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Abstract

Given a graph G and a vertex coloring c, G is called l-radio connected if
between any two distinct vertices u and v there is a path such that coloring c
restricted to that path is an l-radio coloring. The smallest number of colors
needed to make G l-radio connected is called the l-radio connection number
of G. In this paper we introduce these notions and initiate the study of
connectivity through radio colored paths, providing results on the 2-radio
connection number, also called L(2, 1)-connection number: lower and upper
bounds, existence problems, exact values for known classes of graphs and
graph operations.
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1. Introduction

Various types of graph colorings were introduced in the literature motivated by
problems in communication networks. An important property in communication
networks is connectivity, that is to have paths for communication between each
pair of vertices. Many times it is not sufficient to have arbitrary paths, but
paths that assure a safe communication. For example, if interference may occur
in communication, it is necessary to have paths along which interferences are
avoided. Also, in security problems, each link may have an associated password
or firewall and a path is considered secured if the passwords along it satisfy some
requests. This might mean, for example, that the labels associated to the edges
or vertices of the path should be pairwise distinct. Motivated by this types of
problems, rainbow colorings were introduced by Chartrand et al. in [4].
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We remind that, given a nontrivial connected graph G and c an edge-coloring
of G, a path P in G is a rainbow path if no two edges of P are colored with the
same color. The graph G is rainbow connected (with respect to c) if for every pair
u, v of distinct vertices there exists in G a rainbow path from u to v. The rainbow
connection number of G is the minimum number of colors needed to make G rain-
bow connected. Related to the rainbow connectivity, different types of constrains
were imposed to the colors of the edges in a path. For example, if only adjacent
edges in a path are required to have distinct colors, such a path is called proper

path. The notion of proper connectivity, similar to rainbow connectivity but con-
sidering proper paths instead of rainbow paths, was introduced by Borozan et

al. in [2] and Andrews et al. in [1]. Also, a more general notion was considered
in [12] (k, l)-proper connection number. In this case, for a fixed distance l, it is
constrained that no two edges of the same color can appear at distance less than
l edges on the path. Similar problems were studied for vertex-colorings (rainbow
vertex-connectivity [11], proper vertex-connectivity [10]).

Yet, there are situations when, in order to have no interference, it is necessary
that the difference between labels of close edges or vertices — close meaning at
distance less than a fixed level l, to be greater than a certain limit. To model this
type of requests radio colorings were introduced. First, Hale [8] considered only
two levels of interference and defined a L(2, 1)-labeling (also called λ-labeling)
of a graph. This type of labeling was later generalized to more levels of in-
terferences L(d1, d2, . . . , dl)-labelings, among which the most known are radio
colorings, where di = l+1− i. For a fixed level l, an l-radio coloring is a function
c : V (G) → N

∗ assigning positive integers (colors, labels) to vertices with the
following property (called radio condition): |c(u)− c(v)| ≥ l + 1− d(u, v), for all
u, v ∈ V (G), u 6= v.

The value of a coloring c, denoted by val(c), is defined as the maximum value
of c, that is the maximum label assigned by c to a vertex; the span of c, denoted
span(c) is the difference between largest and smallest label assigned to vertices
by c. The minimum value of a l-radio coloring of a graph G is the l-radio number

of G.

If l = 1, then a 1-radio coloring is a classic proper coloring and we have
rc1(G) = χ(G). A 2-radio coloring is an L(2, 1)-labeling where all colors are
positive integers; there is a difference in literature between the definition of a
2-radio coloring and an L(2, 1)-labeling, namely in an L(2, 1)-labeling zero can
also be used as a color. Thus, a 2-radio coloring of G is an L(2, 1)-labeling of G
that uses only positive labels. This is the reason why, for a graph G, we have the
relation:

rc2(G) = 1 + λ(G) [5],

where λ(G) is the L(2, 1)-number or λ-number of G, usually defined as the min-
imum span of an L(2, 1)-labeling of G. Note that if a coloring c uses color 0,
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then val(c) = span(c), hence λ(G) is the minimum value of an L(2, 1)-labeling
of graph G.

Note also that if an L(2, 1)-labeling of G has value λ(G), its actually uses
λ(G)+1 colors, hence the minimum number of colors nedeed in an L(2, 1)-labeling
of G is λ(G)+1, which is less natural than assuming that colors are positive inte-
gers. When radio colorings were introduced as an extension of L(2, 1)-labelings,
only positive colors were considered. A survey on these types of colorings can be
found in book [5].

Finding the l-radio chromatic number proved to be difficult even for simple
graphs like paths and cycles [13]. But, in order to solve interference or security
problems sometimes it is not necessary to color all vertices of the graph such
that every pair of vertices satisfy the radio condition, but to assure that between
every pair of vertices there is at least one path such that the coloring restricted to
that path is a radio coloring, as in the case of proper connectivity. Motivated by
this, the aim of this paper is to introduce the notion of l-radio connectivity for a
vertex-colored graph and present results for the case when l = 2 regarding upper
and lower bounds, exact values for some classes of graphs and graph operations,
existence problems.

Let G be a connected graph and c : V (G) → N
∗ a coloring of G (using

positive integers). Consider l a number representing the number of levels of
interference. A path P in G is called l-radio path if coloring c restricted to
V (P ) is an l-radio coloring for P . The coloring c is called l-radio path coloring

if there exists an l-radio path between every pair of distinct vertices of G. A
graph is l-radio connected if it admits an l-radio path coloring. The minimum
value of a l-radio path coloring of G is called the l-radio connection number of
G and is denoted rccl(G). An l-radio path coloring with value equal to rccl(G)
is called an optimal l-radio path coloring. For l = 2, since a 2-radio coloring is
similar to an L(2, 1)-labeling or λ-labeling (except using color 0), we will use the
notions of L(2, 1)-path coloring, L(2, 1)-paths, L(2, 1)-connected graph. Denote
λc(G) = rcc2(G) and refer to it as L(2, 1)-connection number or λ-connection
number of G.

More generally, if between every pair of vertices there exist k internally
vertex-disjoint L(2, 1)-paths, G is called k-L(2, 1)-connected. The minimum num-
ber of colors needed to label the vertices of G to make it k-L(2, 1)-connected is
the k-L(2, 1)-connection number of graph G and is denoted by λck(G). We have
λc1(G) = λc(G).

References for exact values of the L(2, 1)-number for known classes of graphs
can be found in [3].

For basic notions and notations we refer to [14]. Denote by [n] = {1, 2, . . . , n}.

Let G be graph and c a vertex coloring of G.

For a set of vertices S ⊆ V (G) define c(S) = {c(s) | s ∈ S}. We will use
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notation G[S] for the subgraph induced by S in G.

Denote by b(G) the maximum number of bridges in G incident in the same
vertex. If P is a path in G and u, v are vertices of P , the subpath of P from u to

v will be denoted u
P
− v.

Next we will prove results on L(2, 1)-connection number of a graph.

We will mainly consider 2-(edge) connected graphs, since robust networks
present interest as models for communication networks. Also, the upper bounds
that will be determined for the L(2, 1)-connection number of a 2-connected graph
would be used to provide upper bounds for general connected graphs.

Next, for an integer a, we will denote by a ± 1 the sequence with elements
a− 1, a+ 1.

2. Basic Properties

By definition, it is not difficult to see that a 2-radio coloring of a graph G is also
L(2, 1)-path coloring of G. Indeed, for a given 2-radio coloring of G, any path in
G is actually an L(2, 1)-path, since two vertices at distance 2 in a path of G are
at distance at most 2 in G, hence they have distinct labels. Thus the next result
follows.

Proposition 1. If G is a connected graph, then λc(G) ≤ rc2(G) = 1 + λ(G).

We remind the following results on the L(2, 1)-number of a tree.

Proposition 2 [7]. For a tree T , we have λ(T ) ∈ {∆(T ) + 1,∆(T ) + 2}.

Remark 3. A linear algorithm for deciding the exact value is given in [9].

Proposition 4. If G is a tree, then λc(G) = rc2(G) = 1 + λ(G).

Proof. By Proposition 1, we have λc(G) ≤ rc2(G). Let c be an optimal L(2, 1)-
path coloring of G and u, v two distinct vertices of G. There is a unique path P
in G between u and v, and this path is an L(2, 1)-path. If d(u, v) = 2, then P
has length 2 and since it is an L(2, 1)-path we have |c(u)− c(v)| ≥ 1. If u and v
are adjacent, we have P = [u, v] and then |c(u) − c(v)| ≥ 2. It follows that c is
also a 2-radio coloring of G, hence the reverse inequality holds.

