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Abstract

Given a graph G = (V,E) and two its distinct vertices u and v, the (u, v)-
Pk-addition graph of G is the graph Gu,v,k−2 obtained from disjoint union
of G and a path Pk : x0, x1, . . . , xk−1, k ≥ 2, by identifying the vertices u
and x0, and identifying the vertices v and xk−1. We prove that γ(G)− 1 ≤
γ(Gu,v,k) for all k ≥ 1, and γ(Gu,v,k) > γ(G) when k ≥ 5. We also provide
necessary and sufficient conditions for the equality γ(Gu,v,k) = γ(G) to be
valid for each pair u, v ∈ V (G). In addition, we establish sharp upper and
lower bounds for the minimum, respectively maximum, k in a graph G over
all pairs of vertices u and v in G such that the (u, v)-Pk-addition graph of
G has a larger domination number than G, which we consider separately for
adjacent and non-adjacent pairs of vertices.
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1. Introduction

For basic notation and graph theory terminology not explicitly defined here, we
in general follow Haynes et al. [8]. We denote the vertex set and the edge set of a
graph G by V (G) and E(G), respectively. The complement G of G is the graph
whose vertex set is V (G) and whose edges are the pairs of nonadjacent vertices
of G. We write Kn for the complete graph of order n, Km,n for the complete

bipartite graph with partite sets of order m and n, and Pn for the path on n
vertrices. Let Cm denote the cycle of length m. For any vertex x of a graph G,
NG(x) denotes the set of all neighbors of x in G, NG[x] = NG(x) ∪ {x} and the
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degree of x is deg(x,G) = |NG(x)|. The minimum and maximum degrees of a
graph G are denoted by δ(G) and ∆(G), respectively. For a subset A ⊆ V (G),
let NG(A) =

⋃
x∈ANG(x) and NG[A] = NG(A) ∪ A. A vertex cover of a graph

is a set of vertices such that each edge of the graph is incident to at least one
vertex of the set. Let G be a graph and uv be an edge of G. By subdividing
the edge uv we mean forming a graph H from G by adding a new vertex w
and replacing the edge uv by uw and wv. Formally, V (H) = V (G) ∪ {w} and
E(H) = (E(G)\{uv}) ∪ {uw,wv}. For a graph G, let x ∈ S ⊆ V (G). A vertex
y ∈ V (G) is a S-private neighbor of x if NG[y]∩S = {x}. The set of all S-private
neighbors of x is denoted by pnG[x, S].

The study of domination and related subset problems is one of the fastest
growing areas in graph theory. For a comprehensive introduction to the theory
of domination in graphs we refer the reader to Haynes et al. [8]. A dominating

set for a graph G is a subset D ⊆ V (G) of vertices such that every vertex not in
D is adjacent to at least one vertex in D. The domination number of G, denoted
by γ(G), is the smallest cardinality of a dominating set of G. A dominating set
of G with cardinality γ(G) is called a γ-set of G. The concept of γ-bad/good
vertices in graphs was introduced by Fricke et al. in [5]. A vertex v of a graph G
is called

(i) [5] γ-good, if v belongs to some γ-set of G, and

(ii) [5] γ-bad, if v belongs to no γ-set of G.

A graph G is said to be γ-excellent whenever all its vertices are γ-good [5].
Brigham et al. [3] defined a vertex v of a graph G to be γ-critical if γ(G− v) <
γ(G), and G to be vertex domination-critical (from now on called vc-graph) if
each vertex of G is γ-critical. For a graph G we define V −(G) = {x ∈ V (G) |
γ(G− x) < γ(G)}.

It is often of interest to known how the value of a graph parameter µ is
affected when a change is made in a graph, for instance vertex or edge removal,
edge addition, edge subdivision and edge contraction. In this connection, here
we consider this question in the case µ = γ when a path is added to a graph.

Path-addition is an operation that takes a graph and adds an internally
vertex-disjoint path between two vertices together with a set of supplementary
edges. This operation can be considered as a natural generalization of the edge
addition. Formally, let u and v be distinct vertices of a graph G. The (u, v)-
Pk-addition graph of G is the graph Gu,v,k−2 obtained from disjoint union of G
and a path Pk : x0, x1, . . . , xk−1, k ≥ 2, by identifying the vertices u and x0,
and identifying the vertices v and xk−1. When k ≥ 3 we call x1, x2, . . . , xk−2

path-addition vertices. By paγ(u, v) we denote the minimum number k such that
γ(G) < γ(Gu,v,k). For every graph G with at least 2 vertices we define

⊲ the e-path addition (e-path addition) number with respect to domination, de-
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noted epaγ(G) (epaγ(G), respectively), to be

• epaγ(G) = min{paγ(u, v) | u, v ∈ V (G), uv ∈ E(G)},

• epaγ(G) = min{paγ(u, v) | u, v ∈ V (G), uv 6∈ E(G)}, and

⊲ the upper e-path addition (upper e-path addition) number with respect to dom-

ination, denoted Epaγ(G) (Epaγ(G), respectively), to be

• Epaγ(G) = max{paγ(u, v) | u, v ∈ V (G), uv ∈ E(G)},

• Epaγ(G) = max{paγ(u, v) | u, v ∈ V (G), uv 6∈ E(G)}.

