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Abstract

For a graph G = (V,E) and a set S ⊆ V of at least two vertices, an
S-tree is a such subgraph T of G that is a tree with S ⊆ V (T ). Two S-
trees T1 and T2 are said to be internally disjoint if E(T1) ∩ E(T2) = ∅ and
V (T1) ∩ V (T2) = S, and edge-disjoint if E(T1) ∩ E(T2) = ∅. The gener-
alized local connectivity κG(S) (generalized local edge-connectivity λG(S),
respectively) is the maximum number of internally disjoint (edge-disjoint,
respectively) S-trees in G. For an integer k with 2 ≤ k ≤ n, the general-
ized k-connectivity (generalized k-edge-connectivity, respectively) is defined
as κk(G) = min{κG(S) | S ⊆ V (G), |S| = k} (λk(G) = min{λG(S) | S ⊆
V (G), |S| = k}, respectively).
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Let f(n, k, t) (g(n, k, t), respectively) be the minimum size of a connected
graph G with order n and κk(G) = t (λk(G) = t, respectively), where
3 ≤ k ≤ n and 1 ≤ t ≤ n−

⌈

k

2

⌉

. For general k and t, Li and Mao obtained
a lower bound for g(n, k, t) which is tight for the case k = 3. We show that
the bound also holds for f(n, k, t) and is tight for the case k = 3. When
t is general, we obtain upper bounds of both f(n, k, t) and g(n, k, t) for
k ∈ {3, 4, 5}, and all of these bounds can be attained. When k is general,
we get an upper bound of g(n, k, t) for t ∈ {1, 2, 3, 4} and an upper bound
of f(n, k, t) for t ∈ {1, 2, 3}. Moreover, both bounds can be attained.

Keywords: generalized connectivity, tree connectivity, generalized k-con-
nectivity, generalized k-edge-connectivity, packing.
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1. Introduction

We refer to [1] for graph theoretical notation and terminology not described
here. For a graph G, let V (G), E(G) be the set of vertices, the set of edges of G,
respectively. For X ⊆ V (G), we use G−X to denote the subgraph obtained by
deleting from G the vertices of X together with the edges incident with them, and
use G[X] to denote the induced subgraph of G with vertex set X. For Y ⊆ E(G),
we use G − Y to denote the subgraph obtained by deleting from G the edges of
Y , and use G[Y ] to denote the subgraph of G with vertex set V (Y ) and edge set
Y . For a set S, we use |S| to denote the number of its elements. We use Pn, Cm

and Kℓ to denote a path of order n, a cycle of order m and a complete graph of
order ℓ, respectively.

Connectivity is one of the most basic concepts in graph theory, both in a
combinatorial sense and in an algorithmic sense. The classical connectivity has
two equivalent definitions. The connectivity of a connected graph G, written
κ(G), is the minimum size of a vertex set S ⊆ V (G) such that G − S is discon-
nected or has only one vertex. This definition is called the cut-version definition
of the connectivity. A well-known theorem of Menger provides an equivalent
definition, which can be called the path-version definition of the connectivity.
For any two distinct vertices x and y in G, the local connectivity κG(x, y) is
the maximum number of internally disjoint paths connecting x and y. Then
κ(G) = min{κG(x, y) | x, y ∈ V (G), x 6= y} is defined to be the connectivity
of G. Similarly, there are cut-version and path-version definitions for the edge-
connectivity of graphs.

The generalized k-connectivity κk(G) of a graph G which was introduced by
Hager [9] in 1985 is a natural generalization of the path-version definition of the
connectivity. For a graph G = (V,E) and a set S ⊆ V of at least two vertices,
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an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a such
subgraph T of G that is a tree with S ⊆ V (T ). Two S-trees T1 and T2 are
said to be internally disjoint if E(T1) ∩ E(T2) = ∅ and V (T1) ∩ V (T2) = S. The
generalized local connectivity κG(S) is the maximum number of internally disjoint
S-trees in G. For an integer k with 2 ≤ k ≤ n, the generalized k-connectivity is
defined as

κk(G) = min{κG(S) | S ⊆ V (G), |S| = k}.

Thus, κk(G) is the minimum value of κG(S) when S runs over all the k-subsets
of V (G). By definition, we clearly have κ2(G) = κ(G). By convention, for a
connected graph G with less than k vertices, we set κk(G) = 1, and κk(G) = 0
when G is disconnected. For more details about this topic, the reader can see
[2, 3, 9, 11, 12, 15, 20, 28, 29].

As a natural counterpart of the generalized k-connectivity, Li, Mao and Sun
[20] introduced the following concept of generalized edge-connectivity which is
a generalization of the path-version definition of the edge-connectivity. Two S-
trees T1 and T2 are said to be edge-disjoint if E(T1)∩E(T2) = ∅. The generalized
local edge-connectivity λG(S) is the maximum number of edge-disjoint S-trees in
G. For an integer k with 2 ≤ k ≤ n, the generalized k-edge-connectivity is defined
as

λk(G) = min{λG(S) | S ⊆ V (G), |S| = k}.

Thus, λk(G) is the minimum value of λG(S) when S runs over all the k-subsets
of V (G). Hence, we have λ2(G) = λ(G). By definitions of κk(G) and λk(G),
κk(G) ≤ λk(G) holds. There are many results on this type of generalized edge-
connectivity, see [3, 16, 17, 20, 25, 26, 27, 29].

