, p, q, and r be positive integers with n ≥ 3. Assume that (p, q, r) ∈
CD(K2,2n;P4, S4, C4). It is easily seen that p+ q + r = n.

Let D be an arbitrary decomposition of K2,2n into p copies of P4, q copies
of S4, and r copies of C4, and let C(1), . . . , C(r) denote the r copies of C4 in D .
It is easily seen that K2,2n − E

(

C(1) ∪ · · · ∪ C(r)
)

∼= K2,2(n−r). It implies that
K2,2(n−r) can be decomposed into p copies of P4 and q copies of S4, and hence q
is even by Lemma 8.

Conversely, assume that p + q + r = n and q is even. Let (A,B) be the
bipartition of K2,2n where A = {a0, a1} and B = {b0, b1, . . . , b2n−1}, and let
C(i) =

(

b2i−2, a0, b2i−1, a1, b2i−2

)

for each i ∈ {1, . . . , r}. It clear that C(i) is

a C4 and K2,2n − E
(

C(1) ∪ · · · ∪ C(r)
)

∼= K2,2(n−r). By Lemma 8, K2,2(n−r) is
{P4

p, S4
q}-decomposable.

In the following lemma, we determine the set of triples (p, q, r) of positive
integers for which there exists a {P4

p, S4
q, C4

r}-decomposition of K4,2n.

Lemma 10. Let n, p, q, and r be positive integers with n ≥ 2. (p, q, r) ∈
CD(K4,2n;P4, S4, C4) if and only if p + q + r = 2n and (p, q) 6= (1, 1); (p, q, r) 6=
(1, 2, 1).

Proof. (Necessity) By Theorem 1, condition p + q + r = 2n and (p, q) 6= (1, 1)
holds.

On the contrary, suppose (1, 2, 1)∈CD(K4,4;P4, S4, C4). Let D be an arbitra-
ry decomposition ofK4,4 into one copy of P4, two copies of S4, and one copy of C4;
and let S(1), S(2), and C denote, respectively, the two copies of S4 and the copy of
C4 in D . It is easily seen thatK4,4−E(S(1)∪S(2)) ∼= K2,4 andK2,4−E(C) ∼= K2,2.
It follows that K4,4−E(S(1) ∪S(2) ∪C) is not P4-decomposable, a contradiction.

(Sufficiency) By assumption, CD(K4,2n;P4, S4, C4) ⊂ {(p, q, r) : p, q, r > 0,
p + q + r = 2n, (p, q) 6= (1, 1); (p, q, r) 6= (1, 2, 1)}, and hence CD(K4,4;P4, S4,
C4) ⊂ {(2, 1, 1)}. Let (A,B) be the bipartition of K4,4 where A = {a0, a1, a2, a3}
and B = {b0, b1, b2, b3}. K4,4 can be decomposed into two copies of P4, one
copy of S4, and one copy of C4 as follows: (b0, a0, b1, a1, b2), (b1, a2, b2, a0, b3),
(a3; b0, b1, b2, b3), (b0, a1, b3, a2, b0).
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Assume n = 3. We show that CD(K4,6;P4, S4, C4) ⊃ {(p, q, r) : p, q, r > 0,
p+q+r = 6, (p, q) 6= (1, 1)} = {(1, 2, 3), (1, 3, 2), (1, 4, 1), (2, 1, 3), (2, 2, 2), (2, 3, 1),
(3, 1, 2), (3, 2, 1), (4, 1, 1)}.

We decompose K4,6 into one copy of K4,4 and one copy of K4,2. By Theorems
4, 5, and 6, K4,2 is P4-decomposable, S4-decomposable, and C4-decomposable,
respectively. Since (2, 1, 1) ∈ CD(K4,4;P4, S4, C4), {(2, 1, 1) + (2, 0, 0), (2, 1, 1) +
(0, 2, 0), (2, 1, 1) + (0, 0, 2)} = {(4, 1, 1), (2, 3, 1), (2, 1, 3)} ⊂ CD(K4,6;P4, S4, C4).
Besides, it is easy to check that K4,4 is {P4

2, C4
2}-decomposable, {P4

3, C4
1}-

decomposable, and
{

P4
3, S4

1
}

-decomposable, respectively. Thus {(2, 0, 2)+(0, 2,
0), (3, 0, 1)+(0, 2, 0), (3, 1, 0)+(0, 0, 2)} = {(2, 2, 2), (3, 2, 1), (3, 1, 2)} ⊂ CD(K4,6;
P4, S4, C4). We now turn our attention to the case (1, 2, 3). The graph K4,6

is the edge-disjoint union of two copies of K2,6. By Lemma 8 and Theorem
6, K2,6 is {P4

