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Abstract

The star k-edge-coloring of graph G is a proper edge coloring using k
colors such that no path or cycle of length four is bichromatic. The mini-
mum number k for which G admits a star k-edge-coloring is called the star
chromatic index of G, denoted by χ′

s(G). Let GCD(n, k) be the greatest
common divisor of n and k. In this paper, we give a necessary and suffi-
cient condition of χ′

s(P (n, k)) = 4 for a generalized Petersen graph P (n, k)
and show that “almost all” generalized Petersen graphs have a star 5-edge-
colorings. Furthermore, for any two integers k and n (≥ 2k + 1) such that
GCD(n, k) ≥ 3, P (n, k) has a star 5-edge-coloring, with the exception of the
case that GCD(n, k) = 3, k 6= GCD(n, k) and n

3 ≡ 1 (mod 3).

Keywords: star edge-coloring, star chromatic index, generalized Petersen
graph.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected; for the
terminologies and notations not defined here, we follow [3]. For any graph G, we
denote by V (G) and E(G) the vertex set and the edge set of G, respectively. For
any vertex v in G, a vertex u ∈ V (G) is said to be a neighbor of v if uv ∈ E(G).
We use NG(v) to denote the set of neighbors of v. For positive integers n and k,
let GCD(n, k) be the greatest common divisor of n and k.
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A star k-edge-coloring of a graph G is a proper edge-coloring using k colors
such that at least three distinct colors are assigned to the edges of every path
and cycle of length four. The minimum number k for which G admits a star
k-edge-coloring is called the star chromatic index of G and is denoted by χ′s(G).

The star edge-coloring was motivated by the vertex version [1, 4, 5, 7], which
was first studied by Liu and Deng [8], who gave an upper bound on the star
chromatic index of graph with maximum degree at least 7. Dvořák et al. [6]
provided some upper and lower bounds for complete graphs. They also considered
cubic graphs and showed that the star chromatic index of such graphs lies between
4 and 7.

Since there exist many cubic graphs with a star chromatic index equal to 6,
e.g., K3,3 or the Heawood graph, and no example of a subcubic graph with star
chromatic index 7 is known, Dvořák et al. proposed the following conjecture.

Conjecture 1.1 [6]. If G is a subcubic graph, then χ′s(G) ≤ 6.

Recently, Bezegová et al. [2] established tight upper bounds for trees and
subcubic outerplanar graphs; they derived upper bounds for outerplanar graphs.
In this paper, we obtain a necessary and sufficient condition of χ′s(P (n, k)) = 4,
and present a construction of a star 5-edge-colorings of P (n, k) for “almost all”
values of n and k. Furthermore, we find that the generalized Petersen graph
P (n, k) with n = 3, k = 1 is the only graph with a star chromatic index of 6
among the investigated graphs. Based on these results, we conjecture that P (3, 1)
is the unique generalized Petersen graph that admits no star 5-edge-coloring.

2. A Necessary and Sufficient Condition of χ′s(P (n, k)) = 4

Let n and k be positive integers, n ≥ 2k+ 1 and n ≥ 3. The generalized Petersen
graph P (n, k), which was introduced in [9], is a cubic graph with 2n vertices, de-
noted by {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}, and all edges are of the form uiui+1,
uivi, vivi+k for 0 ≤ i ≤ n− 1. In the absence of a special claim, all subscripts of
vertices of P (n, k) are taken modulo n in the following.

Lemma 1 [6]. If G is a simple cubic graph, then χ′s(G) = 4 if and only if G
covers the graph of the 3-cube Q3 (as shown in Figure 1), where a graph H is
said to be covered by G if there is a locally bijective graph homomorphism from
G to H.

Theorem 2. χ′s(P (n, k)) = 4 if and only if n is a multiple of 4 and k is an odd
number.

Proof. Consider an arbitrary generalized Petersen graph P (n, k) with n ≡ 0
(mod 4) and k ≡ 1 (mod 2). We then prove that P (n, k) covers Q3. Define a
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Figure 1. Cube Q3 with a star 4-edge-coloring.

surjection φ : V (P (n, k))→ V (Q3) as follows: let φ(ui) = xi (mod 4) and φ(vi) =
yi (mod 4), i = 0, 1, . . . , n− 1.