If G is complete, then we write Epaγ(G) = epaγ(G) = ∞, and if G is edgeless
then epaγ(G) = Epaγ(G) = ∞. In what follows the subscript γ will be omitted
from the notation.

The remainder of this paper is organized as follows. In Section 2, we prove
that 1 ≤ epa(G) ≤ 3 and 2 ≤ Epa(G) ≤ 3, and we present necessary and
sufficient conditions for pa(u, v) = i, i = 1, 2, 3, where uv ∈ E(G). In Section 3,
we show that 1 ≤ epa(G) ≤ Epa(G) ≤ 5, and we give necessary and sufficient
conditions for epa(G) = Epa(G) = j, 1 ≤ j ≤ 5. We conclude in Section 4 with
open problems.

We end this section with some known results which will be useful in proving
our main results.

Lemma 1 [2]. If G is a graph and H is any graph obtained from G by subdividing

some edges of G, then γ(H) ≥ γ(G).

Lemma 2. Let G be a graph and v ∈ V (G).

(i) [5] If v is γ-bad, then γ(G− v) = γ(G).

(ii) [3] v is γ-critical if and only if γ(G− v) = γ(G)− 1.

(iii) [5] If v is γ-critical, then all its neighbors are γ-bad vertices of G− v.

(iv) [11] If e ∈ E(G), then γ(G)− 1 ≤ γ(G+ e) ≤ γ(G).

In most cases, Lemma 2 will be used in the sequel without specific reference.

2. The Adjacent Case

The aim of this section is to prove that 1 ≤ pa(u, v) ≤ 3 and to find necessary
and sufficient conditions for pa(u, v) = i, i = 1, 2, 3, where uv ∈ E(G).

Observation 3. If u and v are adjacent vertices of a graph G, then γ(G) =
γ(Gu,v,0) ≤ γ(Gu,v,k) ≤ γ(Gu,v,k+1) for k ≥ 1.

Proof. The equality γ(G) = γ(Gu,v,0) is obvious. For any γ-set M of Gu,v,1 both
Mu = (M\{x1})∪{u} andMv = (M\{x1})∪{v} are dominating sets of G, and at
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least one of them is a γ-set of Gu,v,1. Hence γ(G) ≤ min{|Mu|, |Mv|} = γ(Gu,v,1).
The rest follows by Lemma 1.

Theorem 4. Let u and v be adjacent vertices of a graph G. Then γ(G) ≤
γ(Gu,v,1) ≤ γ(G) + 1 and the following is true.

(i) γ(G) = γ(Gu,v,1) if and only if at least one of u and v is a γ-good vertex

of G.

(ii) γ(Gu,v,1) = γ(G) + 1 if and only if both u and v are γ-bad vertices of G.

Proof. The left side inequality follows by Observation 3. If D is a γ-set of G,
then D ∪ {x1} is a dominating set of Gu,v,1, which implies γ(Gu,v,1) ≤ γ(G) + 1.

If at least one of u and v belongs to some γ-set D1 of G, then D1 is a
dominating set of Gu,v,1. This clearly implies γ(G) = γ(Gu,v,1).

Let now both u and v are γ-bad vertices of G, and suppose that γ(Gu,v,1) =
γ(G). In this case for any γ-set M of Gu,v,1 is fulfilled u, v 6∈ M and x1 ∈ M .
But then (M\{x1}) ∪ {u} is a γ-set for both G and Gu,v,1, a contradiction.

Corollary 5. Let G be a graph with edges. Then Epa(G) ≥ 2 and epa(G) = 1 if

and only if the set of all γ-bad vertices of G is neither empty nor independent.

Theorem 6. Let u and v be adjacent vertices of a graph G. Then γ(G) ≤
γ(Gu,v,2) ≤ γ(G) + 1. Moreover,

(A) γ(Gu,v,2) = γ(G) + 1 if and only if at least one of the following holds:

(i) both u and v are γ-bad vertices of G,

(ii) at least one of u and v is γ-good, u, v 6∈ V −(G) and each γ-set of G
contains at most one of u and v.

(B) γ(Gu,v,2) = γ(G) if and only if at least one of the following is true:

(iii) there exists a γ-set of G which contains both u and v,

(iv) at least one of u and v is in V −(G).

