ON THE STAR CHROMATIC INDEX OF GENERALIZED PETERSEN GRAPHS

Enqiang Zhu ${ }^{1,2}$ and Zehui Shao
Institute of Computing Science and Technology
Guangzhou University, Guangzhou 510006, China
e-mail: zhuenqiang@gzhu.edu.cn

Abstract

The star k-edge-coloring of graph G is a proper edge coloring using k colors such that no path or cycle of length four is bichromatic. The minimum number k for which G admits a star k-edge-coloring is called the star chromatic index of G, denoted by $\chi_{s}^{\prime}(G)$. Let $\operatorname{GCD}(n, k)$ be the greatest common divisor of n and k. In this paper, we give a necessary and sufficient condition of $\chi_{s}^{\prime}(P(n, k))=4$ for a generalized Petersen graph $P(n, k)$ and show that "almost all" generalized Petersen graphs have a star 5 -edgecolorings. Furthermore, for any two integers k and $n(\geq 2 k+1)$ such that $\operatorname{GCD}(n, k) \geq 3, P(n, k)$ has a star 5-edge-coloring, with the exception of the case that $\operatorname{GCD}(n, k)=3, k \neq \operatorname{GCD}(n, k)$ and $\frac{n}{3} \equiv 1(\bmod 3)$.

Keywords: star edge-coloring, star chromatic index, generalized Petersen graph.
2010 Mathematics Subject Classification: 05C15.

1. Introduction

All graphs considered in this paper are simple, finite and undirected; for the terminologies and notations not defined here, we follow [3]. For any graph G, we denote by $V(G)$ and $E(G)$ the vertex set and the edge set of G, respectively. For any vertex v in G, a vertex $u \in V(G)$ is said to be a neighbor of v if $u v \in E(G)$. We use $N_{G}(v)$ to denote the set of neighbors of v. For positive integers n and k, let $\operatorname{GCD}(n, k)$ be the greatest common divisor of n and k.

[^0]A star k-edge-coloring of a graph G is a proper edge-coloring using k colors such that at least three distinct colors are assigned to the edges of every path and cycle of length four. The minimum number k for which G admits a star k-edge-coloring is called the star chromatic index of G and is denoted by $\chi_{s}^{\prime}(G)$.

The star edge-coloring was motivated by the vertex version $[1,4,5,7]$, which was first studied by Liu and Deng [8], who gave an upper bound on the star chromatic index of graph with maximum degree at least 7. Dvořák et al. [6] provided some upper and lower bounds for complete graphs. They also considered cubic graphs and showed that the star chromatic index of such graphs lies between 4 and 7.

Since there exist many cubic graphs with a star chromatic index equal to 6 , e.g., $K_{3,3}$ or the Heawood graph, and no example of a subcubic graph with star chromatic index 7 is known, Dvořák et al. proposed the following conjecture.

Conjecture 1.1 [6]. If G is a subcubic graph, then $\chi_{s}^{\prime}(G) \leq 6$.
Recently, Bezegová et al. [2] established tight upper bounds for trees and subcubic outerplanar graphs; they derived upper bounds for outerplanar graphs. In this paper, we obtain a necessary and sufficient condition of $\chi_{s}^{\prime}(P(n, k))=4$, and present a construction of a star 5 -edge-colorings of $P(n, k)$ for "almost all" values of n and k. Furthermore, we find that the generalized Petersen graph $P(n, k)$ with $n=3, k=1$ is the only graph with a star chromatic index of 6 among the investigated graphs. Based on these results, we conjecture that $P(3,1)$ is the unique generalized Petersen graph that admits no star 5 -edge-coloring.

2. A Necessary and Sufficient Condition of $\chi_{s}^{\prime}(P(n, k))=4$

Let n and k be positive integers, $n \geq 2 k+1$ and $n \geq 3$. The generalized Petersen $\operatorname{graph} P(n, k)$, which was introduced in [9], is a cubic graph with $2 n$ vertices, denoted by $\left\{u_{0}, u_{1}, \ldots, u_{n-1}, v_{0}, v_{1}, \ldots, v_{n-1}\right\}$, and all edges are of the form $u_{i} u_{i+1}$, $u_{i} v_{i}, v_{i} v_{i+k}$ for $0 \leq i \leq n-1$. In the absence of a special claim, all subscripts of vertices of $P(n, k)$ are taken modulo n in the following.

Lemma 1 [6]. If G is a simple cubic graph, then $\chi_{s}^{\prime}(G)=4$ if and only if G covers the graph of the 3-cube Q_{3} (as shown in Figure 1), where a graph H is said to be covered by G if there is a locally bijective graph homomorphism from G to H.

Theorem 2. $\chi_{s}^{\prime}(P(n, k))=4$ if and only if n is a multiple of 4 and k is an odd number.

Proof. Consider an arbitrary generalized Petersen graph $P(n, k)$ with $n \equiv 0$ $(\bmod 4)$ and $k \equiv 1(\bmod 2)$. We then prove that $P(n, k)$ covers Q_{3}. Define a

Figure 1. Cube Q_{3} with a star 4-edge-coloring.
surjection $\phi: V(P(n, k)) \rightarrow V\left(Q_{3}\right)$ as follows: let $\phi\left(u_{i}\right)=x_{i(\bmod 4)}$ and $\phi\left(v_{i}\right)=$ $y_{i}(\bmod 4), i=0,1, \ldots, n-1$.

To show that ϕ is a covering map, we need to prove that for each $w \in$ $V(P(n, k))$, the three neighbors of w in $P(n, k)$ map by ϕ to the three neighbors of $\phi(w)$ in Q_{3}. First, for each u_{i}, its three neighbors in $P(n, k)$ are u_{i+1}, u_{i-1}, v_{i}. By the structure of Q_{3}, the three neighbors of $\phi\left(u_{i}\right)\left(=x_{i(\bmod 4)}\right)$ in Q_{3} are $x_{i+1(\bmod 4)}, x_{i-1(\bmod 4)}$ and $y_{i(\bmod 4)}$. Therefore, $N_{Q_{3}}\left(\phi\left(u_{i}\right)\right)=\left\{\phi\left(u_{i+1}\right), \phi\left(u_{i-1}\right)\right.$, $\left.\phi\left(v_{i}\right)\right\}$. Now, we consider a vertex v_{i} in $P(n, k)$. The three neighbors of v_{i} in $P(n, k)$ are u_{i}, v_{i+k}, v_{i-k}, and the three neighbors of $\phi\left(v_{i}\right)\left(=y_{i(\bmod 4)}\right)$ in Q_{3} are $x_{i(\bmod 4)}, y_{i+1}(\bmod 4), y_{i-1(\bmod 4)}$. Observe that k is an odd number, which implies that $i+k(\bmod 4) \neq i-k(\bmod 4)$, and $i+k(\bmod 2)=i-k(\bmod 2) \neq i$ $(\bmod 2)$. Therefore, $\left\{\phi\left(v_{i+k}\right), \phi\left(v_{i-k}\right)\right\}=\left\{y_{i+1}(\bmod 4), y_{i-1}(\bmod 4)\right\}$, that is, $N_{Q_{3}}\left(\phi\left(v_{i}\right)\right)=\left\{\phi\left(u_{i}\right), \phi\left(v_{i+k}\right), \phi\left(v_{i-k}\right)\right\}$. Hence, $P(n, k)$ covers Q_{3}, and $\chi_{s}^{\prime}(P(n, k))$ $=4$ by Lemma 1 .

