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Abstract

Distance-hereditary graphs can be characterized by every cycle of length
at least 5 having crossing chords. This makes distance-hereditary graphs sus-
ceptible to dualizing, using the common extension of geometric face/vertex
planar graph duality to cycle/cutset duality as in abstract matroidal duality.
The resulting “DH* graphs” are characterized and then analyzed in terms
of connectivity. These results are used in a special case of plane-embedded
graphs to justify viewing DH* graphs as the duals of distance-hereditary
graphs.
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1. Distance-Hereditary and DH* Graphs

Unless otherwise noted, all graphs are simple (meaning no multiple edges or loops)
and finite, with notation and terminology following [3]. A chord of a cycle C is
an edge ab that has a, b ∈ V (C) and ab 6∈ E(C). Two chords ab and cd of C are
crossing chords of C if their endpoints come in the order a, c, b, d around C. The
notation “≥k-cycle” abbreviates “cycle of length at least k.”

Distance-hereditary graphs G were defined by Howorka in [4] by every con-
nected induced subgraph H of G and every x, y ∈ V (H) satisfying distH(x, y) =
distG(x, y); see [2, 3] for additional characterizations. At first glance, this graph
class looks like a poor candidate for traditional graph duality, but another of
Howorka’s original characterizations, in Proposition 1, suggests a simple way to
dualize distance-hereditary graphs. The resulting concept will be introduced (be-
low), characterized (in Section 2), and motivated (in Section 4) in this paper.

http://dx.doi.org/10.7151/dmgt.2192
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Proposition 1 [4]. A graph is a distance-hereditary graph if and only if every
≥5-cycle has crossing chords.

Aminimal edge cutsetD of a graph G is an inclusion-minimalD ⊂ E(G) such
that deleting D would produce a subgraph G−D with V (G) = V (G−D) that
consists of two components (maximal connected subgraphs); for convenience, we
will simply call such sets D the min-cutsets of G. Call a min-cutset of cardinality
k a k-edge min-cutset and a min-cutset of cardinality at least k a ≥k-edge min-

cutset.

As in [7], a cut-chord of a min-cutset D of G is an edge e ∈ E(G) \D whose
deletion would disconnect one of the components of G−D. Say that a min-cutset
D of G separates two cut-chords e1 and e2 of D (or that e1 and e2 are separated

by D) if e1 and e2 are in different components of G−D.

Define a DH* graph to be a graph in which every ≥5-edge min-cutset separates
two cut-chords. The graph G1

1
in Figure 1 is a DH* graph, since its only ≥5-edge

min-cutsets are (up to isomorphism) {1, 4, 7, 9, 11}, {1, 4, 7, 10, 13}, {1, 4, 7, 9,
12, 13}, and {1, 4, 7, 10, 11, 12} (each of which separates the cut-chords 6 and 8)
along with {1, 2, 5, 7, 8}, {1, 2, 5, 7, 9, 11}, {1, 2, 5, 7, 10, 13}, {1, 2, 5, 7, 9, 12, 13},
and {1, 2, 5, 7, 10, 11, 12} (each of which separates the cut-chords 3 and 6). But
the graph G1

2
is not a DH* graph; for instance, its min-cutset D = {1, 4, 7, 9, 11}

has only the two cut-chords 6 and 8, which are not separated by D in this graph).

G1
1

t�
�
�

�
1

2
@
@
@

@
3

t 6

5

4

t

t�
�
�
�
�
�
�
�

7

8

t

@
@

@
@

11
9

10

t

12

t�
�

�
�

13

t

G1
2

t 6 8
S
S
S
S
S
S
S
S

4

5

1

t�
�
�
�

2

3 13

t

t

7

t�
�
�
�
�
�
�
�

10

9

t

S
S
S
S

12

t

11

t

Figure 1. A DH* graph G1

1
and a non-DH* graph G1

2
.