Proof. The left side inequality follows by Observation 3. If D is an arbitrary
γ-set of G, thenD∪{x1} is a dominating set of Gu,v,2. Hence γ(Gu,v,2) ≤ γ(G)+1.

(A) ⇒ Assume that the equality γ(Gu,v,2) = γ(G) + 1 holds. By Theorem 4
we know that γ(Gu,v,1) ∈ {γ(G), γ(G) + 1}. If γ(Gu,v,1) = γ(G) + 1, then again
by Theorem 4, both u and v are γ-bad vertices of G. So let γ(G) = γ(Gu,v,1).
Then at least one of u and v is a γ-good vertex of G (Theorem 4). Clearly there
is no γ-set of G which contains both u and v. If u ∈ V −(G) and U is a γ-set
of G − u, then U ∪ {x1} is a dominating set of Gu,v,2 and |U ∪ {x1}| = γ(G), a
contradiction. Thus u, v 6∈ V −(G).

(A) ⇐ If both u and v are γ-bad vertices of G, then γ(Gu,v,1) = γ(G) +
1(Theorem 4). But we know that γ(Gu,v,1) ≤ γ(Gu,v,2) ≤ γ(G) + 1; hence
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γ(Gu,v,2) = γ(G) + 1. Finally let (ii) hold and M be a γ-set of Gu,v,2. If
x1, x2 6∈ M , then u, v ∈ M which leads to γ(Gu,v,2) > γ(G). If x1, x2 ∈ M ,
then (M\{x1, x2}) ∪ {u, v} is a dominating set of G of cardinality more than
γ(G). Now let without loss of generality x1 ∈ M and x2 6∈ M . If M\{x1} is
a dominating set of G, then γ(G) + 1 ≤ |M | = γ(Gu,v,2) ≤ γ(G) + 1. So, let
M\{x1} be no dominating set of G. Hence M\{x1} is a dominating set of G−u.
Since u 6∈ V −(G), γ(G) ≤ γ(G− u) ≤ |M\{x1}| < γ(Gu,v,2).

(B) ⇒ Let γ(Gu,v,2) = γ(G). Suppose that neither (iii) nor (iv) is valid.
Hence u, v 6∈ V −(G) and no γ-set of G contains both u and v. But then at least
one of (i) and (ii) holds, and from (A) we conclude that γ(Gu,v,2) = γ(G) + 1, a
contradiction.

(B) ⇐ Let at least one of (iii) and (iv) be hold. Then neither (i) nor (ii) is
fulfilled. Now by (A) we have γ(Gu,v,2) 6= γ(G) + 1. Since γ(G) ≤ γ(Gu,v,2) ≤
γ(G) + 1, we obtain γ(G) = γ(Gu,v,2).

The independent domination number of a graph G, denoted by i(G), is the
minimum size of an independent dominating set of G. It is obvious that i(G) ≥
γ(G). In a graph G, i(G) is strongly equal to γ(G), written i(G) ≡ γ(G), if each
γ-set of G is independent. It remains an open problem to characterize the graphs
G with i(G) ≡ γ(G) [7].

Corollary 7. Let G be a graph with edges. Then (a) epa(G) ≥ 2 if and only if

the set of all γ-bad vertices is either empty or independent, and (b) Epa(G) = 2
if and only if i(G) ≡ γ(G).

Proof. (a) Immediately by Corollary 5.
(b) ⇒ Let Epa(G) = 2. If D is a γ-set of G and u, v ∈ D are adjacent, then

D is a dominating set of Gu,v,2, a contradiction.
(b) ⇐ Let all γ-sets of G be independent. Suppose u ∈ V −(G) and D is a

γ-set of G − u. Then D1 = D ∪ {v} is a γ-set of G, where v is any neighbor of
u. But D1 is not independent. Hence V −(G) is empty. Thus, for any 2 adjacent
vertices u and v of G is fulfilled either (A)(i) or (A)(ii) of Theorem 6. Therefore
Epa(G) ≤ 2. The result now follows by Corollary 5.

Denote by Zn = {0, 1, . . . , n − 1} the additive group of order n. Let S be a
subset of Zn such that 0 6∈ S and x ∈ S implies −x ∈ S. The circulant graph

with distance set S is the graph C(n;S) with vertex set Zn and vertex x adjacent
to vertex y if and only if x− y ∈ S.

Let n ≥ 3 and k ∈ Zn\{0}. The generalized Petersen graph P (n, k) is the
graph on the vertex-set {xi, yi | i ∈ Zn} with adjacencies xixi+1, xiyi, and yiyi+k

for all i.

Example 8. A special case of graphs G with Epa(T ) = 2 are graphs for which
each γ-set is efficient dominating (an efficient dominating set in a graph G is a
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set S such that {N [s] | s ∈ S} is a partition of V (G)). We list several examples
of such graphs [10].