To show that φ is a covering map, we need to prove that for each w ∈
V (P (n, k)), the three neighbors of w in P (n, k) map by φ to the three neighbors
of φ(w) in Q3. First, for each ui, its three neighbors in P (n, k) are ui+1, ui−1, vi.
By the structure of Q3, the three neighbors of φ(ui)

(
= xi (mod 4)

)
in Q3 are

xi+1(mod 4), xi−1 (mod 4) and yi (mod 4). Therefore, NQ3(φ(ui)) = {φ(ui+1), φ(ui−1),
φ(vi)}. Now, we consider a vertex vi in P (n, k). The three neighbors of vi in
P (n, k) are ui, vi+k, vi−k, and the three neighbors of φ(vi)

(
= yi (mod 4)

)
in Q3 are

xi (mod 4), yi+1 (mod 4), yi−1(mod 4). Observe that k is an odd number, which im-
plies that i+k (mod 4) 6= i−k (mod 4), and i+k (mod 2) = i−k (mod 2) 6= i
(mod 2). Therefore, {φ(vi+k), φ(vi−k)} = {yi+1 (mod 4), yi−1 (mod 4)}, that is,
NQ3(φ(vi))={φ(ui), φ(vi+k), φ(vi−k)}. Hence, P (n, k) covers Q3, and χ′s(P (n, k))
= 4 by Lemma 1.

For the inverse implication, suppose that P (n, k) has a star 4-edge-coloring
f . For any vertex w ∈ V (P (n, k)), define a (vertex) 4-coloring f ′ of P (n, k) by
letting f ′(w) be the unique color that is missing on edges incident with w under
f . Then, the three neighbors of any vertex are assigned to different colors under
f ′. Otherwise, assume that there exist some vertex w and its two neighbors
w1, w2 in P (n, k) satisfying f ′(w) = c1, f

′(w1) = f ′(w2) = c2, f(ww1) = c3 and
f(ww2) = c4, where {c1, c2, c3, c4} = {1, 2, 3, 4}. Then color c4 appears on an edge
incident with w1, and c3 appears on an edge incident with w2. This creates a
bichromatic path or cycle of length 4. Thus, if f ′(w) = c1, the incident edges and
adjacent vertices of w are c2, c3, c4 under f and f ′, respectively. There are exactly
two possibilities as follows: either the edges incident with w colored c2, c3, c4 lead
to corresponding vertices (w′s neighbors) colored c3, c4, c2, respectively, or to
corresponding vertices colored c4, c2, c3. These two possibilities are called the local
color pattern at w. Then, f and f ′ induce a covering map Φ: V (P (n, k))→ V (Q3)
such that for each w ∈ V (P (n, k)), f ′(w) = f ′(Φ(w)) (we use f ′ also for the vertex
coloring of Q3 shown in Figure 1), and w and Φ(w) have the same local color
pattern.



430 E. Zhu and Z. Shao

Let Xi and Yi denote the set of vertices of P (n, k) that are mapped to xi and
yi, respectively, under Φ, i = 0, 1, 2, 3. Thus, under f ′ vertices in X0 and Y2 are
colored with 1, in X1 and Y3 vertices are colored with 2, in X2 and Y0 vertices
are colored with 3, and in X3 and Y1 vertices are colored with 4.

Claim. |Xi| = |Yj | = n
4 for i, j ∈ {0, 1, 2, 3}.

Proof. Observe that by the definition of Φ, for every vertex w ∈ X0, there is
exactly one neighbor of w that belongs to Y0; for every vertex w′ ∈ Y0, there
is exactly one neighbor of w′ that belongs to X0. This implies that there is a
bijection between X0 and Y0. Therefore, |X0| = |Y0|. Analogously, we have
|X0| = |X1| = |X3|, |X1| = |X2| = |Y1|, |X2| = |X3| = |Y2|, and |X3| = |Y3|.
Therefore, |Xi| = |Yj |, and |V (P (n, k))| = 2n = 8|Xi|, which indicates that
n = 4|Xi|, and the claim holds. �

Clearly, n is a multiple of 4 by the above claim. In what follows, we show k
is an odd number.

From the definition of covering projections, we see that every cycle of length
` in P (n, k) is mapped to a cycle of length `′ in Q3 such that ` = m`′ for some
nonnegative integer m. Therefore, the cycle C = u0u1 · · ·un−1u0 is mapped to a
cycle C ′ of length 4 or 8. Note that Q3 is a bipartite graph that does not contain
any cycle with odd number of vertices. In addition, if C ′ is a 6-cycle, then with a
similar analysis as below, the subgraph of Q3 induced by vertices corresponding
to v0, v1, . . . , vn−1 consists of two paths with length 1 and a contraction.

If C ′ is a cycle of length 4, without loss of generality, it is assumed that C ′ =
x0x1y1y0x0, and then any 4 consecutive vertices on C are mapped to x0, x1, y1, y0
in one order of (x0, x1, y1, y0), (x1, y1, y0, x0), (y1, y0, x0, x1) or (y0, x0, x1, y1). In
this way, we can assume the following without the loss of generality

Φ(ui) =


x0, i ≡ 0 (mod 4),
x1, i ≡ 1 (mod 4),
y1, i ≡ 2 (mod 4),
y0, i ≡ 3 (mod 4).