For the inverse implication, suppose that $P(n, k)$ has a star 4-edge-coloring f. For any vertex $w \in V(P(n, k))$, define a (vertex) 4-coloring f^{\prime} of $P(n, k)$ by letting $f^{\prime}(w)$ be the unique color that is missing on edges incident with w under f. Then, the three neighbors of any vertex are assigned to different colors under f^{\prime}. Otherwise, assume that there exist some vertex w and its two neighbors w_{1}, w_{2} in $P(n, k)$ satisfying $f^{\prime}(w)=c_{1}, f^{\prime}\left(w_{1}\right)=f^{\prime}\left(w_{2}\right)=c_{2}, f\left(w w_{1}\right)=c_{3}$ and $f\left(w w_{2}\right)=c_{4}$, where $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}=\{1,2,3,4\}$. Then color c_{4} appears on an edge incident with w_{1}, and c_{3} appears on an edge incident with w_{2}. This creates a bichromatic path or cycle of length 4 . Thus, if $f^{\prime}(w)=c_{1}$, the incident edges and adjacent vertices of w are c_{2}, c_{3}, c_{4} under f and f^{\prime}, respectively. There are exactly two possibilities as follows: either the edges incident with w colored c_{2}, c_{3}, c_{4} lead to corresponding vertices ($w^{\prime} s$ neighbors) colored c_{3}, c_{4}, c_{2}, respectively, or to corresponding vertices colored c_{4}, c_{2}, c_{3}. These two possibilities are called the local color pattern at w. Then, f and f^{\prime} induce a covering map $\Phi: V(P(n, k)) \rightarrow V\left(Q_{3}\right)$ such that for each $w \in V(P(n, k)), f^{\prime}(w)=f^{\prime}(\Phi(w))$ (we use f^{\prime} also for the vertex coloring of Q_{3} shown in Figure 1), and w and $\Phi(w)$ have the same local color pattern.

Let X_{i} and Y_{i} denote the set of vertices of $P(n, k)$ that are mapped to x_{i} and y_{i}, respectively, under $\Phi, i=0,1,2,3$. Thus, under f^{\prime} vertices in X_{0} and Y_{2} are colored with 1, in X_{1} and Y_{3} vertices are colored with 2, in X_{2} and Y_{0} vertices are colored with 3, and in X_{3} and Y_{1} vertices are colored with 4.

Claim. $\left|X_{i}\right|=\left|Y_{j}\right|=\frac{n}{4}$ for $i, j \in\{0,1,2,3\}$.
Proof. Observe that by the definition of Φ, for every vertex $w \in X_{0}$, there is exactly one neighbor of w that belongs to Y_{0}; for every vertex $w^{\prime} \in Y_{0}$, there is exactly one neighbor of w^{\prime} that belongs to X_{0}. This implies that there is a bijection between X_{0} and Y_{0}. Therefore, $\left|X_{0}\right|=\left|Y_{0}\right|$. Analogously, we have $\left|X_{0}\right|=\left|X_{1}\right|=\left|X_{3}\right|,\left|X_{1}\right|=\left|X_{2}\right|=\left|Y_{1}\right|,\left|X_{2}\right|=\left|X_{3}\right|=\left|Y_{2}\right|$, and $\left|X_{3}\right|=\left|Y_{3}\right|$. Therefore, $\left|X_{i}\right|=\left|Y_{j}\right|$, and $|V(P(n, k))|=2 n=8\left|X_{i}\right|$, which indicates that $n=4\left|X_{i}\right|$, and the claim holds.

Clearly, n is a multiple of 4 by the above claim. In what follows, we show k is an odd number.

From the definition of covering projections, we see that every cycle of length ℓ in $P(n, k)$ is mapped to a cycle of length ℓ^{\prime} in Q_{3} such that $\ell=m \ell^{\prime}$ for some nonnegative integer m. Therefore, the cycle $C=u_{0} u_{1} \cdots u_{n-1} u_{0}$ is mapped to a cycle C^{\prime} of length 4 or 8 . Note that Q_{3} is a bipartite graph that does not contain any cycle with odd number of vertices. In addition, if C^{\prime} is a 6 -cycle, then with a similar analysis as below, the subgraph of Q_{3} induced by vertices corresponding to $v_{0}, v_{1}, \ldots, v_{n-1}$ consists of two paths with length 1 and a contraction.

If C^{\prime} is a cycle of length 4 , without loss of generality, it is assumed that $C^{\prime}=$ $x_{0} x_{1} y_{1} y_{0} x_{0}$, and then any 4 consecutive vertices on C are mapped to $x_{0}, x_{1}, y_{1}, y_{0}$ in one order of $\left(x_{0}, x_{1}, y_{1}, y_{0}\right),\left(x_{1}, y_{1}, y_{0}, x_{0}\right),\left(y_{1}, y_{0}, x_{0}, x_{1}\right)$ or $\left(y_{0}, x_{0}, x_{1}, y_{1}\right)$. In this way, we can assume the following without the loss of generality

$$
\Phi\left(u_{i}\right)=\left\{\begin{array}{l}
x_{0}, i \equiv 0(\bmod 4), \\
x_{1}, i \equiv 1(\bmod 4), \\
y_{1}, i \equiv 2(\bmod 4), \\
y_{0}, i \equiv 3(\bmod 4) .
\end{array}\right.
$$

Then,

$$
\Phi\left(v_{i}\right)=\left\{\begin{array}{l}
x_{3}, i \equiv 0(\bmod 4), \\
x_{2}, i \equiv 1(\bmod 4), \\
y_{2}, i \equiv 2(\bmod 4), \\
y_{3}, i \equiv 3(\bmod 4),
\end{array}\right.
$$

$x_{3} y_{2} \notin E\left(Q_{3}\right)$ and $x_{2} y_{3} \notin E\left(Q_{3}\right)$, so the vertex mapped to x_{3} (or x_{2}) is not adjacent to the vertex mapped to y_{2} or x_{3} (or y_{3} or x_{2}) in $P(n, k)$. Therefore, k is an odd number in this case.