1, S4
2}-decomposable and C4-decomposable, respectively. Thus

(1, 2, 3) ∈ CD(K4,6;P4, S4, C4). Let (A,B) be the bipartition of K4,6 where A =
{a0, a1, a2, a3} andB = {b0, b1, b2, b3, b4, b5}. We now show that (1, 4, 1), (1, 3, 2) ∈
CD(K4,6;P4, S4, C4) as follows: (b0, a3, b4, a0, b5), (a0; b0, b1, b2, b3), (a1; b1, b2, b3,
b4), (a2; b1, b2, b3, b4), (a3; b1, b2, b3, b5), (b0, a1, b5, a2, b0); (b0, a1, b1, a3, b3), (a0; b0,
b1, b2, b3), (a1; b2, b3, b4, b5), (a2; b1, b3, b4, b5), (a0, b4, a3, b5, a0), (b0, a2, b2, a3, b0).

Assume n ≥ 4. We decompose K4,2n into one copy of K4,6 and one copy
of K4,2(n−3), and then we decompose K4,2(n−3) into (n − 3) copies of K4,2. By
Theorems 4, 5 and 6, {(2, 0, 0), (0, 2, 0), (0, 0, 2)} ⊂ D(K4,2;P4, S4, C4), and thus
D(K4,2(n−3); P4, S4, C4) ⊃ {(2a, 2b, 2c) : a, b, c ≥ 0, a+ b+ c = n−3)}. Moreover,
since CD(K4,6; P4, S4, C4) = {(p, q, r) : p, q, r > 0, p+ q + r = 6, (p, q) 6= (1, 1)},
CD(K4,2n;P4, S4, C4) ⊃ {(p, q, r) : p, q, r > 0, p + q + r = 2n, (p, q) 6= (1, 1)} by
Lemma 2, and hence CD(K4,2n;P4, S4, C4) = {(p, q, r) : p, q, r > 0, p + q + r =
2n, (p, q) 6= (1, 1)}.

In the following lemma, we determine the set of triples (p, q, r) of positive
integers for which there exists a {P4

p, S4
q, C4

r}-decomposition of K6,2n.

Lemma 11. Let n, p, q, and r be positive integers with n ≥ 3. (p, q, r) ∈
CD(K6,2n;P4, S4, C4) if and only if p+ q + r = 3n and (p, q) 6= (1, 1).

Proof. (Necessity) By Theorem 1, condition p + q + r = 3n and (p, q) 6= (1, 1)
holds.

(Sufficiency) Assume n = 3. It is easily seen that K6,6 can be decomposed
into one copy of K4,6 and one copy of K2,6. By Lemma 10, CD(K4,6;P4, S4, C4)
= {(p, q, r) : p, q, r > 0, p+ q+ r = 6, (p, q) 6= (1, 1)}. By Theorem 4, 6 and Lem-
ma 8, {(3, 0, 0), (0, 0, 3), ((1, 2, 0)} ⊂ D(K2,6;P4, S4, C4). Besides, K2,6 − E(C4)
∼= K2,4, hence {(2, 0, 1), (0, 2, 1)} ⊂ D(K2,6;P4, S4, C4) by Theorems 4, 5. We
show that CD(K6,6;P4, S4, C4) ⊃ {(p, q, r) : p, q, r > 0, p + q + r = 9, (p, q) 6=
(1, 1)} as follows.
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Suppose q = 1 or 2. If p > r, then let (p, q, r) = (p − 3, q, r) + (3, 0, 0),
and if p ≤ r then let (p, q, r) = (p, q, r − 3) + (0, 0, 3). Since {(p − 3, q, r),
(p, q, r− 3)} ⊂ CD(K4,6;P4, S4, C4) and {(3, 0, 0), (0, 0, 3)} ⊂ D(K2,6;P4, S4, C4),
(p, q, r) ∈ CD(K6,6;P4, S4, C4).

Suppose q = 3, 4, or 5. If r ≥ 4, then let (p, q, r) = (p, q, r − 3) + (0, 0, 3);
if 2 ≤ r ≤ 3, then let (p, q, r) = (p, q − 2, r − 1) + (0, 2, 1) (note that p ≥ 3 if
q = 3); if r = 1, then let (p, q, r) = (p − 1, q − 2, r) + (1, 2, 0) (note that p ≥ 3).
Since {(p, q, r − 3), (p, q − 2, r − 1), (p − 1, q − 2, r)} ⊂ CD(K4,6;P4, S4, C4) and
{(0, 0, 3), (0, 2, 1), (1, 2, 0)} ⊂ D(K2,6;P4, S4, C4), (p, q, r) ∈ CD(K6,6;P4, S4, C4).

Suppose q = 6. In this case p+ r = 3. If r = 2, then let (1, 6, 2) = (1, 4, 1) +
(0, 2, 1), and if r = 1, then let (2, 6, 1) = (1, 4, 1) + (1, 2, 0). Since (1, 4, 1) ∈
CD(K4,6;P4, S4, C4) and (0, 2, 1), (1, 2, 0) ∈ D(K2,6;P4, S4, C4), (1, 6, 2), (2, 6, 1)
∈ CD(K6,6;P4, S4, C4).