The generalized edge-connectivity is related to two important problems [14].
For a given graph G and S ⊆ V (G), the problem of finding a set of maximum
number of edge-disjoint Steiner trees connecting S in G is called the Steiner tree

packing problem. The difference between the Steiner tree packing problem and
the generalized edge-connectivity is as follows: The Steiner tree packing problem
studies local properties of graphs since S is given beforehand, but the generalized
edge-connectivity focuses on global properties of graphs since it first needs to
compute the maximum number λG(S) of edge-disjoint trees connecting S and
then S runs over all k-subsets of V (G) to get the minimum value of λG(S).

The problem for S = V (G) is called the spanning tree packing problem. Note
that spanning tree packing problem is a specialization of Steiner tree packing
problem (For k = n, each S-Steiner tree is a spanning tree of G.) For any
graph G of order n, the spanning tree packing number is the maximum number of
edge-disjoint spanning trees contained in G. From the definitions of κk(G) and
λk(G), κn(G) = λn(G) is exactly the spanning tree packing number of G. (For
k = n, both internally disjoint S-Steiner trees and edge-disjoint S-Steiner trees
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are edge-disjoint spanning trees.) For the spanning tree packing number, we refer
to [23, 24]. Observe that the spanning tree packing number is a special case of
both the generalized k-connectivity and the generalized k-edge-connectivity.

In addition to being natural combinatorial measures, the generalized (edge-)
connectivity can be motivated by its interesting interpretation in practice as well
as theoretical consideration [14]. From a theoretical perspective, both extremes
of this problem relate to fundamental theorems in combinatorics. One extreme of
the problem is when we have two terminals. In this case internally (edge-)disjoint
trees are just internally (edge-)disjoint paths between the two terminals, and so
the problem is relevant to the well-known Menger theorem. The other extreme
is when all the vertices are terminals. In this case internally disjoint trees and
edge-disjoint trees are just edge-disjoint spanning trees of the graph, and so the
problem is relevant to the classical Nash-Williams-Tutte theorem [22, 30].

The generalized edge-connectivity and the Steiner tree packing problem have
applications in VLSI circuit design, see [7, 8]. In these applications, a Steiner tree
is needed to share an electronic signal by a set of terminal nodes. Steiner trees
are also used in computer communication networks [5, 6] and optical wireless
communication networks [4]. Another application, which is our primary focus,
arises in the Internet Domain. Imagine that a given graph G represents a network.
We choose arbitrary k vertices as nodes. Suppose one of the nodes in G is a
broadcaster, and all other nodes are either users or routers (also called switches).
The broadcaster wants to broadcast as many streams of movies as possible, so
that the users have the maximum number of choices. Each stream of movie is
broadcasted via a tree connecting all the users and the broadcaster. Hence, in
essence we need to find the maximum number Steiner trees connecting all the
users and the broadcaster, namely, we want to get λG(S), where S is the set of the
k nodes. Clearly, it is a Steiner tree packing problem. Furthermore, if we want
to know whether for any k nodes the network G has above properties, then we
need to compute λk(G) = min{λG(S)}. It is also worth noting that the concept
of generalized k-(edge-)connectivity is related to Steiner distance, see [2, 21].

Nowadays, more and more researchers are working in the topic of generalized
connectivity with applications. In the literature, generalized k-connectivity and
generalized k-edge-connectivity are also called tree connectivity. The reader is
referred to a new book [19] for a detailed introduction of this field.

For 3 ≤ k ≤ n and 1 ≤ t ≤ n−
⌈

k
2

⌉

, let f(n, k, t) (g(n, k, t), respectively) be
the minimum size of a connected graph G with order n and κk(G) = t (λk(G) = t,
respectively). It is not easy to determine the exact values of f(n, k, t) and g(n, k, t)
for general k and t, so people try to obtain nice bounds for these two parameters.

For general k and t, Li and Mao [17] obtained a lower bound of g(n, k, t)
which is tight when k = 3 (Theorem 11). We show that the same bound also
holds for f(n, k, t) and is tight for the case k = 3 (Theorem 12).
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People also investigate these two parameters in the following two directions.
For the first direction that t is general, Li and Mao [17] investigated g(n, 3, t)
and derived a lower bound and some precise values (Theorem 7). In this paper,
we will get a similar lower bound and precise values for f(n, 3, t) (Theorem 13).
Furthermore, we will obtain upper bounds of both f(n, k, t) and g(n, k, t) for
k ∈ {3, 4, 5}, and all of these bounds can be attained (Theorems 14, 15 and 16).

For the second direction that k is general, Li, Mao and Sun [20] obtained
precise values for f

(

n, k, n−
⌈

k
2

⌉)

and g
(

n, k, n−
⌈

k
2

⌉)

(Theorem 8). For the

case that t = n −
⌈

k
2

⌉

− 1 and k is an even integer, Li and Mao [14] obtained
the precise values of f(n, k, t) and g(n, k, t) (Theorem 9). In this paper, we will
get an upper bound of g(n, k, t) for t ∈ {1, 2, 3, 4} (Theorem 18), and an upper
bound of f(n, k, t) for t ∈ {1, 2, 3} (Theorem 22). Moreover, both bounds can be
attained for the case k = n.

2. Preliminaries

The following two propositions concern sharp bounds for κk(G) and λk(G).

Proposition 1 [20]. Let k, n be two integers with 2 ≤ k ≤ n. For a connected

graph G of order n we have 1 ≤ κk(G) ≤ n−
⌈

k
2

⌉

. Moreover, the upper and lower

bounds are sharp.

Proposition 2 [20]. Let k, n be two integers with 2 ≤ k ≤ n. For a connected

graph G of order n we have 1 ≤ λk(G) ≤ n−
⌈

k
2

⌉

. Moreover, the upper and lower

bounds are sharp.