Corollary 5. Let n ≥ 1. Then

λc(Pn) =















1, if n = 1,
3, if n = 2,
4, if n = 3, 4,
5, if n ≥ 5.
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Proof. By Proposition 4 we have λc(Pn) = 1 + λ(Pn) and by Proposition 3.1
from [7] the result follows.

Corollary 6. Let n ≥ 2. Then for the star graph Sn with n terminal vertices we

have λc(Sn) = n+ 2.

Proof. By Proposition 4 we have λc(Sn) = 1+λ(Sn). By Proposition 2, λ(Sn) ≥
∆(Sn)+1 = n+1, hence λc(Sn) ≥ n+2. It is easy to see that the labeling which
assigns colors 1, . . . , n to the terminal vertices of Sn and color n+2 to the center
is an L(2, 1)-path coloring (actually a 2-radio coloring), hence λc(Sn) = n+2.

Proposition 7. Let G be a connected graph with n ≥ 2 vertices.

1. λc(G) ≥ λc
(

Pdiam(G)+1

)

≥ 3.

2. If H is a spanning connected graph of G, then λc(G) ≤ λc(H).

3. λc(G) ≤ ∆∗ + 3 where ∆∗ = min{∆(T ) |T is a spanning tree of G}.

4. λc(G) ≥ b(G) + 2.

Proof. 1. Let c be an optimal L(2, 1)-path coloring of G and u, v be two vertices
such that the distance between u and v equals diam(G). Let P be an L(2, 1)-
path between u and v. Then P has at least diam(G) + 1 vertices and contains a
subpath isomorphic to Pdiam(G)+1. Using Corollary 5 we have

λc(G) ≥ λc(P ) ≥ λc
(

Pdiam(G)+1

)

≥ λc(P2) = 3.

2. Let H be a spanning connected graph of G. By the definitions of a spanning
connected graph and of an L(2, 1)-path coloring it follows that any L(2, 1)-path
coloring of H is also an L(2, 1)-path coloring of G, hence we have λc(G) ≤ λc(H).

3. Since a spanning tree of G is a spanning connected graph, by the previous
item we have

λc(G) ≤ min
{

λc(T ) |T is a spanning tree of G
}

.

But, for a tree T , from Propositions 4 and 2 we obtain

λc(T ) = rc2(T ) = 1 + λ(T ) ≤ ∆(T ) + 3,

hence the stated inequality follows.

4. If vv1 and vv2 are adjacent bridges, then the only path between v1 and v2 is
[v1, v, v2]. Hence b bridges incident in the same vertex induce a subgraph H in G
isomorphic to Sb such that any L(2, 1)-path coloring for G induces an L(2, 1)-path
coloring for H. Thus we have λc(G) ≥ λc(Sb) = b+ 2 (by Corollary 6).
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Remark 8. Let G be a graph and c : V (G) → N
∗ be an L(2, 1)-path coloring of

G with k = val(c). The complementary coloring of c, denoted c′, is defined as
c′(v) = k + 1 − c(v), for all v ∈ V (G). We have that c′ is also an L(2, 1)-path
coloring of G with value k.

Proposition 9. Let G be a connected graph with n ≥ 2 vertices.

1. λc(G) = 3 if and only if G = P2.

2. λc(G) = 4 if and only if 3 ≤ n ≤ 4 and G 6= S3.

3. λc(G) ≥ 5 if and only if n ≥ 5 or G = S3.

Proof. Note first that if in G there are two vertices with the same color, then
any L(2, 1)-path between them has at least 4 vertices. Moreover, it is easy to
verify that there is no L(2, 1)-path coloring for P4 with 4 colors such that the
extremities have the same color. Indeed, if the color of extremities is a, then both
internal vertices must have colors in [4]− {a, a± 1}. It suffices to consider a = 1
or 2, since the complementary of an L(2, 1)-path coloring is also an L(2, 1)-path
coloring. If a = 1 then the internal vertices must have colors 3, 4, if a = 2 then
both internal vertices must have color 4. In all cases the obtained coloring is not
an L(2, 1)-path coloring for P4.

Since λc(P5) = 5 (by Corollary 5), then, in order to have λc(G) ≤ 4, there
must exists an injective L(2, 1)-path coloring of G using colors {1, 2, . . . , λc(G)},
hence we must have n ≤ 4.

Since λc(G) ≥ λc(Pdiam(G)+1) (Proposition 7), we can have λc(G) = 3 if and
only if G = P2.

Otherwise, if 3 ≤ n ≤ 4 and G 6= S3, then G has a Hamiltonian path. Since
a Hamiltonian path is a spanning connected graph, by Proposition 7 point 2 we
obtain λc(G) ≤ λc(Pn) ≤ λc(P4) = 4, hence the result follows.

In all other cases we have λc(G) ≥ 5.

3. L(2, 1)-Connection Number of Some Classes of Graphs

Based on the idea from the proof of the last point of Proposition 9, the next
result on graphs with Hamiltonian paths follows.

Proposition 10. If G is a graph with n ≥ 5 vertices having a Hamiltonian path,

then λc(G) = 5.

Proof. By Proposition 9 we have λc(G) ≥ 5. Let P be a Hamiltonian path in
G. Then P is a spanning connected graph of G and, by Proposition 7 point 2,
we have λc(G) ≤ λc(P ) = 5.
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Corollary 11. Let n ≥ 3. Then

λc(Cn) =

{

4, if n = 3, 4,
5, if n ≥ 5.

Proof. The result follows from Propositions 9 and 10.

Corollary 12. Let n ≥ 5. Then λc(Kn) = 5.

Proposition 13. Let 1 ≤ m ≤ n. Then

λc(Km,n) =







n+ 2, if m = 1,
4, if n = m = 2,
5, otherwise.

Proof. For m = 1 the graph is Sn. For n + m ≤ 4 the result follows from
Proposition 9. Assume 2 ≤ m ≤ n with m+ n ≥ 5. Denote V (Km,n) = {x1, . . . ,
xm} ∪̇ {y1, . . . , yn}. Consider the following coloring c.

• c(x1) = 1, c(xi) = 2, for 2 ≤ i ≤ m;

• c(y1) = 4, c(yi) = 5, for 2 ≤ i ≤ n.

We will prove that c is an L(2, 1)-path coloring by considering all types of
pairs of vertices.

• x1, xi with 2 ≤ i ≤ m — consider path [x1, y1, xi];

• xi, xj with 2 ≤ i < j ≤ m — path [xi, y1, x1, y2, xj ];

• y1, yi with 2 ≤ i ≤ m — path [y1, x1, yi];

• yi, yj with 2 ≤ i < j ≤ n — path [yi, x1, y1, x2, yj ];

• xi, yj with 1 ≤ i ≤ m, 1 ≤ j ≤ n — path [xi, yj ].

Theorem 14. Let G be a 2-edge connected split graph with at least 5 vertices.

Then λc(G) = 5.

Proof. Denote G = (V,E). Since G is a 2-edge connected split graph, V can be
partition into two subsets C and S such that G[C] is a clique with at least three
vertices and S is an independent set.

By Proposition 9, we have λc(G) ≥ 5. In order to prove that equality holds
it suffices to provide an L(2, 1)-path coloring of G with 5 colors. Define such a
coloring c as follows.

Step 1. Color vertices from C using only colors 1, 3, 5 such that each color is
used at least once, but only one vertex has color 3.

Step 2. For every vertex s ∈ S choose fs and f ′

s two neighbors of s in C and
denote F (s) = {fs, f

′

s}. We say s is of type 1 if c(fs) 6= c(f ′

s), of type 2 if
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c(fs) = c(f ′

s) = 1, and of type 3 if c(fs) = c(f ′

s) = 5 (note that since only one
vertex from C has color 3, we cannot have c(fs) = c(f ′

s) = 3). Color s as follows:

c(s) =







the unique element from set {1, 3, 5} − c(F (s)), if s is of type 1,
4, if s is of type 2,
2, if s is of type 3.

Note that we have |c(s)− c(f)| ≥ 2, for all f ∈ F (s). Also, if s is of type 1,
then {c(s)} ∪ c(F (s)) = {1, 3, 5}.

In order to prove that c is an L(2, 1)-path coloring it suffices to provide an
L(2, 1)-path P between each pair (x, y) of distinct vertices of G. For that we
consider the following cases.