Suppose q = 7. Let (A,B) be the bipartition ofK6,6 where A = {a0, a1, a2, a3,
a4, a5} andB = {b0, b1, b2, b3, b4, b5}. We show that (1, 7, 1) ∈ CD(K6,6;P4, S4, C4)
below: (b0, a5, b2, a3, b3), (a0; b0, b1, b2, b3), (a1; b0, b1, b2, b3), (a2; b0, b1, b2, b3),
(a3; b0, b1, b4, b5), (a4; b0, b2, b4, b5), (b4; a0, a1, a2, a5), (b5; a0, a1, a2, a5), (b1, a4,
b3, a5, b1).

Assume n ≥ 4. If n is even, then write n = 2k for some integer k with
k ≥ 2. We decompose K6,4k into one copy of K6,4 and one copy of K6,4(k−1), and
then we decompose K6,4(k−1) into 3(k− 1) copies of K2,4. By Theorems 4, 5 and
6, {(2, 0, 0), (0, 2, 0), (0, 0, 2)} ⊂ D(K4,2;P4, S4, C4), and thus D(K6,4(k−1); P4, S4,
C4) ⊃ {(2a, 2b, 2c) : a, b, c ≥ 0, a+ b+ c = 3(k−1)}. By Lemma 10, CD(K6,4;P4,
S4, C4) ⊃ {(p, q, r) : p, q, r > 0, p + q + r = 6, (p, q) 6= (1, 1)}, and hence
CD(K6,2n;P4, S4, C4) ⊃ {(p, q, r) : p, q, r > 0, p + q + r = 3n, (p, q) 6= (1, 1)} by
Lemma 2.

If n is odd, then write n = 2k + 1 for some integer k with k ≥ 2, and thus
2n = 4k + 2 = 4(k − 1) + 6. We decompose K6,4k+2 into one copy of K6,6 and
one copy of K6,4(k−1), and then we decompose K6,4(k−1) into 3(k − 1) copies of
K2,4. As mentioned above, D(K6,4(k−1); P4, S4, C4) ⊃ {(2a, 2b, 2c) : a, b, c ≥ 0,
a + b + c = 3(k − 1)}. Since CD(K6,6; P4, S4, C4) = {(p, q, r) : p, q, r > 0,
p + q + r = 9, (p, q) 6= (1, 1)}, CD(K6,2n;P4, S4, C4) ⊃ {(p, q, r) : p, q, r > 0,
p+ q + r = 3n, (p, q) 6= (1, 1)}, by Lemma 2.

In the following lemma, we determine the set of triples (p, q, r) of positive
integers for which there exists a {P4

p, S4
q, C4

r}-decomposition ofKm,n when both
m and n are positive even integers with n ≥ m ≥ 8.

Lemma 12. Let p, q, and r be positive integers, and let m and n be positive

even integers with n ≥ m ≥ 8. (p, q, r) ∈ CD(Km,n;P4, S4, C4) if and only if

4(p+ q + r) = mn and (p, q) 6= (1, 1).
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Proof. (Necessity) By Theorem 1, condition 4(p+q+r) = mn and (p, q) 6= (1, 1)
holds.

(Sufficiency) We divided the proof into two cases as follows.

Case 1. m ≡ 0 (mod 4). Write m = 4k for some integer k with k ≥
2. We decompose K4k,n into one copy of K4,n and one copy of K4(k−1),n, and
then we decompose K4(k−1),n into n

2 (k − 1) copies of K4,2. By Theorems 4, 5
and 6, {(2, 0, 0), (0, 2, 0), (0, 0, 2)} ⊂ D(K4,2;P4, S4, C4), and thus D(K4(k−1),n;
P4, S4, C4) ⊃ {(2a, 2b, 2c) : a, b, c ≥ 0, a + b + c = n

2 (k − 1)}. By Lemma 10,
CD(K4,n;P4, S4, C4) = {(p, q, r) : p, q, r > 0, p + q + r = n, (p, q) 6= (1, 1)}, and
hence CD(Km,n;P4, S4, C4) ⊃ {(p, q, r) : p, q, r > 0, p+q+r = kn, (p, q) 6= (1, 1)}
by Lemma 2.

Case 2. m ≡ 2 (mod 4). Write m = 4k + 2 = 4(k − 1) + 6 for some
integer k with k ≥ 2. We decompose K4k+2,n into one copy of K6,n and one
copy of K4(k−1),n, and then we decompose K4(k−1),n into n

2 (k − 1) copies of
K4,2. As mentioned above, D(K4(k−1),n; P4, S4, C4) ⊃ {(2a, 2b, 2c) : a, b, c ≥ 0,
a+b+c = n

2 (k−1)}. By Lemma 11, CD(K6,n;P4, S4, C4) = {(p, q, r) : p, q, r > 0,
p + q + r = 6n

4 , (p, q) 6= (1, 1)}, and hence CD(K4k+2,n;P4, S4, C4) ⊃ {(p, q, r) :

p, q, r > 0, p+ q + r = (4k+2)n
4 , (p, q) 6= (1, 1)} by Lemma 2.