(a) A crown graph Hn,n, n ≥ 3, which is obtained from the complete bipartite
graph Kn,n by removing a perfect matching.

(b) Circulant graphs G = C(n = (2k+1)t; {1, . . . , k}∪{n−1, . . . , n−k}), where
k, t ≥ 1.

(c) Circulant graphs G = C(n; {±1,±s}), where 2 ≤ s ≤ n − 2, s 6= n/2, 5 |n
and s ≡ ±2 (mod 5).

(d) The generalized Petersen graph P (n, k), where n ≡ 0 (mod 4) and k is odd.

Theorem 9. If u and v are adjacent vertices of a graph G, then γ(Gu,v,3) =
γ(G) + 1.

Proof. If D is a γ-set of G, then D ∪ {x2} is a dominating set of G. Hence
γ(Gu,v,3) ≤ γ(G) + 1.

Let M be a γ-set of Gu,v,3. Then at least one of x1, x2 and x3 is in M . If
x2 ∈ M , then clearly γ(Gu,v,3) = γ(G) + 1. If x2 6∈ M and x1, x3 ∈ M , then
(M\{x1, x3}) ∪ {u} is a dominating set of G. If x2, x3 6∈ M and x1 ∈ M , then
v ∈ M and M\{x1} is a dominating set of G. All this leads to γ(Gu,v,3) =
γ(G) + 1.

Corollary 10. Let G be a graph with edges. Then epa(G) ≤ Epa(G) ≤ 3.
Moreover, Epa(G) = 3 if and only if G has a γ-set that is not independent, and

epa(G) = 3 if and only if for each pair of adjacent vertices u and v at least one

of the following is valid.

(i) There exists a γ-set of G which contains both u and v.

(ii) At least one of u and v is in V −(G).

Proof. By Corollary 5 and Theorem 9 we have 1 ≤ epa(G) ≤ Epa(G) ≤ 3 and
2 ≤ Epa(G). Since Epa(G) = 2 if and only if i(G) ≡ γ(G) (by Corollary 7),
Epa(G) = 3 if and only if G has a γ-set that is not independent.

Clearly epa(G) = 3 if and only if γ(Gu,v,2) = γ(G) for each pair of adjacent
vertices u and v of G. Then because of Theorem 6(B), we have that epa(G) = 3
if and only if for each pair of adjacent vertices u and v of G at least one of (i)
and (ii) holds.

Corollary 11. Let G be a graph with edges. If V −(G) has a subset which is

a vertex cover of G, then epa(G) = 3. In particular, if G is a vc-graph then

epa(G) = 3.

We define the following classes of graphs G with ∆(G) ≥ 1.

• A = {G | epa(G) = 3},
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• A1 = {G | V −(G) is a vertex cover of G},

• A2 = {G | each two adjacent vertices belongs to some γ-set of G},

• A3 = {G | G is a vc-graph}.

Clearly, A3 ⊆ A1 and by Corolaries 10 and 11, A1∪A2 ⊆ A. These relation-
ships are illustrated in the Venn diagram in Figure 1(left). To continue we relabel
this diagram in six regions R0–R5 as shown in Figure 1(right). In what follows
in this section we show that none of R0–R5 is empty. The corona of a graph H
is the graph G = H ◦ K1 obtained from H by adding a degree-one neighbor to
every vertex of H. If F and H are disjoint graphs, vF ∈ V (F ) and vH ∈ V (H),
then the coalescence (F ·H)(vF , vH : v) of F and H via vF and vH , is the graph
obtained from the union of F and H by identifying vF and vH in a vertex labeled
v.

Figure 1. Left: Classes of graphs with epa = 3. Right: Regions of Venn diagram.

Remark 12. It is easy to see that all the following hold.

(i) If H is a connected graph of order n ≥ 2, then G = H ◦K1 ∈ R0.

(ii) Let G1
k be a graph obtained from the cycle C3k+1 : x0, x1, x2, . . . , x3k, x0,

k ≥ 2, by adding a vertex y and edges yx0, yx2. Then γ(G1
k) = k + 1, G1

k is

γ-excellent, V −(G1
k) = {x0, x2} ∪

⋃k−1

r=1
{x3r+1, x3r+2} is a vertex cover of G,

and there is no γ-set of G1
k that contains both x3r+1 and x3r+2. Thus G

1
k is

in R1.

