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Abstract

A 2-rainbow dominating function (2RDF) of a graph G = (V (G), E(G))
is a function f from the vertex set V (G) to the set of all subsets of the
set {1, 2} such that for every vertex v ∈ V (G) with f(v) = ∅ the condition
⋃

u∈N(v) f(u) = {1, 2} is fulfilled, where N(v) is the open neighborhood of v.
A total 2-rainbow dominating function f of a graph with no isolated vertices
is a 2RDF with the additional condition that the subgraph of G induced
by {v ∈ V (G) | f(v) 6= ∅} has no isolated vertex. The total 2-rainbow
domination number, γtr2(G), is the minimum weight of a total 2-rainbow
dominating function of G. In this paper, we establish some sharp upper and
lower bounds on the total 2-rainbow domination number of a tree. Moreover,
we show that the decision problem associated with γtr2(G) is NP-complete
for bipartite and chordal graphs.
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1. Introduction

Throughout this paper, G is a simple graph with vertex set V (G) and edge set
E(G) (briefly V,E) such that G has no isolated vertices. The order of a graph G
is the number of vertices in G, denoted by n = n(G). For every vertex v ∈ V (G),
the open neighborhood of v is the set NG(v) = N(v) = {u ∈ V (G) | uv ∈ E(G)}
and its closed neighborhood is the set NG[v] = N [v] = N(v)∪{v}. The degree of a
vertex v ∈ V is degG(v) = |N(v)|. The maximum degree of a graph G is denoted
by ∆ = ∆(G). The open neighborhood of a set S ⊆ V is the set NG(S) = N(S) =
⋃

v∈S N(v), and the closed neighborhood of S is the set NG[S] = N [S] = N(S)∪S.
The diameter of G, denoted by diam(G), is the maximum value among minimum
distances between all pairs of vertices of G. A leaf of a tree T is a vertex of degree
one, a support vertex is a vertex adjacent to a leaf and a strong support vertex is
a vertex adjacent to at least two leaves. If v is a support vertex, then L(v) will
denote the set of the leaves attached to v. For a vertex v in a rooted tree T , let
C(v) denote the set of children of v, D(v) denote the set of descendants of v and
D[v] = D(v)∪{v}. Also, the depth of v, depth(v), is the maximum distance from
v to a vertex in D(v). We denote by Tv the induced subgraph of T with vertex
set D[v]. The independence number of a graph G, denoted α(G), is the order of
a largest subset of vertices in which no two are adjacent. A vertex cover of G is a
set of vertices S that covers all the edges, i.e., every edge is incident with a vertex
of S. The vertex cover number β(G) is the minimum cardinality of a vertex cover
of G. It is well-known that for every graph G of order n, β(G) + α(G) = n.

A total Roman dominating function of a graph G is a function f : V (G) →
{0, 1, 2} satisfying the following conditions: (i) every vertex u for which f(u) = 0
is adjacent to at least one vertex v for which f(v) = 2, and (ii) the subgraph of G
induced by the set of all vertices of positive weight has no isolated vertices. The
weight of a total Roman dominating function f is the value w(f) =

∑

u∈V (G) f(u),
and the total Roman domination number γtR(G) is the minimum weight of a total
Roman dominating function of G. The concept of total Roman domination in
graphs was introduced by Liu and Chang [11] and studied for example in [2].

A 2-rainbow dominating function (2RDF) of a graph G is a function f from
the vertex set V (G) to the set of all subsets of the set {1, 2} such that for any
vertex v ∈ V (G) with f(v) = ∅ the condition

⋃

u∈N(v) f(u) = {1, 2} is fulfilled.
The weight of a 2RDF f is defined as w(f) =

∑

v∈V (G) |f(v)|, and the minimum
weight of a 2RDF is called the 2-rainbow domination number of G, denoted by
γr2(G). The concept of 2-rainbow domination was introduced by Brešar et al.

[6], and has been studied by several authors, for example [4, 5, 7, 8, 10, 12, 13].

A 2RDF f is called a total 2-rainbow dominating function, or just T2RDF,
if the subgraph of G induced by {v ∈ V (G) | f(v) 6= ∅} has no isolated vertices.
The total 2-rainbow domination number, γtr2(G), is the minimum weight of a total
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2-rainbow dominating function of G, and a T2RDF of G with weight γtr2(G) is
called a γtr2(G)-function. We note that if f is a T2RDF of a graph G and H
is a subgraph of G, then we denote the restriction of f to H by f |V (H). Total
2-rainbow domination was recently introduced by Abdollahzadeh Ahangar et al.
in [1] and has been studied in [3].

Before presenting our main results, we present some straightforward obser-
vations.

Observation 1. If v is a strong support vertex in a graph G, then there exists a

γtr2(G)-function f such that f(v) = {1, 2}.

Observation 2. If u1 and u2 are two adjacent support vertices in a graph G,

then there exists a γtr2(G)-function f such that f(u1) = f(u2) = {1, 2}.

Observation 3. If v is a leaf neighbor of a support vertex of degree 2 in a graph

G, then there exists a γtr2(G)-function f such that |f(v)| = 1.

2. Lower Bounds

In this section, we establish some sharp lower bounds on the total 2-rainbow
domination number of a tree. We begin by recalling the following result given in
[1] for paths.

Proposition 4. For n ≥ 2, γtr2(Pn) =
⌈

2n+2
3

⌉

.

Our first lower bound on γtr2(T ) is in terms of the order and the number of
leaves of a tree T.

Theorem 5. Let T be a non-trivial tree of order n with ℓ(T ) leaves. Then

γtr2(T ) ≥

⌈

2(n+ 3− ℓ(T ))

3

⌉

.

This bound is sharp for paths, stars and double stars.

Proof. We use an induction on n. It is easy to check that the statement holds
for all trees of order n ≤ 4. Let n ≥ 5 and assume that for every non-trivial
tree T of order at most n − 1 the result is true. Let T be a tree of order n ≥ 5.

If T is a star, then γtr2(T ) = 3 =
⌈

2(n+3−(n−1))
3

⌉

. If T is a double star, then

γtr2(T ) = 4 =
⌈

2(n+3−(n−2))
3

⌉

. Henceforth we can assume that T has diameter at

least 4.
Suppose that T has a strong support vertex u. Let T ′ = T − u′, where u′

is a leaf neighbor of u. By Observation 1, there exists a γtr2(T )-function g such



348 H. Abdollahzadeh Ahangar et al.

that g(u) = {1, 2}. We may assume, without loss of generality, that g(u′) = ∅.
Then the function g, restricted to T ′ is a T2RDF. We can apply the inductive
hypothesis to the tree T ′ and deduce that

γtr2(T ) = ω(g) ≥ γtr2(T
′) ≥

⌈

2((n−1)+3−(ℓ(T )−1))
3

⌉

=
⌈

2(n+3−ℓ(T ))
3

⌉

.

Therefore, from now on we suppose that T has no strong support vertex.
Let v1v2 · · · vk be a diametral path of rooted tree T with root vertex vk. Since

T has no strong support vertex, each child of v3 is either a leaf or a support vertex
of degree 2. Let f be a γtr2(T )-function, and consider the following cases.