Section 2 will characterize the DH* graphs, and then Section 3 will exhibit all
the 3-connected graphs that are DH* graphs and describe the structure of DH*
graphs that are not 3-connected. Using those results, Section 4 will circle back to
discuss how geometric duality of plane-embedded graphs motivates the definition
of DH* graphs as a dual to distance-hereditary graphs, including how cut-chords
of min-cutsets can be viewed as the duals of chords of cycles as in [7]. It is im-
portant to emphasize that, in all instances of graph-theoretical duality, different
characterizations of any graph class can dualize to several nonequivalent dual
classes. Thus each graph class—chordal graphs in [7] and distance-hereditary
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graphs here—can have more than one “dual class,” each with a different fun-
damental structure for which different theoretical questions (eventually) arise.
(See [5] for a more formal discussion.) Graph-theoretical duality becomes better
behaved only when restricted to planar graphs (so as to benefit from geometric
duality), and even then profits from making additional restrictions (as is done in
Section 4 below, paralleling the same procedure used in [7]).

2. Characterizing DH* Graphs

Define a relevant graph to be a 2-connected, 3-edge-connected graph of order
at least 3; thus, 3-connected graphs are always relevant graphs. This concept
is motivated in [6, 7] by relevant, plane-embedded graphs always having well-
defined, simple, relevant, plane-embedded dual graphs.

Lemma 2. Every vertex of a relevant DH* graph has degree 3 or 4.

Proof. Suppose v is a vertex of a relevant DH* graph G, and let D = {vx ∈
E(G) : x ∈ NG(v)}. Since relevant graphs are 3-edge-connected, degG(v) ≥ 3.
Since relevant graphs are 2-connected, {v} induces an edgeless component of
G − D with G − v the other component of G − D, and so D is a min-cutset
of G that cannot separate cut-chords. Therefore, the DH* graph G has |D| =
degG(v) ≤ 4.

For every induced subgraph H of a graph G, let G/H denote the multigraph
that results from contracting all the edges of H down to one new vertex that
is denoted vH (allowing parallel edges, but deleting any loops thereby formed).
For example, if G ∼= K5 with V (G) = {v1, v2, v3, v4, v5} and H is the induced
subgraph with V (H) = {v3, v4, v5}, then G/H has vertex set {v1, v2, vH} with
one (simple) edge v1v2, three parallel edges between v1 and vH , and three parallel
edges between v2 and vH . Let ∆(G) and ∆(G/H) denote the maximum degree
of vertices in, respectively, the simple graph G and the multigraph G/H.

Theorem 3. A relevant graph G with ∆(G) ≤ 4 is a DH* graph if and only if

∆(G/H) ≤ 4 for all 2-edge-connected induced subgraphs H of G for which the

multigraph G/H is 2-connected.

Proof. To show necessity, suppose G is a relevant DH* graph with ∆(G) ≤ 4.
Suppose G has a 2-edge-connected induced subgraph H for which G/H is 2-
connected, and let D = {xy ∈ E(G) : x ∈ V (H) and y 6∈ V (H)} and DH =
{yvH : y ∈ NG/H(vH)}. Since G/H is 2-connected and H is connected, G − H
is connected, and D and DH are min-cutsets of, respectively, G and G/H. Since
H is 2-edge-connected, D has no cut-chords in the component H of G−D, and
so D does not separate cut-chords. Thus G being a DH* graph requires that
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degG/H(vH) = |DH | = |D| ≤ 4, while each w ∈ V (G) \ {vH} has degG/H(w) =
degG(w) ≤ ∆(G) ≤ 4. Therefore, ∆(G/H) ≤ 4 in G/H.

To show sufficiency, suppose G is a relevant graph with ∆(G) ≤ 4, but G
is not a DH* graph (arguing by contraposition). Thus some ≥5-edge min-cutset
D of G does not separate cut-chords, so some component H of G −D contains
no cut-chord of D, and so H is 2-edge-connected. Thus G/H − vH ∼= G − H
is connected (since D is a min-cutset of G), while G/H − w is connected for all
w ∈ V (G/H) \ {vH} = V (G) \ V (H) (since G is 2-connected). Therefore, G/H
is 2-connected, but degG/H(vH) = |D| ≥ 5 implies ∆(G/H) 6≤ 4.

3. The Role of 3-Connectivity for DH* Graphs

This section details the effect of 3-connectedness of a relevant graph on its being
a DH* graph. Recall that relevant graphs are always 2-connected (and 3-edge-
connected), and that 3-connected graphs are always relevant graphs.

Theorem 4. Figure 2 shows all the 3-connected DH* graphs.
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Figure 2. Five DH* graphs (the vertex colors are explained below).