Case 1. x, y ∈ C. If c(x) 6= c(y) then let P = [x, y]. Otherwise, consider a
and b the two colors from {1, 3, 5} − {c(x)} and u, v two vertices from C of color
a, respectively b. Let P = [x, u, v, y].

Case 2. x ∈ S, y ∈ C.

Case 2.1. x is of type 2 or 3. Choose fx ∈ F (x). By Case 1 there exists an
L(2, 1)-path Q from fx to y. Let P = [x,Q] be the path obtained by adding x at
the beginning of Q. Since c(x) /∈ {1, 3, 5}, P is an L(2, 1)-path.

Case 2.2. x is of type 1. Since {c(x)} ∪ c(F (x)) = {1, 3, 5}, there exists fx ∈
F (x) with c(fx) 6= c(y). If c(x) 6= c(y) consider P = [x, fx, y]. Otherwise choose
z in C of the unique color from {1, 3, 5} − {c(fx), c(y)} and let P = [x, fx, z, y].

Case 3. x, y ∈ S.

Case 3.1. Both x and y are of type 2 or 3. Choose fx ∈ F (x) and fy ∈ F (y)
with fx 6= fy. Let Q be an L(2, 1)-path in G[C] from fx to fy (exists from Case
1). Let P = [x,Q, y]. Since c(x), c(y) /∈ {1, 3, 5} and c(P ) ⊆ {1, 3, 5}, P is an
L(2, 1)-path.

Case 3.2. x is of type 2 or 3 and y is of type 1. Let fx ∈ F (x). By Case 2
there is Q an L(2, 1)-path from fx to y, having only vertices of colors {1, 3, 5}.
Consider P = [x,Q].

Case 3.3. Both x and y are of type 1. We then have

{c(x)} ∪ c(F (x)) = {c(y)} ∪ c(F (y)) = {1, 3, 5}.

If c(x) = c(y), choose fx ∈ F (x) and fy ∈ F (y) such that c(fx) 6= c(fy).
Then |c(fx)− c(fy)| ≥ 2 and P = [x, fx, fy, y] is an L(2, 1)-path.

If c(x) 6= c(y), let fx ∈ F (x) of color c(y) and fy ∈ F (y) of color c(x). Let z
be a vertex from Q of color {1, 3, 5} − {c(x), c(y)}. Consider P = [x, fx, z, fy, y].

In all cases it can be easily verified that path P is an L(2, 1)-path. Hence c
is an L(2, 1)-path coloring.
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As a consequence of the previous theorem, λc(G) can be determined for a
graph G that has a 2-dominating clique. We remind that, for a graph G, a set
of vertices D is called a 2-dominating set if each vertex from V (G) − D has at
least two neighbors in D. A clique Q in G is a 2-dominating clique if V (Q) is a
2-dominating set.

Corollary 15. Let G be a graph with at least 5 vertices. If G has a 2-dominating

clique, then λc(G) = 5.

Proof. Let Q be a 2-dominating clique in G of maximum size and S = V (G)−
V (Q). By definition |V (Q)| ≥ 2. Assume that Q has only 2 elements, denoted
u and v. Then there is a vertex s ∈ S and this vertex is adjacent to u and v.
It follows that {u, v, s} is a 2-dominating clique, hence Q is not maximum. It
follows that |V (Q)| ≥ 3.

Let H be the spanning graph of G obtained from G by removing the edges
having both ends in S. Then H is a split graph. Moreover, it can be easily
proved that H has no bridge, hence is 2-edge connected. Indeed, let e be an
egde of H. If e has both ends in Q, then, since Q is a clique with at least three
vertices, e is contained in at least one triangle in Q, hence is not a bridge in H
[14]. Otherwise, denote the ends of e with u and s such that s ∈ S and u ∈ Q.
Since Q is 2-dominating, there exists v ∈ Q adjacent to s, with v 6= u. Then e is
again contained in triangle induced by s, u and v, hence it is not a bridge.

By Theorem 14, we have λc(H) = 5. But, since H is a spanning connected
graph of G, by Proposition 7 point 2, λc(G) ≤ λc(H) = 5. By Proposition 9 the
reverse inequality also holds, hence λc(G) = 5.

4. Graph Operations

Next we study the L(2, 1)-connectivity for graphs obtained by some classical
graph operations — Cartesian product and join of graphs.

We remind that for two graphs G and H the Cartesian product G�H is the
graph with vertex set V (G)× V (H) and edge set E(G�H) defined as

{(

(u, v), (u′, v′)
)

|
(

u = u′ and vv′ ∈ E(H)
)

or
(

uu′ ∈ E(G) and v = v′
)}

.

For a vertex v ∈ V (H) denote by Gv the graphs induced in G�H by vertices
from V (G)× {v}. Then Gv is isomorphic to G.

Theorem 16. Let G and H be two connected nontrivial graphs. Then

λc(G�H) =

{

4, if |V (G)| = |V (H)| = 2,
5, otherwise.
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Proof. If |V (G)| = |V (H)| = 2 then G and H are isomorphic to P2, hence
λc(G�H) = λc(C4) = 4. Otherwise, let T be a spanning tree of G. We fix a root
for T and denote by level(u) the level of a vertex u of G in T . Similar, consider
T ′ a spanning tree of H, fix a root for T ′ and denote by level′(v) the level of a
vertex v of H in T ′. The level of the root is 0.

Define a color c for the vertices (u, v) of G�H according to the levels of u
and v in T and T ′, respectively as follows.

c((u, v)) =















1, if level′(v) and level(u) are even,
5, if level′(v) is even and level(u) is odd,
2, if level′(v) and level(u) are odd,
4, if level′(v) is odd and level(u) is even.

Informal, we color the spanning tree of each copy Gv alternately with colors 1
and 5 starting from the root if level′(v) is even and with colors 4 and 2 if level′(v)
is odd.

We prove that c is an L(2, 1)-path coloring. Let (u, v) and (u′, v′) be two
vertices of G�H. Let P = [u = u1, u2, . . . , up = u′] be a path in T from u to u′.

We can have the following cases.

Case 1. v = v′. In this case p ≥ 2 and the vertices are in the same copy Gv.
Let w be a vertex adjacent to v in T ′.

If p is even, consider the path

Q1 =
[

(u1, v), (u2, v), (u2, w), (u3, w), (u3, v), . . . , (up−2, v), (up−2, w),

(up−1, w), (up−1, v), (up, v)
]

;

otherwise consider

Q2 =
[

(u1, v), (u2, v), (u2, w), (u3, w), (u3, v), . . . , (up−1, v), (up−1, w),

(up, w), (up, v))
]

.

Case 2. v and v′ are adjacent. If p = 1 (u = u′) consider the path with an
edge [(u, v), (u, v′)]. Otherwise, from the previous case there exists an L(2, 1)-
path from (u1, v) to (up, v) containing only vertices from Gv and Gv′ . If p is even
consider the path obtained by Q1 by adding vertex (up, v

′), otherwise consider
the subpath from Q2 between (u1, v) to (up, v

′).

Case 3. There exists a path P = [v = v1, v2, . . . , vq = v′] with q ≥ 3 in T ′

from v to v′. If p = 1 (u = u′) we proceed as in the first case, but changing T ′

with T . Otherwise, there is an L(2, 1)-path from (u1, v1) to (u1, vq−1) containing
only internal vertices that are not in Gvq−1

or Gvq . Indeed, if q − 1 is even we
can consider the path

R1 =
[

(u1, v1), (u1, v2), (u2, v2), (u2, v3), (u1, v3), (u1, v4), . . . , (u2, vq−2),

(u1, vq−2), (u1, vq−1)
]

;
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otherwise the path

R2 =
[

(u1, v1), (u2, v1), (u2, v2), (u1, v2), (u1, v3), (u2, v3), . . . , (u2, vq−2),

(u1, vq−2), (u1, vq−1)
]

.

Then, as in Case 2, there exists an L(2, 1)-path from (u1, vq−1) to (up, vq) contain-
ing only vertices fromGvq−1

andGvq , and starting with vertices (u1, vq−1), (u2, vq−1).
By joining these two paths we obtain an L(2, 1)-path from (u1, v1) to (up, vq).

We remind that it is difficult to determine the L(2, 1)-number for Cartesian
product of two graphs, even if they are simple graphs like paths and cycles [3].

