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Abstract

Let h : G̃ → G be a finite covering of 2-connected cubic (multi)graphs
where G is 3-edge uncolorable. In this paper, we describe conditions under
which G̃ is 3-edge uncolorable. As particular cases, we have constructed
regular and irregular 5-fold coverings f : G̃ → G of uncolorable cyclically
4-edge connected cubic graphs and an irregular 5-fold covering g : H̃ → H
of uncolorable cyclically 6-edge connected cubic graphs.

In [13], Steffen introduced the resistance of a subcubic graph, a char-
acteristic that measures how far is this graph from being 3-edge colorable.
In this paper, we also study the relation between the resistance of the base
cubic graph and the covering cubic graph.
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1. Introduction

1.1. Motivation and statement of results

We will consider proper edge colorings of G. Let ∆(G) be the maximum degree
of vertices in a graph G. Denote by χ′(G) the minimum number of colors needed
for (proper) edge coloring of G and call it the chromatic index of G. Recall
that according to Vizing’s theorem (see [14]), either χ′(G) = ∆(G), or χ′(G) =
∆(G) + 1.

In this paper, we shall consider only subcubic graphs i.e., graphs G such that
∆(G) ≤ 3. The subcubic graph G is called colorable if χ′(G) ≤ 3, otherwise it is
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called uncolorable. An uncolorable cubic graph is called a snark if it is cyclically
4-edge connected and its girth is at least five.

There are known constructions that allow to produce new snarks starting
from small cubic graphs and applying to them some operations (for example, via
the dot product, the vertex and edge superpositions [7], Loupekine construction
[3], gluing multipoles etc.).

The motivation of this paper is an attempt to understand whether the uncol-
orable cubic graphs (in particular, snarks) can be obtained via covering maps i.e.,
starting from an uncolorable cubic graph and lifting it via a covering map, and
what are the conditions under which such lifting is successful (see Subsection 1.2
for the definition of covering graphs). Intuitively, a covering map of graphs is a
”regular” homomorphism of them, so the question seems to be natural. Covering
of graphs are usually described via voltage graph or permutation voltage graph
constructions [5].

The structure of this paper is the following. In Introduction, we define some
notions and concepts from topological graph theory, such as coverings of graphs,
voltage graph, voltage permutation graph, i.e., graphs enhanced with an addi-
tional structure which allow to describe coverings. For details see also [5].

In Section 2, we describe general conditions under which, for a given covering
of cubic (multi)graphs, the covering graph is to be uncolorable (Theorem 5).
Theorem 5 relies basically on a standard procedure of gluing several copies of
the same multipole in some consistent way (in particular, in a cyclic order) and
allows to restate many other results on multiplying snarks in terms of topological
graph theory. On the other hand, we provide nonstandard procedure for obtaining
uncolorable graphs by using 5-fold regular and irregular coverings of cubic graphs.
Under certain conditions, this allows to produce a big class of cyclically 4-edge
connected and 6-edge connected uncolorable cubic graphs.

In Section 3, we study coverings of cubic graphs G with respect to resistance
r(G), a parameter of uncolorable cubic graphs that measures how far is a given
cubic graph from being 3-edge colorable. More precisely, the resistance of a cubic
graph G is the minimum number of edges such that after removing all them from
G the remaining graph is 3-edge colorable.

Another interesting measure of non-colorability of a bridgeless cubic graph
G is its oddness, denoted by ω(G). This is the minimum number of odd cycles
that are in G after removing in this graph an 1-factor. By definitions, we have
obviously r(G) ≤ ω(G). The parameters r(G) and ω(G) were introduced and
studied by Steffen in [13]. The main problem was to construct for each natural
number n a cubic graph of minimum order such that r(G) = n (ω(G) = n,
respectively). In an equivalent form, the problem is to construct 2-connected
cubic graphs G with the maximum ratio ρ(G) = r(G)/|G| (µ(G) = ω(G)/|G|,
respectively) or estimate these parameters asymptotically. In [6], Hägglund has
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improved previous results of Steffen. The best known estimates of ratios ρ(G) =
r(G)/|G| and µ(G) = ω(G)/|G| were given by Lukot’ka, Máčajová, Mazák and
Škoviera in [8]. A good survey on measures of non-colorability of cubic graphs is
the recent paper [2] where an improvement of the previous known results is also
given.

In Section 3, we show that under certain conditions the resistance of a cubic
graph increases when passing from the base graph G to the covering graph G̃
(Theorem 12). We supply our general consideration with particular examples.

1.2. Coverings and voltage permutation graphs

Finite coverings of cubic graphs were the powerful tool in proving the Heawood
conjecture on the chromatic number of a closed surface. By using them, one can
construct triangular embeddings of complete graphs Kn (in regular cases) or the
complete graphs with a few edges removed into closed surfaces of correspond-
ing genus. The combinatorial schemes of such triangulations were described by
means of current and voltage graphs that are modeled over cubic graphs with the
assignment in a finite group H.

Definition. A surjective (continuous) map p : S̃ → S of topological spaces S̃
and S is called a covering map (covering) if for each x ∈ S there exists a neigh-
bourhood U(x) such that p−1(U(x)) is decomposed into disjoint sum

⊔
i∈I Ui

of sets Ui such that for each i ∈ I, where I is a countable set, the restriction
p|Ui

: Ui → U(x) is a homeomorphism. Then S̃ is called the covering space and
S the base space (or simply the base) of the covering p.

Moreover, restricted to graphs, we also require that the covering p : G̃ → G
is a graph map. In the case when G̃ and G are both connected, the cardinal
number n = |p−1(x)| does not depend on the choice of x ∈ S. In the following,
we require also that both the cover graph G̃ and the base graph G of the covering
p : G̃ → G are finite and connected.

Definition. Let p : G̃ → G be a finite covering with connected graphs G̃ and G
and n = |p−1(x)|. Then p is called n-fold covering.

A covering map p is called regular if the deck transformation group X acts
on S̃ transitively [5]. Otherwise it is called irregular.

Definition. Let G = (V,E) be a connected graph. We can replace each edge
e ∈ E with the two arcs, e′ and e′′, joining the same pair of vertices, but with
opposite directions. As a result, we shall obtain a directed graph G′ with the set
of arcs E′. Let A be a finite group and let α : E′ → A be a map which satisfies the
following condition: for any e ∈ E, if α(e′) = h ∈ A, then α(e′′) = h−1 ∈ A. The
pair (G,α) is called then a voltage graph and the mapping α a voltage assignment

on G.
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LetG be a graph. By taking an orientation of edges ofG we obtain an orgraph
−→
G . It is clear that the voltage assignment α on G is uniquely determined by its

values on the arcs of
−→
G . For this reason, when defining a voltage assignment

α : E′ → A, we indicate only the values of α on arcs from
−→
E .

Definition. The derived graphGα is defined in the following way: V (Gα) = V×A

and E(Gα) = E × A. More precisely, if e = (u, v) is an arc from u to v in
−→
E ,

then the edge (e, g) of Gα joins the vertices (u, g) and (v, g · α(e)).

Let
−→
G be an orgraph obtained from G as before and the number n is fixed.

Denote by Σn the symmetric group on n-element set [n] = {1, . . . , n}.