Li and Mao [16] showed that the monotone property of λk(G) is true for
2 ≤ k ≤ n.

Proposition 3 [16]. Let k, n be two integers with 2 ≤ k ≤ n−1. For a connected

graph G we have λk+1(G) ≤ λk(G).

Li and Mao [17] gave a sufficient condition for λk(G) ≤ δ−1. Li [13] obtained
a similar result on the generalized k-connectivity.

Proposition 4 [17]. Let G be a connected graph of order n with minimum degree

δ. If there are two adjacent vertices of degree δ, then λk(G) ≤ δ−1 for 3 ≤ k ≤ n.

Moreover, the upper bound is sharp.

Proposition 5 [13]. Let G be a connected graph of order n with minimum degree

δ. If there are two adjacent vertices of degree δ, then κk(G) ≤ δ−1 for 3 ≤ k ≤ n.

Moreover, the upper bound is sharp.

Li, Li, Mao and Sun characterized graphs with κ3(G) = n− 3.
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Theorem 6 [10]. Let G be a connected graph of order n (n ≥ 3). Then κ3(G) =
n− 3 if and only if G is a graph obtained from the complete graph Kn by deleting

an edge set M such that Kn[M ] = P4 or Kn[M ] = P3 ∪ rP2 (r = 1, 2) or

Kn[M ] = C3 ∪ rP2 (r = 1, 2) or Kn[M ] = sP2

(

2 ≤ s ≤
⌊

n
2

⌋ )

.

For the case that k = 3 and t is general, Li and Mao [17] investigated g(n, 3, t)
and derived a lower bound and some precise values.

Theorem 7 [17]. Let n be an integer with n ≥ 3. Then

(i) g(n, 3, n− 2) =
(

n
2

)

− 1;

(ii) g(n, 3, n− 3) =
(

n
2

)

−
⌊

n+3
2

⌋

;

(iii) g(n, 3, 1) = n− 1;

(iv) g(n, 3, t) ≥
⌈

t(t+1)
2t+1 n

⌉

for n ≥ 11 and 2 ≤ t ≤ n− 4. Moreover, the bound is

sharp.

The complete bipartite graph G = Kt,t+1 is a sharp example for the bound
of Theorem 7(iv).

For the case that t = n−
⌈

k
2

⌉

and k is a general integer, Li, Mao and Sun [20]
obtained the following result.

Theorem 8 [20].

f

(

n, k, n−

⌈

k

2

⌉)

= g

(

n, k, n−

⌈

k

2

⌉)

=

{

(

n
2

)

, for k even;
(

n
2

)

− k−1
2 , for k odd.

For the case that t = n−
⌈

k
2

⌉

− 1 and k is an even integer, Li and Mao [18]
obtained the following result.

Theorem 9 [18]. Let k be an even integer. We have

f

(

n, k, n−

⌈

k

2

⌉

− 1

)

=

(

n

2

)

− k + 1

and

g

(

n, k, n−

⌈

k

2

⌉

− 1

)

=

(

n

2

)

−max
{⌊n

2

⌋

, k − 1
}

.

3. Lower Bounds

The following result concerns a relationship between f(n, k, t) and g(n, k, t).

Lemma 10.

f(n, k, t) ≥ g(n, k, t).
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Proof. We need the following claim.

Claim. For a connected graph G, there exists a connected spanning subgraph H

of G such that λk(H) = λk(G)− 1.

Proof. Without loss of generality, assume that G is a minimal graph with
λk(G) = t, that is, λk(G) = t and λk(G − e) < t for any e ∈ E(G). We
now show that λk(G − e) = t − 1. Indeed, for any set S ⊆ V (G) with |S| = k,
there is a set of t edge-disjoint S-trees in G, namely T = {Ti | 1 ≤ i ≤ t}. For
any e ∈ E(G), we know that e belongs to at most one element of T , say Tt. Then
T ′ = {Ti | 1 ≤ i ≤ t − 1} is a set of t − 1 edge-disjoint S-trees in G − e, so
λG−e(S) ≥ t− 1 and λk(G− e) ≥ t− 1. Hence, λk(G− e) = t− 1 and the claim
holds. �

Let G be any connected graph with e(G) = f(n, k, t) and κk(G) = t. Clearly,
we have λk(G) ≥ κk(G) = t. By the above claim, there exists a connected
spanning subgraph H of G such that λk(H) = t. Hence, f(n, k, t) = e(G) ≥
e(H) ≥ g(n, k, t).

Note that in the proof of (iv) of Theorem 7, Li and Mao [17] actually proved

that e(G) ≥
⌈

t(t+1)
2t+1 n

⌉

for a graph G of order n with λk(G) = t, where 1 ≤ t ≤

n−
⌈

k
2

⌉

. Hence, the following result holds.

Theorem 11 [17]. For 3 ≤ k ≤ n, 1 ≤ t ≤ n−
⌈

k
2

⌉

, we have

g(n, k, t) ≥

⌈

t(t+ 1)

2t+ 1
n

⌉

.

By Theorem 7, we know that the lower bound in Theorem 11 is tight for the
case k = 3. By Lemma 10 and Theorem 11, the following result holds.

Theorem 12. For 3 ≤ k ≤ n, 1 ≤ t ≤ n−
⌈

k
2

⌉

, we have

f(n, k, t) ≥

⌈

t(t+ 1)

2t+ 1
n

⌉

.

In fact, the lower bound in Theorem 12 is tight for the case k = 3. We just
consider the graph G0

∼= Kt,t+1. As shown in the proof of Theorem 14 in the
next section, we have that κ3(G0) = t and |e(G0)| = t(t + 1) = f(n, 3, t) in this
case.