Now, we are ready for the main result of this section. It is obtained by
combining Theorem 1 and Lemmas 9, 10, 11, and 12.

Theorem 13. Let m, n, p, q, and r be positive integers such that both m and n
are even, and m ≤ n. (p, q, r) ∈ CD(Km,n;P4, S4, C4) if and only if m + n ≥ 6;
4(p+ q+ r) = mn; (p, q) 6= (1, 1); q is even when m = 2; (p, q, r) 6= (1, 2, 1) when
m = n = 4.

4. {P4
p, S4

q, C4
r}-Decomposition of Kn

In this section, we study the {P4
p, S4

q, C4
r}-decomposition of Kn when n is odd.

In particular, we prove that CD(Kn;P4, S4, C4) = {(p, q, r) : p, q, r > 0, 4(p +
q + r) =

(

n
2

)

, (p, q) 6= (1, 1)}. Let us begin with three well-known results on
Pk-decomposition, Sk-decomposition, and Ck-decomposition of Kn, respectively.

Theorem 14 (Tarsi [40]). Let k and n be positive integers. There exists a Pk-

decomposition of Kn if and only if k + 1 ≤ n and n(n− 1) ≡ 0 (mod 2k).

Theorem 15 (Tarsi [39] and Yamamoto et al. [44]). Let k and n be positive

integers. There exists an Sk-decomposition of Kn if and only if 2k ≤ n and

n(n− 1) ≡ 0 (mod 2k).
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Theorem 16 (Alspach, Gavlas [6] and Šajna [31]). Let n and k be positive

integers. Kn has a Ck-decomposition if and only if n is odd, 3 ≤ k ≤ n, and

n(n− 1) ≡ 0 (mod 2k).

In the following, we will introduce three known results on {P4
p, C4

r}-
decomposition, {S4

q, C4
r}-decomposition, and {P4

p, S4
q}-decomposition of Kn,

respectively.

Theorem 17 [33]. Let p and r be positive integers, and let n be a positive odd

integer. (p, r) ∈ CD(Kn;P4, C4) if and only if 4(p+ q) = e(Kn) and p 6= 1.

Theorem 18 [35]. Let q and r be positive integers, and let n be a positive odd

integer. (q, r) ∈ CD(Kn;S4, C4) if and only if 4(p+ q) = e(Kn) and q 6= 1.

Theorem 19 [36]. Let p, q, and n be positive integers with n ≥ 16. (p, q) ∈
CD(Kn;P4, S4) if and only if 4(p+ q) = e(Kn).

Theorem 19 determined the set of ordered pairs (p, q) of positive integers
for which there exists a {P4

p, S4
q}-decomposition of Kn when n ≥ 16. In the

following lemma, we determine the set of ordered pairs (p, q) of positive integers
for which there exists a {P4

p, S4
q}-decomposition of Kn when n < 16 and n is

odd, thus we determine the set of ordered pairs (p, q) of positive integers for which
there exists a {P4

p, S4
q}-decomposition of Kn when n is odd.

Theorem 20. Let p and q be positive integers, and let n be a positive odd integer.

(p, q) ∈ CD(Kn;P4, S4) if and only if 4(p+ q) = e(Kn).

Proof. (Necessity) Condition 4(p+ q) = e(Kn) is trivial.

(Sufficiency) Observe that 4 | n(n−1)
2 implies 8 | (n − 1). It follows that n =

8m + 1 for some positive integer m. By Theorem 19, we need only consider the
case n = 9. Assume V (K9) = {1, . . . , 9}. We show that CD(K9;P4, S4) ⊃ {(p, q) :
p, q > 0, p+ q = 9}.

Assume (p, q) = (8, 1). K9 can be decomposed into 8 copies of P4 and
one copy of S4 as follows: (3, 1, 9, 2, 4), (7, 5, 9, 6, 8), (4, 3, 2, 1, 5), (5, 2, 6, 1, 4),
(5, 4, 6, 3, 7), (7, 4, 8, 3, 5), (1, 7, 2, 8, 5), (5, 6, 7, 8, 1), (9; 3, 4, 7, 8).