Case 1. degT (v3) ≥ 3. Assume first that v3 is a support vertex. By Observa-
tion 2, we may assume that f(v2) = f(v3) = {1, 2}. Let T ′ = T − v1 and define
h : V (T ′) → P({1, 2}) by h(v2) = {1} and h(x) = f(x) for x ∈ V (T ′) − {v2}.
Clearly, h is a T2RDF of T ′. Using the fact that n′ = n− 1 and ℓ(T ′) = ℓ(T ), it
follows from the induction hypothesis that

γtr2(T ) = ω(f) = ω(h) + 1 ≥ γtr2(T
′) + 1

≥
⌈

2((n−1)+3−ℓ(T ))
3

⌉

+ 1 ≥
⌈

2(n+3−ℓ(T ))+1
3

⌉

,

as desired. Hence we assume that v3 is not a support vertex, and thus every child
of v3 is a support vertex of degree 2. Let u2 6= v2 be a child of v3 and u1 the
leaf neighbor of u2. Clearly, |f(u1)| + |f(u2)| ≥ 2 and |f(v1)| + |f(v2)| ≥ 2. Let
T ′ = T − {u1, u2} and define h : V (T ′) → P({1, 2}) by h(v3) = {1} ∪ f(v3) and
h(x) = f(x) for x ∈ V (T ′) − {v3}. Clearly, h is a T2RDF of T ′, n′ = n − 2 and
ℓ(T ′) = ℓ(T )− 1. It follows from the induction hypothesis that

γtr2(T ) = ω(f) ≥ ω(h) + 1 ≥ γtr2(T
′) + 1

≥
⌈

2((n−2)+3−(ℓ(T )−1))
3

⌉

+ 1 ≥
⌈

2(n+3−ℓ(T ))+1
3

⌉

,

as desired.

Case 2. degT (v3) = 2. As above we have |f(v1)|+ |f(v2)| ≥ 2. Suppose first
that |f(v1)| + |f(v2)| ≥ 3, and let T ′ = T − v1. Then the function h : V (T ′) →
P({1, 2}) defined by h(v3) = {1} and h(x) = f(x) for x ∈ V (T ′) − {v3} is a
T2RDF of T ′. By induction on T ′ and using the fact that n′ = n−1, ℓ(T ′) = ℓ(T ),

we obtain γtr2(T ) ≥
⌈

2(n+3−ℓ(T ))+1
3

⌉

, as desired. Therefore, we assume for the

next that |f(v1)|+ |f(v2)| = 2. Now, if f(v3) 6= ∅, then the function f , restricted
to T − v1 is a T2RDF of T − v1 of weight γtr2(T ) − 1, and by the induction
hypothesis on T − v1 we obtain

γtr2(T ) ≥

⌈

2(n+ 3− ℓ(T )) + 1

3

⌉

.
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Hence let f(v3) = ∅. Let T ′ = T − {v1, v2, v3} and recall that T has diameter at
least four. If T ′ has order n′ = 2, then T = P5, and by Proposition 4 the result is
valid. Hence let n′ ≥ 3. Then f |V (T ′) is a T2RDF of T ′ of weight ω(f)− 2. Using
the fact that n′ = n− 3 and ℓ(T ′) ≤ ℓ(T ), and by applying the induction on T ′,
we obtain

γtr2(T ) = ω(f) = ω(f |V (T ′)) + 2 ≥ γtr2(T
′) + 2

≥
⌈

2((n−3)+3−ℓ(T ))
3

⌉

+ 2 =
⌈

2(n+3−ℓ(T ))
3

⌉

.

This completes the proof.

Theorem 6. If T is a tree of order n ≥ 3 with ℓ(T ) leaves and s(T ) support

vertices, then

γtr2(T ) ≥ γt(T ) +

⌈

ℓ(T )− s(T )

∆

⌉

,

and this bound is sharp.

Proof. The proof is by induction on n. One can easily check that the statement
holds for all trees of order n ≤ 4. Let n ≥ 5 and assume that the result is true
for every non-trivial tree T ′ of order n′, with 3 ≤ n′ < n. Let T be a tree of
order n with ℓ(T ) leaves and s(T ) support vertices. If diam(T ) = 2, then T is a

star, where γtr2(T ) = 3 = 2 +
⌈

n−2
n−1

⌉

. If diam(T ) = 3, then T is a double star,

where 4 = γtr2(T ) ≥ 2 +
⌈

n−4
∆

⌉

, and clearly the result is valid since
⌈

n−4
∆

⌉

≤ 2.
Henceforth we may assume that diam(T ) ≥ 4.

Let v1v2 · · · vk be a diametral path of T and f be a γtr2(T )-function. Without
loss of generality, we assume degT (v2) ≤ degT (vk−1). Consider the following
situations.

Suppose first that v3 is a support vertex adjacent to another support vertex
different from v2, v4 or v3 is adjacent to a strong support vertex different from
v2, v4. Let T ′ = T − Tv2 . Clearly, ∆(T ) ≥ ∆(T ′), ℓ(T ′) = ℓ(T ) − |L(v2)| and
s(T ′) = s(T )−1. Moreover, it is easy to see that γt(T ) ≤ γt(T

′)+1 and γtr2(T
′) ≤

γtr2(T )− 2. By the induction hypothesis on T ′ we obtain that

γtr2(T ) ≥ γtr2(T
′) + 2 ≥ γt(T

′) +
⌈

ℓ(T ′)−s(T ′)
∆(T ′)

⌉

+ 2

≥ γt(T ) +
⌈

ℓ(T )−s(T )
∆(T )

⌉

.

Next, suppose that v3 is not a support vertex and it is adjacent to a support
vertex of degree two different from v2. Let T

′ = T −Tv2 . Clearly, ∆(T ) ≥ ∆(T ′),
ℓ(T ′) = ℓ(T )− |L(v2)| and s(T ′) = s(T )− 1. On the other hand, if degT (v2) ≥ 3,
then γt(T ) ≤ γt(T

′) + 1 and γtr2(T
′) ≤ γtr2(T ) − 2, and if degT (v2) = 2, then



350 H. Abdollahzadeh Ahangar et al.

γt(T ) ≤ γt(T
′) + 1 and γtr2(T

′) ≤ γtr2(T ) − 1. Using the induction on T ′ and
according to each situation, the result follows.