Recall that in Theorem 7, Li and Mao [17] derived a lower bound and some
precise values for g(n, 3, t). We can obtain similar results for f(n, 3, t).

Theorem 13. Let n be an integer with n ≥ 3. Then

(i) f(n, 3, n− 2) =
(

n
2

)

− 1;
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(ii) f(n, 3, n− 3) =
(

n
2

)

−
⌊

n
2

⌋

;

(iii) f(n, 3, 1) = n− 1;

(iv) f(n, 3, t) ≥
⌈

t(t+1)
2t+1 n

⌉

for 2 ≤ t ≤ n− 4. Moreover, the bound is sharp.

Proof. The assertions (i) and (iv) are directly derived by Theorems 8 and 12,
respectively. The assertion (iii) is from the fact that κ3(T ) = 1 for a tree T . By
Theorem 6, κ3(G) = n−3 if and only if G is a graph obtained from the complete
graph Kn by deleting an edge set M such that Kn[M ] = P4 or Kn[M ] = P3∪rP2

(r = 1, 2) or Kn[M ] = C3 ∪ rP2 (r = 1, 2) or Kn[M ] = sP2

(

2 ≤ s ≤
⌊

n
2

⌋)

. It
is not hard to show that f(n, 3, n − 3) =

(

n
2

)

−
⌊

n
2

⌋

and thus the assertion (ii)
holds.

4. For Small k

In this section, we will study f(n, k, t) and g(n, k, t) when t is general and k ∈
{3, 4, 5}. For the case k = 3, we have 1 ≤ t ≤ n− 2 by Propositions 1 and 2, and
the following result holds.

Theorem 14. Let n be an integer with n ≥ 3. The following assertions hold.

(i) For 1 ≤ t ≤
⌊

n−1
2

⌋

, we have

f(n, 3, t) ≤ t(n− t)

and

g(n, 3, t) ≤ t(n− t).

Moreover, both bounds can be attained for the case that t =
⌊

n−1
2

⌋

and n is

odd, that is, f
(

n, 3,
⌊

n−1
2

⌋)

= g
(

n, 3,
⌊

n−1
2

⌋)

= n2
−1
4 when n is odd.

(ii) For
⌊

n−1
2

⌋

+ 1 ≤ t ≤ n− 2, we have

f(n, 3, t) ≤

(

t

2

)

+ t(n− t)

and

g(n, 3, t) ≤

(

t

2

)

+ t(n− t).

Moreover, both bounds can be attained for the case that t = n − 2, that is,
f(n, 3, n− 2) = g(n, 3, n− 2) =

(

n
2

)

− 1.

Proof. We first prove (i). For 1 ≤ t ≤
⌊

n−1
2

⌋

, let G ∼= Kt,n−t be a complete
bipartite graph with two parts A and B, where A = {ui | 1 ≤ i ≤ t} and
B = {vj | 1 ≤ j ≤ n − t}. Clearly, |A| < |B|. Choose any S ⊆ V (G) with
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|S| = 3. In the following we will show that κG(S) ≥ t, that is, there are at least
t internally disjoint S-trees in G.

Case 1. |S ∩ A| = 3. Without loss of generality, let S = {ui | 1 ≤ i ≤ 3}.
Let Tj be a tree with V (Tj) = {vj} ∪ S and E(Tj) = {vjui | 1 ≤ i ≤ 3}, where
1 ≤ j ≤ n − t. Clearly, {Tj | 1 ≤ j ≤ n − t} is a set of n − t internally disjoint
S-trees and so κG(S) ≥ n− t > t.

Case 2. |S ∩ A| = 2. Without loss of generality, let S = {u1, u2, v1}. Let
T1 be the path v1, u1, v3, u2, T2 be the path v1, u2, v2, u1 and Ti be a tree with
V (Ti) = {u1, u2, ui, v1, vi+1} and E(Ti) = {u1vi+1, u2vi+1, uivi+1, uiv1}, where
3 ≤ i ≤ t < n− t. Clearly, {Ti | 1 ≤ i ≤ t} is a set of t internally disjoint S-trees
and so κG(S) ≥ t.

Case 3. |S ∩ A| = 1. Without loss of generality, let S = {u1, v1, v2}. Let
T1 be the path v1, u1, v2 and Ti be a tree with V (Ti) = {u1, ui, v1, v2, vi+1} and
E(Ti) = {u1vi+1, uiv1, uiv2, uivi+1}, where 2 ≤ i ≤ t. Clearly, {Ti | 1 ≤ i ≤ t} is
a set of t internally disjoint S-trees and so κG(S) ≥ t.

Case 4. |S ∩ A| = 0. Without loss of generality, let S = {vj | 1 ≤ j ≤ 3}.
Let Ti be a tree with V (Ti) = {ui} ∪ S and E(Ti) = {uivj | 1 ≤ j ≤ 3}, where
1 ≤ i ≤ t. Clearly, {Ti | 1 ≤ j ≤ t} is a set of t internally disjoint S-trees and so
κG(S) ≥ t.

Hence, for any S ⊆ V (G) with |S| = 3, we have κG(S) ≥ t, and so λG(S) ≥
κG(S) ≥ t. We have that λ3(G) ≥ t and κ3(G) ≥ t. Since δ(G) = t, we have
λ3(G) ≤ t and κ3(G) ≤ t, and so κ3(G) = λ3(G) = t. As |e(G)| = t(n − t), the
bounds f(n, 3, t) ≤ t(n − t) and g(n, 3, t) ≤ t(n − t) hold. Consider the graph
G0

∼= Kt,t+1, we have κ3(G0) = λ3(G0) = t and |e(G0)| = t(t + 1) = f(n, 3, t) =
g(n, 3, t) in this case.