Proof. We first show that the five 3-connected graphs in Figure 2 are indeed
DH* graphs. Since G2

1
has only six edges and each vertex has degree 3, there

are no ≥5-edge min-cutsets, and so G2
1
is automatically a DH∗ graph. In the

other four graphs G2

i , the five edges with one black and one white endpoint form
a 5-edge min-cutset Di with each component of G − Di containing at least one
cut-edge of Di (and these are the only 5-edge possibilities up to isomorphism).
Graph G2

5
also has 6-edge min-cutsets, one of which is obtained by changing the

one black “square” vertex into a white vertex. No matter how such 6-edge min-
cutsets D are chosen, the six edges in E(G2

5
) \ D will form two components of

G −D that are trees, and with each containing a cut-edge of D. Therefore, all
the five graphs in Figure 2 are DH* graphs.

Let G be an arbitrary 3-connected DH* graph, so G is a relevant graph and
each u ∈ V (G) has degG(u) ∈ {3, 4} by Lemma 2.

First suppose that G has adjacent degree-4 vertices v and w. Since G is 3-
connected, there is a minimum-length chordless cycle C that has v, w, x ∈ V (C)
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where x 6∈ {v, w}. But now G has at least five edges with one endpoint in C
and the other not in C (two incident to each of v and w, and one incident to x),
which would contradict Theorem 3 with H = C.

Now suppose that degG(v) = 4 with G 6∼= G2
2
in Figure 2 where each w ∈

NG(v) has degG(w) = 3. Since G 6∼= K5 and G is a relevant DH* graph, v has
nonadjacent degree-3 neighbors x and y and a minimum-length chordless cycle
C with vx, vy ∈ E(C) that has some z ∈ V (C) \ {v, x, y}. But now G has at
least five edges with one endpoint in C and the other not in C (two incident to
v, and one incident to each of x, y, z), which would again contradict Theorem 3
with H = C.

Therefore, we can assume that G is a cubic graph (meaning that every vertex
has degree 3), and so |V (G)| ≥ 4 is even. By [1], a graph is both 3-connected
and cubic if and only if it can be constructed from K4 by repeated applications
of the following operation.

Given two (possibly adjacent) edges a1b1 and a2b2, subdivide each
aibi with a new vertex xi and then insert a new edge x1x2,

forming a new graph that has two more vertices and three more edges than the
original graph. (The other two operations described in [1] allow one or both xi
to be in {ai, bi}, which would prevent the new graph from being cubic.)

Note that applying this construction to adjacent edges of G2
1
in Figure 2

produces the graph G2
4
, while applying it to nonadjacent edges of G2

1
produces

G2
3
. Similarly, applying the construction from [1] to G2

2
would never produce a

cubic graph.
The two graphs on the left in Figure 3 show the only graphs (up to isomor-

phism) that result from applying the construction from [1] to G2
3
; specifically,

they result from letting a1b1 and a2b2 be, respectively, adjacent and nonadjacent
edges of G2

3
. In each such graph G, the five edges that have both black and white

vertices form a min-cutset D for which the black vertices induce a 2-connected
(5-cycle) component of G − D, and so a component that contains no cut-chord
of D. Therefore, such graphs G are not DH* graphs.
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Figure 3. The non-DH* graphs constructed as in [1] from G2

3
and G2

4
.

Note that applying the construction from [1] to two edges of G2
4
that are in

different triangles produces G2
5
. The four graphs on the right in Figure 3 show the

remaining graphs (up to isomorphism) that result from applying the construction
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from [1] to G2
4
; specifically, they result from letting a1b1 and a2b2 be (from left

to right) edges that are not in a triangle, edges a1b2 not in a triangle and a2b2 in
a triangle with a1 = a2, edges a1b2 not in a triangle and a2b2 in a triangle with
a1 6= a2, and both edges in the same triangle. Just as in the G2

3
discussion above,

the five edges that have both black and white endpoints form a min-cutset that
shows that graphs that are constructed this way are not DH* graphs.

The four graphs in Figure 4 show all the graphs G (up to isomorphism) that
can result from applying the construction from [1] to G2

5
; specifically, they result

from letting edges a1b1 and a2b2 be adjacent (the leftmost graph) or nonadjacent.
Just as in theG2

3
andG2

4
discussions above, the five edges that have both black and

white endpoints form a min-cutset that shows that graphs that are constructed
this way are not DH* graphs.
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Figure 4. The non-DH* graphs constructed as in [1] from G2

5
.