If C^{\prime} is a cycle of length 8 , then n is a multiple of 8 , and C^{\prime} is a Hamilton cycle such as $C^{\prime}=x_{0} x_{1} x_{2} x_{3} y_{3} y_{2} y_{1} y_{0} x_{0}$. Clearly, any 8 consecutive vertices on C are mapped to $x_{0}, x_{1}, x_{2}, x_{3}, y_{3}, y_{2}, y_{1}, y_{0}$, preserving the adjacent relation in C^{\prime}. Without loss of generality, we assume

$$
\Phi\left(u_{i}\right)=\left\{\begin{array}{l}
x_{0}, i \equiv 0(\bmod 8), \\
x_{1}, i \equiv 1(\bmod 8), \\
x_{2}, i \equiv 2(\bmod 8), \\
x_{3}, i \equiv 3(\bmod 8), \\
y_{3}, i \equiv 4(\bmod 8), \\
y_{2}, i \equiv 5(\bmod 8), \\
y_{1}, i \equiv 6(\bmod 8), \\
y_{0}, i \equiv 7(\bmod 8) .
\end{array}\right.
$$

Then, it follows that

$$
\Phi\left(v_{i}\right)=\left\{\begin{array}{l}
x_{3}, i \equiv 0(\bmod 8), \\
y_{1}, i \equiv 1(\bmod 8), \\
y_{2}, i \equiv 2(\bmod 8), \\
x_{0}, i \equiv 3(\bmod 8), \\
y_{0}, i \equiv 4(\bmod 8), \\
x_{2}, i \equiv 5(\bmod 8), \\
x_{1}, i \equiv 6(\bmod 8), \\
y_{3}, i \equiv 7(\bmod 8) .
\end{array}\right.
$$

Since in Q_{3}, x_{3} is not adjacent to y_{2}, y_{0}, x_{1} or x_{3} itself, it follows that the vertex mapped to x_{3} is not adjacent to the vertex mapped to y_{2}, y_{0}, x_{1} or x_{3}, in $P(n, k)$. Therefore, k is an odd number, which completes the proof.

3. Construction of Star 5-Edge-Colorings for $P(n, k)$

A list L of a graph G is a mapping from a finite set of colors (positive integers) to each vertex of G. For any $V^{\prime} \subseteq V(G), L\left(V^{\prime}\right)$ denotes the set of colors that are assigned to the vertices of V^{\prime}, i.e., $L\left(V^{\prime}\right)=\left\{L(v) \mid v \in V^{\prime}\right\}$. A proper edgecoloring f of G is called an irlist-edge-coloring if $f(e) \notin L(u) \cup L(v)$ for any edge $e(=u v) \in E(G)$. An edge-coloring of G is strong if any two edges within distance two apart receive different colors.

Let $C=v_{1} v_{2} \ldots v_{m} v_{1}$ be a cycle of length $m, m \geq 3$. We call C a listedcycle if C has a list L and refer to the colors in $L(V(C))$ as listed-colors of C. In particular, if there are exactly two consecutive vertices v_{i}, v_{i+1} satisfying $L\left(v_{i}\right)$ (respectively, $\left.L\left(v_{i+1}\right)\right) \neq L\left(v_{j}\right)$ and $L\left(v_{j}\right)=L\left(v_{j^{\prime}}\right)$ for all $j, j^{\prime} \in\{1,2, \ldots, m\} \backslash$ $\{i, i+1\}$, then we say C is quaint and v_{i} and v_{i+1} are the quaint vertices of C, where $v_{m+1}=v_{m}$.

Lemma 3. Let $C=v_{1} v_{2} \cdots v_{m} v_{1}$ be a cycle, $m \geq 3$ and $m \neq 5$. Then, C has a star 3-edge-coloring. Particularly, when $m \equiv 0(\bmod 3), C$ has a strong edgecoloring using three colors.

Proof. We construct our desired colorings as follows. When $m \equiv 0(\bmod 3)$, we color edges $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{m} v_{1}$ with three colors $1,2,3$, repeatedly. When $m \equiv 1(\bmod 3)$, we color edges $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{m-1} v_{m}$ with three colors $1,2,3$, repeatedly, and $v_{m} v_{1}$ with color 2 . When $m \equiv 2(\bmod 3)$, it follows that $m \geq 8$. We color edges $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{m-5} v_{m-4}$ with three colors $1,2,3$, repeatedly, and color $v_{m-4} v_{m-3}, v_{m-3} v_{m-2}, v_{m-2} v_{m-1}, v_{m-1} v_{m}$ and $v_{m} v_{1}$ with $1,2,1,3$ and 2 , respectively.

Lemma 4. Let $C=v_{1} v_{2} \cdots v_{m} v_{1}, m \geq 3$, be a quaint listed-cycle with list L such that $|L(v)|=2$ for every $v \in V(C)$. Suppose that v_{m-1} and v_{m} are the two quaint vertices of C. If $L\left(v_{i}\right) \nsubseteq\left(L\left(v_{m-1}\right) \cup L\left(v_{m}\right)\right)$ for $i \in\{1,2, \ldots, m-2\}$, then
(1) when $m \equiv 1(\bmod 3), C$ has a strong irlist-edge-coloring using at most two non-listed-colors;
(2) when $m \equiv 2(\bmod 3), C$ has an irlist-edge-coloring using at most two non-list-colors, for which any three consecutive edges receive different colors except $v_{m-2} v_{m-1}, v_{m-1} v_{m}$ and $v_{m} v_{1}$.

Proof. Let $L\left(v_{i}\right)=\left\{c_{1}, c_{1}^{\prime}\right\}, i \in\{1,2, \ldots, m-2\}$, and $L\left(v_{m-1}\right)=\left\{c_{2}, c_{2}^{\prime}\right\}$, $L\left(v_{m}\right)=\left\{c_{3}, c_{3}^{\prime}\right\}$. Since $L\left(v_{i}\right) \nsubseteq\left(L\left(v_{m-1}\right) \cup L\left(v_{m}\right)\right)$, there exist three colors, say c_{1}, c_{2} and c_{3}, such that $c_{1} \in L\left(v_{i}\right)$ and $c_{1} \notin L\left(v_{m-1}\right) \cup L\left(v_{m}\right), c_{2} \in L\left(v_{m-1}\right)$ and $c_{2} \notin\left\{c_{1}, c_{1}^{\prime}\right\}$, and $c_{3} \in L\left(v_{m}\right)$ and $c_{3} \notin\left\{c_{1}, c_{1}^{\prime}\right\}$. Let c_{4}, c_{4}^{\prime} be two distinct non-listed-colors. We construct the desired irlist-edge-colorings f of C by the following four rules.