(iii) The graph H10 depicted in Figure 2 is in A3 and γ(H10) = 3 [1]. It is obvious
that no γ-set of H10 contains both u and v. Hence H10 ∈ R2. Consider now
the graph G2

k = (C3k+1 ·H10)(x0, w : z), where C3k+1 : x0, x1, x2, . . . , x3k, x0,
k ≥ 2, is a cycle on 3k+1 vertices and w is any of the two common neighbors
of u and v in H10. Since both C3k+1 and H10 are vc-graphs, by [4] we have
that G2

k is vc-graph and γ(G2
k) = γ(C3k+1) + γ(H10) − 1. Let D be an

arbitrary γ-set of G2
k, D1 = D ∩ V (H10) and D2 = D ∩ V (C3k+1). Then

exactly one of the following holds.

(a) z ∈ D, D1 is a γ-set of H10 and D2 is a γ-set of C3k+1.

(b) z 6∈ D, D1 is a γ-set of H10 and D2 ∪ {x0} is a γ-set of C3k+1.
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(c) z 6∈ D, D1 ∪ {w} is a γ-set of H10 and D2 is a γ-set of C3k+1.

Since no γ-set of H10 contains both u and v, by (a), (b) and (c) we conclude
that at most one of u and v is in D. Thus G2

k ∈ R2.

(iv) C3k+1 ∈ R3 for all k ≥ 1.

(v) K2,n ∈ R4 for all n ≥ 3.

(vi) Kn,n ∈ R5 for all n ≥ 3.

Thus all regions R0,R1,R2,R3,R4,R5 are nonempty.

Figure 2. Graph H10 is in R2.

3. The Nonadjacent Case

In this section we show that 1 ≤ epa(G) ≤ Epa(G) ≤ 5 and we obtain necessary
and sufficient conditions for epa(G) = Epa(G) = j, 1 ≤ j ≤ 5.

We begin with an easy observation which is an immediate consequence by
Lemma 2(iv) and Lemma 1.

Observation 13. Let u and v be nonadjacent vertices of a graph G. Then

γ(G)− 1 ≤ γ(Gu,v,0) ≤ γ(G) and γ(Gu,v,k) ≤ γ(Gu,v,k+1) for k ≥ 0.

Theorem 14. Let u and v be nonadjacent vertices of a graph G. Then γ(G)−1 ≤
γ(Gu,v,1) ≤ γ(G) + 1. Moreover,

(i) γ(G)− 1 = γ(Gu,v,1) if and only if γ(G− {u, v}) = γ(G)− 2.

(ii) γ(Gu,v,1) = γ(G) + 1 if and only if both u and v are γ-bad vertices of G,

u 6∈ V −(G − v) and v 6∈ V −(G − u). If γ(Gu,v,1) = γ(G) + 1, then x1 ∈
V −(Gu,v,1).

Proof. The left side inequality follows by Observation 13.
(i) ⇒ Assume the equality γ(G)−1 = γ(Gu,v,1) holds and let M be any γ-set

of Gu,v,1. Then at least one and not more than two of x1, u and v must be in M .
Hence M1 = (M \ {x1}) ∪ {u, v} is a dominating set of G and γ(G) ≤ |M1| ≤
|M |+ 1 = γ(Gu,v,1) + 1 = γ(G). This immediately implies that M1 is a γ-set of
G. Hence x1 ∈ M and pn[x1,M ] = {x1, u, v}. Since M1\{u, v} is a dominating
set of G− {u, v}, we have γ(G)− 2 ≤ γ(G− {u, v}) ≤ |M1\{u, v}| = γ(G)− 2.
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(i) ⇐ Suppose now γ(G − {u, v}) = γ(G) − 2. Then for any γ-set U of
G−{u, v}, the set U∪{x1} is a dominating set of Gu,v,1. This leads to γ(Gu,v,1) ≤
|U ∪ {x1}| = γ(G)− 1 ≤ γ(Gu,v,1).

Now we will prove the right side inequality. Let D be any γ-set of G. If at
least one of u and v is in D, then D is a dominating set Gu,v,1 and γ(Gu,v,1) ≤
γ(G). So, let neither u nor v belong to some γ-set of G. Then D ∪ {x1} is a
dominating set of Gu,v,1 and γ(Gu,v,1) ≤ γ(G) + 1.

(ii) ⇒ Assume that γ(Gu,v,1) = γ(G)+1. Then u and v are γ-bad vertices of
G and for any γ-set D of G, D∪{x1} is a γ-set of Gu,v,1. Hence x1 ∈ V −(Gu,v,1).
Suppose u ∈ V −(G−v) and let U be a γ-set of G−{u, v}. Then U1 = U ∪{x1} is
a dominating set of Gu,v,1 and γ(G)+1 = γ(Gu,v,1) ≤ |U1| = 1+γ((G−v)−u) =
γ(G − v) = γ(G), a contradiction. Thus u 6∈ V −(G − v) and by symmetry,
v 6∈ V −(G− u).