Then,

Φ(vi) =


x3, i ≡ 0 (mod 4),
x2, i ≡ 1 (mod 4),
y2, i ≡ 2 (mod 4),
y3, i ≡ 3 (mod 4),

x3y2 /∈ E(Q3) and x2y3 /∈ E(Q3), so the vertex mapped to x3 (or x2) is not
adjacent to the vertex mapped to y2 or x3 (or y3 or x2) in P (n, k). Therefore, k
is an odd number in this case.



On the Star Chromatic Index of Generalized Petersen Graphs 431

If C ′ is a cycle of length 8, then n is a multiple of 8, and C ′ is a Hamilton
cycle such as C ′ = x0x1x2x3y3y2y1y0x0. Clearly, any 8 consecutive vertices on C
are mapped to x0, x1, x2, x3, y3, y2, y1, y0, preserving the adjacent relation in C ′.
Without loss of generality, we assume

Φ(ui) =



x0, i ≡ 0 (mod 8),
x1, i ≡ 1 (mod 8),
x2, i ≡ 2 (mod 8),
x3, i ≡ 3 (mod 8),
y3, i ≡ 4 (mod 8),
y2, i ≡ 5 (mod 8),
y1, i ≡ 6 (mod 8),
y0, i ≡ 7 (mod 8).

Then, it follows that

Φ(vi) =



x3, i ≡ 0 (mod 8),
y1, i ≡ 1 (mod 8),
y2, i ≡ 2 (mod 8),
x0, i ≡ 3 (mod 8),
y0, i ≡ 4 (mod 8),
x2, i ≡ 5 (mod 8),
x1, i ≡ 6 (mod 8),
y3, i ≡ 7 (mod 8).

Since in Q3, x3 is not adjacent to y2, y0, x1 or x3 itself, it follows that the vertex
mapped to x3 is not adjacent to the vertex mapped to y2, y0, x1 or x3, in P (n, k).
Therefore, k is an odd number, which completes the proof.

3. Construction of Star 5-Edge-Colorings for P (n, k)

A list L of a graph G is a mapping from a finite set of colors (positive integers)
to each vertex of G. For any V ′ ⊆ V (G), L(V ′) denotes the set of colors that
are assigned to the vertices of V ′, i.e., L(V ′) = {L(v)|v ∈ V ′}. A proper edge-
coloring f of G is called an irlist-edge-coloring if f(e) /∈ L(u)∪L(v) for any edge
e(= uv) ∈ E(G). An edge-coloring of G is strong if any two edges within distance
two apart receive different colors.

Let C = v1v2 . . . vmv1 be a cycle of length m, m ≥ 3. We call C a listed-
cycle if C has a list L and refer to the colors in L(V (C)) as listed -colors of C. In
particular, if there are exactly two consecutive vertices vi, vi+1 satisfying L(vi)
(respectively, L(vi+1)) 6= L(vj) and L(vj)=L(vj′) for all j, j′ ∈ {1, 2, . . . ,m} \
{i, i + 1}, then we say C is quaint and vi and vi+1 are the quaint vertices of C,
where vm+1 = vm.
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Lemma 3. Let C = v1v2 · · · vmv1 be a cycle, m ≥ 3 and m 6= 5. Then, C has
a star 3-edge-coloring. Particularly, when m ≡ 0 (mod 3), C has a strong edge-
coloring using three colors.

Proof. We construct our desired colorings as follows. When m ≡ 0 (mod 3),
we color edges v1v2, v2v3, . . . , vmv1 with three colors 1, 2, 3, repeatedly. When
m ≡ 1 (mod 3), we color edges v1v2, v2v3, . . . , vm−1vm with three colors 1, 2, 3,
repeatedly, and vmv1 with color 2. When m ≡ 2 (mod 3), it follows that m ≥ 8.
We color edges v1v2, v2v3, . . . , vm−5vm−4 with three colors 1, 2, 3, repeatedly, and
color vm−4vm−3, vm−3vm−2,vm−2vm−1, vm−1vm and vmv1 with 1, 2, 1, 3 and 2,
respectively.

Lemma 4. Let C = v1v2 · · · vmv1, m ≥ 3, be a quaint listed-cycle with list L
such that |L(v)| = 2 for every v ∈ V (C). Suppose that vm−1 and vm are the two
quaint vertices of C. If L(vi) 6⊆ (L(vm−1)∪L(vm)) for i ∈ {1, 2, . . . ,m− 2}, then

(1) when m ≡ 1 (mod 3), C has a strong irlist-edge-coloring using at most two
non-listed-colors;

(2) when m ≡ 2 (mod 3), C has an irlist-edge-coloring using at most two non-
list-colors, for which any three consecutive edges receive different colors ex-
cept vm−2vm−1, vm−1vm and vmv1.