Definition. A permutation voltage assignment on G with values in Σn is a func-

tion β : E(
−→
G) → Σn, which assigns to each arc of e ∈ E(

−→
G) a permutation

β(e) ∈ Σn. The pair (G, β) is called a permutation voltage graph. As in the case
of the voltage assignment, we assume that the function β can be extended to
the whole set of arcs of the directed graph G′, so that the following condition is

satisfied: if e ∈
−→
G and β(e) = ω ∈ Σn, then β(e−1) = ω−1. The derived graph

associated with a permutation voltage graph (G, β) is denoted by Gβ .

Let c = (e1, . . . , ek−1, ek) be an oriented path in the voltage permutation
graph (G, β). We define the permutation β(c) ∈ Σn as follows: β(c) = β(e1) ·
β(e2) · · ·β(ek). If c is an oriented cycle in G, the element β(c) of the group Σn is
defined up to conjugation.

The derived graphs Gα with the voltage assignment in a group H of order n
describe regular n-fold coverings of the graph G as follows.

Proposition 1 [4]. Every regular n-fold covering map f : G̃ → G of graphs with

the finite deck transformation group H where G is connected and |H| = n is

realized by a voltage graph (G,α) with a voltage assignment in H.

In general, coverings of graphs are described by the following.

Proposition 2 [4]. Every n-fold covering map f : G̃ → G of graphs is realized

by a permutation voltage graph with an assignment in the symmetric group Σn.

1.3. Coloring of multipoles and nowhere-zero flows

In the following, we also consider graphs with semi-edges (see also [8]).

Definition. A multipole is a triple M = (V ;E;S) where V = V (M) is the vertex
set, E = E(M) is the edge set and S = S(M) is the set of semi-edges. Each
semi-edge is incident to exactly one vertex v of M and is denoted by (v) (the
second end of semi-edge contains no vertex of G).
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It follows from the definition that no loop cannot serve as a semi-edge of
M . Semi-edges are usually grouped into pairwise disjoint connectors [7, 9]. A
multipole with k semi-edges is called k-pole. If S(M) = ∅, then M is simply a
graph. A multipole is called cubic if each its vertex is of degree three. We say
that the graph M ′ is obtained from the 2k-multipole M by identifying the pairs
(vi) and (ui) of semi-edges where i = 1, . . . , k, if each such pair (vi) and (ui) is
replaced with an edge {vi, ui} in M ′.

Let M be a multipole and let [k] = {1, 2, . . . , k} be a set of colors. Let
f : M → [k] be a mapping that assigns to each e ∈ E ∪S a color from [k] in such
a way that for every vertex v in M the ends incident with v (edges or semi-edges)
have pairwise distinct colors. Then f is called a k-edge coloring of M . Therefore
if M is a cubic multipole that has a k-edge coloring, then k ≥ 3. Moreover, if
M is a loopless cubic multipole, then there exists an m-edge coloring of M with
m ≤ 4. If there is a 3-edge coloring of M , we say that M is colorable, otherwise
it is uncolorable. In the following, we shall consider only cubic multipoles.

Sometimes it is convenient to consider the colors 1, 2, and 3 as nonzero ele-
ments of the group Z2×Z2 and redefine a 3-edge coloring of a graph or a multipole
in terms of nowhere-zero flows. For convenience of the reader, below we provide
some relevant information on this subject.

Let G be a (multi)graph,
−→
G an orientation of G and H be an abelian group.

Under an H-flow on G we shall mean a nowhere-zero circulation f :
−→
E → H [1].

The term ”nowhere-zero” means that for each e ∈
−→
E we have f(e) 6= 0, where

0 denotes the neutral element of the abelian group H. Moreover, under a k-flow
on G we shall mean a nowhere-zero circulation f with values in the cyclic group
Zk. We shall say that the (multi)graph G has a k-flow if such k-flow exists for

some orgraph (oriented multigraph)
−→
G with the underlying (multi)graph G.

Nowhere-zero k-flows on a multipole are defined in the same way as for cubic
(multi)graphs. The only difference is that any k-flow on an l-multipole M has
nontrivial sources (sinks) just at the semi-edges of M . We consider nowhere-
zero flows on graphs and multipoles G with values in Z2 × Z2. In this case, the
orientation of edges (semi-edges) of G is irrelevant.

Theorem 3 [1, 8]. For cubic (multi)graphs and multipoles G the following con-

ditions are equivalent.

(a) G has a 4-flow;

(b) G is 3-edge colorable.

Note that if M = (V,E, S) is a cubic multipole and ϕ : E ∪ S → Z2 × Z2 is
a (nowhere zero) 4-flow on M , then

∑
e∈S ϕ(e) = 0 [7].

A simple graph or a multigraph that does not have a 4-flow is called 4-snark.
Cyclically 4-edge connected uncolorable cubic graphs with girth at least 5 are
called snarks.
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Below we provide an example of uncolorable graph G and its 3-fold covering
graph G̃ which is colorable.

Example 1. In Figure 1, it is shown a 16-pole G′ embedded into the rectangle
R. Gluing together the pair of vertical sides and the pair of horizontal sides of
R, we obtain a torus T . The corresponding six pairs of ”vertical” semi-edges (e1
and e2, a1 and a2, d1 and d2, b1 and b2, f1 and f2, c1 and c2) and the pairs of
”horizontal” semi-edges (s1 and s2, t1 and t2) in G′ are also to be identified. As
a result, we shall obtain a graph G embedded in the torus T (in which each pair
of corresponding semi-edges of G′ is replaced with a unique edge of G).

Figure 1. The 16-pole G′.

The snark G is one of the third powers of the Petersen graph P (via the dot
product), so we simply write G = P 3 (see [11]).

Take the orientation of the six ”vertical” edges of P 3 (i.e., a, b, c, d, e and
f) from bottom to the top and an arbitrary orientation of the remaining edges.
Cutting the graph P 3 along the six ”vertical” edges, we shall obtain a 12-pole H
which has a natural embedding in a cylinder.

Fix a natural number n ≥ 2. Define the voltage assignment α : E(P 3) → Zn

as follows: α(h) = 1 if h is one of six ”vertical” arcs a, b, c, d, e, f and α(h) = 0
in the remaining cases. The voltage graph (P 3, α) defines a derived cubic graph

P̃ 3. The corresponding n-fold covering map p : P̃ 3 → P 3 of graphs is cyclic. The
covering map of graphs can be extended to a cyclic n-fold covering f : T̃ → T of

tori in a natural way. For n = 3 the 3-fold covering graph P̃ 3 embedded in the
torus T̃ is pictured in Figure 2 (here we identify the corresponding semi-edges in
the pairs).

Note that the multipole H has a 3-edge coloring in which all six bottom semi-
edges receive a color x and all six top semi-edges receive a color y where x 6= y.

It follows that for any choice n ≥ 2 the covering cubic graph P̃ 3 is colorable. The
details of the proof are left to the reader as an easy exercise.
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Figure 2. The 3-fold covering graph P̃ 3 embedded in the torus T̃ .

2. Coverings of Uncolorable Cubic Graphs

2.1. General results

The following is an immediate consequence of definitions of n-flow and a covering
map.

Proposition 4. Let p : G̃ → G be an m-fold covering map of graphs. If G has

an n-flow (where n ≥ 2), then G̃ also has an n-flow.