(ii) ⇐ Let both u and v be γ-bad vertices of G, u 6∈ V −(G − v) and v 6∈
V −(G− u). Hence γ(G−{u, v}) ≥ γ(G). Consider any γ-set M of Gu,v,1. If one
of u and v belongs to M , then γ(G)+ 1 = γ(Gu,v,1). So, let x1 is in each γ-set of
Gu,v,1. But then pn[x1,M ] = {x1, u, v}. Hence γ(Gu,v,1) − 1 = γ(G − {u, v}) ≥
γ(G) ≥ γ(Gu,v,1)− 1.

Corollary 15. Let G be a noncomplete graph. Then 1 ≤ epa(G) ≤ Epa(G) and
the following assertions hold.

(i) epa(G) = 1 if and only if there are nonadjacent γ-bad vertices u and v of G
such that u 6∈ V −(G− v) and v 6∈ V −(G− u).

(ii) Epa(G) = 1 if and only if γ(G) = 1.

Proof. Observation 13 implies 1 ≤ epa(G).
(i) Immediately by Theorem 14.
(ii) If γ(G) = 1, then clearly Epa(G) = 1. If γ(G) ≥ 2, then G has 2 non-

adjacent vertices at least one of which is γ-good. By Theorem 14, Epa(G) ≥ 2.

Theorem 16. Let u and v be nonadjacent vertices of a graph G. Then γ(G) ≤
γ(Gu,v,2) ≤ γ(G) + 1. Moreover,

(C) γ(Gu,v,2) = γ(G) if and only if one of the following holds.

(i) There is a γ-set of G which contains both u and v.

(ii) At least one of u and v is in V −(G).

(D) γ(Gu,v,2) = γ(G)+1 if and only if u, v 6∈ V −(G) and any γ-set of G contains

at most one of u and v.

Proof. For any γ-set D of G, D ∪ {x2} is a dominating set of Gu,v,2. Hence
γ(Gu,v,2) ≤ γ(G)+1. Suppose γ(Gu,v,2) ≤ γ(G)−1 and let M be a γ-set of Gu,v,2.
Then at least one of x1 and x2 is in M . If x1, x2 ∈ M , then M1 = (M\{x1, x2})∪
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{u, v} is a dominating set of G and |M1| ≤ γ(Gu,v,2), a contradiction. So let
without loss of generality, x1 ∈ M and x2 6∈ M . If u ∈ M or v ∈ M , then again
M1 is a dominating set of G and |M1| ≤ γ(Gu,v,2), a contradiction. Thus x1 ∈ M
and u, v 6∈ M . But then (M\{x1}) ∪ {u} is a dominating set of G, contradicting
γ(Gu,v,2) < γ(G). Thus γ(G) ≤ γ(Gu,v,2) ≤ γ(G) + 1.

(C) ⇒ Let γ(Gu,v,2) = γ(G). Assume that neither (i) nor (ii) hold. Let M be
a γ-set of Gu,v,2. If x1, x2 ∈ M , then M1 = (M\{x1, x2})∪{u, v} is a dominating
set of G of cardinality not more than γ(G) and u, v ∈ M1, a contradiction. Let
without loss of generality x1 ∈ M and x2 6∈ M . Since M\{x1} is no dominating
set of G, u ∈ pn[x1,M ]. But then M3 = (M\{x1}) ∪ {u} is a γ-set of G and
u ∈ V −(G), a contradiction. Thus at least one of (i) and (ii) is valid.

(C) ⇐ If both u and v belong to some γ-set D of G, then D is a dominating
set of Gu,v,2. Hence γ(Gu,v,2) = γ(G). Finally let u ∈ V −(G) and D a γ-set of
G − u. Then D ∪ {x1} is a dominating set of Gu,v,2 of cardinality γ(G). Thus
γ(Gu,v,2) = γ(G).

(D) Immediately by (C) and γ(G) ≤ γ(Gu,v,2) ≤ γ(G) + 1.

Corollary 17. Let G be a noncomplete graph. Then the following assertions

hold.

(i) epa(G) ≤ 2 if and only if there are nonadjacent vertices u, v ∈ V (G)\V −(G)
such that any γ-set of G contains at most one of them.

(ii) Epa(G) = 2 if and only if γ(G) ≥ 2 and each γ-set of G is a clique.

Proof. (i) Immediately by Theorem 16.

(ii) ⇒ Let Epa(G) = 2. By Corollary 15, γ(G) ≥ 2. Suppose G has a γ-set,
say D, which is not a clique. Then there are nonadjacent u, v ∈ D. By Theorem
16(C), γ(Gu,v,2) = γ(G), which contradict Epa(G) = 2. Thus, each γ-set of G is
a clique.