For $(1), m-1 \equiv 0(\bmod 3)$. If $c_{2} \in\left\{c_{3}, c_{3}^{\prime}\right\}$ and $c_{3} \in\left\{c_{2}, c_{2}^{\prime}\right\}$, let f be the following: $f\left(v_{m-1} v_{m}\right)=c_{1}, f\left(v_{m} v_{1}\right)=c_{4}$, and for $i=1,2, \ldots, m-2$, $f\left(v_{i} v_{i+1}\right)=c_{2}$ when $i \equiv 1(\bmod 3), f\left(v_{i} v_{i+1}\right)=c_{4}^{\prime}$ when $i \equiv 2(\bmod 3)$ and $f\left(v_{i} v_{i+1}\right)=c_{4}$ when $i \equiv 0(\bmod 3)($ Rule $(\star 1))$. Clearly, under f, any two edges within distance two receive distinct colors. Note that $c_{1} \notin L\left(v_{m-1}\right) \cup L\left(v_{m}\right)$ and $\left\{c_{2}, c_{4}, c_{4}^{\prime}\right\} \cap\left\{c_{1}, c_{1}^{\prime}\right\}=\emptyset$. Therefore, f is a strong irlist-edge-coloring of C using two non-listed-colors c_{4}, c_{4}^{\prime}. If $c_{2} \notin\left\{c_{3}, c_{3}^{\prime}\right\}$ (or $c_{3} \notin\left\{c_{2}, c_{2}^{\prime}\right\}$), then $c_{2} \neq c_{3}$. Let f be the following: $f\left(v_{m-1} v_{m}\right)=c_{1}, f\left(v_{m} v_{1}\right)=c_{2}$ (or c_{4}), and for $i=1,2, \ldots, m-2, f\left(v_{i} v_{i+1}\right)=c_{3}\left(\right.$ or $\left.c_{2}\right)$ when $i \equiv 1(\bmod 3), f\left(v_{i} v_{i+1}\right)=c_{4}$ (or c_{3}) when $i \equiv 2(\bmod 3)$ and $f\left(v_{i} v_{i+1}\right)=c_{2}\left(\right.$ or $\left.c_{4}\right)$ when $i \equiv 0(\bmod 3)$ (Rule $(\star 2))$. Additionally, under f, any two edges within distance two receive distinct colors. Since $\left\{c_{2}, c_{3}\right\} \cap\left\{c_{1}, c_{1}^{\prime}\right\}=\emptyset$ and $c_{1} \notin L\left(v_{m-1}\right) \cup L\left(v_{m}\right)$, it holds that f is a strong irlist-edge-coloring of C using one non-listed-color c_{4}.

For $(2), m-2 \equiv 0(\bmod 3)$. If $c_{2}=c_{3}$, let f be $f\left(v_{m-1} v_{m}\right)=c_{1}, f\left(v_{m} v_{1}\right)=$ c_{4}, and for $i=1,2, \ldots, m-2, f\left(v_{i} v_{i+1}\right)=c_{2}$ when $i \equiv 1(\bmod 3), f\left(v_{i} v_{i+1}\right)=c_{4}^{\prime}$
when $i \equiv 2(\bmod 3)$ and $f\left(v_{i} v_{i+1}\right)=c_{4}$ when $i \equiv 0(\bmod 3)($ Rule $(\star 3))$. By the definition of f, it has that $f(e) \neq f\left(e^{\prime}\right)$ for any $e, e^{\prime} \in\left(E(C) \backslash\left\{v_{m-2} v_{m-1}, v_{m} v_{1}\right\}\right)$ such that the distance between them is at most two. Additionally, $c_{1} \notin L\left(v_{m-1}\right) \cup$ $L\left(v_{m}\right)$ and $\left\{c_{2}, c_{4}, c_{4}^{\prime}\right\} \cap\left\{c_{1}, c_{1}^{\prime}\right\}=\emptyset$. Therefore, f is the desired irlist-edge-coloring of C using two non-listed-colors c_{4}, c_{4}^{\prime}.

If $c_{2} \neq c_{3}$, let f be the following: $f\left(v_{m-1} v_{m}\right)=c_{1}, f\left(v_{m} v_{1}\right)=c_{4}$, and for $i=1,2, \ldots, m-2, f\left(v_{i} v_{i+1}\right)=c_{2}$ when $i \equiv 1(\bmod 3), f\left(v_{i} v_{i+1}\right)=c_{3}$ when $i \equiv 2(\bmod 3)$ and $f\left(v_{i} v_{i+1}\right)=c_{4}$ when $i \equiv 0(\bmod 3)($ Rule $(\star 4))$. Analogously, f is the desired irlist-edge-coloring of C using one non-listed-colors c_{4}.

Theorem 5. Let ℓ be the greatest common divisor of n and k. When $\ell \geq 3$, with the exception of $\ell=3, k \neq \ell$, and $\frac{n}{3} \equiv 1(\bmod 3), P(n, k)$ has a star $5-$ edge-coloring.

Proof. Let $i_{j}=i+(j-1) k$ for $j=1,2, \ldots, p=\frac{n}{\ell}$. Then, by the definition, the subgraph of $P(n, k)$ induced by $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ is the union of ℓ vertexdisjoint p-cycles, denoted by $C_{i}=v_{i_{1}} v_{i_{2}} \cdots v_{i_{p}} v_{i_{1}}, i=0,1, \ldots, \ell-1$. Let $C=$ $u_{0} u_{1} \cdots u_{n-1} u_{0}$.

We first partition C into five edge-disjoint paths as follows.
Path-A. $u_{0} u_{1} u_{2}, \ldots, u_{n-2 k-1} u_{n-2 k}$.
Path-B. $u_{n-2 k} u_{n-2 k+1} u_{n-2 k+2} \cdots u_{n-2 k+\ell-1} u_{n-2 k+\ell}$.
Path-C. $u_{n-2 k+\ell} u_{n-2 k+\ell+1} u_{n-2 k+\ell+2} \cdots u_{n-k-1} u_{n-k}$.
Path-D. $u_{n-k} u_{n-k+1} u_{n-k+2} \cdots u_{n-k+\ell-1} u_{n-k+\ell}$.
Path-E. $u_{n-k+\ell} u_{n-k+\ell+1} u_{n-k+\ell+2} \cdots u_{n-1} u_{0}$.
Note that the length of each path defined above is a multiple of ℓ. Both Path-B and Path-D contain exactly ℓ edges, and when $k=\ell$, Path-C and Path-E are empty.