Proof. Let L(vi) = {c1, c′1}, i ∈ {1, 2, . . . ,m − 2}, and L(vm−1) = {c2, c′2},
L(vm) = {c3, c′3}. Since L(vi) 6⊆ (L(vm−1) ∪ L(vm)), there exist three colors, say
c1, c2 and c3, such that c1 ∈ L(vi) and c1 /∈ L(vm−1) ∪ L(vm), c2 ∈ L(vm−1)
and c2 /∈ {c1, c′1}, and c3 ∈ L(vm) and c3 /∈ {c1, c′1}. Let c4, c

′
4 be two distinct

non-listed-colors. We construct the desired irlist-edge-colorings f of C by the
following four rules.

For (1), m − 1 ≡ 0 (mod 3). If c2 ∈ {c3, c′3} and c3 ∈ {c2, c′2}, let f be
the following: f(vm−1vm) = c1, f(vmv1) = c4, and for i = 1, 2, . . . ,m − 2,
f(vivi+1) = c2 when i ≡ 1 (mod 3), f(vivi+1) = c′4 when i ≡ 2 (mod 3) and
f(vivi+1) = c4 when i ≡ 0 (mod 3) (Rule (?1)). Clearly, under f , any two edges
within distance two receive distinct colors. Note that c1 /∈ L(vm−1) ∪ L(vm)
and {c2, c4, c′4} ∩ {c1, c′1} = ∅. Therefore, f is a strong irlist-edge-coloring of
C using two non-listed-colors c4, c

′
4. If c2 /∈ {c3, c′3} (or c3 /∈ {c2, c′2}), then

c2 6= c3. Let f be the following: f(vm−1vm) = c1, f(vmv1) = c2 (or c4), and for
i = 1, 2, . . . ,m − 2, f(vivi+1) = c3 (or c2) when i ≡ 1 (mod 3), f(vivi+1) = c4
(or c3) when i ≡ 2 (mod 3) and f(vivi+1) = c2 (or c4) when i ≡ 0 (mod 3) (Rule
(?2)). Additionally, under f , any two edges within distance two receive distinct
colors. Since {c2, c3} ∩ {c1, c′1} = ∅ and c1 /∈ L(vm−1) ∪ L(vm), it holds that f is
a strong irlist-edge-coloring of C using one non-listed-color c4.

For (2), m− 2 ≡ 0 (mod 3). If c2 = c3, let f be f(vm−1vm) = c1, f(vmv1) =
c4, and for i = 1, 2, . . . ,m−2, f(vivi+1) = c2 when i ≡ 1 (mod 3), f(vivi+1) = c′4
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when i ≡ 2 (mod 3) and f(vivi+1) = c4 when i ≡ 0 (mod 3) (Rule (?3)). By the
definition of f , it has that f(e) 6= f(e′) for any e, e′ ∈ (E(C)\{vm−2vm−1, vmv1})
such that the distance between them is at most two. Additionally, c1 /∈ L(vm−1)∪
L(vm) and {c2, c4, c′4}∩{c1, c′1} = ∅. Therefore, f is the desired irlist-edge-coloring
of C using two non-listed-colors c4, c

′
4.

If c2 6= c3, let f be the following: f(vm−1vm) = c1, f(vmv1) = c4, and for
i = 1, 2, . . . ,m − 2, f(vivi+1) = c2 when i ≡ 1 (mod 3), f(vivi+1) = c3 when
i ≡ 2 (mod 3) and f(vivi+1) = c4 when i ≡ 0 (mod 3) (Rule (?4)). Analogously,
f is the desired irlist-edge-coloring of C using one non-listed-colors c4.

Theorem 5. Let ` be the greatest common divisor of n and k. When ` ≥ 3,
with the exception of ` = 3, k 6= `, and n

3 ≡ 1 (mod 3), P (n, k) has a star
5-edge-coloring.

Proof. Let ij = i + (j − 1)k for j = 1, 2, . . . , p = n
` . Then, by the definition,

the subgraph of P (n, k) induced by {v0, v1, . . . , vn−1} is the union of ` vertex-
disjoint p-cycles, denoted by Ci = vi1vi2 · · · vipvi1 , i = 0, 1, . . . , ` − 1. Let C =
u0u1 · · ·un−1u0.

We first partition C into five edge-disjoint paths as follows.

Path-A. u0u1u2, . . . , un−2k−1un−2k.

Path-B. un−2kun−2k+1un−2k+2 · · ·un−2k+`−1un−2k+`.

Path-C. un−2k+`un−2k+`+1un−2k+`+2 · · ·un−k−1un−k.

Path-D. un−kun−k+1un−k+2 · · ·un−k+`−1un−k+`.