Suppose now that v3 is a support vertex having no neighbor as support vertex
besides v2 and (possibly) v4. If |f(x)| ≥ 1 for some x ∈ N(v3) − {v2}, then let
T ′ = T−Tv2 . Clearly, ∆(T ) ≥ ∆(T ′), ℓ(T ′) = ℓ(T )−|L(v2)| and s(T ′) = s(T )−1.
Moreover, one can see that γt(T ) ≤ γt(T

′) + 1 and γtr2(T
′) ≤ γtr2(T ) − 2. By

induction on T ′, we obtain as above γtr2(T ) ≥ γt(T ) +
⌈

ℓ(T )−s(T )
∆(T )

⌉

. Hence, we

assume that f(x) = ∅ for all x ∈ N(v3) − {v2}. Thus f(v3) = {1, 2}. Since,
f(v4) = ∅, we conclude that v4 is not a support vertex and has no child of depth
1 which is a strong support vertex. Assume that degT (v4) ≥ 3. If v4 has a child
of depth 1 say, u2, with u1 as a leaf neighbor of u2, then let T ′ = T − {u1, u2}.
Clearly, ∆(T ) ≥ ∆(T ′), ℓ(T ′) = ℓ(T ) − 1 and s(T ′) = s(T ) − 1. On the other
hand, γt(T ) ≤ γt(T

′)+2 and γtr2(T
′) ≤ γtr2(T )−2. By the induction hypothesis

on T ′ we obtain that

γtr2(T ) ≥ γtr2(T
′) + 2 ≥ γt(T

′) +
⌈

ℓ(T ′)−s(T ′)
∆(T ′)

⌉

+ 2

≥ γt(T ) +
⌈

ℓ(T )−s(T )
∆(T )

⌉

.

Therefore, we can assume that all children of v4 have depth 2. According the
diametral path and the situations already considered, we conclude that each
child of v4 is a support vertex or has degree 2. If z is a child of v4 with degree
2 with z1 ∈ N(z) − v4, then let T ′ = T − Tz. Clearly, ∆(T ) ≥ ∆(T ′), ℓ(T ′) =
ℓ(T )− |L(z1)| and s(T ′) = s(T )− 1. On the other hand, γt(T ) ≤ γt(T

′) + 2 and
γtr2(T

′) ≤ γtr2(T )−3. Using the induction on T ′, we obtain desired result. Hence,
each child of v4 is a support vertex assigned {1, 2} under f . Let T ′ = T − Tv3 .
Then ∆(T ) ≥ ∆(T ′), ℓ(T ′) = ℓ(T )− (|L(v2)|+ |L(v3)|) and s(T ′) = s(T )− 2. On
the other hand, γt(T ) ≤ γt(T

′) + 2 and γtr2(T
′) ≤ γtr2(T )− 4. By the induction

hypothesis on T ′ we obtain that

γtr2(T ) ≥ γtr2(T
′) + 4 ≥ γt(T

′) +
⌈

ℓ(T ′)−s(T ′)
∆(T ′)

⌉

+ 4

≥ γt(T ) +
⌈

ℓ(T )−s(T )
∆(T )

⌉

.

Now, let degT (v4) = 2 and T ′ = T − Tv4 . Note T ′ has order n′ ≥ 1 since
diam(T ) ≥ 4. It is a routine matter to check that the result holds if n′ ∈ {1, 2}.
Hence let n′ ≥ 3. Then ∆(T ) ≥ ∆(T ′), ℓ(T ′)≥ℓ(T ) − (|L(v2)| + |L(v3)|) and
s(T ′) ≤ s(T )−1. On the other hand, γt(T ) ≤ γt(T

′)+2 and γtr2(T
′) ≤ γtr2(T )−4.

Using the induction on T ′, the result follows.

Finally, assume that degT (v3) = 2. First, assume that f |T ′ is a T2RDF of
T ′ = T − Tv3 . Recall that T has diameter at least four. If T ′ has order 2, then T
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is obtained from a star of order at least three and a path P2 by adding an edge
joining their leaves, and clearly the result holds. So assume that T ′ has order
at least three. Then ∆(T ) ≥ ∆(T ′), ℓ(T ′) ≥ ℓ(T ) − |L(v2)| and s(T ′) ≤ s(T ).
Moreover, γt(T ) ≤ γt(T

′) + 2 and γtr2(T
′) ≤ γtr2(T ) − 3. It follows from the

induction hypothesis that

γtr2(T ) ≥ γtr2(T
′) + 3 ≥ γt(T

′) +
⌈

ℓ(T ′)−s(T ′)
∆(T ′)

⌉

+ 3

≥ γt(T ) +
⌈

ℓ(T ′)−s(T ′)
∆(T ′)

⌉

+ 1 ≥ γt(T ) +
⌈

ℓ(T )−s(T )
∆(T )

⌉

.

Suppose now that f |T ′ is not a T2RDF of T ′ = T − Tv3 . Hence, we have the
following cases.

Case 1. f(v4) = ∅. Then v4 is not a support vertex and has no child of depth
1 which is a strong support vertex. Seeing the previous cases, it follows that any
child of v4 other than v3 is either a support vertex of degree two or a vertex with
depth 2 and degree 2. Moreover, since every child of v4 is assigned a non-empty
set, we conclude from our assumption that f |T ′ is not a T2RDF of T ′ = T − Tv3

and that degT (v4) ∈ {2, 3}. We consider the following.

Subcase 1.1. degT (v4) = 3. Observe that Tv4 has exactly two support vertices,
v2 and say z. We note that z is a either at distance one or two from v4. Let
T ′′ = T − Tv4 . Clearly, T

′′ has order at least three, ∆(T ) ≥ ∆(T ′′), ℓ(T ′′) ≥
ℓ(T ) − (|L(v2)| + |L(z)|), s(T ′′) ≤ s(T ) − 1 and γt(T ) ≤ γt(T

′′) + 4. Now, if z is
at distance one from v4, then |L(z)| = 1 and γtr2(T

′′) ≤ γtr2(T )− 5. Also, if z is
at distance two from v4, then γtr2(T

′′) ≤ γtr2(T ) − 6. Whatever the case, using
the induction on T ′′, the result follows.

Subcase 1.2. degT (v4) = 2. Let T ′′ = T − Tv4 . It is easy to check the
result if n(T ′′) ∈ {1, 2}. Hence let n(T ′′) ≥ 3. Then ∆(T ) ≥ ∆(T ′′), ℓ(T ′′) ≥
ℓ(T ) − |L(v2)| and s(T ′′) ≤ s(T ). On the other hand, γt(T ) ≤ γt(T

′′) + 2 and
γtr2(T

′′) ≤ γtr2(T )− 3. Using the induction on T ′′, the result follows.

Case 2. |f(v4)| ≥ 1 and thus f(x) = ∅ for each vertex x ∈ N(v4) − {v3}.
Then every child of v4 besides v3 (if any) is leaf. To avoid the previous case
when f(v4) = ∅ we can assume that v4 is a support vertex (else substitute the
assignments of v4 and v5). Now if f |T ′′ is a T2RDF of T ′′ = T − Tv4 , then
∆(T ) ≥ ∆(T ′′), ℓ(T ′′) ≥ ℓ(T ) − (|L(v2)| + |L(v4)|) and s(T ′′) ≤ s(T ) − 1. Since
γt(T ) ≤ γt(T

′′) + 3 and γtr2(T
′′) ≤ γtr2(T ) − 5, the result follows by using the

induction on T ′′. Hence suppose that f |T ′′ is not a T2RDF of T ′′ = T − Tv4 and
so v5 has no child of depth 3 other than v4. Since f(v5) = ∅, we conclude that
v5 is not a support vertex and has no child of depth 1 which is a strong support
vertex. Consider the following situations.
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Subcase 2.1. v5 has a child of depth 1. Let u2 be such a child of depth 1 and
u1 its the leaf neighbor. Note that degT (u2) = 2. Let T ′′ = T − {u1, u2}. Then
∆(T ) ≥ ∆(T ′′), ℓ(T ′′) = ℓ(T )− 1 and s(T ′′) = s(T )− 1. Since γt(T ) ≤ γt(T

′′)+2
and γtr2(T

′′) ≤ γtr2(T )− 2, the result follows by using the induction on T ′′.