Proof. Let
−→
G be an orgraph with the underlying graph G and let f be an n-flow

on
−→
G . Then the orientation of edges of the graph G is lifting uniquely to an

orientation of edges in the covering graph G̃. Let G̃′ denote the resulting orgraph
with the underlying graph G̃. We define the function f on E(G̃′) as follows. If e′

is an arc of
−→
G , we set f(e′) = f(e′) for each arc e′ in the preimage p−1(e′). The

”lifted” function f on arcs of G̃′ defines obviously an n-flow of the graph G̃.

In particular, if G has a 4-flow, then the covering graph G̃ also has a 4-
flow. Moreover, if G is an uncolorable cubic graph, then G̃ is also so. A similar
statement holds for multigraphs.

Question 1. What are the conditions under which the covering graph of an un-

colorable graph is an uncolorable graph?

The class of uncolorable cubic graphs G obtained via covering maps of simple
graphs and multigraphs of degree 3 includes the well known subclasses of them
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such as Isaac’s flowers, Goldberg snarks etc. Below we describe a general concept
of these coverings.

Let G be a connected cubic (multi)graph and let p : G̃ → G be an n-fold
covering map of connected graphs that is defined via a permutation voltage as-

signment λ : E(
−→
G) → Σn. Moreover, let E′ = {e1, e2, . . . , er} be a set of arcs in

−→
G (here we use the same notations ei for arcs in

−→
G and corresponding edges in

G). Cutting the edges e1, . . . , er in interior points, we shall obtain a 2r-pole L′

with the r ”initial” semi-edges e′1, e
′

2, . . . , e
′

r and the corresponding r ”terminal”
semi-edges, denoted by e′′1, e

′′

2, . . . , e
′′

r .

Definition. We say that a subset of edges E′ ⊂ E(G) satisfies the condition (i)
if the multipole L′ is connected. Moreover E′ satisfies condition (ii) if for each
oriented cycle c in G \E′ we have λ(c) = e where e = (1)(2) · · · (n) is the identity
permutation of Σn.

We now associate with a subset E′ ⊂ E(G) satisfying condition (i) a hy-
pergraph H = H(E′, p) as follows. Let L′

1, . . . , L
′

k be connected components of
the multipole p−1(L′). In each L′

s, we identify the input semi-edges e′i and the
output semi-edges e′′j if and only if λ(e)(i) = j. Denote the resulting multipoles
by L1, . . . , Lk. The vertex set V (H) of H consists of multipoles L1, . . . , Lk.

For each pair {Li, Lj}, i 6= j, there are ri,j edges in G joining the multipole
Li to the multipole Lj . Denote the corresponding edge set by Ri,j . Note that
Ri,j ⊆ p−1(E′). The pair {Li, Lj}, i 6= j, is consistent if there exists a 3-edge
coloring of multipoles Li and Lj which is compatible on the pairs of semi-edges e′

and e′′ for each edge e from the set Ri,j . The subset {Li1 , . . . , Lim} is a hyperedge
ofH if and only if there is a 3-edge colorings of the multipoles {Li1 , . . . , Lik} which
is consistent for each pair {Lis , Lit}, s 6= t, s, t ≤ k.

Theorem 5 (the decomposition theorem). Let G be a connected cubic (multi)
graph that is a 4-snark and let p : G̃ → G be an n-fold covering of connected graphs

that is defined via a permutation voltage assignment λ : E(
−→
G) → Σn. Assume

that the set of arcs E′ = {e1, e2, . . . , er}, where E′ ⊂ E(
−→
G), satisfies conditions

(i)–(ii). Then Gλ is colorable if and only if the hypergraph H(E′, p) associated

with the set E′ is a complete hypergraph on n vertices.

Proof. Let E′ be the set of arcs of
−→
G with the properties under assumption.

Cutting in G all edges e from E′, we shall obtain a connected multipole L′.
Let L′

1, . . . , L
′

k be the connected components of the multipole p−1(L′). Since
p : G̃ → G is n-fold covering, the condition (i) implies that k ≤ n. Suppose that
k < n. Then there are a component L′

i of p
−1(L′) and an edge f ∈ E(G) \ E′

such that Li contains at least two (disjoint) edges, say f1 and f2, of the preimage
p−1(f). It follows that there is a path q in p−1(L′) which starts at the edge f1
and ends at the edge f2. Without loss of generality, we can suggest that f1 and
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f2 are unique double edges in the path q. Now, projecting the path q on G by
the map p, we shall get a cycle c in G \ E′. But this contradicts the condition
(ii), since λ(c) = e and so c lifts to a cycle via the covering map p. Note that all
multipoles L′

i, i = 1, . . . , n, are isomorphic to L′ in a natural way.
Therefore, after identifying the corresponding pairs of input and output semi-

edges in each L′

i, i = 1, . . . , n, we get exactly n disjoint multipoles L1, . . . , Ln.
It may occur that L′ is uncolorable. It follows immediately that p−1(L′) is un-
colorable, so is the graph Gλ. It may also occur that L′ is colorable but some
multipole Li is not uncolorable. In any case the hypergraph H(E′, p) obviously
does not contain the n-hyperedge h = {L1, . . . , Ln}. Assume now that each Li is
colorable.

Let (e′i, 1), . . . , (e
′

i, n) be the lifts of the semi-edge e′i under the covering map
p, where i = 1, . . . , r. Similarly, for each i = 1, . . . , r let (e′′i , 1), . . . , (e

′′

i , n) be the
lifts of the semi-edge e′′i under the covering map p. By conditions (i) and (ii),
the covering graph Gλ is obtained from multipoles L1, . . . , Ln by identifying the
corresponding pairs of semi-edges, for each set Ri,j , i 6= j. More precisely, ri,j
semi-edges of Li are identified with ri,j , i 6= j, semi-edges of Lj .

After identification of all pairs of semi-edges for each pair {Li, Lj}, we shall
obtain a graph G′. It is not difficult to verify that G′ is isomorphic to G̃. The
condition that the hypergraph H(E′, p) is complete means that there is the n-
hyperedge h in H(E′, p). But the last condition implies that there is consistent
3-edge coloring of the disjoint multipoles L1, . . . , Ln which is equivalent to the
existence of 3-edge coloring of the covering graph G̃.

Theorem 5 describes, in particular, cyclic coverings of uncolorable cubic
graphs (the deck transformation group of such coverings is cyclic and acts transi-
tively). This allows to multiply uncolorable cubic graphs and obtain on this way
a wide class of snarks (including Isaac’s flowers, Goldberg snarks and many other
known uncolorable graphs). However the cyclic covering method repeats more or
less the other well known constructions of snarks. The real meaning of Theorem
5 is that it also provides some nonstandard tools for obtaining larger uncolorable
cubic graphs starting from smaller ones. The corresponding procedures are given
by special coverings of cubic graphs and described below in Examples 2.1, 2.2
and 2.3 and Propositions 7–10. They can be considered as new operations on un-
colorable cubic graphs. Moreover under certain conditions, they allow to obtain
new cyclically 4-connected and cyclically 6-connected cubic graphs.

2.2. Examples

Before describing examples of coverings, we will introduce some needed notions
and prove auxiliary assertions.

Definition. A connected cubic graph G is called cyclically k-edge connected if no
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set of fewer than k edges is cycle-separating in G. The edge cyclic connectivity
ζ(G) of the cubic graph G is the largest integer k ≤ β(G) for which G is cyclically
k-edge connected where β(G) denotes the Betti number of G.