We next prove (ii). In this case, we have n − t ≤ t. Let H be a connected
graph with V (H) = A ∪ B and E(H) = {ui1ui2 | 1 ≤ i1 6= i2 ≤ t} ∪ {uivj |
1 ≤ i ≤ t, 1 ≤ j ≤ n − t}, where A = {ui | 1 ≤ i ≤ t} and B = {vj |
1 ≤ j ≤ n − t}. With a similar argument to that of (i), we can prove that
κ3(H) = λ3(H) = t. As |e(H)| =

(

t
2

)

+t(n−t), the bounds f(n, 3, t) ≤
(

t
2

)

+t(n−t)

and g(n, 3, t) ≤
(

t
2

)

+ t(n − t) hold. For the case that t = n − 2, by Theorem 8,

f(n, 3, n− 2) = g(n, 3, n− 2) =
(

n
2

)

− 1 =
(

t
2

)

+ t(n− t), so both bounds can be
attained in this case.

We now introduce the following graph class G(n, k, t) with 3 ≤ k ≤ n and
1 ≤ t ≤ n−

⌈

k
2

⌉

: for a graph G ∈ G(n, k, t), V (G) = A∪B and E(G) = {ui1ui2 |
1 ≤ i1 6= i2 ≤ t} ∪ {uivj | 1 ≤ i ≤ t, 1 ≤ j ≤ n− t} ∪

{

v2j−1v2j | 1 ≤ j ≤
⌊

n−t
2

⌋}

,
where A = {ui | 1 ≤ i ≤ t} and B = {vj | 1 ≤ j ≤ n − t}. Clearly, |e(G)| =
(

t
2

)

+ t(n− t) +
⌊

n−t
2

⌋

.
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For the case k = 4, we have 1 ≤ t ≤ n− 2 by Propositions 1 and 2, then the
following result holds.

Theorem 15. For 1 ≤ t ≤ n− 2, we have

f(n, 4, t) ≤

(

t

2

)

+ t(n− t) +

⌊

n− t

2

⌋

and

g(n, 4, t) ≤

(

t

2

)

+ t(n− t) +

⌊

n− t

2

⌋

.

Moreover, both bounds can be attained for the case that t = n − 2, that is,

f(n, 4, n− 2) = g(n, 4, n− 2) =
(

n
2

)

.

Proof. Let G ∈ G(n, 4, t), where 1 ≤ t ≤ n − 2. Choose any S ⊆ V (G) with
|S| = 4. We will show that κG(S) ≥ t, that is, there are at least t internally
disjoint S-trees in G. We only consider the case that |S ∩ A| = 3 since the
discussions for other cases (that is, |S ∩A| ∈ {0, 1, 2, 4}) are similar.

If n − t = 2, then B = {v1, v2}. Without loss of generality, let S = {u1, u2,
u3, v1}. Let T1 be the path v1, u1, u3, u2 and T2 be the path u1, u2, v1, u3. Let T3

be a tree with V (T3) = S ∪ {v2} and E(T3) = {v1v2, u1v2, u2v2, u3v2}, and Ti be
a tree with V (Ti) = S ∪ {ui} and E(Ti) = {v1ui, u1ui, u2ui, u3ui} for 4 ≤ i ≤ t.
Clearly, {Ti | 1 ≤ i ≤ t} is a set of t internally disjoint S-trees and so κG(S) ≥ t.

Otherwise, we have n − t ≥ 3. If the element of S ∩ B is not isolated in
G[B], then we are done with a similar argument to that of the case n − t = 2.
Otherwise, the element of S ∩B is isolated in G[B] and so S = {u1, u2, u3, vn−t}.
Let T1 be a tree with V (T1) = S and E(T1) = {u1u3, u2u3, u3vn−t}, T2 be a tree
with V (T2) = S ∪ {v2} and E(T2) = {u1u2, u1v2, u1vn−t, u3v2}, T3 be a tree with
V (T3) = S ∪ {v1} and E(T3) = {u1v1, u2v1, u3v1, u2vn−t}. Let Ti be a tree with
V (Ti) = S ∪ {ui} and E(Ti) = {vn−tui, u1ui, u2ui, u3ui} for 4 ≤ i ≤ t. Clearly,
{Ti | 1 ≤ i ≤ t} is a set of t internally disjoint S-trees and so κG(S) ≥ t.

Hence, for any S ⊆ V (G) with |S| = 4, we have κG(S) ≥ t, and so λG(S) ≥
κG(S) ≥ t. Therefore, λ4(G) ≥ t and κ4(G) ≥ t. Since δ(G) = t, or δ(G) = t+ 1
and there are two adjacent vertices of degree t + 1, we have λ4(G) ≤ t and
κ4(G) ≤ t by Propositions 4 and 5. So κ4(G) = λ4(G) = t. As |e(G)| =
(

t
2

)

+ t(n − t) +
⌊

n−t
2

⌋

, both bounds hold. For the case that t = n − 2, we have

f(n, 4, n− 2) = g(n, 4, n− 2) =
(

n
2

)

=
(

t
2

)

+ t(n− t)+
⌊

n−t
2

⌋

. Hence, both bounds
can be attained in this case.