Subcase 2.2. All children of v5 different to v4 have depth 2. Since |f(x)| ≤ 1
for x ∈ N(v5) − {v4}, we deduce that every child of v5 other than v4 is not a
support vertex. Let z 6= v4 be a child of v5. If deg(z) = 2 and z′ ∈ N(z)− {v5},
then let T ′′ = T − Tz. Then ∆(T ) ≥ ∆(T ′′), ℓ(T ′′) = ℓ(T )− |L(z′)| and s(T ′′) =
s(T ) − 1. Also, γt(T ) ≤ γt(T

′′) + 2 and γtr2(T
′′) ≤ γtr2(T ) − 3. Using the

induction on T ′′, the result follows. Hence suppose that degT (z) ≥ 3. If z has
a child of depth 1 say, u2, of degree two, with u1 as the leaf neighbor of u2,
then let T ′′ = T − {u1, u2}. Clearly, ∆(T ) ≥ ∆(T ′′), ℓ(T ′′) = ℓ(T ) − 1 and
s(T ′′) = s(T )−1. Also, γt(T ) ≤ γt(T

′′)+2 and γtr2(T
′′) ≤ γtr2(T )−2. Using the

induction on T ′′, the result follows. Hence, all children of z are strong support
vertex. Let |C(z)| = k and x1, . . . , xk be the children of z, and let T ′′ = T − Tz.

Clearly, ∆(T ) ≥ ∆(T ′′), ℓ(T ′′) = ℓ(T ) −
(

∑k
i=1 |L(xi)|

)

and s(T ′′) = s(T ) − k.

On the other hand, γt(T ) ≤ γt(T
′′) + k + 1 and γtr2(T

′′) ≤ γtr2(T ) − 2k − 1. It
follows from the induction hypothesis that

γtr2(T ) ≥ γtr2(T
′′) + 2k + 1 ≥ γt(T

′′) +
⌈

ℓ(T ′′)−s(T ′′)
∆(T ′′)

⌉

+ 2k + 1

≥ γt(T ) +
⌈

ℓ(T ′′)−s(T ′′)
∆(T ′′)

⌉

+ k ≥ γt(T ) +
⌈

ℓ(T )−s(T )
∆(T )

⌉

.

Subcase 2.3. degT (v5) = 2. Let T ′′ = T − Tv5 . Note that T ′′ may have
order n′′ = 0. However, it is easy to check that the result is valid for n′′ ≤ 2.
Hence, let n′′ ≥ 3. Then ∆(T ) ≥ ∆(T ′′), ℓ(T ′′) ≥ ℓ(T ) − (|L(v2)| + |L(v4)|) and
s(T ′′) ≤ s(T ) − 1. Also, γt(T ) ≤ γt(T

′′) + 3 and γtr2(T
′′) ≤ γtr2(T ) − 5. Using

the induction on T ′′, the result follows. This completes the proof.

Obviously, γtr2(G) ≤ γtR(G) for every graph G without isolated vertices.
In the following, we provide an upper bound on the ratio γtR(G)/γtr2(G) for
arbitrary graphs G. Moreover, this ratio will be slightly improved for the class of
trees.

Theorem 7. If G is a graph without isolated vertices, then γtR(G) ≤ 3
2γtr2(G).

This bound is sharp for the graph in Figure 1.

Proof. Let f be a γtr2(G)-function. For every i ∈ {1, 2}, let Xi be the set of all
vertices u for which i ∈ f(u). Clearly, if a vertex of G is assigned {1, 2} under f ,
then X1 ∩X2 6= ∅. Also, it is obvious that |X1| + |X2| = γtr2(G). Now assume,

without loss of generality, that |X1| ≤ |X2|. Then |X1| ≤
|X1|+|X2|

2 = γtr2(G)
2 , and
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Figure 1. Graph G with γtR(G) = 3
2γtr2(G) = 6.

the function g : V (G) → {0, 1, 2} defined by g(x) = 0 if f(x) = ∅, g(x) = 1 if
f(x) = {2}, and g(x) = 2 if 1 ∈ f(x), is a total Roman dominating function on
G, implying that

γtR(G) ≤ ω(g) = 2|X1|+ |X2| ≤
|X1|+|X2|

2 + |X1|+ |X2| ≤
3
2γtr2(G).

Theorem 8. For every non-trivial tree T ,

γtR(T ) ≤
3

2
γtr2(T )− 1,

and this bound is sharp for Pn such that n ≡ 2 (mod 3).

Proof. The proof is by induction on n. The statement is valid for all trees of
order n ∈ {2, 3, 4}. Let n ≥ 5 and assume that for every tree T ′ of order at most
n− 1, γtR(T

′) ≤ 3
2γtr2(T

′)− 1. Let T be a tree of order n. Since stars and double
stars T satisfy γtr2(T ) = 3 = γtR(T ), the result holds. Therefore, we can assume
that diam(T ) ≥ 4.

If T has a support vertex, say u, with |L(u)| ≥ 3, then let T ′ = T −u′, where
u′ is a leaf neighbor of u. Clearly γtR(T ) ≤ γtR(T

′). On the other hand, by
Observation 1, there exists a γtr2(T )-function g such that g(u) = {1, 2}. Also,
we can assume that g(u′) = ∅. It follows that g|V (T ′) is a T2RDF of T ′, and thus
γtr2(T

′) ≤ γtr2(T ). By the inductive hypothesis on T ′, we obtain

2γtR(T ) ≤ 2γtR(T
′) ≤ 3γtr2(T

′)− 2 ≤ 3γtr2(T )− 2.

Hence we assume that every support vertex in T is adjacent to at most two leaves.
Let v1v2 · · · vk be a diametral path in T with root vertex vk. We consider the
following cases.

Case 1. degT (v3) = 2. Let T ′ = T − Tv3 . Then γtR(T ) ≤ γtR(T
′) + 3 and

γtr2(T
′) ≤ γtr2(T )− 2. It follows from the induction hypothesis that

2γtR(T ) ≤ 2γtR(T
′) + 6 ≤ 3γtr2(T

′) + 4 ≤ 3γtr2(T )− 2.