Path-E. un−k+`un−k+`+1un−k+`+2 · · ·un−1u0.
Note that the length of each path defined above is a multiple of `. Both Path-B
and Path-D contain exactly ` edges, and when k = `, Path-C and Path-E are
empty.

We now color edges of C by coloring edges of Paths-A, C, E, B and D,
respectively, according to the coloring rules indicated in Table 1. We distin-
guish 11 cases (each row denotes one case) based on values of p and `. Each
column contains 11 coloring rules of the corresponding paths (for example, the
second column corresponds to Path-A, Path-C and Path-E). Each rule is a cyclic
coloring of ` colors. When we use the rule to color the edges of the corre-
sponding path, say P = uxux+1 · · ·ux+m, we first partition the path into q
small paths of length `(≥ 3), P1, P2, . . . , Pq, where P1 = uxux+1 · · ·ux+`, P2 =
ux+`+1ux+`+2 · · ·ux+2`+1, . . . , Pq = ux+m−`ux+m−`+1 · · ·ux+m; then, for each Pi,
we color it from the first edge to the last edge one by one consecutively, according
to the rule. For example, in the case of p ≡ 1 (mod 3) and ` ≡ 1 (mod 3), if
P ∈ {Path-A, Path-C, Path-E}, then we color Pi (Pi is a subgraph of P ) with 1,
2, 3, 1, 2, 3, and 4 when |E(Pi)| = 7 and with 1, 2, 3, and 4 when |E(Pi)| = 4;
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if P ∈ {Path-B, Path-D}, then we color Pi with 2, 3, 1, 2, 3, 5, and 4 when
|E(Pi)| = 7 and with 2, 3, 5, and 4 when |E(Pi)| = 4.

The resulting coloring of C is denoted by f . One can readily check that f is
a strong edge-coloring. We now assign list L to Ci for i = 0, 1, . . . , `− 1. Let

L(vi) = {f(uiui+1), f(uiui−1)}, i = 0, 1, . . . , n− 1.

Then, we obtain ` listed-cycles Ci of length p = n
` , i = 0, 1, . . . , `− 1.

Case 1. When p ≡ 0 (mod 3), then |L(V (Ci))| = 2 (since k is a multiple of
`) for each i ∈ {0, 1, . . . , ` − 1}. Observe that |V (Ci)| = p ≡ 0 (mod 3). Hence,
by Lemma 3, Ci has a strong irlist-edge-coloring with {1, 2, 3, 4, 5}\{x, y}, where
x, y are the two listed-colors of Ci.

Case 2. When p ≡ 1 (mod 3), we further consider the following three sub-
cases.

Case 2.1. ` ≡ 0 (mod 3). First, ` = k. Then, Ci is a listed-cycle such
that (1) L

(
vij
)

= {1, 3} and L
(
vip−1

)
= L

(
vip
)

= {3, 4}; or (2) L
(
vij
)

= {1, 2}
and L

(
vip−1

)
= {1, 4}, L

(
vip
)

= {4, 5}; or (3) L
(
vij
)

= {2, 3} and L
(
vip−1

)
=

{1, 3}, L
(
vip
)

= {3, 5}, where j ∈ {1, 2, . . . , p− 2}.
Second, ` 6= k and ` ≥ 6. Then, Ci is a listed-cycle satisfying one of

the following conditions. For j ∈ {1, 2, . . . , p − 2}, (1) L
(
vij
)

= {1, 3} and
L
(
vip−1

)
= L

(
vip
)

= {3, 4}; (2) L
(
vij
)

= {1, 2} and L
(
vip−1

)
= L

(
vip
)

= {1, 4};
(3) L

(
vij
)

= {2, 3} and L
(
vip−1

)
= L

(
vip
)

= {1, 3}; (4) L
(
vij
)

= {1, 3} and
L
(
vip−1

)
= L

(
vip
)

= {2, 3}; (5) L
(
vij
)

= {1, 2} and L
(
vip−1

)
= L

(
vip
)

= {2, 4};
(6) L

(
vij
)

= {2, 3} and L
(
vip−1

)
= L

(
vip
)

= {3, 4}.

Case 2.2. ` ≡ 1 (mod 3). Then, for j ∈ {1, 2, . . . , p − 2}, it follows that
(1) L

(
vij
)

= {1, 4} and L
(
vip−1

)
=L
(
vip
)
={2, 4}; or (2) L

(
vij
)

= {1, 2} and
L
(
vip−1

)
= L

(
vip
)

= {2, 3}; or (3) L
(
vij
)

= {2, 3} and L
(
vip−1

)
= L

(
vip
)

=
{1, 3}; or (4) L

(
vij
)

= {1, 3} and L
(
vip−1

)
= L

(
vip
)

= {1, 2}; or (5) L
(
vij
)

=
{2, 3} and L

(
vip−1

)
= L

(
vip
)

= {3, 5}; or (6) L
(
vij
)

= {3, 4} and L
(
vip−1

)
=

L
(
vip
)

= {4, 5}.