We now color edges of C by coloring edges of Paths-A, C, E, B and D , respectively, according to the coloring rules indicated in Table 1. We distinguish 11 cases (each row denotes one case) based on values of p and ℓ. Each column contains 11 coloring rules of the corresponding paths (for example, the second column corresponds to Path-A, Path-C and Path-E). Each rule is a cyclic coloring of ℓ colors. When we use the rule to color the edges of the corresponding path, say $P=u_{x} u_{x+1} \cdots u_{x+m}$, we first partition the path into q small paths of length $\ell(\geq 3), P_{1}, P_{2}, \ldots, P_{q}$, where $P_{1}=u_{x} u_{x+1} \cdots u_{x+\ell}, P_{2}=$ $u_{x+\ell+1} u_{x+\ell+2} \cdots u_{x+2 \ell+1}, \ldots, P_{q}=u_{x+m-\ell} u_{x+m-\ell+1} \cdots u_{x+m}$; then, for each P_{i}, we color it from the first edge to the last edge one by one consecutively, according to the rule. For example, in the case of $p \equiv 1(\bmod 3)$ and $\ell \equiv 1(\bmod 3)$, if $P \in\{$ Path-A, Path-C, Path-E $\}$, then we color $P_{i}\left(P_{i}\right.$ is a subgraph of $\left.P\right)$ with 1 , $2,3,1,2,3$, and 4 when $\left|E\left(P_{i}\right)\right|=7$ and with $1,2,3$, and 4 when $\left|E\left(P_{i}\right)\right|=4$;
Table 1. Coloring rules of edges of C.

values of p and ℓ	Path-A, Path-C, Path-E	Path-B	Path-D
$p \equiv 0(\bmod 3)$ and $\ell \equiv 0(\bmod 3)$	by $\underbrace{1,2,3, \ldots, 1,2,3}_{\ell \text { elements }}$, repeatedly	by $\underbrace{1,2,3, \ldots, 1,2,3}_{\ell \text { elements }}$	
$p \equiv 0(\bmod 3)$ and $\ell \equiv 1(\bmod 3)$	by $\underbrace{1,2,3, \ldots, 1,2,3,1,2,3,4}_{\ell \text { elements }}$, repeatedly	by $\underbrace{1,2,3, \ldots, 1,2,3,1,2,3,4}_{\ell \text { elements }}$	
$p \equiv 0(\bmod 3)$ and $\ell \equiv 2(\bmod 3)$	by $\underbrace{1,2,3, \ldots, 1,2,3,1,2,3,4,5}_{\ell \text { elements }}$, repeatedly	by $\underbrace{1,2,3, \ldots, 1,2,3,1,2,3,4,5}_{\ell \text { elements }}$	
$p \equiv 1(\bmod 3)$ and $\ell \equiv 0(\bmod 3)$ (1) $\ell=k$	by $\underbrace{1,2,3, \ldots, 1,2,3}_{\ell \text { elements }}$, repeatedly	$\text { by } \underbrace{4,1,3, \ldots, 4,1,3}_{\ell \text { elements }}$	$\text { by } \underbrace{4,5,3, \ldots, 4,5,3}_{\ell \text { elements }}$
$p \equiv 1(\bmod 3)$ and $\ell \equiv 0(\bmod 3)$ (2) $\ell \neq k$ and $\ell \geq 6$	by $\underbrace{1,2,3, \ldots, 1,2,3}_{\ell \text { elements }}$, repeatedly	by $\underbrace{4,1,3, \ldots, 4,1,3,2,4,3}_{\text {\& elements }}$	
$p \equiv 1(\bmod 3)$ and $\ell \equiv 1(\bmod 3)$	by $\underbrace{1,2,3, \ldots, 1,2,3,1,2,3,4}_{\ell \text { elements }}$, repeatedly	$\text { by } \underbrace{2,3,1, \ldots, 2,3,1,2,3,5,4}_{\text {belements }}$	
$p \equiv 1(\bmod 3), \ell \equiv 2(\bmod 3)$ (1) $\ell \geq 8$	by $\underbrace{1,2,3, \ldots, 1,2,3,1,2,3,4,5}_{\ell \text { elements }}$, repeatedly	by $\underbrace{3,2,4, \ldots, 3,2,4,1,3,4,2,5}$	
$p \equiv 1(\bmod 3), \ell \equiv 2(\bmod 3)$ (2) $\ell=5$	by $\underbrace{1,2,3,4,5}$, repeatedly	by $1,3,4,5,3$	by $1,4,5,2,3$
$p \equiv 2(\bmod 3)$ and $\ell \equiv 0(\bmod 3)$	by $\underbrace{1,2,3, \ldots, 1,2,3}_{\ell \text { elements }}$, repeatedly	$\text { by } \underbrace{4,5,3, \ldots, 4,5,3}_{\ell \text { elements }}$	
$p \equiv 2(\bmod 3)$ and $\ell \equiv 1(\bmod 3)$	by $\underbrace{1,2,3, \ldots, 1,2,3,1,2,3,4}_{\ell \text { elements }}$, repeatedly	by $\underbrace{2,3,5, \ldots, 2,3,5,}, \underline{2,3,5,4}$	
$p \equiv 2(\bmod 3)$ and $\ell \equiv 2(\bmod 3)$	by $\underbrace{1,2,3, \ldots, 1,2,3,1,2,3,4,5}_{\ell \text { elements }}$, repeatedly	$\text { by } \underbrace{2,4,1, \ldots, 2,4,1,2,4,1,3,5}_{\ell \text { elements }}$	

if $P \in\{$ Path-B, Path-D $\}$, then we color P_{i} with $2,3,1,2,3,5$, and 4 when $\left|E\left(P_{i}\right)\right|=7$ and with $2,3,5$, and 4 when $\left|E\left(P_{i}\right)\right|=4$.

The resulting coloring of C is denoted by f. One can readily check that f is a strong edge-coloring. We now assign list L to C_{i} for $i=0,1, \ldots, \ell-1$. Let

$$
L\left(v_{i}\right)=\left\{f\left(u_{i} u_{i+1}\right), f\left(u_{i} u_{i-1}\right)\right\}, i=0,1, \ldots, n-1 .
$$

Then, we obtain ℓ listed-cycles C_{i} of length $p=\frac{n}{\ell}, i=0,1, \ldots, \ell-1$.
Case 1 . When $p \equiv 0(\bmod 3)$, then $\left|L\left(V\left(C_{i}\right)\right)\right|=2($ since k is a multiple of $\ell)$ for each $i \in\{0,1, \ldots, \ell-1\}$. Observe that $\left|V\left(C_{i}\right)\right|=p \equiv 0(\bmod 3)$. Hence, by Lemma $3, C_{i}$ has a strong irlist-edge-coloring with $\{1,2,3,4,5\} \backslash\{x, y\}$, where x, y are the two listed-colors of C_{i}.

Case 2 . When $p \equiv 1(\bmod 3)$, we further consider the following three subcases.