Case 2. degT (v3) ≥ 3. Consider the following subcases.
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Subcase 2.1. Suppose that v3 is a support vertex adjacent to another support
vertex different from v2 and v4, or v3 is adjacent to a strong support vertex
different from v2 and v4. Let T ′ = T − Tv2 . It is easy to see that γtR(T ) ≤
γtR(T

′) + 2 and γtr2(T
′) ≤ γtr2(T )− 2. It follows from the induction hypothesis

that

2γtR(T ) ≤ 2γtR(T
′) + 4 ≤ 3γtr2(T

′) + 2 ≤ 3γtr2(T )− 4 < 3γtr2(T )− 2.

Subcase 2.2. v3 is not a support vertex. Since degT (v3) ≥ 3, every child of v3
is a support vertex. Moreover, according to Subcase 2.1, all support vertices of
Tv3 , but possibly v2, have degree two. Let t = degT (v3)−1 ≥ 2. Let T ′ = T −Tv3 .
It is easy to see that γtR(T ) ≤ γtR(T

′) + 2t+ 1. Among all γtr2(T )-functions, let
g be one for which |g(v3)| is as small as possible. Clearly, for every child x of v3
we have |g(N [x])| ≥ 2. Now, if g(v3) = ∅, then g|V (T ′) is a T2RDF of T ′ of weight
ω(g) − 2t, and thus γtr2(T

′) ≤ γtr2(T ) − 2t. Hence assume that g(v3) 6= ∅. The
choice of g implies that |g(v3)| = 1, and thus the weight of Tv3 under g is 2t+ 1.
The choice of g also implies that g(v4) = ∅. In that case, the function g′ defined
on V (T ′) defined by g′(v4) = g(v3) and g′(x) = g(x) for all x ∈ V (T ′) − {v4} is
a T2RDF of T ′ of weight γtr2(T ) − 2t, and thus γtr2(T

′) ≤ γtr2(T ) − 2t. In all
cases, it follows from the induction hypothesis on T ′ that

2γtR(T ) ≤ 2γtR(T
′) + 2+ 4t ≤ 3γtr2(T

′) + 4t ≤ 3γtr2(T )− 6t+4t < 3γtr2(T )− 2.

Subcase 2.3. v3 is a support vertex adjacent to no support vertex besides v2
and (possibly) v4. Let f be a γtr2(T )-function. If |f(v4)| ≥ 1 or there exists a
vertex x ∈ NT (v4) − {v3} with |f(x)| ≥ 1, then let T ′ = T − Tv3 . Obviously,
γtR(T ) ≤ γtR(T

′) + 4 and γtr2(T
′) ≤ γtr2(T ) − 3. It follows from the induction

hypothesis that

2γtR(T ) ≤ 2γtR(T
′) + 8 ≤ 3γtr2(T

′) + 6 ≤ 3γtr2(T )− 9 + 6 < 3γtr2(T )− 2.

Hence we can assume that f(x) = ∅ for each x ∈ NT [v4] − {v3}. Therefore,
all children of v4 have depth 2. According to Case 1 and the diametral path,
we conclude that each child of v4 is a support vertex. Since we assumed that
f(x) = ∅ for each x ∈ NT [v4] − {v3}, we deduce that dT (v4) = 2. In this case,
let T ′ = T − Tv4 . Recall that T has diameter at least four. Suppose that T ′

has order one. Clearly, T is a tree with three support vertices v2, v3, v4 and
the remaining vertices are leaves. Hence γtR(T ) = γtR(T ) = 6, and thus the
result holds. So suppose that T ′ is nontrivial. Then γtR(T ) ≤ γtR(T

′) + 4 and
γtr2(T

′) ≤ γtr2(T )− 4. By induction on T ′ we deduce that

2γtR(T ) ≤ 2γtR(T
′) + 8 ≤ 3γtr2(T

′) + 6 ≤ 3γtr2(T )− 12 + 6 < 3γtr2(T )− 2.

This completes the proof.
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3. Upper Bounds

In this section, we provide two upper bounds on the total 2-rainbow domination
number of a tree. The first one we present is in terms of the order and the number
of support vertices of a tree.

Theorem 9. If T is a tree of order n ≥ 4 with s support vertices, then

γtr2(T ) ≤
2(n+ s)

3
,

and this bound is sharp for Pn such that n ≡ 1 (mod 3).

Proof. The proof is by induction on n. It is a routine matter to check that the
statement holds if n ∈ {4, 5}. Hence, let n ≥ 6 and assume that for every T ′ or

order n′ < n with s′ support vertices satisfies γtr2(T
′) ≤ 2(n′+s′)

3 . Let T be a tree

of order n. If T is a star, then γtr2(T ) = 3 < 2(n+1)
3 . Likewise, if T is a double

star, then γtr2(T ) = 4 < 2(n+2)
3 . Henceforth we can assume T has diameter at

least four.
If T has a strong support vertex u adjacent to at least three leaves, then let

T ′ = T −u′, where u′ is a leaf neighbor of u. Clearly, any γtr2(T
′)-function can be

extended to T2RDF of T by assigning ∅ to vertex u′, and thus γtr2(T ) ≤ γtr2(T
′).

The result follows by using the induction on T ′, with n′ = n − 1 and s′ = s.
Therefore, we will assume that every support vertex of T is adjacent to at most
two leaves.

Let v1v2 · · · vk be a diametral path in T and root T in vk. We consider the
following cases.

Case 1. degT (v2) = 3. Thus v2 has two leaf neighbors. We distinguish
between the following situations.

Subcase 1.1. degT (v3) ≥ 3. Suppose first that v3 is a support vertex. Let
T ′ = T − Tv2 . Then n′ = n − 3 and s′ = s − 1. Let f be a γtr2(T

′)-function.
Since v3 is a support vertex of T ′, we must have |f(v3)| ≥ 1. Then the function
g : V (T ) → P({1, 2}) defined by g(v2) = {1, 2}, g(x) = ∅ for x ∈ L(v2) and
g(x) = f(x) otherwise, is a T2RDF of T of weight γtr2(T

′) + 2. By induction on
T ′, we have

γtr2(T ) ≤ γtr2(T
′) + 2 ≤

2(n′ + s′)

3
+ 2 =

2(n− 3 + s− 1)

3
+ 2 <

2(n+ s)

3
.

Suppose now that v3 is not a support vertex. Thus every child of v3 is a support
vertex with degree either 2 or 3. Let u2 be a child of v3 different from v2. If
degT (u2) = 3, then let T ′ = T − Tv2 . By using a similar argument to that used

above, we obtain γtr2(T ) <
2(n+s)

3 . Thus let degT (u2) = 2 with u1 as the unique
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leaf of u2. Let T
′ = T − {u1, u2}. Clearly, any γtr2(T

′)-function can be extended
to a T2RDF of T by assigning the set {1} to both u1 and u2. Since n′ = n − 2
and s′ = s− 1, using the induction on T ′ we obtain

γtr2(T ) ≤ γtr2(T
′) + 2 ≤

2(n′ + s′)

3
+ 2 =

2(n− 2 + s− 1)

3
+ 2 =

2(n+ s)

3
.