For the case k = 5, we have 1 ≤ t ≤ n− 3 by Propositions 1 and 2, then the
following result holds.
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Theorem 16. For 1 ≤ t ≤ n− 3, we have

f(n, 5, t) ≤

(

t

2

)

+ t(n− t) +

⌊

n− t

2

⌋

and

g(n, 5, t) ≤

(

t

2

)

+ t(n− t) +

⌊

n− t

2

⌋

.

Moreover, both bounds can be attained for the case that t = n − 3, that is,

f(n, 5, n− 3) = g(n, 5, n− 3) =
(

n
2

)

− 2.

Proof. Let G ∈ G(n, 5, t), where 1 ≤ t ≤ n − 3. Choose any S ⊆ V (G) with
|S| = 5. We will show that κG(S) ≥ t, that is, there are at least t internally
disjoint S-trees in G. We only consider the case that |S ∩ A| = 4 since the
discussions for other cases (that is, |S ∩A| ∈ {0, 1, 2, 3, 5}) are similar.

Now we have |S∩B| = 1. We first consider the case that the element of S∩B

is not isolated in G[B]. Without loss of generality, let S = {u1, u2, u3, u4, v1}. Let
T1 be the path v1, u1, u2, u3, u4, T2 be a tree with V (T2) = S ∪{v2} and E(T2) =
{u1v2, u2v2, u3v2, u4v2, v1v2}, T3 be a tree with V (T3) = S ∪ {v3} and E(T3) =
{u1v3, u2v3, u3v3, u4v3, v1u4}, and T4 be the path u1, u3, v1, u2, u4. For 5 ≤ i ≤ t,
let Ti be a tree with V (Ti) = S ∪ {ui} and E(Ti) = {v1ui, u1ui, u2ui, u3ui, u4ui}.
Clearly, {Ti | 1 ≤ i ≤ t} is a set of t internally disjoint S-trees and so κG(S) ≥ t.

Otherwise, the element of S ∩B is isolated in G[B], so n− t ≥ 3 is odd and
now S = {u1, u2, u3, u4, vn−t}. Let T1 be the path u1, u4, u3, u2, vn−t, T2 be a
tree with V (T2) = S ∪ {v2} and E(T2) = {u1v2, u2v2, u3v2, u4v2, u3vn−t}, T3 be a
tree with V (T3) = S ∪ {v1} and E(T3) = {u1v1, u2v1, u3v1, u4v1, u4vn−t}, and T4

be a tree V (T4) = S and E(T4) = {u1u2, u2u4, u3u1, u1vn−t}. For 5 ≤ i ≤ t, let
Ti be a tree with V (Ti) = S ∪ {ui} and E(Ti) = {vn−tui, u1ui, u2ui, u3ui, u4ui}.
Clearly, {Ti | 1 ≤ i ≤ t} is a set of t internally disjoint S-trees and so κG(S) ≥ t.

Hence, for any S ⊆ V (G) with |S| = 5, we have κG(S) ≥ t, and so λG(S) ≥
κG(S) ≥ t. Therefore, λ5(G) ≥ t and κ5(G) ≥ t. Since δ(G) = t, or δ(G) = t+ 1
and there are two adjacent vertices of degree t + 1, we have λ5(G) ≤ t and
κ5(G) ≤ t by Propositions 4 and 5. So κ5(G) = λ5(G) = t. As |e(G)| =
(

t
2

)

+ t(n − t) +
⌊

n−t
2

⌋

, both bounds hold. For the case that t = n − 3, we have

f(n, 5, n − 3) = g(n, 5, n − 3) =
(

n
2

)

− 2 =
(

t
2

)

+ t(n − t) +
⌊

n−t
2

⌋

. Hence, both
bounds can be attained in this case.

5. For Small t

In this section, we will first study g(n, k, t) when k is general and t ∈ {1, 2, 3, 4},
and then investigate f(n, k, t) when k is general and t ∈ {1, 2, 3}.
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A wheel graph Wn of order n is a graph that contains a cycle of order n− 1,
and every vertex in the cycle is connected to one other vertex, which is known as
the center. By Lemma 10 and definitions of f(n, k, t) and g(n, k, t), we have the
following observation.

Observation 17.

f(n, n, t) ≥ g(n, n, t) ≥ t(n− 1).

Theorem 18. For n ≥ 10, 3 ≤ k ≤ n and 1 ≤ t ≤ 4, we have

g(n, k, t) ≤ t(n− 1).

Moreover, the bound can be attained for the case k = n, that is, g(n, n, t) = t(n−1)
for 1 ≤ t ≤ 4.

Proof. For t = 1, the result clearly holds by the fact that λk(T ) = 1, where T is
a tree.

We now consider the case t = 2. Let G ∼= Wn, where V (G) = {u} ∪ {ui | 1 ≤
i ≤ n− 1} and u is the center. Let T1 be the path u, u2, u3, . . . , un−1, u1 and T2

be a tree with V (T2) = V (G) and E(T2) = {u1u2} ∪ {uui | 1 ≤ i ≤ n− 1, i 6= 2}.
Clearly, T1 and T2 are two edge-disjoint spanning trees of G, so λn(G) ≥ 2. Since
there are two adjacent vertices with minimum degree 3, we have λk(G) ≤ 2 for
3 ≤ k ≤ n by Proposition 4. By Proposition 3, we have λn(G) ≤ λn−1(G) ≤
· · · ≤ λ3(G) ≤ 2, and so λk(G) = 2 for 3 ≤ k ≤ n. As e(G) = 2(n−1), the bound
holds for t = 2. By Observation 17, we have g(n, n, 2) = 2(n− 1).