(ii) ⇐ Let γ(G) ≥ 2 and let each γ-set of G be a clique. If G has a vertex
z ∈ V −(G) and Mz is a γ-set of G − z, then M = Mz ∪ {z} is a γ-set of G and
z is an isolated vertex of the graph induced by M , a contradiction. Thus V −(G)
is empty. Now by Theorem 16(D), Epa(G) = 2.

Example 18. The join of two graphs G1 and G2 with disjoint vertex sets is the
graph, denoted by G1 + G2, with the vertex set V (G1) ∪ V (G2) and edge set
E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)}. Let γ(Gi) ≥ 3, i = 1, 2. Then
γ(G1 + G2) = 2 and each γ-set of G1 + G2 contains exactly one vertex of Gi,
i = 1, 2. Hence Epa(G1+G2) = 2. In particular, Epa(Km,n) = 2 when m,n ≥ 3.

Theorem 19. Let u and v be nonadjacent vertices of a graph G. Then γ(G) ≤
γ(Gu,v,3) ≤ γ(G) + 1. Moreover, γ(Gu,v,3) = γ(G) if and only if at least one of

the following holds.
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(i) u ∈ V −(G) and v is a γ-good vertex of G− u,

(ii) v ∈ V −(G) and u is a γ-good vertex of G− v.

Proof. If D is a dominating set of G, then D ∪ {x2} is a dominating set of
Gu,v,3. Hence γ(Gu,v,3) ≤ γ(G) + 1. We already know that γ(G) ≤ γ(Gu,v,2) and
γ(Gu,v,2) ≤ γ(Gu,v,3). But then γ(G) ≤ γ(Gu,v,3).

⇒ Let γ(Gu,v,3) = γ(G) and let M be a γ-set of Gu,v,3 such that Q =
M ∩ {x1, x2, x3} has minimum cardinality. Clearly |Q| = 1. If {x2} = Q, then
M\{x2} is a dominating set of G, contradicting γ(Gu,v,3) = γ(G). Let without
loss of generality {x1} = Q. This implies v ∈ M , x3 ∈ pn[v,M ] and pn[x1,M ] =
{u, x1, x2}. Then M2 = (M\{x1}) ∪ {u} is a γ-set of G, pn[u,M2] = {u} and
v ∈ M2; hence (i) holds.

⇐ Let without loss of generality (i) is true. Then there is a γ-set D of G
such that u, v ∈ D and D\{u} is a γ-set of G− u. But then (D\{u}) ∪ {x1} is a
dominating set of Gu,v,3, which implies γ(G) ≥ γ(Gu,v,3).

Corollary 20. Let G be a noncomplete graph. Then the following holds.

(E) epa(G) ≤ 3 if and only if there is a pair of nonadjacent vertices u and v
such that neither (i) nor (ii) is valid, where

(i) u ∈ V −(G) and v is a γ-good vertex of G− u,

(ii) v ∈ V −(G) and u is a γ-good vertex of G− v.

(F) epa(G) = Epa(G) = 3 if and only if all vertices of G are γ-good, V −(G) is

empty and for every 2 nonadjacent vertices u and v of G there is a γ-set of
G which contains them both.

Proof. (F)⇒ Let epa(G) = Epa(G) = 3. If u ∈ V −(G) and D is a γ-set of G−u,
then for u and each v ∈ D is fulfilled (i) of Theorem 19. But then Epa(G) 6= 3,
a contradiction. So, V −(G) is empty. Suppose that G has γ-bad vertices. Then
there is a γ-bad vertex which is nonadjacent to some other vertex of G. But
Theorem 16(D) implies epa(G) < 3, a contradiction. Thus all vertices of G are
γ-good. Now let u, v ∈ V (G) be nonadjacent. If there is no γ-set of G which
contains both u and v, then by Theorem 16(D) we have γ(Gu,v,2) = γ(G) + 1, a
contradiction.

(F)⇐ Let V −(G) be empty and for each pair u, v of nonadjacent vertices of G
there is a γ-set Duv of G with u, v ∈ Duv. By Theorem 19, γ(Gu,v,3) = γ(G) + 1,
and by Theorem 16, γ(Gu,v,2) = γ(G). Hence pa(u, v) = 3.

Example 21. Denote by U the class of all graphs G with epa(G) = Epa(G) =
3. Then all the following holds. (a) Circulant graphs C(2k + 1; {±1,±2, . . . ,±
(k − 1)}) ∈ U for all k ≥ 1. (b) Let G be a disconnected graph. Then G ∈ U if
and only if G has no isolated vertices and each its component is either in U or is
complete.
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Theorem 22. Let u and v be nonadjacent vertices of a graph G. Then γ(G) ≤
γ(Gu,v,4) ≤ γ(G) + 2. Moreover, the following assertions are valid.

(G) γ(Gu,v,4) = γ(G) + 2 if and only if γ(Gu,v,1) = γ(G) + 1.