Case 2.1. $\ell \equiv 0(\bmod 3)$. First, $\ell=k$. Then, C_{i} is a listed-cycle such that (1) $L\left(v_{i_{j}}\right)=\{1,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{3,4\}$; or (2) $L\left(v_{i_{j}}\right)=\{1,2\}$ and $L\left(v_{i_{p-1}}\right)=\{1,4\}, L\left(v_{i_{p}}\right)=\{4,5\}$; or (3) $L\left(v_{i_{j}}\right)=\{2,3\}$ and $L\left(v_{i_{p-1}}\right)=$ $\{1,3\}, L\left(v_{i_{p}}\right)=\{3,5\}$, where $j \in\{1,2, \ldots, p-2\}$.

Second, $\ell \neq k$ and $\ell \geq 6$. Then, C_{i} is a listed-cycle satisfying one of the following conditions. For $j \in\{1,2, \ldots, p-2\}$, (1) $L\left(v_{i_{j}}\right)=\{1,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{3,4\} ;(2) L\left(v_{i_{j}}\right)=\{1,2\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{1,4\} ;$ (3) $L\left(v_{i_{j}}\right)=\{2,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{1,3\}$; (4) $L\left(v_{i_{j}}\right)=\{1,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{2,3\} ;(5) L\left(v_{i_{j}}\right)=\{1,2\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{2,4\} ;$ (6) $L\left(v_{i_{j}}\right)=\{2,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{3,4\}$.

Case 2.2. $\ell \equiv 1(\bmod 3)$. Then, for $j \in\{1,2, \ldots, p-2\}$, it follows that (1) $L\left(v_{i_{j}}\right)=\{1,4\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{2,4\}$; or (2) $L\left(v_{i_{j}}\right)=\{1,2\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{2,3\}$; or (3) $L\left(v_{i_{j}}\right)=\{2,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=$ $\{1,3\}$; or (4) $L\left(v_{i_{j}}\right)=\{1,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{1,2\}$; or (5) $L\left(v_{i_{j}}\right)=$ $\{2,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{3,5\} ;$ or (6) $L\left(v_{i_{j}}\right)=\{3,4\}$ and $L\left(v_{i_{p-1}}\right)=$ $L\left(v_{i_{p}}\right)=\{4,5\}$.

Case 2.3. $\ell \equiv 2(\bmod 3)$. First, when $\ell \geq 8$, it has that for $j \in\{1,2, \ldots, p-$ 2\}, (1) $L\left(v_{i_{j}}\right)=\{1,5\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{3,5\}$; or (2) $L\left(v_{i_{j}}\right)=\{1,2\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{2,3\}$; or (3) $L\left(v_{i_{j}}\right)=\{2,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=$ $\{2,4\}$; or (4) $L\left(v_{i_{j}}\right)=\{1,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{3,4\}$; or (5) $L\left(v_{i_{j}}\right)=$ $\{1,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{1,4\}$; or (6) $L\left(v_{i_{j}}\right)=\{1,2\}$ and $L\left(v_{i_{p-1}}\right)=$ $L\left(v_{i_{p}}\right)=\{1,3\}$; or (7) $L\left(v_{i_{j}}\right)=\{2,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{3,4\}$; or (8) $L\left(v_{i_{j}}\right)=\{3,4\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{2,4\}$; or (9) $L\left(v_{i_{j}}\right)=\{4,5\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{2,5\}$.

Second, when $\ell=5, C_{i}$ is a listed-cycle such that (1) $L\left(v_{i_{j}}\right)=\{1,5\}$ for $j \in\{1,2, \ldots, p\} \backslash\left\{j^{\prime}, j^{\prime}+1\right\}$, and $L\left(v_{i_{j^{\prime}}}\right)=L\left(v_{i_{j^{\prime}+1}}\right)=\{1,3\}$, where $j^{\prime}, j^{\prime}+1$ are
read model p; or (2) $L\left(v_{i_{j}}\right)=\{1,2\}$ and $L\left(v_{i_{p-1}}\right)=\{1,3\}, L\left(v_{i_{p}}\right)=\{1,4\}$; or (3) $L\left(v_{i_{j}}\right)=\{2,3\}$ and $L\left(v_{i_{p-1}}\right)=\{3,4\}, L\left(v_{i_{p}}\right)=\{4,5\}$; or (4) $L\left(v_{i_{j}}\right)=\{3,4\}$ and $L\left(v_{i_{p-1}}\right)=\{4,5\}, L\left(v_{i_{p}}\right)=\{2,5\}$; or (5) $L\left(v_{i_{j}}\right)=\{4,5\}$ and $L\left(v_{i_{p-1}}\right)=$ $\{3,5\}, L\left(v_{i_{p}}\right)=\{2,3\}$, where $j \in\{1,2, \ldots, p-2\}$ in (2)-(5).

Obviously, in each of the above subcases, C_{i} is a quaint listed-cycle satisfying the condition of Lemma 4(1). Therefore, C_{i} has a strong irlist-edge-coloring using some colors in $\{1,2,3,4,5\}$ by Rules ($\star 1$) and ($\star 2$).

Case 3. When $p \equiv 2(\bmod 3)$, there are also three subcases that need to dealt with.

Case 3.1. $\quad \ell \equiv 0(\bmod 3)$. Then, one of the following holds. For $j \in$ $\{1,2, \ldots, p-2\}$, (1) $L\left(v_{i_{j}}\right)=\{1,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{3,4\}$; (2) $L\left(v_{i_{j}}\right)=$ $\{1,2\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{4,5\} ;(3) L\left(v_{i_{j}}\right)=\{2,3\}$ and $L\left(v_{i_{p-1}}\right)=$ $L\left(v_{i_{p}}\right)=\{3,5\}$.

Case 3.2. $\ell \equiv 1(\bmod 3)$. Then, for $j \in\{1,2, \ldots, p-2\}$, it has that (1) $L\left(v_{i_{j}}\right)=\{1,4\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{2,4\}$; or (2) $L\left(v_{i_{j}}\right)=\{1,2\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{2,3\}$; or (3) $L\left(v_{i_{j}}\right)=\{2,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=$ $\{3,5\}$; or (4) $L\left(v_{i_{j}}\right)=\{1,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{2,5\}$; or (5) $L\left(v_{i_{j}}\right)=$ $\{3,4\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{4,5\}$.

Case 3.3. $\ell \equiv 2(\bmod 3)$. Then, for $j \in\{1,2, \ldots, p-2\}$, one of the following situations holds. (1) $L\left(v_{i_{j}}\right)=\{1,5\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{2,5\}$; (2) $L\left(v_{i_{j}}\right)=\{1,2\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{2,4\} ;$ (3) $L\left(v_{i_{j}}\right)=\{2,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{1,4\} ;$ (4) $L\left(v_{i_{j}}\right)=\{1,3\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{1,2\}$; (5) $L\left(v_{i_{j}}\right)=\{3,4\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{1,3\}$; (6) $L\left(v_{i_{j}}\right)=\{4,5\}$ and $L\left(v_{i_{p-1}}\right)=L\left(v_{i_{p}}\right)=\{3,5\}$.