The preceding four paragraphs show that applying the construction from
[1] to the graphs in Figure 3 cannot produce additional 3-connected, cubic DH*
graphs. Also, observe thatG2

1
is the only 3-connected DH* graph that has order 4.

Finally, to show that no additional 3-connected, cubic DH* graphs can exist,
suppose that G′′ is a 3-connected, cubic DH* graph that is constructed as in [1]
from a 3-connected, cubic graph G′ by replacing the edges a1b1, a2b2 ∈ E(G′)
with a1x1, b1x1, a2x2, b2x2, x1x2 ∈ E(G′′) (toward showing that G′ was also a
3-connected DH* graph).

Suppose D′ is an arbitrary ≥5-edge min-cutset of G′ (toward finding a new
≥5-edge min-cutset D′′ of the DH* graph G′′ that has separated cut-chords that
correspond to separated cut-chords of D′ in G′). We can assume that D′ ∩
{a1b1, a2b2} 6= ∅ (otherwise D′′ = D′ will have the same separated cut-chords in
G′′ as D′′ has in G′).

Case 1. When aibi ∈ D′ and a3−ib3−i 6∈ D′. One of the four edges aixi, bixi ∈
E(G′′) can replace aibi to form the new min-cutset D′′ of G′′. The separated
cut-chords of D′′ in G′′ will correspond to the separated cut-chords of D′ in G′

so long as, when e ∈ {a3−ix3−i, b3−ix3−i} is a cut-chord of D′′, the cut-chord
a3−ib3−i of D

′ corresponds to e.

Case 2. When both a1b1, a2b2 ∈ D′. Use the edges a1x1, x1x2, b2x2 ∈ E(G′′)
to replace the pair a1b1, a2b2 to form the new min-cutset D′′ of G′′. Edges b1x1
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and a2x2 will be separated cut-chords of D′′ in G′′ since x1 and x2 will be degree-1
vertices of G′′ −D′′.

Therefore, there are no 3-connected, cubic, DH* graphs beyond the four cubic
graphs in Figure 2, and so there are no 3-connected DH* graphs beyond the five
graphs G2

i shown there.

In Theorem 5, {s1, s2} ⊂ V (G) is an order-2minimal separator of a connected
graph G if, for some x, y ∈ V (G) from different components of G−{s1, s2}, each
si is in an x-to-y path of G − s3−i. Relevant graphs that are not 3-connected
necessarily have an order-2 minimal separator.

Theorem 5. If a relevant DH* graph G is not 3-connected, then G has a minimal

separator {s, t} for which G− {s, t} has a component whose vertex set combines

with {s, t} to induce one of the subgraphs shown in Figure 5.
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Figure 5. The two subgraphs of G mentioned in Theorem 5, where each degG(s
′

i
) =

degG(s
′′

i
) = 3.

Proof. Suppose G is a relevant DH* graph that is not 3-connected, {s, t} is a
minimal separator ofG, andH ′ is a component ofG−{s, t} such that V (H ′)∪{s, t}
induces a 2-connected subgraph H of G. Further assume that such s, t, and H ′

are chosen so that |V (H ′)| is as small as possible. Thus each v ∈ V (H ′) has
NG(v) ⊆ V (H), and each vertex of G has degree 3 or 4 by Lemma 2.

Since G is 3-edge connected, s and t cannot be endpoints of two edges of G
that form a min-cutset of G. Thus, not both degG(s) = degG(t) = 3, and so
we can assume that degG(s) = 4 with NG(s) =

{

p, q, s′
0
, s′′

0

}

where p, q 6∈ V (H ′)
and s′

0
, s′′

0
∈ V (H ′). The assumed minimality of |V (H ′)| ensures that t also

has two neighbors in V (H ′), and so st 6∈ E(G) (otherwise, taking p = t and
t′∈ NG(t) \ V (H) would make {qs, tt′} a 2-edge min-cutset of G).

If s′
0
is not adjacent to s′′

0
, then s, s′

0
, and s′′

0
are vertices of a chordless

≥4-cycle C1 of H for which G has at least five edges between vertices in C1 and
vertices not in C1 (the edges ps and qs and one edge incident with each vertex
in V (C1) \ {s}); but then ∆(G/C1) ≥ 5 (contradicting Theorem 3). Therefore,
s′
0
s′′
0
∈ E(H).