Assume (p, q) = (7, 2). It is easily seen that K9 is the edge-disjoint union of
a copy Hq

1 of K8 and a copy Hq
2 of S8. By Theorem 14, Hq

1 is P4-decomposable,
and Hq

2 can be decomposed into two copies of S4. Hence the assertion follows.
Assume (p, q) = (6, 3). K9 can be decomposed into 6 copies of P4 and 3 copies

of S4 as follows: (5, 1, 3, 2, 6), (6, 3, 4, 2, 5), (3, 7, 4, 5, 6), (6, 4, 8, 5, 3), (6, 9, 5, 7, 1),
(1, 8, 2, 7, 6), (1; 2, 4, 6, 9), (8; 3, 6, 7, 9), (9; 2, 3, 4, 7).

Assume (p, q) = (5, 4). K9 can be decomposed into 5 copies of P4 and 4 copies
of S4 as follows: (2, 4, 3, 6, 5), (5, 8, 4, 6, 7), (7, 5, 9, 6, 2), (2, 3, 1, 5, 4), (4, 7, 3, 5, 2),
(1; 4, 6, 7, 8), (2; 1, 7, 8, 9), (8; 3, 6, 7, 9), (9; 1, 3, 4, 7).
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Assume (p, q) = (4, 5). K9 can be decomposed into 4 copies of P4 and 5 copies
of S4 as follows: (5, 1, 3, 2, 6), (6, 3, 4, 2, 5), (7, 3, 5, 4, 8), (8, 5, 6, 4, 7), (1; 4, 6, 8, 9),
(2; 1, 7, 8, 9), (7; 1, 5, 6, 9), (8; 3, 6, 7, 9), (9; 3, 4, 5, 6).

Assume (p, q) = (3, 6). K9 can be decomposed into 3 copies of P4 and 6 copies
of S4 as follows: (4, 1, 2, 3, 9), (9, 4, 3, 8, 7), (7, 6, 5, 8, 4), (1; 3, 5, 7, 9), (2; 4, 6, 7, 9),
(5; 2, 3, 4, 9), (6; 1, 3, 4, 9), (7; 3, 4, 5, 9), (8; 1, 2, 6, 9).

Assume (p, q) = (2, 7). K9 can be decomposed into 2 copies of P4 and 7 copies
of S4 as follows: (1, 2, 3, 4, 5), (5, 6, 7, 8, 9), (1; 3, 4, 8, 9), (2; 4, 5, 8, 9), (3; 6, 7, 8, 9),
(4; 6, 7, 8, 9), (5; 1, 3, 8, 9), (6; 1, 2, 8, 9), (7; 1, 2, 5, 9).

Assume (p, q) = (1, 8). K9 can be decomposed into one copy of P4 and
8 copies of S4 as follows: (4, 5, 6, 7, 8), (1; 2, 3, 4, 5), (2; 3, 4, 5, 6), (3; 4, 6, 7, 8),
(5; 3, 7, 8, 9), (6; 1, 4, 8, 9), (7; 1, 2, 4, 9), (8; 1, 2, 4, 9). (9; 1, 2, 3, 4).

The following lemma gives sufficient conditions for decomposing an edge-
disjoint union of cycles of length k into copies of Pk. In fact, the proof of the
following lemma is essentially given in [33, Lemma 3.8]. We present it here for
completeness.

Lemma 21. Let k and n be integers such that k ≥ 3 and n ≥ 2. For each i ∈
{1, 2, . . . , n}, let C(i) denote the cycle of length k,

(

x(i,1), x(i,2), . . . , x(i,k), x(i,1)
)

.

If x(1,1) = x(2,1) = · · · = x(n,1), x(i−1,2) /∈ V (C(i)) for each i ∈ {2, 3, . . . , n}, and
x(n,2) /∈ V (C(1)), then

⋃n
i=1C(i) can be decomposed into n paths of length k.

Proof. By assumptions,
⋃n

i=1C(i) can be decomposed into n paths of length k as
follows:

(

x(2,2), x(2,3), . . . , x(2,k), x(2,1), x(1,2)
)

,
(

x(3,2), x(3,3), . . . , x(3,k), x(3,1), x(2,2)
)

,
. . . ,

(

x(n,2), x(n,3), . . . , x(n,k), x(n,1), x(n−1,2)

)

,
(

x(1,2), x(1,3), . . . , x(1,k), x(1,1), x(n,2)
)

.

In the following lemma, we determine the set of triples (p, q, r) of positive
integers for which there exists a {P4

p, S4
q, C4

r}-decomposition of K9.

Lemma 22. Let p, q, and r be positive integers. (p, q, r) ∈ CD(K9;P4, S4, C4) if
and only if p+ q + r = 9 and (p, q) 6= (1, 1).