One can readily check that in Cases $3.1-3.3, C_{i}$ is also a quaint listed-cycle. Therefore, C_{i} has a strong irlist-edge-coloring using colors 1, 2, 3, 4, and 5 by Rules ($\star 3$) and ($\star 4$) in Lemma 4(2).

Until now, we have colored edges of $C_{i}, i=0,1, \ldots, \ell-1$. We denote the resulting coloring of C_{i} by f^{\prime}. Obviously, for each $i \in\{0,1, \ldots, n-1\}$, it has that $\left|\left\{f\left(u_{i} u_{i+1}\right), f\left(u_{i} u_{i-1}\right), f^{\prime}\left(v_{i} v_{i+1}\right), f^{\prime}\left(v_{i} v_{i-1}\right)\right\}\right|=4$. We then color each $u_{i} v_{i}$ with the unique color $\{1,2,3,4,5\} \backslash\left\{f\left(u_{i} u_{i+1}\right), f\left(u_{i} u_{i-1}\right), f^{\prime}\left(v_{i} v_{i+1}\right), f^{\prime}\left(v_{i} v_{i-1}\right)\right\}$. This completes the edge-coloring of $P(n, k)$. We now show that such the coloring is a star 5 -edge-coloring.

If not, let P be a bichromatic 4-path. Since f is a strong edge-coloring of C, and $\left\{f\left(u_{i} u_{i+1}\right), f\left(u_{i} u_{i-1}\right)\right\} \cap\left\{f^{\prime}\left(v_{i} v_{i+1}\right), f^{\prime}\left(v_{i} v_{i-1}\right)\right\}=\emptyset$ for any $i \in\{0,1, \ldots, n-$ $1\}, P$ does not contain any edges of C. In addition, by Lemma 4 , any three edges of C_{i} receive different colors under f^{\prime}, except $v_{i_{p-2}} v_{i_{p-1}}, v_{i_{p-1}} v_{i_{p}}, v_{i_{p}} v_{i_{1}}$. Therefore, $P=v_{i_{p-2}} v_{i_{p-1}} v_{i_{p}} v_{i_{1}} u_{i_{1}}$ or $P=u_{i_{p-2}} v_{i_{p-2}} v_{i_{p-1}} v_{i_{p}} v_{i_{1}}$. However, by Lemma 4 Rule $(\star 3)$ and $(\star 4), f^{\prime}\left(v_{i_{p-1}} v_{i_{p}}\right)$ is a listed-color not in $L\left(v_{i_{p-1}}\right) \cup L\left(v_{i_{p}}\right)$. Then, by the coloring rule of $u_{i} v_{i}, i=0,1, \ldots, n-1$, it has that $f^{\prime}\left(v_{i_{p-1}} v_{i_{p}}\right) \neq f\left(v_{i_{1}} u_{i_{1}}\right)$
and $f^{\prime}\left(v_{i_{p-1}} v_{i_{p}}\right) \neq f\left(u_{i_{p-2}} v_{i_{p-2}}\right)$. Therefore, P is not bichromatic, and it is a contradiction.

Lemma 6. Let $P(n, k)$ be a generalized Petersen graph such that $\operatorname{GCD}(n, k)=1$, $n \equiv 0(\bmod 2)$ and $k \equiv 1(\bmod 2)$. Then, $P(n, k)$ has a star 5 -edge-coloring.

Proof. It is sufficient to construct a star 5-edge-coloring for $P(n, k)$ in this case. Let $C=u_{0} u_{1} \cdots u_{n-1} u_{0}$ be the cycle induced by $\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$. Since $\operatorname{GCD}(n, k)=1$, i.e., n, k are coprime, the subgraph induced by $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ is also a cycle, denoted by C^{\prime}. Since $n \equiv 0(\bmod 2)$, it follows that $n \neq 5$ and by Lemma 3 both C and C^{\prime} have a star 3 -edge-coloring. Let f_{1} and f_{2} be the two star edge-colorings of C and C^{\prime}, respectively, using colors 1,2 , and 3 . Then, we color $u_{i} v_{i}$ with 4 when $i \equiv 0(\bmod 2)$ and with 5 when $i \equiv 1(\bmod 2)$, for $i=0,1, \ldots, n-1$. Denote by f_{3} the resulting coloring, and let $f=f_{1} \cup f_{2} \cup f_{3}$. We now show that f is a star edge-coloring. On the contrary, we assume there is a bichromatic 4-path P. Let c_{1} and c_{2} be the two colors appearing on the edges of P. By f_{1} and f_{2}, it is by no means that $\left\{c_{1}, c_{2}\right\} \subset\{1,2,3\}$. In addition, since $(n, k)=1, n \equiv 0(\bmod 2)$ and $k \equiv 1(\bmod 2), f_{3}\left(u_{i} v_{i}\right) \neq f_{3}\left(u_{i+1} v_{i+1}\right)$ and $f_{3}\left(u_{i} v_{i}\right) \neq f_{3}\left(u_{i+k} v_{i+k}\right)$. Therefore, together with $f_{3},\left\{c_{1}, c_{2}\right\} \cap\{4,5\}=\emptyset$. Hence, P is not bichromatic and is a contradiction.

Theorem 7. $P(n, 1), n \geq 5$, has a star 5 -edge-coloring.
Proof. By Lemma 6, we only need to consider the case $n \equiv 1(\bmod 2)$. In this case, we can also obtain a star 5 -edge-coloring by a slight change of the coloring in Lemma 6. Let $P_{1}=u_{n-1} u_{0} u_{1} \cdots u_{n-2}$ and $P_{2}=v_{0} v_{1} \cdots v_{n-1}$ be two paths. We now define a star 3 -edge-coloring f_{1} of P_{1} as follows. First, let $f_{1}\left(u_{n-1} u_{0}\right)=2, f_{1}\left(u_{0} u_{1}\right)=f_{1}\left(u_{n-3} u_{n-2}\right)=3$. Then, color edges of sub-path $u_{1} u_{2} \cdots u_{n-3}$ as follows: when $n=5$, let $f_{1}\left(u_{1} u_{2}\right)=1$; when $n \geq 7$, color edges $u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{n-4} u_{n-3}$ by 1,3 , and 2 , repeatedly, if $n-4 \equiv 0(\bmod 3)$; by $\underbrace{1,3,2, \ldots, 1,3,2}_{n-5 \text { edges }}, 1$ if $n-4 \equiv 1(\bmod 3)$; and by $\underbrace{1,3,2, \ldots, 1,3,2}_{n-6 \text { edges }}, 1$ and 2 if $n-4 \equiv 2(\bmod 3)$. Obviously, P_{2} also has a star 3 -edge-coloring, say f_{2}. By color permutation, we can assume $f_{2}\left(v_{n-3} v_{n-2}\right)=3$, and $f_{2}\left(v_{n-2} v_{n-1}\right)=2$. Based on f_{1} and f_{2}, we color $u_{n-2} u_{n-1}$ with 4 and $v_{n-1} v_{0}$ with 5 . And for any $i \in\{0,1, \ldots, n-2\}$, color $u_{i} v_{i}$ with 4 for $i \equiv 0(\bmod 2)$ and with 5 for $i \equiv 1(\bmod 2)$, and finally, color $u_{n-1} v_{n-1}$ with 1 . Until now, we typically obtain an edge-coloring of $P(n, 1)$. One can easily see that such the coloring is a star 5-edge-coloring.