For any cubic connected graph G we have obviously κ(G) = λ(G) ≤ ζ(G)
where κ(G) and λ(G) denote the vertex and the edge connectivity of G, respec-
tively. For cubic graphs G with ζ(G) ≤ 3 the values of vertex connectivity, edge
connectivity and cyclic k-edge connectivity coincide (see [12]). Moreover, with
the exception of graphs K3,3,K4 and θ, the conditions ”G is cyclically k-vertex
connected” and ”G is cyclically k-edge connected” coincide for connected cubic
graphs [10]. For this reason, in the following we usually use the term ”G is cycli-
cally k-connected” in both the cases. Note also that if G is cyclically 4-connected
and E is an edge cut of G consisting of three edges, then there is a vertex v of G
such that all these edges are incident to v. We will use this fact in the future.

Let G1 and G2 be two 3-connected cubic graphs. Take in G1 a pair of
independent edges (e1, e2), and in G2 a pair of independent edges (f1, f2). Denote
the vertices of e1 by u1, u2, and the vertices of e2 by v1, v2, respectively. Similarly,
let s1, s2 be the vertices of f1, and t1, t2 the vertices of f2. Remove from G1 the
edges e1 and e2, and from G2 the edges f1 and f2. Add to the graph G =
(G1 − e1 − e2) ⊔ (G2 − f1 − f2) the edges joining the following pairs of vertices:
u1 and s1, u2 and s2, v1 and t1, and v2 and t2, respectively. Denote the resulting
connected graph G1 ∗ G2 and call it a double connected sum of G1 and G2 (see
Figure 3).

G1 G2

h
1

h
2

h3

h4

e
1

e
2

f1

f2

Figure 3. Double connected sum of graphs G1 and G2.

Lemma 6. Let G1 and G2 be two cubic graphs, e1, e2 a pair of independent edges

in G1 and f1, f2 a pair of independent edges in G2. If G1 and G2 are cyclically

4-connected, then G1 ∗G2 is also cyclically 4-connected.

Proof. Let E be the minimal edge cut in G1 ∗G2 and let G1 ∗G2 \E = H1 ⊔H2

be the decomposition of G1 ∗G2 \E into two components H1 and H2, where the
component H1 contains a cycle C1 and the component H2 contains a cycle C2.
Now we have to consider several cases describing possible positions of cycles C1

and C2 in G1 ∗G2 \ E.



Coverings of Cubic Graphs and 3-Edge Colorability 321

Case 1. C1 and C2 are both contained in G1 or G2. Assume that C1 and
C2 are contained in G1. Note that E contains at least two edges of G1 since
ζ(G) ≥ 4. Put E′ = E ∩ (G1 − e1 − e2). E′ is a cut set of G1 − e1 − e2 that
separates C1 from C2. Suppose that |E′| = 2. Then the vertices u1 and u2
belong to different connected component of (G1 − e1 − e2) \ E

′, the same as the
vertices v1 and v2. For instance, let u1, v1 ∈ V (H1) and u2, v2 ∈ V (H2). Put
W = (G2 − f1 − f2)∪ {h1, h2, h3, h4}. Now, to separate in W the pair of vertices
u1, v1 from the pair u2, v2, we need to remove from W at least two bridge edges
or two edges of the graph G2 − f1 − f2. Therefore |E| ≥ 4, which contradicts the
assumption.

Suppose that |E′| = 3. Then the vertices u1 and u2 belong to different
connected components of (G1 − e1 − e2) \E

′ or the vertices v1 and v2 have such
a property. Without loss of generality, suppose that the first possibility occurs.
However in order to separate u1 from u2 in the graph W we need to remove at
least one bridge edge or two edges of the graph G2−f1−f2. Therefore E contains
at least one extra edge and so |E| ≥ 4.

Case 2. C1 is contained in G1 − e1 − e2 and C2 is contained in G2 − f1 − f2.
If E contains all four bridge edges, then |E| ≥ 4 and we are done. Assume that
there is a component Hi containing a bridge edge of G1 ∗ G2, say h1 = (u1, s1).
If H3−i also contains a bridge edge of G1 ∗ G2, we need at least four edges to
separate H1 from H2 in G1∗G2, two in G1 and two in G2. It follows that |E| ≥ 4.

Now consider the remaining subcase, i.e. H3−i is contained in G1 or in G2.
Without loss of generality, we may suppose that H3−i is contained in G1. Assume
that |E| ≤ 3. Note that E must contain at least two edges from G1 − e1 − e2,
in order to separate the subgraph Hi ∩ G1 from the subgraph H3−i. If |E| = 2,
then the pair of vertices u1 and u2 would belong to different components Hi and
H3−i, the same as the pair of vertices v1, v2. It follows that at least one bridge
edge hi connects Hi with H3−i in G1 ∗G2 \E, which is impossible. Consider now
the subcase |E| = 3.

Suppose that E consists of edges from G1. In this case, we have that the ends
of the edge e1 (i.e. the vertices u1 and u2) or the ends of the edge e2 belong to
distinct components H1 and H2. Then there is at least one bridge edge joining Hi

to H3−i in G1 ∗G2 \E, which is impossible. Therefore E contains a unique bridge
edge hj of G1 ∗G2 \E. It follows that the remaining three bridge edges hk, k 6= j,
belong to Hi. Therefore the end vertices of the edge e1 or the end vertices of
the edge e2 belong to Hi. But the latter implies that G1 can be divided into two
components by a cut consisting of three independent edges, which contradicts the
condition that ζ(G1) ≥ 4.

Case 3. The circle C1 contains the bridge edges h1 and h2 (so the vertices u1
and u2) and the circle C2 contains the bridge edges h3 and h4 (so the vertices v1
and v2). Now, to separate H1 ∩ (G2 − f1 − f2) from H2 ∩ (G2 − f1 − f2) we need
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at least two edges from G2 − f1 − f2. Similarly, to separate H1 ∩ (G1 − e1 − e2)
from H2 ∩ (G1 − e1 − e2) we need at least two edges from G1 − e1 − e2. Totally
to separate H1 from H2 in G1 ∗G2 we need at least four edges, so |E| ≤ 4.

Case 4. The circle C1 contains the bridge edges h1 and h3 and the circle C2

contains the bridge edges h2 and h4. This case can be done just in the same way
as Case 3.

Case 5. C1 contains the only bridge edges h1 and h2 and C2 is contained
either in G2−f1−f2 or G1−e1−e2. For instance, suppose that C2 ⊂ G2−f1−f2.
The cycle C1 can be represented as follows: C1 = (h1, a1, h2, a2) where a1 is a
path in G1− e1− e2 joining u1 to u2 and a2 is a path in G2−f1−f2 joining s1 to
s2. The path p = (h1, a1, h2) can be considered as a subdivision of the removed
edge f1 in G2. It follows that in order to separate C2 from C1 ∩ (G2 − f1 − f2)
in G2 − f1 − f2 we need to remove at least three edges from G2 − f1 − f2. Let
E′ be the corresponding cut set in G2 − f1 − f2 where E′ ⊂ E. Let U1 ⊔ U2 be
the decomposition of (G2 − f1 − f2) \ E

′ into two connected components where
U1 ⊂ H1 and U2 ⊂ H2. If |E′| ≥ 4, then |E| ≥ 4 and we are done. If |E′| = 3,
then the end vertices of the edge f2 should be at different components U1 and
U2. It follows that in order to separate H1 from H2 in G1 ∗G2, we should remove
from the graph (G2 − f1 − f2) + h3 + h4 at least one extra edge hi. But this
contradicts the last assumption.