Proof. (Necessity) The assertion follows immediately from Theorem 1.
(Sufficiency) Let V (K9) = {1, . . . , 9}. We split the proof into 7 cases accord-

ing to the value of q.
Assume q = 1 (note that p ≥ 2 in this case). K9 can be decomposed into

two copies of P4, one copy of S4, and 6 copies of C4 as follows: (3, 1, 9, 2, 4),
(7, 5, 9, 6, 8), (9; 3, 4, 7, 8), C(1) = (1, 4, 3, 2, 1), C(2) = (1, 5, 2, 6, 1), C(3) = (3, 5,
4, 6, 3), C(4) = (3, 7, 4, 8, 3), C(5) = (8, 1, 7, 2, 8), C(6) = (8, 5, 6, 7, 8). Since
1 ∈ V (C(1))∩V (C(2)), 5 /∈ V (C(1)), and 4 /∈ (C(2)), C(1) ∪ C(2) can be
decomposed into two copies of P4, by Lemma 21. By the same argument,
C(3) ∪ C(4) and C(5) ∪ C(6) can also be decomposed into two copies of P4.
Hence CD(K9;P4, S4, C4) ⊃ {(p, 1, 8− p) : 2 ≤ p ≤ 7 and p is even}.
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On the other hand, K9 can be decomposed into three copies of P4, one
copy of S4, and 5 copies of C4 as follows: (3, 1, 9, 2, 4), (9, 5, 8, 6, 7), (9, 8, 7, 5, 6),
(9; 3, 4, 6, 7), C(1) = (1, 4, 3, 2, 1), C(2) = (1, 5, 2, 6, 1), C(3) = (1, 7, 2, 8, 1),
C(4) = (3, 5, 4, 6, 3), C(5) = (3, 7, 4, 8, 3). By the same argument mentioned
above, C(1) ∪ C(2) and C(4) ∪ C(5) can be decomposed into two copies of P4.
Thus CD(K9;P4, S4, C4) ⊃ {(p, 1, 8− p) : 2 ≤ p ≤ 7 and p is odd }.

Assume q = 2. K9 can be decomposed into two copies of S4, and 7 copies of
C4 as follows: (1; 3, 4, 8, 9), (2; 3, 4, 8, 9), C(1) = (3, 7, 1, 6, 3), C(2) = (3, 5, 6, 4, 3),
C(3) = (3, 8, 4, 9, 3), C(4) = (2, 7, 5, 1, 2), C(5) = (2, 6, 9, 5, 2), C(6) = (7, 6, 8,
9, 7), C(7) = (7, 4, 5, 8, 7), Since 3 ∈ V (C(1))∩V (C(2)∩V (C(3)), 8 /∈ V (C(1)),
7 /∈ V (C(2)), and 5 /∈ V (C(3)), C(1)∪C(2)∪C(3) can be decomposed into three
copies of P4, by Lemma 21. By the same argument, C(1) ∪ C(2), C(4) ∪ C(5),
and C(6)∪C(7) can also be decomposed into two copies of P4. Hence CD(K9;P4,
S4, C4) ⊃ {(p, 2, 7− p) : p = 2, . . . , 6}. Besides, K9 can also be decomposed into
one copy of P4, two copies of S4, and 6 copies of C4 as follows: (4, 1, 7, 3, 6), (1;
3, 6, 8, 9), (2; 3, 4, 8, 9), (3, 5, 6, 4, 3), (3, 8, 4, 9, 3), (2, 7, 5, 1, 2), (2, 6, 9, 5, 2), (7, 6, 8,
9, 7), (7, 4, 5, 8, 7), Thus (1, 2, 6) ∈ CD(K9;P4, S4, C4).

Assume q = 3. K9 can be decomposed into three copies of S4, and 6 copies
of C4 as follows: (1; 2, 4, 6, 9), (8; 3, 6, 7, 9), (9; 2, 3, 4, 7), C(1) = (2, 5, 1, 3, 2),
C(2) = (2, 6, 3, 4, 2), C(3) = (4, 7, 3, 5, 4), C(4) = (4, 8, 5, 6, 4), C(5) = (7, 6, 9,
5, 7), C(6) = (7, 1, 8, 2, 7). By Lemma 21, both C(1) ∪ C(2) and C(3) ∪ C(4)
can be decomposed into two copies of P4. Hence CD(K9;P4, S4, C4) ⊃ {(p, 3,
6 − p) : p = 2, 4}. Besides, K9 can also be decomposed into one copy of P4,
three copies of S4, and 5 copies of C4 as follows: (8, 2, 7, 1, 4), (1; 2, 6, 8, 9),
(8; 3, 6, 7, 9), (9; 2, 3, 4, 7), C(1) = (3, 1, 5, 2, 3), C(2) = (3, 6, 2, 4, 3), C(3) =
(3, 7, 4, 5, 3), C(4) = (5, 8, 4, 6, 5), C(5) = (5, 9, 6, 7, 5). By Lemma 21 again, both
C(1) ∪ C(2) and C(4) ∪ C(5) can be decomposed into two copies of P4. Hence
CD(K9;P4, S4, C4) ⊃ {(p, 3, 6− p) : p = 1, 3, 5}.