We next consider the case t = 3. Let H be a connected graph with V (H) =
{u1, u2} ∪ {vj | 1 ≤ j ≤ n − 2} and E(H) = {u1u2, v1v3, v1v4} ∪ {uivj | 1 ≤
i ≤ 2, 1 ≤ j ≤ n − 2} ∪ {vjvj+1 | 1 ≤ j ≤ n − 2}, where vn−1 = v1. Let
T1 be the path u1, v1, v2, . . . , vn−2, u2, T2 be a tree with V (T2) = V (H) and
E(T2) = {u1u2, v1v4, v1vn−2} ∪ {u2vj | 2 ≤ j ≤ n − 3}, and T3 be a tree with
V (T3) = V (H) and E(T3) = {u2v1, v1v3} ∪ {u1vj | 2 ≤ j ≤ n− 2}.

Clearly, {T1, T2, T3} is a set of three edge-disjoint spanning trees of H, so
λn(H) ≥ 3. Since there are two adjacent vertices with minimum degree 4, we
have λk(H) ≤ 3 for 3 ≤ k ≤ n by Proposition 4. By Proposition 3, we have
λn(H) ≤ λn−1(H) ≤ · · · ≤ λ3(H) ≤ 3, and so λk(H) = 3 for 3 ≤ k ≤ n.
As e(H) = 3(n − 1), the bound holds for t = 3. By Observation 17, we have
g(n, n, 3) = 3(n− 1).

Finally we consider the case k = 4. Let W be a connected graph V (W ) =
{u1, u2, u3}∪{vj | 1 ≤ j ≤ n−3} and E(W ) = {u1u2, u1u3, u2u3, v1v3, v1v4, v1v5,
v2v4, v3v5} ∪ {uivj | 1 ≤ i ≤ 3, 1 ≤ j ≤ n − 3} ∪ {vjvj+1 | 1 ≤ j ≤ n − 3},
where vn−2 = v1. Let T1 be a tree with V (T1) = V (W ) and E(T1) = {u1v1, u2v2,
u3vn−3} ∪ {vjvj+1 | 1 ≤ j ≤ n − 4}, T2 be a tree with V (T2) = V (W ) and
E(T2) = {u1u3, v1v4, v1vn−3, u2v5} ∪ {u3vj | 2 ≤ j ≤ n − 4}, T3 be a tree with
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V (T3) = V (W ) and E(T3) = {u2v3, v1v3, v1u3} ∪ {u1vj | 2 ≤ j ≤ n− 3}, and T4

be a tree with V (T4) = V (W ) and E(T4) = {u1u2, u2u3, v2v4, v3v5, v1v5}∪{u2vj |
1 ≤ j ≤ n− 3, j 6= 2, 3, 5}.

Clearly, {Ti | 1 ≤ i ≤ 4} is a set of four edge-disjoint spanning trees of W ,
so λn(W ) ≥ 4. Since there are two adjacent vertices with minimum degree 5,
we have λk(W ) ≤ 4 for 3 ≤ k ≤ n by Proposition 4. By Proposition 3, we have
λn(W ) ≤ λn−1(W ) ≤ · · · ≤ λ3(W ) ≤ 4, and so λk(W ) = 4 for 3 ≤ k ≤ n.
As e(W ) = 4(n − 1), the bound holds for t = 4. By Observation 17, we have
g(n, n, 4) = 4(n− 1).

Note that in the proof of Theorem 18, we actually find three graphs G,H,W

such that κn(G) = λn(G) = 2, κn(H) = λn(H) = 3 and κn(W ) = λn(W ) = 4.
We also know κk(T ) = 1, where T is a tree. So f(n, n, t) ≤ t(n − 1). By
Observation 17, the following result holds.

Proposition 19. For n ≥ 10 and 1 ≤ t ≤ 4, we have f(n, n, t) = t(n − 1) for

1 ≤ t ≤ 4.

The following lemma concerns an upper bound for f(n, k, 2).

Lemma 20. For n ≥ 10 and 3 ≤ k ≤ n, we have

f(n, k, 2) ≤ 2(n− 1).

Moreover, the bound can be attained for the case k = n, that is, f(n, n, 2) =
2(n− 1).

Proof. Let G ∼= Wn, where V (G) = {u}∪{ui | 1 ≤ i ≤ n−1}, u is the center and
C is the cycle u1, u2, . . . , un−1, u1. We will show that κk(G) = 2 for 3 ≤ k ≤ n.
As κn(G) = 2, it suffices to prove the equality for 3 ≤ k ≤ n− 1. Let S ⊆ V (G)
with |S| = k, where 3 ≤ k ≤ n − 1. If u 6∈ S, let T1 be the path connecting S

in the cycle C, and T2 be a tree with V (T2) = S ∪ {u}, E(T2) = {uv | v ∈ S}.
Otherwise, u ∈ S and there exists a vertex, say u1 6∈ S. Let T1 be a tree with
V (T1) = S and E(T1) = {uv | v ∈ S \ {u}}, and T2 be a tree with V (T2) =
V (G), E(T2) = E(G) \ ({uui | 2 ≤ i ≤ n − 1} ∪ {e}) where e ∈ E(C). Clearly,
in both cases, T1 and T2 are two internally disjoint S-trees, so κG(S) ≥ 2, then
κk(G) ≥ 2. Recall the fact that κk(G) ≤ λk(G) and λk(G) = 2 in the proof of
Theorem 18, we have κk(G) ≤ 2. Hence, κk(G) = 2. As e(G) = 2(n − 1), the
bound holds for t = 2. By Proposition 19, the bound can be attained in the case
k = n.

The following lemma is about an upper bound for f(n, k, 3).
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Lemma 21. For n ≥ 10 and 3 ≤ k ≤ n, we have

f(n, k, 3) ≤ 3(n− 1).