Case 2.3. ` ≡ 2 (mod 3). First, when ` ≥ 8, it has that for j ∈ {1, 2, . . . , p−
2}, (1) L

(
vij
)

= {1, 5} and L
(
vip−1

)
= L

(
vip
)

= {3, 5}; or (2) L
(
vij
)

= {1, 2}
and L

(
vip−1

)
= L

(
vip
)

= {2, 3}; or (3) L
(
vij
)

= {2, 3} and L
(
vip−1

)
= L

(
vip
)

=
{2, 4}; or (4) L

(
vij
)

= {1, 3} and L
(
vip−1

)
= L

(
vip
)

= {3, 4}; or (5) L
(
vij
)

=
{1, 3} and L

(
vip−1

)
= L

(
vip
)

= {1, 4}; or (6) L
(
vij
)

= {1, 2} and L
(
vip−1

)
=

L
(
vip
)

= {1, 3}; or (7) L
(
vij
)

= {2, 3} and L
(
vip−1

)
= L

(
vip
)

= {3, 4}; or (8)
L
(
vij
)

= {3, 4} and L
(
vip−1

)
= L

(
vip
)

= {2, 4}; or (9) L
(
vij
)

= {4, 5} and
L
(
vip−1

)
= L

(
vip
)

= {2, 5}.
Second, when ` = 5, Ci is a listed-cycle such that (1) L

(
vij
)

= {1, 5} for
j ∈ {1, 2, . . . , p}\{j′, j′+ 1}, and L

(
vij′
)

= L
(
vij′+1

)
= {1, 3}, where j′, j′+ 1 are
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read model p; or (2) L
(
vij
)

= {1, 2} and L
(
vip−1

)
= {1, 3}, L

(
vip
)

= {1, 4}; or
(3) L

(
vij
)

= {2, 3} and L
(
vip−1

)
= {3, 4}, L

(
vip
)

= {4, 5}; or (4) L
(
vij
)

= {3, 4}
and L

(
vip−1

)
= {4, 5}, L

(
vip
)

= {2, 5}; or (5) L
(
vij
)

= {4, 5} and L
(
vip−1

)
=

{3, 5}, L
(
vip
)

= {2, 3}, where j ∈ {1, 2, . . . , p− 2} in (2)–(5).
Obviously, in each of the above subcases, Ci is a quaint listed-cycle satisfying

the condition of Lemma 4(1). Therefore, Ci has a strong irlist-edge-coloring using
some colors in {1, 2, 3, 4, 5} by Rules (?1) and (?2).

Case 3. When p ≡ 2 (mod 3), there are also three subcases that need to
dealt with.

Case 3.1. ` ≡ 0 (mod 3). Then, one of the following holds. For j ∈
{1, 2, . . . , p−2}, (1) L

(
vij
)

= {1, 3} and L
(
vip−1

)
= L

(
vip
)

= {3, 4}; (2) L
(
vij
)

=
{1, 2} and L

(
vip−1

)
= L

(
vip
)

= {4, 5}; (3) L
(
vij
)

= {2, 3} and L
(
vip−1

)
=

L
(
vip
)

= {3, 5}.

Case 3.2. ` ≡ 1 (mod 3). Then, for j ∈ {1, 2, . . . , p − 2}, it has that (1)
L
(
vij
)

= {1, 4} and L
(
vip−1

)
= L

(
vip
)

= {2, 4}; or (2) L
(
vij
)

= {1, 2} and
L
(
vip−1

)
= L

(
vip
)

= {2, 3}; or (3) L
(
vij
)

= {2, 3} and L
(
vip−1

)
= L

(
vip
)

=
{3, 5}; or (4) L

(
vij
)

= {1, 3} and L
(
vip−1

)
= L

(
vip
)

= {2, 5}; or (5) L
(
vij
)

=
{3, 4} and L

(
vip−1

)
= L

(
vip
)

= {4, 5}.

Case 3.3. ` ≡ 2 (mod 3). Then, for j ∈ {1, 2, . . . , p − 2}, one of the fol-
lowing situations holds. (1) L

(
vij
)

= {1, 5} and L
(
vip−1

)
= L

(
vip
)

= {2, 5};
(2) L

(
vij
)

= {1, 2} and L
(
vip−1

)
= L

(
vip
)

= {2, 4}; (3) L
(
vij
)

= {2, 3} and
L
(
vip−1

)
= L

(
vip
)

= {1, 4}; (4) L
(
vij
)

= {1, 3} and L
(
vip−1

)
= L

(
vip
)

= {1, 2};
(5) L

(
vij
)

= {3, 4} and L
(
vip−1

)
= L

(
vip
)

= {1, 3}; (6) L
(
vij
)

= {4, 5} and
L
(
vip−1

)
= L

(
vip
)

= {3, 5}.
One can readily check that in Cases 3.1–3.3, Ci is also a quaint listed-cycle.