Case 6. C1 contains the only bridge edges h1 and h3 and C2 is contained
either in G1 − e1 − e2 or G2 − f1 − f2. For instance, suppose first that i.e., that
C2 ⊂ G1 − e1 − e2. Put E

′ = E ∩ (G1 − e1 − e2). E
′ is a cut set of G1 − e1 − e2.

Assume first that H1 contains both the vertices u2 and v2. Then E′ contains at
least four edges, so we have |E| ≥ 4. Suppose that H2 contains both the vertices
u2 and v2. Then E′ contains at least two edges. Moreover, in order to separate
H1 from H2 we have to remove from G1 ∗ G2 two extra edges of the subgraph
(G2 − f1 − f2) + h2 + h4. It follows that totally E must contain at least four
edges. Now suppose that u2 is a vertex of H1 and v2 is a vertex of H2. Then
E′ contains at least three edges. Moreover, in order to separate H1 from H2 we
have to remove from G1 ∗G2 one extra edge of the subgraph (G2 − f1 − f2)+ h4.
It follows that E consists of at least four edges.

Case 7. C1 contains all bridge edges h1, h2, h3 and h4, and C2 is contained in
G1−e1−e2. Put E

′ = E∩ (G1−e1−e2). E
′ is a cut set of G1−e1−e2 as before.

Therefore all the vertices u1, u2, v1 and v2 are contained in the component H1.
Since G1 is cyclically 4-connected, the cut set E′ consists of at least four edges,
so |E| ≥ 4.

We have counted all possible cases of positions the cycles C1 and C2 in the
graph G1 ∗G2 and have seen that in any case the minimum set cut E consists of
at least four edges.
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Example 2. Let G be a connected uncolorable cubic graph and let e, f be two
independent edges of G such that G − e − f is connected. Cutting the edges e
and f in G, we shall obtain a connected 4-pole L with two pairs of semi-edges, e′

and e′′, and f ′ and f ′′, respectively. Then either L does not have any 4-flow or
L admits a nowhere-zero flow ξ in Z2 × Z2 with the following property.

(∗) ξ has the only nontrivial sources at four semi-edges, i.e., ξ(e′) = x, ξ(e′′) =
y and ξ(f ′) = x, ξ(f ′′) = y or ξ(e′) = x, ξ(e′′) = y and ξ(f ′′) = x, ξ(f ′) = y where
x, y 6= 0 and x 6= y.

Note that the condition (∗) simply means that r(G) = 2.

Take an orientation of the edges of the graph G and denote the resulting

orgraph by
−→
G . Let β :

−→
G → Σ5 be a permutation voltage assignment defined in

the following way: β(e) = (12345) and β(f) = (13524) and β(h) = (1)(2)(3)(4)(5)

for any other arc h of the
−→
G . The voltage permutation graph (G, β) defines the

5-fold covering map p : Gβ → G with the covering graph Gβ being connected.

Proposition 7. The covering p : Gβ → G is regular and the cubic graph Gβ is

uncolorable. Moreover if G is cyclically 4-connected, then Gβ is also cyclically

4-connected.

Proof. First note that the set of arcs E′ = {e, f} satisfies the conditions (i) and
(ii) of Theorem 5. It follows that the 20-multipole p−1(L) is decomposed into 5
disjoint copies Li of the 4-pole L.

Let e1, . . . , e5 be the lifts of the edge e and f1, . . . , f5 the lifts of the edge
f via the covering map p. Moreover let e′1, . . . , e

′

5 and e′′1, . . . , e
′′

5 be the lifts of
semi-edges e′ and e′′, respectively, and f ′

1, . . . , f
′

5 and f ′′

1 , . . . , f
′′

5 be the lifts of
semi-edges f ′ and f ′′, respectively. The covering graph Gβ can be obtained in
the following way. Take the five copies L1, L2, . . . , L5 of the multipole L. Then
identify the 5 pairs of semi-edges e′i and e′′j according to the permutation β(e) =
(12345) and the 5 pairs of semi-edges f ′

k and f ′′

t according to the permutation
β(f) = (13524) (see Figure 4). Identifying the first five pairs of semi-edges results
in the edges e1, e2, . . . , e5 and the second five pairs of semi-edges results in the
edges f1, . . . , f5 of the graph Gβ .

The deck transformation group of the covering p : Gβ → G is Z5 which acts
on Gβ transitively. More precisely, the generator 1 of Z5 shifts the edge ei to the
edge ei+1 and the edge fj to the edge fj+1 for each i, j = 1, . . . , 5. Moreover 1
permutes the components Li of p

−1(L) cyclically. It follows that p is a regular
5-fold covering of connected topological graphs.

If L does not have any 4-flow it follows immediately that Gβ is uncolorable. If
L admits a nowhere zero Z2×Z2-flow, one can directly check that the associated
hypergraph H(E′, p) does not contain the hyperedge {L1, L2, L3, L4, L5}. In the
other words, there is no consistent 3-coloring of the 4-poles Li, i = 1, . . . , 5,
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Figure 4. The graph Gβ obtained by gluing the five copies of the 4-pole L.

with the set of colors {(1, 0), (0, 1), (1, 1)}. The last fact depends strongly on the
property (∗) of the 4-pole L.

The second statement of the proposition can be proved by induction with
using Lemma 6. Let us consider on the graph G the following permutation

assignment γ :
−→
G → Σ4, γ(e) = (1234) and γ(f) = (1324) and γ(g) = (1)(2)(3)(4)

for any other arc g of the
−→
G . The voltage permutation graph (G, γ) defines the 4-

fold covering r : Gγ → G with the connected cubic graph Gγ . It is not difficult to
see that Gβ can be represented as a double connected sum of Gγ and a copy of the
graph G, where the distinguished edges in G are e and f and the distinguished
edges in Gγ are lifts ei and fj of the edges e and f via the covering map r.
Since both the permutations γ(e) = (1234) and γ(f) = (1324) are cyclic we can
continue this process and decompose Gγ into double connected sum of four copies
of the the graph G. By inductive assumption, Gγ is cyclically 4-edge connected.
Since Gβ = Gγ ∗G, by Lemma 6, Gβ is also cyclically 4-edge connected.

Below we describe examples of irregular 5-fold coverings of connected uncol-
orable cubic graphs.

Example 3. Let G be a connected uncolorable cubic graph and let E′ = {e, f, h}
be a set of independent edges of G such that G− {e, f, h} is connected. Cutting
the edges e, f and h in G, we shall obtain a connected 6-pole L with two pairs of
semi-edges, e′ and e′′, f ′ and f ′′, and h′ and h′′, respectively.

Take an orientation of the edges of the graph G and denote the resulting

orgraph by
−→
G . Let α :

−→
G → Σ5 be a permutation voltage assignment defined in
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the following way: α(e) = (123)(4)(5), α(f) = (1)(2)(345), α(h) = (1245)(3), and

α(g) = (1)(2)(3)(4)(5) for any other arc g of the
−→
G . The voltage permutation

graph (G,α) defines the 5-fold covering map q : Gα → G with the covering graph
Gα being connected.