Note that when $n=3$, Theorem 7 by no means hold. However, by a coloring $P(n, 3)$ with an exhausting search, we can see that $P(n, 3)$ does not contain any star 5-edge-coloring.

Lemma 8. Let $P(n, k)$ be a generalized Petersen graph such that $(n, k)=2$. Let $C_{0}=v_{0} v_{k} \cdots v_{\left(\frac{n}{2}-1\right) k} v_{0}$. If C_{0} has a star 3 -edge-coloring f such that $C_{f}\left(v_{i}\right) \neq$ $C_{f}\left(v_{i+1}\right)$ for any $i \in\{0,1, \ldots, n-1\}$ and $i \equiv 0(\bmod 2)$, then $P(n, k)$ has a star 5 -edge-coloring, where $C_{f}\left(v_{i}\right)=\left\{f\left(v_{i} v_{i+k}\right), f\left(v_{i} v_{i-k}\right)\right\}$.

Proof. Since $G C D(n, k)=2$, it has that n is an even number. Let f be a star 3-edge-coloring of C_{0}, such that $C_{f}\left(v_{i}\right) \neq C_{f}\left(v_{i+1}\right)$ for any $i \equiv 0(\bmod 2)$ and $i \in\{0,1, \ldots, n-1\}$. We now color $C_{1}=v_{1} v_{1+k} \cdots v_{1+\left(\frac{n}{2}-1\right) k} v_{1}$ with the same pattern as C_{0}, that is, color each edge $v_{j} v_{j+k}$ with the color $f\left(v_{j-1} v_{j+k-1}\right)$, for $j \equiv 1(\bmod 2)$ and $j \in\{0,1, \ldots, n-1\}$. Denote the resulting coloring of C_{0} and C_{1} also by f. Then, $C_{f}\left(v_{i}\right)=C_{f}\left(v_{i+1}\right)$ for any $i=0,2,4, \ldots, n-2$. Based on f, for any $i \in\{0,1, \ldots, n-1\}$, we color $u_{i} u_{i+1}$ with the color in $\{1,2,3\} \backslash C_{f}\left(v_{i}\right)$ when $i \equiv 0(\bmod 2)$, and with 4 when $i \equiv 1(\bmod 2)$. Finally, color $u_{i} v_{i}$ with 5 , $i=0,1, \ldots, n-1$. Obviously, such the coloring is a star 5 -edge-coloring.

Theorem 9. $P(6 m, 2)$ has a star 5-edge-coloring, where $m \geq 1$ is a positive number.

Proof. Let $n=6 m$, and $C_{0}=v_{0} v_{k} \cdots v_{\left(\frac{n}{2}-1\right) k} v_{0}$. Obviously, C_{0} has a star 3-edge-coloring f such that $C_{f}\left(v_{i}\right) \neq C_{f}\left(v_{i+1}\right)$ for any $i \in\{0,1, \ldots, n-1\}$ and $i \equiv 0(\bmod 2)\left(\right.$ since $\frac{n}{2}=3 m \equiv 0(\bmod 3)$, we can color edges of C_{0} with 1,2 , 3 , repeatedly). Therefore, by Lemma $8, P(6 m, 2)$ has a star 5 -edge-coloring.

In this article, we determine the star chromatic index of generalized Petersen graphs $P(n, k)$ for "almost all" values of n and k. By using more involved analysis, we can also prove $P(n, k)$ has a star 5 -edge-coloring for some remaining values of n and k, particularly, for the case $\ell=3, k \neq \ell$, and $\frac{n}{3} \equiv 1(\bmod 3)$. However, we prefer to present a short or uniform proof. In addition, we would like to stress that only one generalized Petersen graph, i.e., $P(3,1)$, is found to have the star chromatic index 6 . Therefore, we conjecture that $P(n, k)$ has a star 5 -edge-coloring for any $n \geq 4$.

References

[1] M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen and R. Ramamurthi, Coloring with no 2-colored P_{4} 's, Electron. J. Combin. 11 (2004) \#R26.
[2] L. Bezegová, B. Lužar, M. Mockovčiaková, R. Soták and R. Škrekovski, Star edge coloring of some classes of grpahs, J. Graph Theory 81 (2016) 73-82. doi:10.1002/jgt.21862
[3] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, New York, 2008).
[4] Y. Bu, D.W. Cranston, M. Montassier, A. Raspaud and W. Wang, Star- coloring of sparse graphs, J. Graph Theory 62 (2009) 201-209.
doi:10.1002/jgt. 20392
[5] M. Chen, A. Raspaud and W. Wang, 6-star-coloring of subcubic graphs, J. Graph Theory 72 (2013) 128-145. doi:10.1002/jgt. 21636
[6] Z. Dvořák, B. Mohar and R. Šámal, Star chromatic index, J. Graph Theory 72 (2013) 313-326.
doi:10.1002/jgt. 21644
[7] H.A. Kierstead, A. Kündgen and C. Timmons, Star coloring bipartite planar graphs, J. Graph Theory 60 (2009) 1-10. doi:10.1002/jgt. 20342
[8] X.S. Liu and K. Deng, An upper bound on the star chromatic index of graphs with $\Delta \geq 7$, J. Lanzhou Univ. Nat. Sci. 44 (2008) 94-95.
[9] M.E. Watkins, A theorem on tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969) 152-164. doi:10.1016/S0021-9800(69)80116-X

Received 24 October 2017
Revised 27 November 2018
Accepted 28 November 2018

[^0]: ${ }^{1}$ This work was supported by the National Natural Science Foundation of China under Grants 61672051, 61872101, and the Natural Science Foundation of Guangdong Province under Grant 2018A0303130115.
 ${ }^{2}$ Corresponding author.