Therefore, Ci has a strong irlist-edge-coloring using colors 1, 2, 3, 4, and 5 by
Rules (?3) and (?4) in Lemma 4(2).

Until now, we have colored edges of Ci, i = 0, 1, . . . , ` − 1. We denote the
resulting coloring of Ci by f ′. Obviously, for each i ∈ {0, 1, . . . , n−1}, it has that
|{f(uiui+1), f(uiui−1), f

′(vivi+1), f
′(vivi−1)}| = 4. We then color each uivi with

the unique color {1, 2, 3, 4, 5} \ {f(uiui+1), f(uiui−1), f
′(vivi+1), f

′(vivi−1)}. This
completes the edge-coloring of P (n, k). We now show that such the coloring is a
star 5-edge-coloring.

If not, let P be a bichromatic 4-path. Since f is a strong edge-coloring of C,
and {f(uiui+1), f(uiui−1)}∩{f ′(vivi+1), f

′(vivi−1)} = ∅ for any i ∈ {0, 1, . . . , n−
1}, P does not contain any edges of C. In addition, by Lemma 4, any three edges
of Ci receive different colors under f ′, except vip−2vip−1 , vip−1vip , vipvi1 . Therefore,
P = vip−2vip−1vipvi1ui1 or P = uip−2vip−2vip−1vipvi1 . However, by Lemma 4 Rule
(?3) and (?4), f ′(vip−1vip) is a listed-color not in L

(
vip−1

)
∪ L

(
vip
)
. Then, by

the coloring rule of uivi, i = 0, 1, . . . , n − 1, it has that f ′
(
vip−1vip

)
6= f

(
vi1ui1

)
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and f ′
(
vip−1vip

)
6= f(uip−2vip−2). Therefore, P is not bichromatic, and it is a

contradiction.

Lemma 6. Let P (n, k) be a generalized Petersen graph such that GCD(n, k) = 1,
n ≡ 0 (mod 2) and k ≡ 1 (mod 2). Then, P (n, k) has a star 5-edge-coloring.

Proof. It is sufficient to construct a star 5-edge-coloring for P (n, k) in this
case. Let C = u0u1 · · ·un−1u0 be the cycle induced by {u0, u1, . . . , un−1}. Since
GCD(n, k) = 1, i.e., n, k are coprime, the subgraph induced by {v0, v1, . . . , vn−1}
is also a cycle, denoted by C ′. Since n ≡ 0 (mod 2), it follows that n 6= 5 and
by Lemma 3 both C and C ′ have a star 3-edge-coloring. Let f1 and f2 be the
two star edge-colorings of C and C ′, respectively, using colors 1, 2, and 3. Then,
we color uivi with 4 when i ≡ 0 (mod 2) and with 5 when i ≡ 1 (mod 2), for
i = 0, 1, . . . , n− 1. Denote by f3 the resulting coloring, and let f = f1 ∪ f2 ∪ f3.
We now show that f is a star edge-coloring. On the contrary, we assume there
is a bichromatic 4-path P . Let c1 and c2 be the two colors appearing on the
edges of P . By f1 and f2, it is by no means that {c1, c2} ⊂ {1, 2, 3}. In addition,
since (n, k) = 1, n ≡ 0 (mod 2) and k ≡ 1 (mod 2), f3(uivi) 6= f3(ui+1vi+1) and
f3(uivi) 6= f3(ui+kvi+k). Therefore, together with f3, {c1, c2}∩{4, 5} = ∅. Hence,
P is not bichromatic and is a contradiction.

Theorem 7. P (n, 1), n ≥ 5, has a star 5-edge-coloring.

Proof. By Lemma 6, we only need to consider the case n ≡ 1 (mod 2). In
this case, we can also obtain a star 5-edge-coloring by a slight change of the
coloring in Lemma 6. Let P1 = un−1u0u1 · · ·un−2 and P2 = v0v1 · · · vn−1 be
two paths. We now define a star 3-edge-coloring f1 of P1 as follows. First, let
f1(un−1u0) = 2, f1(u0u1) = f1(un−3un−2) = 3. Then, color edges of sub-path
u1u2 · · ·un−3 as follows: when n = 5, let f1(u1u2) = 1; when n ≥ 7, color edges
u1u2, u2u3, . . . , un−4un−3 by 1, 3, and 2, repeatedly, if n − 4 ≡ 0 (mod 3); by
1, 3, 2, . . . , 1, 3, 2︸ ︷︷ ︸

n−5 edges

, 1 if n − 4 ≡ 1 (mod 3); and by 1, 3, 2, . . . , 1, 3, 2︸ ︷︷ ︸
n−6 edges

, 1 and 2 if

n − 4 ≡ 2 (mod 3). Obviously, P2 also has a star 3-edge-coloring, say f2. By
color permutation, we can assume f2

(
vn−3vn−2

)
= 3, and f2

(
vn−2vn−1

)
= 2.