Proposition 8. The covering q : Gα → G is irregular and the cubic graph Gα is

uncolorable.

Proof. First note that the set of arcs E′ = {e, f, h} satisfies the conditions (i)

and (ii) of Theorem 5 since e, f, h are the unique arcs of
−→
G where the voltage

assignment is a non-identical permutation. It follows that the 30-pole p−1(L) is
decomposed into 5 disjoint copies L′

i of the 6-pole L. Let e1, . . . , e5 be the lifts
of the edge e, f1, . . . , f5 the lifts of the edge f and h1, . . . , h5 the lifts of the edge
f via the covering map p. Moreover let e′1, . . . , e

′

5 and e′′1, . . . , e
′′

5 be the lifts of
semi-edges e′ and e′′, respectively, and f ′

1, . . . , f
′

5 and f ′′

1 , . . . , f
′′

5 be the lifts of
semi-edges f ′ and f ′′, h′1, . . . , h

′

5 and h′′1, . . . , h
′′

5 be the lifts of semi-edges h′ and
h′′, respectively. Identifying in p−1(L) the pair of semi-edges e′4 and e′′4, e

′

5 and e′′5,
f ′

1 and f ′′

1 , f
′

2 and f ′′

2 , h
′

3 and h′′3, we shall obtain the multipole L′′ consisting of
five connected components, the 4-poles L1, L2, L3, L4, and L5. Each component
Li has the property (∗). Moreover the covering graph Gα can be obtained as
follows. We identify in L′′ three pairs of semi-edges e′i and e′′j according to the
permutation α(e) = (123)(4)(5), three pairs of semi-edges f ′

k and f ′′

t according
to the permutation α(f) = (1)(2)(345) and four pairs of semi-edges h′k and h′′l
according to the permutation α(h) = (1245)(3) (see Figure 5).

Figure 5. The graph Gα obtained by gluing the multipoles L1, L2, L3, L4 and L5.

The deck transformation group of the covering map q : Gα → G is trivial, so
q is irregular.

If L does not have any 4-flow it follows immediately that Gα is uncol-
orable. Assume that L admits a nowhere zero Z2 × Z2-flow. Since all 4-poles
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Li, i = 1, . . . , 5, have the property (∗), one can easy check that the hypergraph
H(E′, q) associated with the set of edges E′ does not contain the hyperedge
{L1, L2, L3, L4, L5}. It follows that there is no consistent way to color the 20-
pole L′′ with the colors {(1, 0), (0, 1), (1, 1)}.

Example 4. Let G be a connected uncolorable cubic graph with r(G) ≥ 3 and
let e, f, h be a set of independent edges in G such that the graph G − {e, f, h}
is connected. Cut the edges e, f and h of G in internal points. As a result, we
obtain a connected 6-pole M with corresponding pairs of semi-edges, e′ and e′′, f ′

and f ′′, h′ and h′′, respectively. Since r(G) ≥ 3, cutting any two of the edges e, f
and h in G results in an uncolorable 4-pole. Then either (1) M does not admit
3-edge coloring, or (2) M has a 3-edge coloring ξ with the following combination
of nontrivial colors x, y, z ∈ Z2 × Z2, x, y, z 6= 0 at three pairs of semi-edges.

(∗∗) ξ(e′) = x, ξ(e′′) = y and ξ(f ′) = y, ξ(f ′′) = z and ξ(h′) = z, ξ(h′′) = x,

or any other combination obtained from the given one by permutation of
colors in corresponding pairs of semi-edges.

Note that in Case 2 the condition (∗∗) means that r(G) = 3. For example,
the following distribution of colors is admissible in this case: ξ(e′) = x, ξ(e′′) = y
and ξ(f ′′) = z, ξ(f ′) = y and ξ(h′) = z, ξ(h′′) = x.

Let G′ be an orientation of the graph G. Now consider the 5-fold covering
of the graph G given by the permutation voltage assignment ϕ : E(G′) → Σ5 as
follows (see Figure 6). Put ϕ(e) = (12345), ϕ(f) = (153)(24), ϕ(h) = (142)(35).
For the remaining edges g put ϕ(g) = (1)(2)(3)(4)(5).

Figure 6. Obtaining the graph Gϕ by gluing the five copies of the 6-pole M .

Proposition 9. The covering p : Gϕ → G is irregular and the cubic graph Gϕ is

uncolorable.
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Proof. Since G − {e, f, h} is connected, the set of edges E′ = {e, f, h} satisfies
the condition (i). Since e, f and h are the only edges with nontrivial voltage
permutation assignment, E′ also satisfies the condition (ii). It follows that the
multipole p−1(M) is decomposed into 5 disjoint components Mi each of which is
isomorphic to the 6-pole M .

Let e1, . . . , e5 be the lifts of the edge e, f1, . . . , f5 be the lifts of the edge f
and h1, . . . , h5 be the lifts of the edge h via the covering map p. Moreover let
e′1, . . . , e

′

5 and e′′1, . . . , e
′′

5 the lifts of semi-edges e′ and e′′, respectively, f ′

1, . . . , f
′

5

and f ′′

1 , . . . , f
′′

5 the lifts of semi-edges f ′ and f ′′, respectively, and h′1, . . . , h
′

5 and
h′′1, . . . , h

′′

5 the lifts of semi-edges h′ and h′′, respectively. The covering graph
Gϕ can be obtained as follows. Take the five copies M1,M2, . . . ,M5 of the mul-
tipole M . Then identify the 5 pairs of semi-edges e′i and e′′j according to the
permutation ϕ(e) = (12345), the 5 pairs of semi-edges f ′

k and f ′′

t according to
the permutation ϕ(f) = (153)(24) and the 5 pairs of semi-edges h′k and h′′t ac-
cording to the permutation ϕ(h) = (142)(35) (see Figure 5). Identifying the first
five pairs of semi-edges results in the edges e1, e2, . . . , e5, the second five pairs of
semi-edges results in the edges f1, . . . , f5 and the third five pairs of semi-edges
results in the edges h1, . . . , h5 of the graph Gϕ. It is easy to see that there is a
unique homeomorphism of Gϕ which preserves the fibers of p, the identical map.
Therefore the deck transformation group of the covering p : Gϕ → G is trivial, so
p is irregular.

If M does not have any 4-flow, then it follows immediately that Gϕ is an
uncolorable graph. If M has a Z2 × Z2-flow, then each 6-pole Mi also has a
Z2 × Z2-flow and satisfies the property (∗∗). Now, by counting all possible sub-
cases, it is not difficult to check that there is no consistent 3-coloring of the
multipole p−1(M) =

⊔
5

i=1
Mi with the colors (1, 0), (0, 1) and (1, 1). It fol-

lows that the associated hypergraph H(E′, p) does not contain the hyperedge
{M1,M2,M3,M4,M5}. The property (∗∗) of the multipoles Mi, i = 1, . . . , 5, is
essential here.

Proposition 10. Let p : Gϕ → G be the covering map defined in Example 4. If

the graph G is cyclically 6-connected, and the edges e, f and h are contained in

three disjoint circles of G, then Gϕ is also cyclically 6-connected cubic graph.