For two graphs G and H the join G∨H is the graph with vertex set V (G)∪
V (H) and edge set E(G ∨H) = E(G) ∪ E(H) ∪ {uv |u ∈ V (G) and v ∈ V (H)}.

Theorem 17. Let G and H be two connected nontrivial graphs. Then

λc(G ∨H) =

{

4, if |V (G)| = |V (H)| = 2,
5, otherwise.

Proof. If |V (G)| = |V (H)| = 2 then G and H are isomorphic to P2, hence
λc(G�H) = λc(K4) = 4. Otherwise G ∨ H contains a spanning subgraph iso-
morphic to Kn,m, where n = |V (G)| and m = |V (H)|. By Propositions 7 and 13
we have 5 ≤ λc(G ∨H) ≤ λc(Kn,m) = 5.

Note that for any other graphs operation through which we obtain a graph
containing a spanning graph that is a 2-connected bipartite complete graph we
have similar results as for join.

5. Existing Problems

Most of the bridgless graphs studied in the previous section proved to have the
L(2, 1)-connection number equal to 5. One natural question is if there are bridge-
less connected graphs with L(2, 1)-connection number greater than 5. Also, note
that λ(Km,n) = n+m+1, hence the difference between λ(Km,n) and λc(Km,n) in
this case is large. We will prove a more general result on the existence of graphs
with given 2-radio connection number (or given L(2, 1)-number) and L(2, 1)-
connection number.

First, we give an example of a 2-edge-connected graph with L(2, 1)-connection
number greater than 5. Since such graphs exist, it is useful to find upper bounds
for L(2, 1)-connection number for this type of graphs.

Lemma 18. Let G be the graph obtained from the bipartite complete graph K4,2

by attaching 26 triangles to each of its vertices. Then G is 2-edge-connected and

λc(G) = 6.
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Proof. Denote by V4,2 the set of vertices of the subgraph of G isomorphic to
K4,2. By construction G has no bridges, hence is 2-edge-connected. Assume by
contradiction that G has an L(2, 1)-path coloring c with val(c) = 5. Then c
restricted to V4,2 is an L(2, 1)-path coloring with 5 colors of K4,2. We will prove
the following claim.

Claim. K4,2 does not admit an L(2, 1)-path coloring with 5 colors that uses only

colors {1, 3, 5}.

Proof. Denote by X and Y the two sets of K4,2 bipartition, such that |X| = 4.
Assume there is an L(2, 1)-path coloring of K4,2 using only colors 1, 3, 5. Since
|X| = 4, there are two vertices x, x′ ∈ X with c(x) = c(x′). Then an L(2, 1)-path
from x to x′ must have length multiple of 3. But from x to x′ are only paths of
length 2 or 4, contradiction. �

From the Claim we obtain that there is v ∈ V4,2 such that c(v) ∈ {2, 4}.
Without loss of generality assume c(v) = 2 (otherwise consider the complement
coloring). There are 26 triangles attached to v and the other two vertices of each
triangle have colors in set {1, 2, 3, 4, 5}. Since there are only 25 distinct pair of
colors from this set, it follows that two triangles incident in v have the vertices of
the same color. Denote the two vertices of these triangles that are distinct from
v with u1, u2, respectively w1, w2 such that c(ui) = c(wi) = ci for i = 1, 2. Since
c is an L(2, 1)-path coloring, there is an L(2, 1)-path from u1 to w1, and this
path must contain v, which is a cut vertex. Thus, one of the paths [u1, v, w2, w1]
or [u1, u2, v, w1] is an L(2, 1)-path, hence we must have |c1 − c2| ≥ 2 and also
|ci− c(v)| ≥ 2 for i = 1, 2, which is not possible since c(v) = 2 and 1 ≤ c1, c2 ≤ 5.
It follows that λc(G) > 5. Moreover, note that if c uses 6 colors instead of 5 and
c(v) is an arbitrary color in {1, . . . , 6}, we can always choose two colors c1, c2 with
1 ≤ c1, c2 ≤ 6 satisfying the above inequalities and color each pair of vertices that
induce a triangle together with v using these colors. In this way we obtain an
L(2, 1)-path coloring with 6 colors.

Proposition 19. For any pair of integers a, b ≥ 5 with a + 1 < b there exists a

graph G with λc(G) = a and rc2(G) = b.

Proof. Consider graph G with V (G) = {x1, . . . , xp} ∪ {y1, . . . , yq} ∪ {u, v} and

E(G) = {xiu | i = 1, . . . , p} ∪ {yiu, yiv | i = 1, . . . , q},

with p = a−2 ≥ 3 and q = b−a ≥ 2. Graph G contains a subgraph isomorphic to
Sp with terminal vertices being terminal in G also, hence λc(G) ≥ λc(Sp) = p+2
(Corollary 6). This bound is achieved by the following L(2, 1)-path coloring:
c(u) = 1, c(v) = 2, c(xi) = i+ 2, 1 ≤ i ≤ p, c(y1) = 4, c(yi) = 5, 2 ≤ i ≤ q. Thus
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λc(G) = p+ 2. Since G contains a subgraph isomorphic to Sp+q, by Proposition
4 and Corollary 6 we have

rc2(G) ≥ rc2(Sp+q) = λc(Sp+q) = p+ q + 2.

Consider the following coloring: c(u) = 1, c(v) = 3, c(xi) = i + 2, 1 ≤ i ≤ p,
c(yi) = i + p + 2, 1 ≤ i ≤ q. It is easy to verify that c is an 2-radio coloring for
G, hence rc2(G) = p+ q + 2.

6. Upper Bounds

Since we proved there are 2-edge connected graphs with λc greater than 5, it is
useful to know upper bounds for L(2, 1)-connection number of this type of graphs.
In this section we determine a constant upper bound for this type of graphs and
use the provided L(2, 1)-path coloring to obtain upper bounds for the general
case. The result is based on the existence of an ear decomposition, starting with
a particular cycle.

We will use some notation similar to [12]. For a path P = [v1, . . . , vp] from
v1 to vp with p ≥ 2, we will denote by start2(P ) = v2 the second vertex of P , by
end2(P ) = vp−1 the last but one vertex of P , and by P−1 = [vp, vp−1, . . . , v1] the
reverse of path P , seen as a path from vp to v1.

Theorem 20 [14]. If G is a 2-connected graph, then G has an (open) ear decom-

position. Furthermore, every cycle in G is the initial cycle in some ear decompo-

sition.

Lemma 21. Let G be a 2-connected graph with n ≥ 4 vertices and s a vertex of

G. Then s is contained in a cycle of length at least 4.

Proof. Assume that s is not contained in a cycle of length at least 4. We remind
that since G is 2-connected there are at least two internal-disjoint paths between
each pair of vertices, hence any two vertices are contained in a cycle. Let u 6= s
be a vertex of G. Then there is a triangle [s, u, v, s] in G. Let now w be another
vertex, distinct from s, u, v.

There is a path P from w to one of the vertices u, v such that this path does
not contain any other vertex from cycle [s, u, v, s]. Indeed, there is a path from
w to u not containing s. If this path contains v, consider the subpath from w to
v. Assume wlog P is a path from w to u that does not contain s and v. There is
a path Q from w to s that does not contain u. Let x be the last common vertex
for P and Q. Note that x 6= u, s, therefore [s, x, u, s] must be a triangle. Then
[x, s, v, u, x] is a cycle of length 4 containing s, contradiction.
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In the next theorem we provide a method for finding an L(2, 1)-path coloring
having the value at most 10 for a 2-connected graph with at least 4 vertices
with some particular properties. This particular type of coloring would be used
to color blocks of an arbitrary graphs in order to obtain upper bounds for any
connected graphs.

Theorem 22. Let G be a 2-connected graph with n ≥ 4 vertices and L ≥ 10
a natural number. Let s be a vertex in V (G) and cs, cs1, cs2 ∈ [L] such that

cs1 6= cs2 and |cs−csi| ≥ 2 for i = 1, 2. Then there exists an L(2, 1)-path coloring

c of G with value at most L such that c(s) = cs and each vertex v in G has an

associated multiset containing two colors, namely: for v 6= s, C(v) = {cv1, cv2}
with |c(v)− cvi| ≥ 2, i = 1, 2 and C(s) = {cs1, cs2}, satisfying the properties.

1. For every pair of vertices x 6= y ∈ V there exists an L(2, 1)-path Pxy from x
to y such that c(start2(Pxy)) ∈ C(x) and c(end2(Pxy)) ∈ C(y).