Moreover, the bound can be attained for the case k = n, that is, f(n, n, 3) =
3(n− 1).

Proof. It suffices to show that f(n, k, 3) ≤ 3(n − 1) holds for 3 ≤ k ≤ n − 1 by
Proposition 19. We use the graph H from the proof of Theorem 18. Recall that
V (H) = {u1, u2} ∪ {vj | 1 ≤ j ≤ n − 2} and E(H) = {u1u2, v1v3, v1v4} ∪ {uivj |
1 ≤ i ≤ 2, 1 ≤ j ≤ n − 2} ∪ {vjvj+1 | 1 ≤ j ≤ n − 2}, where vn−1 = v1. Let
A = {u1, u2} and B = {vj | 1 ≤ j ≤ n− 2}. As shown before that κn(H) = 3, it
suffices to prove that κk(H) = 3 for 3 ≤ k ≤ n− 1. Let S ⊆ V (H) with |S| = k,
where 3 ≤ k ≤ n− 1, so V (H) \ S 6= ∅.

Case 1. At least one element, say u1, of {u1, u2} does not belong to S. Let
T1 be a tree with V (T1) = {u1} ∪ S and V (T1) = {u1v | v ∈ S}.

If u2 6∈ S, then let T2 be a tree with V (T2) = {u2} ∪ S and E(T2) = {u2v |
v ∈ S}, T3 be a path connecting S in the induced subgraph H[B] of H. Clearly,
{T1, T2, T3} is a set of three internally disjoint S-trees, so κH(S) ≥ 3. Otherwise,
we have u2 ∈ S and consider the following two subcases.

Subcase 1.1. B ⊆ S. Let T2 be a tree with V (T2) = S and E(T2) = {u2vj |
1 ≤ j ≤ n− 3}∪{vn−3vn−2}, T3 be a tree with V (T3) = S and E(T3) = {vjvj+1 |
1 ≤ j ≤ n−4}∪{v1vn−2, vn−2u2}. Clearly, {T1, T2, T3} is a set of three internally
disjoint S-trees, so κH(S) ≥ 3.

Subcase 1.2. |B \ S| 6= ∅, say v1 6∈ S. Let T2 be a tree with V (T2) = S

and E(T2) = {u2v | v ∈ S \ {u2}}, T3 be the path u2, v1, v2, . . . , vn−2. Clearly,
{T1, T2, T3} is a set of three internally disjoint S-trees, so κH(S) ≥ 3.

Case 2. {u1, u2} ⊆ S. We only consider the case that |S| = n − 1 since the
argument for the case 3 ≤ |S| ≤ n − 2 is similar. Without loss of generality,
we assume that v1 6∈ S. Let T1 be the path with E(T1) = {u1v2, u2vn−2} ∪
{vjvj+1 | 2 ≤ j ≤ n − 3}, T2 be a tree with V (T2) = V (H) and E(T2) =
{u1v1, v1u2, v1v2, v1vn−2} ∪ {u1vj | 3 ≤ j ≤ n− 3}, T3 be a tree with V (T3) = S

and E(T3) = {u1u2, u1vn−2} ∪ {u2vj | 2 ≤ j ≤ n − 3}. Clearly, {T1, T2, T3} is a
set of three internally disjoint S-trees, so κH(S) ≥ 3.

Now we have that κH(S) ≥ 3 for any S ⊆ V (H) with 3 ≤ k ≤ n − 1, so
κk(H) ≥ 3. Recall the fact that κk(H) ≤ λk(H) and λk(H) = 3 in the proof
of Theorem 18, we have κk(H) ≤ 3. Hence, κk(H) = 3 for 3 ≤ k ≤ n. As
e(H) = 3(n−1), the bound holds. By Proposition 19, the bound can be attained
in the case k = n.

By Lemmas 20, 21, and the fact that λk(T ) = 1 where T is a tree, we have
the following result.
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Theorem 22. For n ≥ 10, 3 ≤ k ≤ n and 1 ≤ t ≤ 3, we have

f(n, k, t) ≤ t(n− 1).

Moreover, the bound can be attained for the case k = n, that is, f(n, n, t) =
t(n− 1) for 1 ≤ t ≤ 3.

6. Concluding Remarks

In this paper, we study two functions f(n, k, t) and g(n, k, t), where 3 ≤ k ≤ n

and 1 ≤ t ≤ n −
⌈

k
2

⌉

. For general k and t, we get a lower bound for f(n, k, t)
which is tight for the case that k = 3. For the upper bounds, we investigate these
two parameters in two directions. For the first direction that t is general, we
obtain upper bounds of both f(n, k, t) and g(n, k, t) for k ∈ {3, 4, 5}, and all of
these bounds can be attained. For the second direction that k is general, we get
an upper bound of g(n, k, t) for t ∈ {1, 2, 3, 4}, and an upper bound of f(n, k, t)
for t ∈ {1, 2, 3}. Moreover, both bounds can be attained.

Recall that the generalized k-edge-connectivity λk(G) satisfies the monotone
property of λk(G) for 2 ≤ k ≤ n. And this property indeed plays an important
role in our argument. However, the monotone property of the generalized k-
connectivity κk(G) does not hold [13]. So the research on f(n, k, t) is much harder
than that of g(n, k, t). Hence, when k is general, we may try other approach to
study f(n, k, t) for the case t = 4. One may also try to compute the exact values
of f(n, k, t) and g(n, k, t) for some special pairs of k and t, for example, f(n, 3, 2)
and g(n, 3, 2).
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