Assume q = 4. K9 can be decomposed into 4 copies of S4, and 5 copies
of C4 as follows: (1; 4, 6, 7, 8), (2; 1, 7, 8, 9), (8; 3, 6, 7, 9), (9; 1, 3, 4, 7), C(1) =
(3, 1, 5, 2, 3), C(2) = (3, 6, 2, 4, 3), C(3) = (3, 7, 4, 5, 3), C(4) = (5, 8, 4, 6, 5),
C(5) = (5, 9, 6, 7, 5). By Lemma 21, both C(1) ∪ C(2) and C(4) ∪ C(5) can be
decomposed into two copies of P4, and C(1) ∪ C(2) ∪ C(3) can be decomposed
into three copies of P4. Hence CD(K9;P4, S4, C4) ⊃ {(p, 4, 5 − p) : p = 2, 3, 4}.
Besides, K9 can also be decomposed into one copy of P4, 4 copies of S4, and
4 copies of C4 as follows: (3, 2, 5, 1, 4), (1; 3, 6, 7, 8), (2; 1, 7, 8, 9), (8; 3, 6, 7, 9),
(9; 1, 3, 4, 7), (2, 6, 3, 4, 2), (3, 7, 4, 5, 3), (4, 8, 5, 6, 4), (5, 9, 6, 7, 5). Hence (1, 4, 4) ∈
CD(K9;P4, S4, C4).

Assume q = 5. K9 can be decomposed into 5 copies of S4, and 4 copies of
C4 as follows: (1; 4, 6, 8, 9), (2; 1, 7, 8, 9), (7; 1, 5, 6, 9), (8; 3, 6, 7, 9), (9; 3, 4, 5, 6),
C(1) = (3, 4, 2, 6, 3), C(2) = (3, 1, 5, 2, 3), C(3) = (3, 7, 4, 5, 3), C(4) = (4, 8, 5,



464 T.-W. Shyu

6, 4). By Lemma 21, C(1) ∪ C(2) can be decomposed into two copies of P4,
and C(1) ∪ C(2) ∪ C(3) can be decomposed into three copies of P4. Hence
CD(K9;P4, S4, C4) ⊃ {(p, 5, 4−p) : p = 2, 3}. Besides, K9 can also be decomposed
into one copy of P4, 5 copies of S4, and three copies of C4 as follows: (4, 6, 5, 8, 3),
(1; 4, 6, 8, 9), (2; 1, 7, 8, 9), (7; 1, 5, 6, 9), (8; 4, 6, 7, 9), (9; 3, 4, 5, 6), (1, 5, 2, 3, 1), (2,
6, 3, 4, 2), (3, 7, 4, 5, 3). Hence (1, 5, 3) ∈ CD(K9;P4, S4, C4).

Assume q = 6. K9 can be decomposed into two copies of P4, 6 copies
of S4, and one copy of C4 as follows: (4, 9, 3, 8, 7), (7, 6, 5, 8, 4), (1; 3, 5, 7, 9),
(2; 4, 6, 7, 9), (5; 2, 3, 4, 9), (6; 1, 3, 4, 9), (7; 3, 4, 5, 9), (8; 1, 2, 6, 9), (1, 2, 3, 4, 1). Be-
sides, K9 can also be decomposed into one copy of P4, 6 copies of S4, and
two copies of C4 as follows: (1, 8, 5, 6, 7), (1; 3, 5, 7, 9), (2; 4, 6, 7, 9), (5; 2, 3, 4, 9),
(6; 1, 3, 4, 9), (7; 3, 4, 5, 9), (8; 2, 6, 7, 9), (1, 2, 3, 4, 1), (3, 9, 4, 8, 3). Thus CD(K9;
P4, S4, C4) ⊃ {(2, 6, 1), (1, 6, 2)}.

Assume q = 7. K9 can be decomposed into one copy of P4, 7 copies of S4,
and one copy of C4 as follows: (2, 8, 3, 9, 4), (1; 3, 7, 8, 9), (2; 5, 6, 7, 9), (4; 2, 5, 6, 7),
(5; 1, 3, 8, 9), (6; 1, 3, 5, 9), (7; 3, 5, 6, 9), (8; 4, 6, 7, 9), (1, 2, 3, 4, 1). Thus CD(K9;P4,
S4, C4) ⊃ {(1, 7, 1)}.

Now, we prove the main result of this section.

Theorem 23. Let p, q, and r be positive integers, and let n be a positive odd

integer. (p, q, r) ∈ CD(Kn;P4, S4, C4) if and only if 4(p + q + r) =
(

n
2

)

and

(p, q) 6= (1, 1).

Proof. (Necessity) The assertion follows immediately from Theorem 1.