If degH(s′
0
) = 4 or degH(s′′

0
) = 4, then

{

s, s′
0
, s′′

0

}

induces a triangle C ′
1

that has at least five edges between vertices in C ′
1
and vertices not in C ′

1
(the
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edges ps and qs, two edges incident with s′
0
or s′′

0
and one edge incident with the

other), and so for which ∆(G/C ′
1
) ≥ 5 (contradicting Theorem 3). Therefore,

degH(s′
0
) = degH(s′′

0
) = 3, say with s′

0
s′
1
, s′′

0
s′′
1
∈ E(H) \ E(C ′

1
).

Repeat the argument used in the preceding two paragraphs to introduce
vertices s′

1
, s′′

1
, . . . , s′i, s

′′
i successively, where each

{

s, s′
0
, s′′

0
, . . . , s′i, s

′′
i

}

induces a
(2i+3)-cycle Hi of H with exactly i ≥ 1 chords s′

0
s′′
0
, . . . , s′i−1

s′′i−1
, stopping when

finally s′i = s′′i . Thus
{

s, s′i
}

is a minimal separator of G, and so s′i = s′′i = t by
the assumed minimality of |V (H ′)|.

If i = 1, then the 2-connected subgraph H ∼= G3
1
, and if i = 2, then H ∼= G3

2
.

If i ≥ 3, then V (G)\
{

s′
0
, . . . , s′i

}

would induce a 2-edge-connected subgraph H ′
i of

G with at least five edges between vertices in H ′
i and vertices not in H ′

i (namely,
ss′

0
, s′it, and s′js

′′
j for 1 ≤ j ≤ i), and so for which ∆(G/H ′

i) ≥ 5 (contradicting
Theorem 3).

Therefore, i = 1 or i = 2, and H is G3
1
or G3

2
as in Figure 5.

Noting the intrinsic role of Theorem 3 in the preceding proof, it is worth
mentioning that Theorem 5 can in turn be used to simplify the application of
Theorem 3 to graphs that are not 3-connected as follows: The choice of the 2-
edge-connected induced subgraphs H in Theorem 3 can be limited to avoid H
that contain degree-3 vertices such as s′i and s′′i in Figure 5.

4. The Planar Motivation for DH* Graphs

A plane embedding of a relevant planar graph G is transformed into its geometric

dual graph G∗ as described in this paragraph (with a detailed example in the next
paragraph). Vertices of G, along with their incident edges, become the faces of
G∗ that are bordered by the corresponding edges, while the faces of G similarly
become the vertices of G∗. Thus, vertices and faces are regarded as duals of each
other. Since edges of G thereby correspond to edges of G∗, edges are regarded as
self-dual, with each edge of either simultaneously joining two adjacent vertices
and separating two adjacent faces. The plane embedding of G thus produces a
plane embedding of G∗, with G also becoming the dual graph of G∗ based on that
embedding—in other words, with G = (G∗)∗.

Figure 6 illustrates this process of dualizing relevant plane-embedded graphs,
showing the dual graph

(

G1
1

)∗
for the embedding of the graph G1

1
in Figure 1.

The vertices of
(

G1
1

)∗
are labeled with the edge sets that form the boundaries of

the seven faces of G1
1
(including the “exterior” hexagonal face), with the edges

of
(

G1
1

)∗
labeled to match the corresponding edges of G1

1
. The vertices of G1

1

(viewed as sets of incident edges) similarly correspond to (the edge sets of) the
eight faces of

(

G1
1

)∗
.

Each cycle C of G, as a set of edges, becomes a min-cutset D∗ of G∗ (with
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Figure 6. The geometric dual (G1

1
)∗ of G1

1
as embedded in Figure 1.

the faces “inside” the geometric curve corresponding to C in the embedding
of G becoming vertices of one of the components of G∗ − D∗, and the faces
“outside” C becoming vertices of the other component); similarly, each min-
cutsetD ofG becomes a cycle C∗ ofG∗. Thus, cycles and min-cutsets are regarded
as duals of each other. This concrete geometric duality generalizes to abstract
matroid duality, interchanging cycles with min-cutsets (both viewed as sets of
edges). Many elementary graph theory textbooks describe both geometric duality
and matroidal duality, perhaps none more accessibly than Wilson’s elementary
text [10].