2. For every vertex x 6= s there exist two L(2, 1)-paths Px and P ′

x from x
to s such that c(start2(Px)), c(start2(P

′

x)) ∈ C(x), c(end2(Px)) = cs1 and

c(end2(P
′

x)) = cs2.

Proof. It suffices to consider L = 10. Let Cp = [v1 = s, v2, . . . , vp, vp+1 = v1] be
a cycle containing s with p ≥ 4. Such a cycle exists by Lemma 21.

By Theorem 20, G has an (open) ear decomposition such that the initial cycle
is Cp. Such a decomposition is obtained starting from cycle Cp and sequentially
adding a path (which is not a cycle) and has both extremities in the graph
obtained at previous step and no other vertices in common with this graph.

We will prove the result by induction on the number of ears added to Cp.
Consider first the graph Cp. Color c(v1) = c(s) = cs, c(v2) = cs1 and c(vp)

= cs2. Then we color the other vertices of Cp such that we obtain a L(2, 1)-
path coloring as follows. If p = 4 choose c(v3) ∈ [L] − {c(s), cs1, cs2, cs1 ± 1,
cs2±1}. Otherwise color in this order v3, . . . , vp−3 such that c(vi) ∈ [L]−{c(vi−1),
c(vi−2), c(vi−1)± 1}; then color vp−2 such that

c(vp−2) /∈ [L]−
{

c(vp−4), c(vp−3), c(vp−3)± 1, c(vp)
}

;

then color vp−1 such that

c(vp−1) /∈ [L]−
{

c(vp−3), c(vp−2), c(vp−2)± 1, cs2, c(s), cs2 ± 1
}

.

Let C(vi) = {c(vi−1), c(vi+1)} for 2 ≤ i ≤ p. Since c is actually a 2-radio
coloring of Cp, properties 1 and 2 are satisfied, both paths [vi, . . . , vp, s] and
[vi, vi−1, . . . , v2, s] being L(2, 1)-paths for each i.

Assume now that the statement is true before ear P is added. Denote by
G′ the graph before adding ear P and by G the obtained graph. By induction,
there exists an L(2, 1)-path coloring c′ of G′ with value at most L and sets C ′(v)
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associated to each vertex v of G′ satisfying stated properties. Denote P = [x =
v1, v2, . . . , vp = y] the ear added to G′ to obtain G, denoted such that y 6= S.
We will extend the coloring c′ from V (G′) to a coloring c of G and define set of
vertices C(v) for the vertices in V (G) − V (G′) such that properties 1 and 2 are
satisfied.

Consider c(v) = c′(v) and C(v) = C ′(v) for v ∈ V (G′).
If p = 2, then V (G) = V (G′) and obviously c is the required coloring.
Let Pxy be an L(2, 1)-path from x to y in G′ with c(start2(Pxy)) ∈ C ′(x) =

C(x) and c(end2(Pxy)) ∈ C ′(y) = C(y).
Denote C(x) = {cx1, cx2} and C(y) = {cy1, cy2} such that c(start2(Pxy)) =

cx1.
If p = 3 then choose c(v2) ∈ [L], but

c(v2) /∈ C(y) ∪ {cx1, c(x), c(y), c(x)± 1, c(y)± 1}.

Since there are at most 9 such forbidden values for c(v2), we can choose such a
value. Set C(v2) = {c(x), c(y)}.

For connecting v2 with the rest of vertices from G′ such that property 1 is
satisfied we use the following paths:

• from v2 to x — path

[

v2, y
P−1
xy

− x

]

(note that c(start2(Pxy)) ∈ C(y) and

c(v2) /∈ C(y)),

• from v2 to y — path

[

v2, x
Pxy

− y

]

(c(start2(Pxy)) = cx1 and c(v2) 6= cx1),

• from v2 to z ∈ V (G′)− {x, y} — path

[

v2, y
Pyz

− z

]

, where Pyz is an L(2, 1)-

path from y to z in G′ having c(start2(Pyz)) ∈ C(y), c(end2(Pyz)) ∈ C(z).

For connecting v2 with s such that property 2 is satisfied, consider two paths
P 1
y and P 2

y in G′ from y to s verifying property 2 and extend them by adding
edge v2y at the beginning.

Thus properties 1 and 2 are satisfied for v2 and remain true also for C(z)
with z ∈ V (G′) since we only considered path having starts and ends in C ′(z).

If p ≥ 4 we color each vertex v2, . . . , vp−2 in this order such that

c(vi) /∈ [L]− {c(vi−1), c(vi−2), c(vi−1)± 1}

where by convention c(v0) = cx1. In the end color vp−1 such that

c(vp−1) ∈ [L]−
{

c(vp−3), c(vp−2), c(vp−2)± 1, c(y), c(y)± 1, cy1, cy2
}

.

Consider C(vi) = {c(vi−1), c(vi+1)}, 2 ≤ i < p−1, C(vp−1) = {c(vp−2), c(y)}.
We use the following paths to connect v2, . . . , vp−1 between them and with

vertices from V (G′) such that property 1 is satisfied:
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• from vi to x — path

[

vi
P
− y

P−1
xy

− x

]

,

• from vi to y — path

[

vi
P
− x

Pxy

− y

]

,

• from vi to z ∈ V (G′)− {x, y} — path

[

vi
P
− y

Pyz

− z

]

,

• from vi to vi+k — use the subpath from vi to vi+k of P .

For connecting vi with s such that property 2 is satisfied, consider again two
paths P 1

y and P 2
y in G′ from y to s satisfying property 2 and extend them by

adding path

[

vi
P
− y

]

at the beginning.

Corollary 23. If G is a 2-connected graph, then λc(G) ≤ min{10,∆(G) + 3}.

Proof. The result follows from Theorem 22 for cs = 1, cs1 = 3, cs2 = 5 and
Proposition 7.

Theorem 24. Let G be a connected graph with n ≥ 5 vertices. Then

max{b(G) + 2, 5} ≤ λc(G) ≤ max{10, b(G) + 5}.

Proof. The lower bound follows from Proposition 7.
Let L = max{10, b(G) + 5}. We will provide an algorithm for finding an

L(2, 1)-path coloring of G using at most L colors. Consider T the block-cut
vertex tree associated to G and fix as root a cut vertex r. Traverse T starting
from r level by level, exploring only vertices corresponding to cut vertices. When
a cut vertex x is explored, we color as described bellow the vertices of the blocks
that are direct descendants of x. The coloring is done such that, for the set Vc

of vertices already colored, the following property (similar to property 1 from
Theorem 22) is satisfied at each step.

For each vertex v ∈ Vc there exists a multiset C(v) of two colors from [L]
such that for every w ∈ V ′ with w 6= v there exists an L(2, 1)-path Pvw from v
to w in the G[Vc] such that c(start2(Pvw)) ∈ C(v) and c(end2(Pvw)) ∈ C(w);
moreover if v is unexplored we have |C(v)| = 2 (∗).

For r consider c(r) = 1 and C(r) = {3, 3}. Let x be the cut vertex currently
explored and C(x) = {cx1, cx2}. If cx2 = cx1 then choose cx3 ∈ [L]− {cx1, c(x),
c(x)± 1}. Otherwise set cx3 = cx2. Modify set C(x) = {cx1, cx3}. Property (∗)
is still satisfied since cx3 is either cx2 or a new value added to {cx1, cx2}.

Color the blocks that are direct descendants of x in T in the following order:
first blocks with 4 vertices, then blocks with 3 vertices, and last blocks with 2
vertices (corresponding to bridges) as follows, such that property (∗) remains
true.
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• Let B be a block with at least 4 vertices. Apply Theorem 22 for s = x,
cs = c(x), cs2 = cx1, cs2 = cx3 in order to color the vertices of B. Note that the
associated set for x in B is {cx1, cx3}, which is actually C(x). We need to prove
that for every two vertices v ∈ V (B)− {x} and y ∈ Vc there is a path from v to
y satisfying property (∗). Since the property is satisfied for G[Vc], there exists a
path Pxy from x to y in G[Vc] such that c(start2(Pxy)) = a ∈ C(x) = {cx1, cx3}
and c(end2(Pxy)) ∈ C(y). But by property 2 from Theorem 22, there exists a path
Pvx in B from v to x with c(end2(Pvx)) ∈ C(x)−{a} and c(start2(Pvx)) ∈ C(v).