(Sufficiency) Observe that 4 | n(n−1)
2 implies 8 | (n − 1). It follows that n =

8m+1 for some positive integer m. The proof is by induction on m. By Lemma
22, the assertion holds for m = 1. Assume m ≥ 2. When m is even, write
m = 2k for some integer k. It is easily seen that K16k+1 can be decomposed
into two copies of K8k+1 and a copy of K8k,8k. By the induction hypotheses,
CD(K8k+1;P4, S4, C4) ⊃ {(p, q, r) : p, q, r > 0, p+q+r = k(8k+1), (p, q) 6= (1, 1)}.
By Theorems 14, 15, 16, 17, 18, and 20, D(K8k+1;P4, S4, C4) ⊃ {(a, b, c) : a, b, c ≥
0 with at least one of a, b, c is 0, a+ b+ c = k(8k + 1), (a, b, c) 6= (1, 0, c), (0, 1, c)
when c ≥ 1}. Therefore, D(K8k+1;P4, S4, C4) ⊃ {(a, b, c) : a, b, c ≥ 0, a + b +
c = k(8k + 1), (a, b, c) 6= (1, 1, c), (1, 0, c), (0, 1, c) when c ≥ 1}. By Lemma 3,
CD(K8k+1 ∪ K8k+1;P4, S4, C4) ⊃ {(p, q, r) : p, q, r > 0, p + q + r = 2k(8k + 1),
(p, q) 6= (1, 1)}. Besides, K8k,8k can be decomposed into 8k2 copies of K2,4, and
by Theorems 4, 5, and 6, {(2, 0, 0), (0, 2, 0), (0, 0, 2)} ⊂ D(K2,4;P4, S4, C4). Hence
D(K8k,8k;P4, S4, C4) ⊃ {(2a, 2b, 2c) : a, b, c ≥ 0, a + b + c = 8k2}. By Lemma 2,
CD(K8k+1 ∪ K8k,8k ∪ K8k+1;P4, S4, C4) ⊃ {(p, q, r) : p, q, r > 0, 4(p + q + r) =
(

16k+1
2

)

, (p, q) 6= (1, 1)}, that is, CD(K8m+1; P4, S4, C4) ⊃
{

(p, q, r) : p, q, r > 0,

4(p+ q + r) =
(

8m+1
2

)

, (p, q) 6= (1, 1)
}

.



{P4
p, S4

q, C4
r}-Decomposition of Km,n and Kn 465

When m is odd, write m = 2k + 1 for some integer k. It is easily seen that
K16k+9 can be decomposed into one copy of K8k+1, one copy of K8k,8(k+1), and
one copy of K8k+9. Besides, K8k,8(k+1) can be decomposed into 8k(k + 1) copies
of K2,4. The case where m = 2k + 1 is similar to the case m = 2k, therefore we
omit its proof.

Remark. As mentioned on page 3, D(Kn;P4, S4, C4) denote the set of all triples
(a, b, c) of non-negative integers such that a decomposition of Kn into a copies of
P4, b copies of S4, and c copies of C4 exists. In fact, when n is odd, all triples in
D(Kn;P4, S4, C4) can be determined by combining Theorems 14, 15, 16, 17, 18,
20 and 23.

For the set D(Km,n;P4, S4, C4), we can also determine all triples in D(Km,n;
P4, S4, C4) when both m and n are even. Let p, q, and r be positive integers, and
let m and n be positive even integers with m ≤ n. Jeevadoss and Muthusamy [15]
showed that CD(Km,n;P4, C4) = {(p, r) : m ≥ 2 and n ≥ 4; 4(p + r) = mn and
p 6= 1}. Besides, we proved that CD(Km,n;S4, C4) = {(q, r) : m ≥ 2 and n ≥ 4;
4(q + r) = mn and q 6= 1; q is even when m = 2; r 6= 1 when m = 4} and
CD(Km,n;P4, S4) = {(p, q) : m ≥ 2 and n ≥ 4; 4(p + q) = mn; q is even when
m = 2; p 6= 1 when m = 4}. Because the proofs are rather lengthy and the
arguments are similar to the proofs of Lemmas 8, 9, 10, 11, and 12, we omit
the proofs here. Thus all triples in D(Km,n;P4, S4, C4) can be determined by
combining Theorems 4, 5, 6, and 13, CD(Km,n;P4, S4), CD(Km,n;P4, C4), and
CD(Km,n;S4, C4).
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[14] M.S. Jacobson, M. Truszczyński and Zs. Tuza, Decompositions of regular bipartite

graphs , Discrete Math. 89 (1991) 17–27.
doi:10.1016/0012-365X(91)90396-J

[15] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into

paths and cycles , Discrete Math. 331 (2014) 98–108.
doi:10.1016/j.disc.2014.05.009

[16] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite multigraphs

into paths and cycles having k edges , Discuss. Math. Graph Theory 35 (2015)
715–731.
doi:10.7151/dmgt.1830

[17] A. Kotzig, From the theory of finite regular graphs of degree three and four , C̆asopis
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