Subcase 1.2. degT (v3) = 2. Recall that since T has diameter at least four,
degT (v4) ≥ 2. Assume that degT (v4) ≥ 3, and let T ′ = T − Tv3 . Observe that T ′

has order n′ ≥ 3. If n′ = 3, then T is a tree of order 7 with 2 support vertices,
where γtr2(T ) = 5 < 2(n+s)

3 = 6. Hence we assume that n′ ≥ 4. Clearly, any
γtr2(T

′)-function can be extended to a T2RDF of T by assigning {1, 2} to v2, {1}
to v3 and ∅ to the leaves of L(v2). By induction on T ′ and using the fact that
n = n− 4 and s′ = s− 1 we obtain

γtr2(T ) ≤ γtr2(T
′) + 3 ≤

2(n′ + s′)

3
+ 3 =

2(n− 4 + s− 1)

3
+ 3 <

2(n+ s)

3
.

So, suppose for the sequel that degT (v4) = 2. Let T ′ = T − Tv2 . Note that
n′ ≥ 3. If n′ = 3, then T ′ has order 6 with 2 support vertices, where γtr2(T ) =

5 < 2(n+s)
3 = 16

3 . Hence let n′ ≥ 4. By Observation 3, there exists a γtr2(T )-
function f such that |f(v3)| = 1 and clearly such a function can be extended
to a T2RDF of T by assigning {1, 2} to v2 and ∅ to the leaves of L(v2). Hence
γtr2(T ) ≤ γtr2(T

′) + 2. By induction on T ′ and using the fact that n = n− 3 and
s′ = s, we obtain

γtr2(T ) ≤ γtr2(T
′) + 2 ≤

2(n′ + s′)

3
+ 2 =

2(n− 3 + s)

3
+ 2 =

2(n+ s)

3
.

Case 2. degT (v2) = 2. Seeing the previous case, we may assume that every
child of v3 which is a support vertex has degree two. Consider the following
subcases.

Subcase 2.1. degT (v3) ≥ 3. Let T ′ = T − {v1, v2}. Since any γtr2(T
′)-

function can be extended to a T2RDF of T by assigning the set {1} to v1 and v2,
γtr2(T ) ≤ γtr2(T

′)+2. Using the induction on T ′, where n = n−2 and s′ = s−1,
we obtain

γtr2(T ) ≤ γtr2(T
′) + 2 ≤

2(n′ + s′)

3
+ 2 =

2(n− 2 + s− 1)

3
+ 2 =

2(n+ s)

3
.

Subcase 2.2. degT (v3) = 2. We consider some additional subcases.

Subcase 2.2.1. degT (v4) ≥ 3. Let T ′ = T − {v1, v2, v3}. Note that n′ ≥ 3. If
n′ = 3, then T is a tree of order 6 with two support vertices, where γtr2(T ) = 5 <
2(n+s)

3 = 16
3 , and thus the result is valid. Hence let n′ ≥ 4. Among all γtr2(T

′)-
functions, let f be one such that |f(v4)| is as large as possible. If |f(v4)| ≥ 1,
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then define the function g on V (T ) as follows: g(x) = f(x) for all x ∈ V (T ′),
g(v3) = ∅ and g(v1) = g(v2) = {1} or {2} so that g(N [v3]) = {1, 2}. Clearly, g is
a T2RDF of T of weight γtr2(T

′)+2. By induction on T ′ and using the fact that
n′ = n− 3 and s′ = s− 1 we deduce that

γtr2(T ) ≤ γtr2(T
′) + 2 ≤

2(n′ + s′)

3
+ 2 =

2(n− 3 + s− 1)

3
+ 2 <

2(n+ s)

3
.

For the sequel we can assume that f(v4) = ∅. Clearly in that case, v4 is not a
support vertex. By the choice of the diametral path and taking into account the
previous cases, we can assume that every child of v4 with depth two and different
from v3 has degree 2. We consider the following.

(i) v4 has a child u2 which is a support vertex. Since f(v4) = ∅, we conclude
that degT (u2) = 2. Let u1 be the leaf neighbor of u2 and let T ′′ = T − {u1, u2}.
Clearly, γtr2(T ) ≤ γtr2(T

′′) + 2, n′′ = n− 2 and s′′ = s− 1. By induction on T ′′,
it follows that

γtr2(T ) ≤ γtr2(T
′′) + 2 ≤

2(n′′ + s′′)

3
+ 2 =

2(n− 2 + s− 1)

3
+ 2 =

2(n+ s)

3
.

(ii) There is a pendant path v4u3u2u1 in T, where u3 6= v3. Since |f(v4)| = 0,
we conclude that |f(u1)| + |f(u2)| + |f(u3)| = 3. Define the function g on T ′ by
g(u1) = g(u2) = {1}, g(u3) = ∅, g(v4) = {2}, and g(x) = f(x) otherwise. Clearly
g is a γtr2(T

′)-function |g(v4)| > |f(v4)| = 0, contradicting our choice of f.

Subcase 2.2.2. degT (v4) = 2. If degT (v5) = 2, then let T ′ = T − {v1, v2, v3}.
Note that T ′ has order n′ ≥ 3. If n = 3, then T is a path P6, where γtr2(P6) = 5
(by Proposition 4) and the result is valid. Hence let n′ ≥ 4. By Observation 3,
there exists a γtr2(T )-function f such that |f(v4)| = 1, and such a function can
be extended to a T2RDF of T by assigning ∅ to v3, {1} to v1 and {1, 2} − f(v4)
to v2. It follows from the induction hypothesis that

γtr2(T ) ≤ γtr2(T
′) + 2 ≤

2(n′ + s′)

3
+ 2 =

2(n− 3 + s)

3
+ 2 =

2(n+ s)

3
.

Assume now that degT (v5) ≥ 3. Let T ′ = T − {v1, v2, v3, v4}. Note that T ′

has order n′ ≥ 3. If n′ = 3, then T is a tree of order 7 obtained from a path
P6 by adding a new vertex attached to one of the two support vertices of the
path P6. It is easy to check that γtr2(T ) = 5 < 2(n+s)

3 . Hence let n′ ≥ 4. Among
all γtr2(T

′)-functions, let f be one such that |f(v5)| is as large as possible. If
|f(v5)| ≥ 1, then f can be extended to a T2RDF of T by assigning ∅ to v4, {1}
to v1 and v2, and either {1} or {2} to v3 so that f(N [v4]) = {1, 2}. By induction
on T ′, it follows that

γtr2(T ) ≤ γtr2(T
′) + 3 ≤

2(n′ + s′)

3
+ 3 =

2(n− 4 + s− 1)

3
+ 3 <

2(n+ s)

3
.
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For the sequel, we can assume that f(v5) = ∅. Trivially, v5 is not a support
vertex. Also, every child of v5 with depth one has degree two. We consider the
following.