Consider the path

[

v
Pvx

− x
Pxy

− y

]

which is an L(2, 1)-path from v to y satisfying

property (∗).

• Let B be a block with exactly 3 vertices x, u1, u4. Choose cx4 ∈ [L] such that
|cx4 − cx1| ≥ 2 and |cx4 − c(x)| ≥ 2 (cx4 can be equal to cx3). Set c(ui) = cxi,
C(ui) = {c(x), cx5−i} for i = 1, 4. As in the previous case, for a vertex y ∈ Vc

there exists an L(2, 1)-path Pxy from x to y in G[Vc] such that c(end2(Pxy)) ∈
C(y) and c(start2(Pxy)) = cxj ∈ {cx1, cx3}. Extend this path to a path to ui for
i = 1, 4 using one of paths [x, ui] or [x, u5−i, ui] having the second vertex with
color different of cxj . For i = 1, 4 we consider as L(2, 1)-path from x to ui one of
the paths [x, ui] or [x, u5−i, ui], namely that having the color of the second vertex
cx1.

• Let B1, . . . , Bk be the blocks with 2 vertices that are direct descendants of x,
corresponding to bridges xv1, . . . , xvk. Note that k ≤ b(G). Choose for c(v1), . . . ,
c(vk) distinct colors from [L] − {c(x), cx1, cx3, c(x) ± 1} and add them to C(x).
For every i = 1, . . . , k set C(vi) = {c(x), c(x)}. Since property (∗) is verified
before this step, there exists an L(2, 1)-path from x to any other vertex y already
colored that has the second vertex of color cx1 or cx3 and the last but one vertex
of color from C(y); we can extend this path by adding vertex vi at the beginning
and property (∗) is satisfied. Note that at this step we modified C(x) by adding
new values, but x is already explored.

Corollary 25. If G is an 2-edge connected graph, then

λc(G) ≤ min{10,∆(G) + 3}.

7. On k-L(2, 1)-Connection Number

In some of the colorings constructed for the graphs considered in previous section,
such as Kn,m, there is more than one L(2, 1)-path between some pairs of vertices.
Since assuring k-connectivity is important in communication networks, in this
section we will study the k-L(2, 1)-connectivity of the complete bipartite graph.
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First, for a given k, we define an L(2, 1)-path coloring that makes graph Kn,n

k-L(2, 1)-path connected, which gives an upper bounds for λck(Kn,n). Then we
will prove that these upper bounds are also lower bounds.

Remark that for a connected graph G and 1 < k ≤ κ(G) we have λck−1(G) ≤
λck(G) ≤ rc2(G). Also, if H is a connected spanning subgraph of G, then
λck(G) ≤ λck(H).

For a graph G and a coloring c of G, we will use the following notations.
For two vertices u, v of G denote κc(u, v) the maximum number of internally-

disjoint L(2, 1)-paths from u and v.
For a vertex u denote Fc(u) = {v ∈ NG(u) | |c(u) − c(v)| ≤ 1} the set of

neighbors of u that cannot be adjacent to u on an L(2, 1)-path, called the set of

forbidden neighbors of u. We have |c(Fc(u))| ≤ 3.
Denote (X,Y ) the bipartition of Kn,n, with X = {x1, . . . , xn}, Y = {y1, . . . ,

yn}.
In order to provide L(2, 1)-paths in Kn,n the following lemma will be used to

associate to each vertex from X a possible neighbor in an L(2, 1)-path.

Lemma 26. Let n ≥ 8 and c be a coloring of Kn,n such that there are no two

vertices of same color in X or in Y . Let x ∈ X and y ∈ Y be two arbitrary vertices

such that |Fc(x)| ≤ |Fc(y)|. Let X ′ = X−Fc(y)−{x} and Y ′ = Y −Fc(x)−{y}.
Consider G′ the subgraph of Kn,n having vertex set X ′ ∪ Y ′ and edge set E′ =
{uv |u ∈ X ′, v ∈ Y ′, |c(u) − c(v)| ≥ 2}. Then G′ has a matching that saturates

all vertices in X ′.

Proof. First note that E′ = {uv |u ∈ X ′, v ∈ Y ′, u /∈ Fc(v), v /∈ Fc(u)}, hence
two vertices are adjacent in G′ if they can be adjacent in an L(2, 1)-path. Also,
since for a vertex u, c(Fc(u)) = {c(u), c(u) ± 1} and vertices in the same set of
bipartition have distinct colors, then |Fc(u)| ≤ 3 and |Y ′| ≥ |X ′| ≥ n− 4.

In order to prove the result we will use Hall’s Theorem. Let S ⊆ X. Then
NG′(S) = Y ′ −

(
⋂

s∈S Fc(s)
)

. For |S| > 3 we have
⋂

s∈S c(Fc(s)) = ∅, hence
|NG′(S)| = |Y ′| ≥ |X ′| ≥ |S|. If |S| ≤ 3, then

∣

∣

⋂

s∈S c(Fc(s))
∣

∣ ≤ 4 − |S|. We
obtain

|NG′(S)| ≥ |Y ′|+ |S| − 4 ≥ |X ′|+ |S| − 4 ≥ n− 8 + |S| ≥ |S|.

Corollary 27. Let n ≥ 8 and c be a coloring of Kn,n such that there are no two

vertices of same color in X or in Y . Let x ∈ X and y ∈ Y be two arbitrary

vertices. Then the following properties hold.

1. There is a matching M in Kn,n of cardinality n−max{|Fc(x)∪{y}|, |Fc(y)∪
{x}|} such that for every edge uv ∈ M with u ∈ X and v ∈ Y , path [x, v, u, y]
is an L(2, 1)-path.

2. κc(x, y) = n−max{|Fc(x)|, |Fc(y)|}.
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Proof. Note that κc(x, y) ≤ n−max{|Fc(x)|, |Fc(y)|} since x cannot be adjacent
on an L(2, 1)-path with a vertex from Fc(x) and similar for y.

From Lemma 26 applied for bipartition (X,Y ) if |Fc(x)| ≥ |Fc(y)| or bipar-
tition (Y,X) otherwise, there is a matching in G with N = n − max{|Fc(x) ∪
{y}|, |Fc(y)∪ {x}|} elements such that for every edge uv from the matching with
u ∈ X, v ∈ Y we have u /∈ Fc(v) ∪ Fc(y) ∪ {x} and v /∈ Fc(u) ∪ Fc(y) ∪ {x}.
Since there are no vertices with the same color in X or in Y , path [x, v, u, y]
is an L(2, 1)-path. It follows that there are N internally disjoint L(2, 1)-paths
between x and y of length 4. If y ∈ Fc(x) then also x ∈ Fc(y), hence in this case
N = n−max{|Fc(x)|, |Fc(y)|}. Otherwise N = n−1−max{|Fc(x)|, |Fc(y)|}, but
in this case [x, y] is also an L(2, 1)-path, hence there are n−max{|Fc(x)|, |Fc(y)|}
internally disjoint paths as stated.

It is easy to see that the following remark holds.

Remark 1. Consider c an arbitrary coloring of Kn,n and i, j ∈ [n].

1. For a pair (xi, xj) with i 6= j, a path [xi, y, xj ] with y ∈ Y is an L(2, 1)-path
if and only if y /∈ Fc(xi) ∪ Fc(xj), hence κc(xi, xj) = n− |Fc(xi) ∪ Fc(xj)|.

2. For a pair (yi, yj) with i 6= j, we have κc(yi, yj) = n− |Fc(yi) ∪ Fc(yj)|.

3. For a pair (xi, yj), by Corollary 27, we have κc(xi, yj) = n − max{|Fc(xi)|,
|Fc(yj)|}.

Proposition 28. Let n ≥ 3 and k such that 1 ≤ k ≤ n. We have

λck(Kn,n) ≤



















5, if k ≤
[

n
2

]

,

n, if
[

n
2

]

< k ≤ n− 6,

k + 4 +
[

n+1
3

]

, if n− 5 ≤ k ≤ n− 4,

k + 1 + n, if n− 3 ≤ k ≤ n.

Proof. Let k ∈ [n]. We will describe a coloring of Kn,n for various cases of k and
use Remark 1 in order to prove that the coloring makes graph Kn,n k-L(2, 1)-path
connected.