Proof. We start by considering an auxiliary multigraph H which describes con-
nections between different multipoles Mi in the graph Gϕ. For this, we constrict
in Gϕ all vertices and edges of each multipole Mi into one vertex vi and re-
main only edges which connect different multipoles, i.e., the lifts of the edges e, f
and h. The resulting multigraph H is regular of degree 6 and of order 5 (see
Figure 7).

Let E be a minimal edge cut of the graph Gϕ so that the disconnected graph
Gϕ \ E is decomposed into two components S and T and both of them contain
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Figure 7. The multigraph H.

a cycle. Note that each Mi is cyclically 3-connected. Denote by M ′

i the graph
obtained from the multipole Mi, i = 1, . . . , 5, by removing all its semi-edges. Now
we have to analyze the following cases.

Case 1. S and T have common vertices in two or more graphs M ′

i . To
separate S ∩M ′

i from T ∩M ′

i we need at least 3 edges, so totally E contains at
least six edges.

Case 2. S and T have common vertices in a unique graph, say M ′

j , and both
S and T contain vertices of the other multipoles. By the assumption, E consists
of several edges of the subgraph M ′

j and lifts of the edges e, f and h only. The
part of E consisting of edges of the second type is denoted by E′. The collapsing
process does not influence the edges of E′, so we may identify the set E′ with
the set of corresponding edges of the multigraph H. Moreover, after collapsing
the subgraphs M ′

i , the graphs S and T will transform into multigraphs S′ and
T ′ which have a unique common vertex vj and such that |S′| ≥ 2 and |T ′| ≥ 2.
Separating S ∩ M ′

i from T ∩ M ′

i leads to splitting in H the vertex vj into two
vertices v′j and v′′j . There are 26 − 2 possible splittings of a vertex of degree
6. In Figure 8 we indicate only two examples of such splittings. The resulting
multigraph is denoted byH ′. Since the subgraphs S and T are separated in G, the
corresponding multigraphs S′ and T ′ are also separated via E′ in the multigraph
H ′. Now the task is to estimate the number |E′|.

Claim 11. Let H ′ be a multigraph obtained from H by splitting a vertex vj.
Moreover, let E′ be any edge cut of H ′ such that S′ contains v′j and T ′ contains

v′′j , and such that |S′| ≥ 2 and |T ′| ≥ 2. Then |E′| ≥ 3.

Proof. We have to consider five cases, according to a vertex of H in which
splitting is performed.
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Figure 8. Spliting a vertex v of the multigraph H: two types.

As an example, consider a multigraph H ′ obtained from H by splitting the
vertex v5. Let E′ be an edge cut in H ′ satisfying conditions of the claim. Sup-
pose contrary that |E′| < 3. By assumption, in the multigraph H ′ we have the
following: v′5 ∈ S′ and v′′5 ∈ T ′. Since |S′| ≥ 2, we may suggest that v1 ∈ S′.
Assume that v2 ∈ T ′. We thus have two multiedges of E′ that join v1 to v2. Since
|E′| ≤ 2, v3 and v4 should belong to S′. However in this case we have addition-
ally three edges from E′ joining v2 to v4 and one edge from E′ joining v2 to v3,
which contradicts our assumption. Therefore v2 must be a vertex of S′. Since
there are three multiedges joining v2 and v4, by assumption, we have v4 ∈ S′.
Since |T ′| ≥ 2, the vertex v3 should belong to T ′. But the vertex v3 is joining
to the vertices v2, v1 and v4 in H ′ having the color S, which also contradicts the
assumption that |E′| ≤ 2.

The remaining four cases are performing in a similar way. We omit here
complete checking and remain it to the reader as an easy exercise.

It follows from Claim 11 that |E′| ≥ 3 and so we have |E| ≥ 6 in Case 2.

Case 3. S and T have common vertices in a unique subgraph, say M ′

j , and
T has no vertices of any other subgraph M ′

i , i 6= j. In this case, the subgraph T
is completely contained in M ′

j . To continue, note that since the edges e, f and h
are contained in disjoin cycles, there are disjoint paths p′e, p

′

f and p′h in the graph
G − {e, f, h}, joining the end vertices of the edges e, f and h, respectively. Let
uj , u

′

j be the lifts of the end vertices of the edge e, vj , v
′

j the lifts of the end vertices
of the edge f and wj , w

′

j the lifts of the end vertices of the edge h, respectively, in
M ′

j . Note that ϕ(p
′

e) = ϕ(p′f ) = ϕ(p′h) = id, since for each edge g of the subgraph
G − {e, f, h}, we have ϕ(g) = id ∈ Σ5. It follows that the paths p′e, p

′

f and p′h
lift to disjoint paths pe, pf and ph of the graph Gϕ which join the pair of vertices
uj , u

′

j and vj , v
′

j and wj , w
′

j , respectively. Therefore the graph Gϕ contains the
subgraph G′ which is homeomorphic to G (we replace here the edges e, f and h
with the paths pe, pf and ph, respectively). Moreover, there are disjoint paths
qe, qf and qh in Gϕ joining the vertices uj , u

′

j , and vj , v
′

j , and wj , w
′

j , respectively,
and having no other common vertices with the graph M ′

j . For example, qe looks
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as follows:
(
uj , ej , u

′

j1
, pj1e , uj1 , ej2 , p

j2
e , . . . , ejk , ujk , p

jk
e , u′jk

)
, where jk = j and

each path pjse is a lift of the path p′e which starts at the end vertex u′js of the edge
ejs and ends at the vertex ujs . In the other words, qe consists of the consecutive
lifts of the edge e and the path p′e.

Let E′ = E ∩M ′

j . Then |E′| ≥ 3 as E′ separates S ∩M ′

j from T ∩M ′

j and
λ(M ′

j) ≥ 3. If |E′| = 3, the vertices in each pair {uj , u
′

j}, {vj , v
′

j}, and {wj , w
′

j}
belong to distinct sets S and T . Therefore to separate these pairs of vertices in
the graph Gϕ we need to remove at least three edges lying on the paths qe, qf
and qh, respectively. Then we have |E| ≥ 6.

Assume that |E′| = 4. Then at least two of the pairs {uj , u
′

j}, {vj , v
′

j}, and
{wj , w

′

j} have their elements in distinct sets S and T . For instance, let uj , vj ∈ S,
and u′j , v

′

j ∈ T . In this case, to separate these pairs of vertices in Gϕ we need to
remove two edges, one lying on the path qe and the other one lying on the path
qf . Then we have |E| ≥ 6.

Assume that |E′| = 5. Then at least one of the pairs {uj , u
′

j}, {vj , v
′

j}, and
{wj , w

′

j} has its elements in distinct sets S and T . For instance, let uj ∈ S and
u′j ∈ T . Now, to separate the vertices uj , u

′

j in Gϕ we need to remove at least
one edge of the path qe. We thus also have |E| ≥ 6 in the last case.