Based on f1 and f2, we color un−2un−1 with 4 and vn−1v0 with 5. And for
any i ∈ {0, 1, . . . , n − 2}, color uivi with 4 for i ≡ 0 (mod 2) and with 5 for
i ≡ 1 (mod 2), and finally, color un−1vn−1 with 1. Until now, we typically obtain
an edge-coloring of P (n, 1). One can easily see that such the coloring is a star
5-edge-coloring.

Note that when n = 3, Theorem 7 by no means hold. However, by a coloring
P (n, 3) with an exhausting search, we can see that P (n, 3) does not contain any
star 5-edge-coloring.
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Lemma 8. Let P (n, k) be a generalized Petersen graph such that (n, k) = 2. Let
C0 = v0vk · · · v(n

2
−1)kv0. If C0 has a star 3-edge-coloring f such that Cf (vi) 6=

Cf (vi+1) for any i ∈ {0, 1, . . . , n− 1} and i ≡ 0 (mod 2), then P (n, k) has a star
5-edge-coloring, where Cf (vi) = {f(vivi+k), f(vivi−k)}.

Proof. Since GCD(n, k) = 2, it has that n is an even number. Let f be a star
3-edge-coloring of C0, such that Cf (vi) 6= Cf (vi+1) for any i ≡ 0 (mod 2) and
i ∈ {0, 1, . . . , n − 1}. We now color C1 = v1v1+k · · · v1+(n

2
−1)kv1 with the same

pattern as C0, that is, color each edge vjvj+k with the color f(vj−1vj+k−1), for
j ≡ 1 (mod 2) and j ∈ {0, 1, . . . , n− 1}. Denote the resulting coloring of C0 and
C1 also by f . Then, Cf (vi) = Cf (vi+1) for any i = 0, 2, 4, . . . , n− 2. Based on f ,
for any i ∈ {0, 1, . . . , n − 1}, we color uiui+1 with the color in {1, 2, 3} \ Cf (vi)
when i ≡ 0 (mod 2), and with 4 when i ≡ 1 (mod 2). Finally, color uivi with 5,
i = 0, 1, . . . , n− 1. Obviously, such the coloring is a star 5-edge-coloring.

Theorem 9. P (6m, 2) has a star 5-edge-coloring, where m ≥ 1 is a positive
number.

Proof. Let n = 6m, and C0 = v0vk · · · v(n
2
−1)kv0. Obviously, C0 has a star 3-

edge-coloring f such that Cf (vi) 6= Cf (vi+1) for any i ∈ {0, 1, . . . , n − 1} and
i ≡ 0 (mod 2) (since n

2 = 3m ≡ 0 (mod 3), we can color edges of C0 with 1, 2,
3, repeatedly). Therefore, by Lemma 8, P (6m, 2) has a star 5-edge-coloring.

In this article, we determine the star chromatic index of generalized Petersen
graphs P (n, k) for “almost all” values of n and k. By using more involved analysis,
we can also prove P (n, k) has a star 5-edge-coloring for some remaining values of
n and k, particularly, for the case ` = 3, k 6= `, and n

3 ≡ 1 (mod 3). However,
we prefer to present a short or uniform proof. In addition, we would like to
stress that only one generalized Petersen graph, i.e., P (3, 1), is found to have
the star chromatic index 6. Therefore, we conjecture that P (n, k) has a star
5-edge-coloring for any n ≥ 4.
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coloring of some classes of grpahs, J. Graph Theory 81 (2016) 73–82.
doi:10.1002/jgt.21862

[3] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, New York, 2008).

[4] Y. Bu, D.W. Cranston, M. Montassier, A. Raspaud and W. Wang, Star- coloring of
sparse graphs, J. Graph Theory 62 (2009) 201–209.
doi:10.1002/jgt.20392

http://dx.doi.org/10.1002/jgt.21862
http://dx.doi.org/10.1002/jgt.20392


On the Star Chromatic Index of Generalized Petersen Graphs 439

[5] M. Chen, A. Raspaud and W. Wang, 6-star-coloring of subcubic graphs, J. Graph
Theory 72 (2013) 128–145.
doi:10.1002/jgt.21636
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