Case 1. k ≤
[

n
2

]

. Consider the coloring c define as follows:

c(v) =



















1, if v ∈
{

x1, . . . , x[n/2]
}

,

2, if v ∈
{

x[n/2]+1, . . . , xn
}

,

4, if v ∈
{

y1, . . . , y[n/2]
}

,

5, if v ∈
{

y[n/2]+1, . . . , yn
}

.

In order to prove that c is an [n/2]-connected L(2, 1)-coloring we consider
each type of pairs of vertices and provide [n/2] internally disjoint L(2, 1)-paths.
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• (xi, xj), i 6= j ≤ [n/2]: paths
(

xi, yt+[n/2], xt+[n/2], yt, xj
)

, t ∈ [n/2],

• (xi, xj), i 6= j > [n/2]: paths
(

xi, yt, xt, yt+[n/2], xj
)

, t ∈ [n/2],

• (xi, xj), i ≤ [n/2] < j: paths (xi, yt, xj), t ∈ [n/2],

• (xi, yj), i, j ≤ n: any path [xi, y, x, yj ] with x ∈ X − {xi} and y ∈ Y − {yj}
is an L(2, 1)-path. There are n− 1 such internally disjoint paths. Moreover,
[xi, yj ] is also an L(2, 1)-path.

For all types of pairs we have at least [n/2] internally disjoint paths between the
pairs of vertices, hence c is an [n/2]-connected L(2, 1)-path coloring.

Case 2.
[

n
2

]

< k ≤ n− 6. Define the coloring c as follows: c(xi) = c(yi) = i,
for i ∈ [n]. Then |Fc(u)| ≤ 3 for every u ∈ V .

Since for any two vertices u, v in the same set of bipartition we have |Fc(u)∪
Fc(v)| ≤ 6, by Remark 1 it follows that Kn,n is (n − 6)-L(2, 1)-path connected
with respect to c.

Case 3. k = n− 5. Consider c defined as follows, for i ∈ [2n].

• if i ≤ 3, define c(xi) = c(yi) = i,

• if i > 3 and i = 3t+ 1, define c(xi) = c(yi) = 4t,

• if i > 3 and i = 3t+ 2, define c(xi) = 4t+ 1, c(yi) = 4t+ 2,

• if i > 3 and i = 3t+ 3, define c(xi) = 4t+ 2, c(yi) = 4t+ 3.

It is easy to check that coloring c has val(c) = n− 1+
[

n+1
3

]

by considering cases
n = 3t+ 1, 3t+ 2, 3t+ 3.

The sets of forbidden neighbors for xi ∈ X and yi ∈ Y are:

• if i = 1: Fc(x1) = {y1, y2}, Fc(y1) = {x1, x2},

• if i = 2, 3: Fc(xi) = {yi−1, yi, yi+1}, Fc(yi) = {xi−1, xi, xi+1},

• if 3 < i < n: Fc(xi) = {yi−1, yi}, Fc(yi) = {xi, xi+1},

• if i = n: Fc(xi) = {yi−1, yi}, Fc(yi) = {xi}.

For every pair of vertices (u, v) we have max{|Fc(u)|, |Fc(v)|} ≤ 3. Moreover,
if u and v are in the same class of bipartition, |Fc(u) ∪ Fc(v)| ≤ 5, hence by
Remark 1 there are at least n− 5 internally disjoint L(2, 1)-paths from u to v.

Case 4. k = n− 4. Define c as follows, for i ∈ [2n].

• if i = 3t+ 1: c(xi) = c(yi) = 4t+ 1,

• if i = 3t+ 2: c(xi) = 4t+ 2, c(yi) = 4t+ 3,

• if i = 3t+ 3: c(xi) = 4t+ 3, c(yi) = 4t+ 4.

As in the previous case, it can be proved that coloring c has val(c) = n+
[

n+1
3

]

and for every pair of vertices (u, v) in the same class we have |Fc(u)∪Fc(v)| ≤ 4,
hence there are at least n− 4 internally disjoint L(2, 1)-paths from u to v.
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Case 5. n − 3 ≤ k ≤ n. Define the coloring c as follows: c(xi) = i, c(yi) =
i+ 1 + k, for i ∈ [n].

We have |Fc(u)∪Fc(v)| ≤ n−k for any pair of vertices (u, v) and each vertex
has at most n− k forbidden neighbors.

Proposition 29. Let n ≥ 3 and k such that 1 ≤ k ≤ n. We have

λck(Kn,n) ≥



















5, if k ≤
[

n
2

]

,

n, if
[

n
2

]

< k ≤ n− 6,

k + 4 +
[

n+1
3

]

, if n− 5 ≤ k ≤ n− 4,

k + 1 + n, if n− 3 ≤ k ≤ n.

Proof. Consider an arbitrary fixed value k, with 1 ≤ k ≤ n. Let c be an
optimal k-L(2, 1)-path coloring of Kn,n (with val(c) = λck(Kn,n)). We have
λck(G) ≥ λc1(G) ≥ 5.

First note that if there exist two vertices u, v with c(u) = c(v) in the same
class of the bipartition (X,Y ), then k ≤

[

n
2

]

. Indeed, assume u, v ∈ X. Since
c(u) = c(v) it follows that every L(2, 1)-path from u to v has length at least 3,
hence it must contain at least two vertices from Y . Hence κc(u, v) ≤ [|Y |/2].

It results that if k >
[

n
2

]

, then λck(Kn,n) ≥ n.
It only remain to consider the cases n− 5 ≤ k ≤ n.
Denote by v1, . . . , v2n the vertices of Kn,n, ordered such that

c(v1) ≤ · · · ≤ c(v2n).

We have

val(c) = 1 +
2n−1
∑

i=1

(c(vi+1)− c(vi)).

Denote d0 the number of pairs (vi, vi+1) with c(vi+1) − c(vi) = 0 and d2 the
number of pairs (vi, vi+1) with c(vi+1)− c(vi) ≥ 2. The following relation holds:

val(c) ≥ 2n− d0 + d2.

In order to determine a lower bound for val(c) we will determine an upper bound
for d0 − d2, according to the value of k.

For that, denote by S the sequence of colors {c(v1), . . . , c(v2n)}. If a sequence
s is subsequence of S we will write s ∈ S. For two positive integers a, l denote by
sl(a) = {a, a, a+ 1, a+ 1, . . . , a+ l− 1, a+ l− 1}, by s+l (a) = sl(a) ∪ {a+ l} and
by s−l (a) = {a−1}∪ sl(a). If a is not fixed, will be omitted from the notation. A
subsequence sl(a) of S will be called a sequence of type sl. If S contains such a
subsequence we will simply write that sl ∈ S. A subsequence s+l (a) or s

−

l (a) will
be called a subsequence of type sl. If S contains such a subsequence, we will also
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use notation sl ∈ S. Note that if S contains a subsequence sl(a), it also contain
a subsequences s+l−1(a) and s−l−1(a + 1). Then d0 is the number subsequences of
S having type s1.

The following claim hold.

Claim. (1) If S contains no s1, then d0 − d2 ≤ 1 and we can have d0 − d2 = 1
only if d0 ≥ 2. Indeed, for every pair (vi, vi+1) with c(vi+1) = c(vi) we have

pair (vi+1, vi+2) with c(vi+2) − c(vi+1) ≥ 2, with at most one exception, when

i+ 1 = 2n.

(2) If S contains sequences of type s1, then d0 − d2 is at most the number

of subsequences of type s1 included in a sequence of type s1. Indeed, let j be

the index of the first occurrence of an s1 in S. For every pair (vi, vi+1) with

c(vi+1) = c(vi) = a such that s+1 (a), s
−

1 (a) /∈ S, if i < j we have pair (vi+1, vi+2)
with c(vi+2)− c(vi+1) ≥ 2, otherwise pair vi−1, vi has c(vi)− c(vi−1) ≥ 2.

(3) If exists l ≥ 1 such that sl ∈ S, then there are two vertices x ∈ X,

y ∈ Y with |Fc(x)| ≥ 1 and |Fc(y)| ≥ 1. Moreover, there is also a vertex v having

|Fc(v)| ≥ 2.

(4) If exists l ≥ 2 such that sl ∈ S, then there is a vertex v with |F (v)| = 3.

(5) If exists l ≥ 3 such that sl ∈ S, then there are two vertices x ∈ X, y ∈
Y with |Fc(x)| = |Fc(y)| = 3. Moreover, there is another vertex v such that

|Fc(v) ∪ Fc(x)| ≥ 4 or |Fc(v) ∪ Fc(y)| ≥ 4.