Case 4. S′ and T ′ have no common vertex. It follows that E consists entirely
of edges that are lifts of e, f and h. As a consequence, the edges of E and E′

correspond each to other, and E′ is an edge cut of the multigraph H. Let S′ and
T ′ be the two components of the multigraph H \ E′, as before. The case when
|S′| = 1 and |T ′| = 4 is trivial since H ′ is a regular multigraph of degree six,
and so |E′| = 6 in that case. The case |S′| = 2 and |T ′| = 3 is decomposing into
ten subcases according to the partitions of the vertex set V (H ′) into two sets S′

and T ′. For example, consider the subcase S′ = {v1, v2} and T ′ = {v3, v4, v5}.
We have eight edges in H ′ joining the sets S′ and T ′, so |E′| = 8 in that case.
Checking the remaining nine cases is also immediate and shows that |E′| ≥ 6.
This completes the proof of the assertion.

Note that the graph Gα from Example 3 is not cyclically 6-connected (actu-
ally ζ(Gα) ≤ 4).

3. Coverings of Cubic Graphs and Resistance

In [13], Steffen introduced the parameter r(G) of an uncolorable cubic graph G
without bridges. It measures how far G is from being 3-edge colorable and is
called the resistance of G. More precisely, r(G) = min{|F | : F ⊂ E(G) such that
G− F is 3-edge colorable} (here we slightly modify the original definition of the
parameter r(G) but in an equivalent form). This parameter is related to another
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measure of non-colorability, the oddness ω(G) of G, which is the smallest possible
number of odd circuits in 2-factors of G (see [6, 13]). In particular, r(G) ≤ ω(G)
for any cubic graph G.

It is not difficult to see that the number r(G) is equal to the minimal number
of edges in the cubic graph G, say e1, . . . , ek, such that cutting all them in interior
points results in a 2k-pole which has a 4-flow (with sources in the semi-edges).

It follows directly from definitions that an analogue of Proposition 7 holds
true for uncolorable cubic graphs G with r(G) ≥ 3 and for an arbitrary choice of
cyclic permutations β(e) and β(f) in Σn with n ≥ 2.

Let us consider several examples of snarks and indicate their resistance.

Example 5. Let P be the Petersen graph, and P 3 the third power of P pictured
in Figure 1. In Figure 9, it is shown the snark G26 of order 26 embedded in a torus
(see [11]). By direct computation, we have r(P ) = 2, r(P 3) = 2 and r(G26) = 2.

Figure 9. The snark G26 embedded in a torus.

The following theorem allows to construct uncolored graphs G with an arbi-
trary value of resistance.

Theorem 12. Let G be a connected bridgeless uncolored cubic graph with r(G) =

k. Let (G,µ) be a permutation voltage graph with an assignment µ : E(
−→
G) → Σn

in the symmetric group Σn, Gµ the corresponding covering graph and let E =
{e1, e2, . . . , el} be a subset of edges of G with l ≤ k − 1. Assume that E satisfies

the following conditions:

(i) the graph H = G− E is connected;

(ii) for each oriented cycle c in the graph H we have µ(c) = e where e is the

trivial permutation in Σn.

Then the bridgeless cubic graph Gµ is uncolored. Moreover r(Gµ) ≥ (k − l)n.

Proof. The fact that Gµ is bridgeless follows from the fact that G is so and the
covering is finite. First assume that the covering graph Gµ is connected. Let L
be the 2l-pole obtained from G by cutting the edges e1, . . . , el from E in interior
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points. It follows from (i) and (ii) (see the proof of Theorem 5) that the multipole
p−1(L) is decomposed into n disjoint (isomorphic) copies Li of the multipole L.
Moreover the covering graph Gµ can be obtained from multipoles L1, . . . , Ln by
identifying the corresponding pairs of their semi-edges in accordance with the
permutation values µ(ei) for ei ∈ E. It follows that the graph p−1(H) is decom-
posed into n disjoint components H1, H2, . . . , Hn each of which is isomorphic to
H. It is clear that each graph Hi is obtained from the multipole Li by removing
all its semi-edges.

Suppose that r(Gµ) = t < (k − l)n. Then there are edges e′1, . . . , e
′

t of Gµ

such that the graph U = Gµ − {e′1, . . . , e
′

t} is 3-edge colorable. Let ϕ be the
corresponding 3-edge coloring of U . Then ϕ descends obviously to a proper 3-
edge coloring ϕi of each subgraph Ui = Hi−{e′1, . . . , e

′

t} where i = 1, . . . , n. Since
Ui is 3-edge colorable and r(G) = k ≥ 2, it follows that the graph Ui is obtained
from the graph Hi by removing at least k− l edges, i = 1, . . . , n. This means that
U is obtained from G by eliminating at least (k− l)n edges, i.e., r(Gµ) ≥ (k− l)n,
contradicting our assumption.

If Gµ is disconnected, we can restrict the covering map p : Gµ → G to each
connected component of Gµ and then argue in the same way as in the first case.
Now the assertion follows.

Note that by Proposition 4, for any n-fold covering p : Gµ → G of the cubic
graph G with r(G) = k, we have r(Gµ) ≤ kn.

Corollary 13. Let G be a connected bridgeless uncolorable cubic graph with

r(G) = k and
−→
G be an orientation of G. Moreover, let (G,µ) be a voltage

graph with a voltage assignment µ : E(
−→
G) → A in a finite group A of order m

such that µ takes the only nontrivial values at l arcs of
−→
G with l ≤ k − 1. Then

the covering cubic graph Gµ is an uncolorable graph with r(Gµ) ≥ (k − l)m.

Proof. Let E = {e1, e2, . . . , el} be the edges of G with nontrivial values of the
voltage assignment µ. If the graph G−{e1, e2, . . . , el} is connected, the assertion
is a direct consequence of Theorem 12. If G− {e1, e2, . . . , el} is disconnected, we
can replace the set E with a smaller subset E′ ⊂ E such that G−E′ is connected
and the condition (iii) of Theorem 12 is satisfied. Now the assertion follows from
the proof of Theorem 12.

The estimation of the parameter r(Gµ) of the covering graph Gµ, given in
Theorem 12, can be improved in particular cases, when the subset E of edges of
the graph G is specified. We illustrate this by the following example.

Example 6. Consider the cubic graph H2 which is depicted in Figure 10. This
uncolorable graph is due to [8]. In [8], it was shown that H2 is a unique smallest
uncolorable graph with oddness 4 and with edge-cyclic connectivity 3. The order
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of H2 is equal to 28. The given graph is obtained by gluing together three copies
of the 3-pole P3 [8], where the multipole P3 is shown in Figure 11. Note that the
multipole P3 is uncolorable.

Figure 10. The cubic graph H2.

Figure 11. The multipole P3.

It is not difficult to show that r(H2) = 3. We distinguish in H2 three
edges, e, f and g, the edges that join two different copies of the multipole P3

in the graph H2. Consider the 5-fold covering map p : Hβ
2

→ H2 defined via

the permutation voltage assignment β : E(
−→
H2) → Σ5 as follows: β(e) = (12345),

β(f) = (153)(24), β(g) = (142)(35), and β(h) = (1)(2)(3)(4)(5) for any other

edge h of the graph H2. It is clear that r
(
Hβ

2

)
≥ 3 · 5, since in order to obtain

an uncolored (subcubic) graph from Hβ
2
we have to remove at least one edge in

each copy P i
3, i = 1, 2, . . . , 15, of the 3-pole P3. Since the number r

(
Hβ

2

)
cannot

exceed 3 · 5, it follows that r
(
Hβ

2

)
= 15. Note also that ζ

(
Hβ

2

)
= 3.
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