(i) v5 has a child with depth 3. Let u1 6= v1 be a leaf at distance four from v5
and let v5u4u3u2u1 be the unique path between u1 and v5. According to Cases 1
and 2 and Subcases 2.1 and 2.2, we must assume that each of u4, u3 and u2 has
degree two. Moreover, since f(v5) = ∅ as assumed and according to the choice of
f maximizing |f(v5)| , we conclude that |f(u1)|+ |f(u2)|+ |f(u3)|+ |f(u4)| = 4.
Define the function g on V (T ′) as follows: g(u1) = g(u2) = {1}, g(u3) = ∅,
g(u4) = g(v5) = {2} and g(x) = f(x) otherwise. Clearly, g is a γtr2(T

′)-function
with |g(v5)| > |f(v5)| = 0, a contradiction.

(ii) v5 has a child u2 with depth one. Let u1 be the leaf neighbor of u2. Let
T ′′ = T − {u1, u2}. Obviously, γtr2(T ) ≤ γtr2(T

′′) + 2. It follows by induction on
T ′′ that

γtr2(T ) ≤ γtr2(T
′′) + 2 ≤

2(n′′ + s′′)

3
+ 2 =

2(n− 2 + s− 1)

3
+ 2 =

2(n+ s)

3
.

(iii) v5 has a child, say w, with depth two having degree at least 3. Suppose
first that w has at least two children as support vertices and let z be one of them
having minimum degree. Note that degT (z) ∈ {2, 3} since every support vertex of
T has at most two leaves. Let T ′′ = T−({z}∪L(z)). Then γtr2(T ) ≤ γtr2(T

′′)+2,
n′′ = n − 1 − |L(z)| and s′′ = s − 1. Using the induction on T ′ we obtain the
desired result. Now, let w has exactly one child, say t, as a support neighbor.
Since degT (w) ≥ 3, we deduce that w is a support vertex. Let T ′′ = T −Tw. Note
that Tw has order nw ∈ {4, 5, 6}. Moreover, it is clear that γtr2(T ) ≤ γtr2(T

′′)+4.
It follows from the induction hypothesis that

γtr2(T ) ≤ γtr2(T
′′) + 4 ≤

2(n′′ + s′′)

3
+ 4 ≤

2(n− nw + s− 2)

3
+ 4 ≤

2(n+ s)

3
.

(iv) v5 has a child, say w, with depth two and having degree 2. Suppose
first that the child z of w is a strong support. Let L(z) = {z1, z2} and let
T ′′ = T − {w, z, z1, z2}. Then γtr2(T ) ≤ γtr2(T

′′) + 3, n′′ = n− 4 and s′′ = s− 1.
It follows from the induction on T ′ that

γtr2(T ) ≤ γtr2(T
′′) + 3 ≤

2(n′′ + s′′)

3
+ 3 =

2(n− 4 + s− 1)

3
+ 3 <

2(n+ s)

3
.

Now, suppose that the child z of w is a support vertex of degree two. Let
degT (v5) = k ≥ 3 and Ht for t ≥ 2 be the tree obtained from a star K1,t by
subdividing one edge three times and each of the remaining edges exactly twice.
Seeing the previous situations, clearly Tv5 is isomorphic toHk−1. Now let T ′ = T−
Tv5 . We note that T ′ has order n′ ≥ 3. If n′ = 3, then T = Hk, where n = 3k+2,
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s(T ) = k and γtr2(T ) = 2k+2 < 2(n+s)
3 . Hence we can assume that n′ ≥ 4. Then

γtr2(T ) ≤ γtr2(T
′

)+ 2k, n′ = n− 3k+1 and s(T ′) ≤ s(T )− (k− 1)+1. It follows
from the induction on T ′ that

γtr2(T ) ≤ γtr2(T
′) + 2k ≤

2(n′ + s′)

3
+ 2k

=
2(n− 3k + 1 + s− k + 2)

3
+ 2k ≤

2(n+ s)

3
.

This completes the proof.

Next we establish an upper bound on the total 2-rainbow domination number
of a tree in terms of the vertex cover number. We first give an upper bound for
arbitrary graphs.

Lemma 10. Let G be a graph of order n ≥ 2 with no isolated vertex and Vc a

minimum vertex cover of G. Then

γtr2(G) ≤ 2β(G) + r,

where r is the number of isolated vertices in the subgraph induced by Vc. This

bound is sharp for the graphs in Figure 2.

Figure 2. Two graphs G with γtr2(G) = 2β(G) + r.

Proof. Let Vc be a minimum vertex cover of G and I the set of isolated vertices
in G[Vc]. Let K = V (G) − Vc. Since K is a maximum independent set, every
vertex of Vc has a neighbor in K. Let D be a smallest subset of vertices of
K that dominates all vertices of I. Obviously, |D| ≤ |I| = r. Now define a
function f : V (G) → P({1, 2}) by f(x) = {1, 2} if x ∈ Vc, f(x) = {1} if x ∈ D
and f(x) = ∅ otherwise. Clearly, f is a T2RDF of G of weight 2|Vc| + |D| ≤
2|Vc|+ r.

The proof of the next the result is inspired by the proof of Theorem 2 in [9].
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Theorem 11. Let T be a tree of order n ≥ 3 and let S′ be the set of isolated

vertices in the subgraph induced by the set of support vertices of T . Then

γtr2(T ) ≤ 2β(T ) + |S′|.

This bound is sharp for the graph in Figure 3.

Figure 3. A tree T with γtr2(T ) = 2β(T ) + |S′|.

Proof. Let L and S denote the set of leaves and support vertices of a tree T ,
respectively. Let VI be a maximum independent set that contains all leaves of
T . Then Vc = V − VI is a vertex cover set of T . Note that S ⊆ Vc. If no
support vertex of T is isolated in T [Vc], then the result holds by Lemma 10.
Hence, assume that u is a support vertex which is isolated in T [Vc]. Root T at
u and let A1 = {u} and A2 = N(u). Clearly, A1 ⊆ Vc and A2 ⊆ VI . Assume
that A3 = (N(A2) − A1) ∪ BN(A2)−A1

, where BN(A2)−A1
= {v ∈ Vc | v is in a

component of T [Vc] with a vertex of N(A2)−A1}. Set A4 = N(A3)−A2. Then
we have A3 ⊆ Vc and A4 ⊆ VI .

We repeat this process so that at some odd number step 2k + 1, we put

A2k+1 = (N(A2k)−A2k−1) ∪BN(A2k)−A2k−1
,

where BN(A2k)−A2k−1
= {v ∈ Vc | v is in a component of T [Vc] with a vertex of

N(A2k)−A2k−1} and we set A2k+2 = N(A2k+1)−A2k. This process will terminate
at some mth step where m is even and Am composed only of leaves. Note that
A1 ∪ · · · ∪Am is a partition of V (T ). Obviously, VI = A2 ∪A4 ∪ · · · ∪Am−2 ∪Am

and Vc = A1 ∪ A3 ∪ · · · ∪ Am−3 ∪ Am−1. Note that if v ∈ Ai, for i > 1, has a
neighbor in Ai−1, then it has only one neighbor in Ai−1.