(6) If exists l ≥ 4 such that sl ∈ S, then there are two vertices x ∈ X,

y ∈ Y with |Fc(x)| = |Fc(y)| = 3. Moreover, there is another vertex v such that

|Fc(v) ∪ Fc(x)| ≥ 5 or |Fc(v) ∪ Fc(y)| ≥ 5.

(7) If exists l ≥ 5 such that sl ∈ S, then there are two vertices u, v in the

same class of bipartition with |Fc(u)| = |Fc(v)| = 3 and |Fc(u) ∪ Fc(v)| = 6.

Next we consider all possible values for k ≥ n − 5 and use previous Claim
and Remark 1 to provide the lower bounds for val(c).

Case 1. k = n. By Remark 1 we obtain that any vertex has the set of
forbidden neighbors empty. From that it results that c is injective and for every
x ∈ X none of the colors c(x), c(x) + 1 and c(x)− 1 are in c(Y ). It follows that
val(c) ≥ 2n+ 1.

Case 2. k = n − 1. In this case, by Remark 1, there is at most one vertex
in each class of bipartition having the set of forbidden neighbors not empty, but
with no more than one element. Thus, d0 ≤ 1. Moreover, by Claim (3), there are
no s1 in S, hence, using Claim (1), we obtain d0 − d2 ≤ 0 and val(c) ≥ 2n.

Case 3. k = n−2. In this case S contains no sl with l ≥ 2. If s1 ∈ S, it suffice
to consider only the case when there is a color a such that s+1 (a) ∈ S (the case
when s−1 (a) ∈ S is similar, since we can consider c instead of c). Then there is one
vertex u with |Fc(u)| ≥ 2, more precisely with c(u) = a and c(Fc(u)) = {a, a+1}.
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Assume u ∈ X. It results that S contains no subsequence s1(b) with b /∈ {a, a+1},
otherwise there will be another vertex v ∈ X with c(v) = b and b ∈ c(Fc(v)) and
we will have κc(u, v) ≤ 2 + 1 = 3.

If also s1(a + 1) /∈ S, we have d0 = 1, hence d0 − d2 ≤ 1. Otherwise
s1(a + 1) ∈ S and hence s2(a) ∈ S. But since s+2 (a) /∈ S and s−2 (a) /∈ S (S
contains no s2), we have d0 − d2 ≤ 2− 1 = 1.

If s1 /∈ S, then d0 − d2 ≤ 1, by Claim (1).

In all situations we obtain d0 − d2 ≤ 1, thus val(c) ≥ 2n− 1.

Case 4. k = n− 3. Then S contains no sl, with l ≥ 3.

Case 4.1. If s2 ∈ S, as in Case 2, it suffices to assume there is a color a
such that s+2 (a) ∈ S. Then there is a vertex v with |Fc(v)| = 3 and c(Fc(v)) =
{a, a+1, a+2}. Using similar arguments, it follows that there is no b /∈ {a, a+1,
a+ 2} such that s1(b) ∈ S. If s1(a+ 2) /∈ S, we have d0 = 2, hence d0 − d2 ≤ 2.
Otherwise, since s3 /∈ S, we have d0 − d2 ≤ 3− 1 = 2.

Case 4.2. Assume s1 ∈ S (but s2 /∈ S). We will prove there are at most
2 subsequences of type s1 in S. If there are three such subsequences in S, it
follows that there are three vertices u1, u2, u3 of three distinct colors c1 < c2, c3
such that c(Fc(ui)) = {ci, ci + 1}. Two of these vertices are in the same class
of bipartition. Assume u1, u2 ∈ X. Then u3 ∈ Y , otherwise there are two
vertices v1, v2 in {u1, u2, u3} ⊆ X with disjoint forbidden neighbor sets and then
κc(v1, v3) ≤ n − 4, and again contradiction. Also, if c1 + 1 < c2 then |Fc(u1) ∪
Fc(u2)| = 4, contradiction. It follows that c2 = c1 + 1 and then Fc(u1) ∩ Fc(u2)
contains a vertex y from Y of color c1 + 1 that has u1, u2 ∈ Fc(y). Moreover,
c3 > c1 + 2 = c2 + 1, since S contains no s2. We then have two vertices y, u3 in
Y with |Fc(u3) ∪ Fc(y)| ≥ 4, contradiction.

In all situations we obtained contradictions, hence in this case there are at
most two s1 in S. By Claim (2), it follows that d0 − d2 ≤ 2.

Case 4.3. If S contains no s1, then we have d0 − d2 ≤ 1 < 2. We obtained in
every subcase that d0 − d2 ≤ 2, hence λcn−3(Kn,n) ≥ 2n− 2.

Case 5. k = n − 5. By Claim, there are no sl in S with l ≥ 5, hence no
sl with l ≥ 6. Also, S contains no two disjoint sl with l ≥ 3 and there are at
most two disjoint subsequences of type s2 in S, otherwise one class of bipartition
would contain two vertices with pairwise disjoint sets of forbidden neighbors, each
having size 3, which would imply k ≤ n− 6.

Thus, there are at most 4 pairs of equal colors contained in subsequences of
type sl with l ≥ 2. In order to maximize the difference d0− d2, by Claim (2), the
other pairs of equal labels must be included in sequences of type s1, which are of
length 3 (such that we obtain no sequences of type s2). We then have
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d0 − d2 ≤ 4 +

[

2n− 8

3

]

=

[

2n+ 4

3

]

,

and thus

val(c) ≥ 2n−

[

2n+ 4

3

]

= 2n−

[

3n+ 3− (n− 1)

3

]

= n− 1 +

⌈

n− 1

3

⌉

,

so

val(c) ≥ n− 1 +

[

n+ 1

3

]

.

Case 6. k = n− 4. Then S contains no sl, with l ≥ 4.

Case 6.1. If S contains no s1, then d0 − d2 ≤ 1.

Case 6.2. If exists a such that s3(a) ∈ S, then S contains no s1(b) with
b /∈ {a, a+ 1, a+ 2}, hence d0 − d2 ≤ 4 in this case Claim (2).

Case 6.3. S contains a subsequence s2 (but no s3). Assume without loss of
generality there is a such that s+2 (a) ∈ S. Then S contains no s2(b) with b /∈
{a, a+1}, otherwise there are two vertices u, v in the same class of bipartiton with
c(u) ∈ s+2 (a), c(v) ∈ s2(b) such that |Fc(u)| = 3, |Fc(v)| = 2 and Fc(u)∩Fc(v) = ∅,
hence |Fc(u) ∪ Fc(v)| ≥ 5.

Also, there is no b such that s+1 (b) and s−1 (b + 2) are in S (that is sequence
{b, b, b+ 1, b+ 2, b+ 2} is in S), otherwise we will again have two vertices u, v in
the same class of bipartiton with |Fc(u) ∪ Fc(v)| ≥ 5.

It follows that in this case d0 − d2 is maximized if each pair of equal labels
not contained in s+2 (a) is included in a unique sequence of type s1. In this case
we have

d0 − d2 ≤ 2 +

[

2n− 5

3

]

=

[

2n+ 1

3

]

.

Case 6.4. If S contains no s2, then the maximum for d0−d2 is obtained when
pairs of equal labels are included in sequences of type s1, hence we have

d0 − d2 ≤

[

2n+ 1

3

]

.

In all cases we obtain

d0 − d2 ≤

[

2n+ 1

3

]

.

Then

val(c) ≥ 2n−

[

2n+ 1

3

]

= 2n−

[

3n− (n− 1)

3

]

= n+

⌈

n− 1

3

⌉

= n+

[

n+ 1

3

]

.
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8. Conclusions

There are many papers dedicated to variations of radio colorings, for their ap-
plications also in combinatorics, simulated annealing, genetic algorithms, neural
networks [3]. In many cases, especially for 2 edge-connected networks, L(2, 1)-
connection number is much smaller than L(2, 1)-number, hence finding an opti-
mum L(2, 1)-path coloring present interest not only from theoretical point of view,
but also for algorithmic approaches and applications. Thus, it would be inter-
esting to determine if there are efficient algorithms to find the L(2, 1)-connection
number of a graph or at least to decide if the L(2, 1)-connection number is equal
to 5. Note that for a fixed l, we can generalize the notions also to L(d1, d2, . . . , dl)-
path coloring and that k-L(1, 1, . . . , 1)-connection number is actually the vertex
version for (k, l)-proper connection number [12], that has not yet been studied.
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