For instance, the cycle with edge set {1, 3, 6, 7} of G1
1
in Figure 1 (which

happens not to be a face) corresponds to the min-cutset {1, 3, 6, 7} in the dual
graph (G1

i )
∗ in Figure 6 (which is not a set of edges incident to a vertex).

The chords of a cycle C can be characterized as the edges e 6∈ E(C) for which
E(C) can be partitioned into the edge sets of two paths P1 and P2 such that
both E(Pi) ∪ {e} are edge sets of cycles. (Notice that cycles can have crossing
chords in a plane-embedding, with one of the chords inside of the geometric
curve corresponding to C and the other outside of that curve.) Similarly, the
cut-chords of a min-cutset D can be characterized as the edges e 6∈ D for which
D can be partitioned into two subsets D1 and D2 such that both Di ∪ {e} are
min-cutsets. Thus chords of cycles are regarded as the duals of cut-chords of min-
cutsets. For instance, the min-cutset {1, 4, 7, 8} of G1

i in Figure 1 has cut-chord
6, corresponding to a cycle

(

G1

i

)∗
in Figure 6 that has chord 6.

Two graphs are cycle-isomorphic if there is a bijection between their edge
sets for which the cycles of each graph maps to the cycles of the other. As
in [11], define a graph G to be cycle-determined if G ∼= G′ for all graphs G′

that are cycle-isomorphic to G. It is important that every 3-connected graph is
cycle-determined; see [8, 9].

The two plane-embedded, relevant graphs G1
1
and G1

2
in Figure 1 are cycle-

isomorphic, but G1
1
6∼= G1

2
shows that they are not cycle-determined. Also note

that, no matter how G1
1
and G1

2
are embedded in the plane,

(

G1
1

)∗
and

(

G1
2

)∗
will
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not be distance-hereditary graphs—for instance, using Proposition 1, the edge
set {1, 4, 7, 9, 11} of each

(

G1

i

)∗
will correspond to a cycle with chords 6 and 8,

but without crossing chords. This shows the need to require cycle-determined
graphs in Theorem 6 (which largely motivates the “DH* graph” terminology).

Theorem 6. A cycle-determined, plane-embedded, relevant graph is a DH* graph

if and only if its geometric dual is a distance-hereditary graph.

Proof. Suppose G is a cycle-determined, plane-embedded, relevant graph with
geometric dual G∗ (which also makes G∗ a cycle-determined, plane-embedded,
relevant graph).

To show necessity, suppose G is a DH* graph for which G∗ is not a distance-
hereditary graph (arguing by contradiction); further assume that, among all such
graphs, G is chosen to minimize |E(G)|. By Theorem 4, G is not 3-connected,
since G2

1
and G2

2
are both self-dual,

(

G2
4

)∗ ∼= K1,1,1,2 (K5 with one edge deleted),

and
(

G2
5

)∗ ∼= K2,2,2 (the octahedron graph), where each planar graph
(

G2

i

)∗
is a

distance-hereditary graph by definition (all induced paths between nonadjacent
vertices in each have the same length, namely 2).

Hence we can assume that the relevant (and so 2-connected) DH* graph
G is not 3-connected. By [8], the cycle-determined graph G has a generalized

circuit representation, defined as k ≥ 2 subgraphs G1, . . . , Gk of G that satisfy
the following three conditions.

• Each Gi is 2-connected with E(Gi) 6= ∅, and with |V (Gi)| ≥ 3 when k = 2.

• Sets E(G1), . . . , E(Gk) partition E(G), and each V (Gi)∩
⋃

j 6=i V (Gj) consists
of two distinguished vertices of Gi.

• Replacing each subgraph Gi by an edge between its distinguished vertices
produces a cycle.

By Lemma 2, Theorem 5, and G being 3-edge-connected, some Gi has Gi
∼=

G3
1
or Gi

∼= G3
2
as in Figure 5, say with its vertices labeled as shown there,

with s and t as its distinguished vertices, and with exactly two edges ps, qs 6∈
E(G) \ E(Gi) that have s as an endpoint.