Let D1 = Vc. If T [Vc] has isolated vertices that are support vertices in T ,
then let K be a smallest subset of vertices of VI−L that dominates these isolated
support vertices. Clearly, |K| ≤ |S′|. Now we consider the isolated vertices of
T [Vc] that are not support vertex in T . In decreasing order, we visit each Ai with
odd index i, where 3 ≤ i ≤ m− 1. We start with Am−1 and observe that if there
is an isolate of T [Vc] in Am−1, then it is a support vertex and some vertex of K
is adjacent to it. Now for each non-support isolated vertex v of T [Vc] which is in
Am−3, if N(v) ∩ Am−2 is dominated by Am−1 ∩ Vc, then remove v from D1 and
add to D1 its unique neighbor in Am−4, otherwise we leave v in D1. Continue this
way for each odd i in decreasing order. That is, in general for Ai where i is odd,
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if a non-support isolated vertex v of T [Vc] is in Ai and N(u)∩Ai+1 are dominated
by Ai+2 ∩Vc, then remove v from D1 and add its unique neighbor in Ai−1 to D1,
otherwise we leave v in D1. This process terminates after i = 3. Now, if some
vertex of A2 is in K, then we are done. Otherwise remove u from D1 and add to
D1 one of its neighbors. Note that |D1| has not increased. Now let D2 = D1∪K.
Using an argument similar to that described in the proof of Theorem 2 in [9], we
see that the induced subgraph T [D2] has no isolated vertex. Define the function
f : V (T ) → P({1, 2}) by f(x) = {1, 2} for x ∈ D1, f(x) = {1} for x ∈ K and
f(x) = ∅ otherwise. Clearly, f is a T2RDF of T and thus

γtr2(T ) ≤ 2|Vc|+ |K| ≤ 2β(T ) + |S′|.

This achieves that proof.

4. Complexity

Our aim in this section is to study the complexity of the following decision prob-
lem, to which we shall refer as TOTAL 2-RAINBOW DOMINATION:

TOTAL 2-RAINBOW DOMINATION

Instance. Graph G = (V,E), positive integer k ≤ |V |.

Question. Does G have a total 2-rainbow dominating function of weight at most

k?

We show that this problem is NP-complete by reducing the well-known NP-
complete problem, EXACT-3-COVER (X3C), to TOTAL 2-RAINBOW DOMI-
NATION.

EXACT 3-COVER (X3C)

Instance. A finite set X with |X| = 3q and a collection C of 3-element subsets
of X.

Question. Is there a subset C ′ of C such that every element of X appears in

exactly one element of C ′?

Theorem 12. TOTAL 2-RAINBOW DOMINATION is NP-complete for bipar-

tite graphs.

Proof. TOTAL 2-RAINBOW DOMINATION is a member of NP, since we can
check in polynomial time that a function f : V → {0, 1, 2} has weight at most
k and is a T2RDF. Now let us show how to transform any instance of X3C into
an instance of TOTAL 2-RAINBOW DOMINATION so that one of them has a
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solution if and only if the other one has a solution. Let X = {x1, x2, . . . , x3q}
and C = {C1, C2, . . . , Ct} be an arbitrary instance of X3C.

For each xi ∈ X, we build a graph Hi obtained from a path P2 : xi-yi and two
stars K1,3 with centers ai and bi, by adding edges yiai and yibi. Hence, each Hi

has order 10. For each Cj ∈ C, we build a double star S3,3 with support vertices
uj and vj . Let cj be a leaf of the double star S3,3. Let Y = {c1, c2, . . . , ct}. Now
to obtain a graph G, we add edges cjxi if xi ∈ Cj . Clearly, G is a bipartite graph
(for example, see Figure 4). Set k = 4t + 16q. Observe that for every T2RDF
f on G, each Hi has weight at least 5 and each double star S3,3 has weight at
least 4.

c1 c2 c3 c4

u1

v1

u2

v2

u3

v3

u4

v4

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

a1 a2 a3 a4 a5 a6b1 b2 b3 b4 b5 b6

Figure 4. NP-completeness for bipartite graphs.

Suppose that the instance X,C of X3C has a solution C ′. We construct a
T2RDF f on G of weight k. For each i, assign the set {1, 2} to ai, bi, the set
{1} to yi and ∅ to the remaining vertices of Hi. For every j, assign {1, 2} to uj
and vj , and ∅ to each leaf. In addition, if for every Cj , assign to cj the set {2}
if Cj ∈ C ′ and ∅ if Cj /∈ C ′. Note that since C ′ exists, its cardinality is precisely
q, and so the number of cj ’s assigned {2} is q, having disjoint neighborhoods in
{x1, x2, . . . , x3q}, Since C ′ is a solution for X3C, every vertex xi in X satisfies
f(N [xi]) = {1, 2}. Hence, it is straightforward to see that f is a T2RDF with
weight f(V ) = 4t+ q + 15q = k.

Conversely, suppose that G has a T2RDF with weight at most k. Among all
such functions, let g = (V∅, V1, V2, V12) be one such that the number of vertices
of {y1, y2, . . . , y3q} assigned {1, 2} is as small as possible. As observed above,
since each Hi has weight at least 5, we may assume that g(ai) = g(bi) = {1, 2}
and |g(yi)| > 0 so that vertices ai, bi are not isolated in the subgraph induced by
V1 ∪ V2 ∪ V12. Hence each leaf neighbor of ai or bi is assigned ∅ under g. Assume
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that g(yi) = {1, 2} for some i. Observe that if |g(xi)| > 0, then reassigning
{1} to yi provides a T2RDF g′ with less vertices yi assigned {1, 2} than under
g, contradicting our choice of g. Hence g(xi) = ∅. But then reassigning {1} to
each of yi and xi instead of {1, 2} and ∅, respectively, provides a T2RDF g′

with less vertices yi assigned {1, 2} than under g, a contradiction too. Therefore
|g(yi)| = 1 for every i ∈ {1, 2, . . . , 3q}. On the other hand, the total weight of all
double stars corresponding to elements of C is 4t. In this case, we can assume that
g(uj) = g(vj) = {1, 2} and so each leaf neighbor of uj or vj is assigned ∅ under g.
Note that each cj can be assigned ∅ since g(uj) = {1, 2}. Since w(g) ≤ 4t + 16q
and the total weight assigned to vertices of V (G)−(X∪Y ) is 4t+15q, we have to
assign to vertices of (X∪Y ) sets whose total cardinalities not exceeding q so that
each vertex xi ∈ X has either |g(xi)| > 0 or has two neighbors in V1 ∪ V2 so that
f(N [xi]) = {1, 2}. Since |X| = 3q, it is clear that this is only possible if there
are q vertices of {c1, c2, . . . , ct} belonging to V1 ∪ V2. Since each cj has a exactly
three neighbors in {x1, x2, . . . , x3q}, we deduce that C ′ = {Cj : |g(cj)| = 1} is an
exact cover for C.

The next result is obtained by using the same proof as for Theorem 12 on
the (same) graph G built for the transformation by adding all edges between the
cj ’s so that the resulting graph is chordal.

Theorem 13. TOTAL 2-RAINBOW DOMINATION is NP-complete for chor-

dal graphs.
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