Figure 7 shows the induced subgraph of G∗ that corresponds to Gi
∼= G3

2

augmented with the edges ps, qs 6∈ E(Gi), where the vertices of G∗ are now
labeled with the vertex sets of the faces in G. (The top and bottom vertices
in Figure 7 correspond to the inside and outside faces of the plane-embedded
generalized circuit representation of G from [8].) For the simpler Gi

∼= G3
1
case,

simplify Figure 7 by deleting the vertex
{

s′
0
, s′′

0
, s′

1
, s′′

1

}

and inserting one new edge
between vertices

{

s, s′
0
, s′′

0

}

and
{

s′
1
s′′
1
, t
}

, and then replacing all occurrences of
s′
1
and s′′

1
by s′

0
and s′′

0
, respectively and labeling the newly inserted edge as s′

0
s′′
0
.
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{p, s, s′
0
, s′

1
, t, . . .}

b
b

b
b
b
bb

s′
1
tA

A
A
A

s′
0
s′
1

{p, q, . . . , s}
�

�
�
�
�

ps

Z
Z
Z
Z
Z

qs

{s, s′
0
, s′′

0
}

�
�
�
�

ss′
0

s′
0
s′′
0A

A
A
A

ss′′
0

{s′
0
, s′′

0
, s′

1
, s′′

1
}
s′
1
s′′
1

{s′
1
, s′′

1
, t}

{q, s, s′′
0
, s′′

1
, t, . . .}

"
"
"
"

"
""

s′′
1
t

�
�
�
�
s′′
0
s′′
1

Figure 7. An induced subgraph of G∗ that results from G3

2
in Figure 5.

Since G∗ is not a distance-hereditary graph, G∗ has a ≥5-cycle C∗ with no
crossing chords by Proposition 1; further assume that, among all such cycles, C∗

is chosen to minimize |E(C∗) ∩ E(G∗
i )|. Let D be the ≥5-edge min-cutset of G

whose edges correspond to the edges of C∗. Let S∗
i ⊂ E(G∗) be the set of all

edges of C∗ that correspond to edges of G∗
i , so S∗

i forms a subpath of C∗ (and
ps, qs 6∈ S∗

i ). Let Si be the set of corresponding edges of Gi, so Si ⊂ D is a
min-cutset of Gi that has s and t in different components of G−D.

If S∗
i = ∅, then C∗ is also a ≥5-cycle without crossing chords of (G/Gi)

∗, which
would contradict the assumed minimality of |E(G)| = |E(G∗)| in the original
choice of G. Thus S∗

i 6= ∅.

If |S∗
i | ∈ {1, 2}, the only choices for the subpath S∗

i of G∗
i are

{

ss′
0
, ss′′

0

}

or
{

s′
0
t, s′′

0
t
}

if i = 1, and
{

ss′
0
, ss′′

0

}

,
{

s′
0
s′
1
, s′′

0
s′′
1

}

, or
{

s′
1
t, s′′

1
t
}

if i = 2. For
each of these choices, the min-cutset Si of Gi does not separate cut-chords in Gi.
Replacing Si with {ps, qs} in D creates another min-cutset of G that separates
the same cut-chords in G as D, which would contradict the assumed minimality
of |E(C∗) ∩ E(G∗

i )| = |S∗
i | = |Si|. Thus |S

∗
i | /∈ {1, 2}.

Therefore, |S∗
i | ≥ 3, and so the path S∗

i of G∗
i (and so the min-cutset D of

G) contains one or both of the edges s′
0
s′′
0
and s′

1
s′′
1
. In each case, D separates

cut-chords of G (namely, ss′
0
, s′′

0
t or ss′′

0
, s′

0
t when i = 1, and ss′

0
, s′′

0
s′′
1
or ss′′

0
, s′

0
s′
1

or s′
0
s′
1
, s′′

1
t, or s′′

0
s′′
1
, s′

1
t when i = 2). These cut-chords correspond to crossing

chords of C∗ in G∗, which would contradict choosing C∗ to have no crossing
chords.

To show sufficiency, suppose G∗ is a distance-hereditary graph and D is a
≥5-edge min-cutset of G. Let C∗ be the ≥5-cycle of G∗ whose edges correspond
to the edges of D. By Proposition 1, C∗ has crossing chords e1 and e2, say with
e1 inside the geometric curve corresponding to C∗ in the embedding of G∗ and e2
outside that curve. Thus e1 is the boundary of two faces inside that curve, while
e2 is the boundary of two faces outside of that curve. Hence, the cut-chords of
D that e1 and e2 correspond to are separated by D. Therefore, every ≥5-edge
min-cutset of G separates cut-chords, and so G is a DH* graph.
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