(H) If γ(Gu,v,1) = γ(G) and γ(Gu,v,i) = γ(G) + 1 for some i ∈ {2, 3}, then

γ(Gu,v,4) = γ(G) + 1.

(I) Let γ(Gu,v,3) = γ(G). Then γ(Gu,v,4) ≤ γ(G) + 1 and the equality holds if

and only if γ(G− {u, v}) ≥ γ(G)− 1.

(J) γ(Gu,v,4) = γ(G) if and only if γ(G− {u, v}) = γ(G)− 2.

Proof. Since γ(G) ≤ γ(Gu,v,3) (by Theorem 19) and γ(Gu,v,3) ≤ γ(Gu,v,4) (by
Observation 13), we have γ(G) ≤ γ(Gu,v,4). Let S be a γ-set of G. Then S ∪
{x1, x4} is a dominating set of Gu,v,4, which leads to γ(Gu,v,4) ≤ γ(G) + 2.

Claim 1. If γ(Gu,v,1) ≤ γ(G), then γ(Gu,v,4) ≤ γ(G) + 1.

Proof. Assume that v is a γ-bad vertex of G, u ∈ V −(G − v) and R a γ-set of
G−{u, v}. Then |R| = γ((G−v)−u) = γ(G−v)−1 = γ(G)−1 and R∪{x1, x4}
is a dominating set of Gu,v,4. Hence γ(Gu,v,4) ≤ |R|+ 2 = γ(G) + 1.

Assume now that D is a γ-set of G with u ∈ D. Then D ∪ {x3} is a domi-
nating set of Gu,v,4. Hence again γ(Gu,v,4) ≤ γ(G) + 1. Now by Theorem 14 we
immediately obtain the required.

(G) Let γ(Gu,v,4) = γ(G)+2. By Claim 1, γ(Gu,v,1) > γ(G) and by Theorem
14, γ(Gu,v,1) = γ(G) + 1.

Let now γ(Gu,v,1) = γ(G) + 1. By Theorem 14, u and v are γ-bad vertices
of G, u 6∈ V −(G − v) and v 6∈ V −(G − u). Let M be a γ-set of Gu,v,4 such
that R = M ∩ {x1, x2, x3, x4} has minimum cardinality. Clearly |R| ∈ {1, 2}.
Assume first |R| = 1 and without loss of generality {x2} = M . Then M\{x2}
is a dominating set of G with v ∈ M\{x2}. Since v is a γ-bad vertex of G,
|M\{x2}| > γ(G) and then γ(Gu,v,4) = |M | > γ(G) + 1. Let now |R| = 2 and
without loss of generality x1, x4 ∈ M . Since |M ∩ {x1, x2, x3, x4}| is minimum,
u, v 6∈ M and M\{x1, x4} is a dominating set of G−{u, v}. But then γ(Gu,v,4) =
2 + |M\{x1, x4}| ≥ 2 + γ((G− u)− v) ≥ 2 + γ(G− u) = 2 + γ(G).

(H) Let γ(Gu,v,1) = γ(G). By Claim 1, γ(Gu,v,4) ≤ γ(G) + 1. If γ(Gu,v,i) =
γ(G)+1 for some i ∈ {1, 2}, then since γ(Gu,v,4) ≥ γ(Gu,v,i), we obtain γ(Gu,v,4) =
γ(G) + 1.

(I) Let γ(Gu,v,3) = γ(G). Hence at least one of (i) and (ii) of Theorem 19
holds, and by (E), γ(Gu,v,4) ≤ γ(G) + 1.

Assume that the equality holds. If γ(G−{u, v}) = γ(G)−2, then for any γ-set
U of G−{u, v}, U∪{x1, x4} is a dominating set of Gu,v,4. Hence γ(Gu,v,4) = γ(G),
a contradiction.
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Let now γ(G−{u, v}) ≥ γ(G)−1 and without loss of generality condition (i)
of Theorem 19 be satisfied. Suppose γ(Gu,v,4) = γ(G). Hence for each γ-set M
of Gu,v,4 are fulfilled: x1, x4 ∈ M , x2, x3, u, v 6∈ M , pn[x1,M ] = {x1, x2, u} and
pn[x4,M ] = {x3, x4, , v}. But then γ(G − {u, v}) = γ(G) − 2, a contradiction.
Thus γ(Gu,v,4) = γ(G) + 1.

(J) If γ(Gu,v,4) = γ(G), then γ(Gu,v,3) = γ(G) and by (G), γ(G − {u, v}) =
γ(G)− 2.

Now let γ(G− {u, v}) = γ(G)− 2. But then for each γ-set D of G− {u, v},
the set D ∪ {x1, x4} is a dominating set of Gu,v,4. Thus γ(Gu,v,4) = γ(G).

Theorem 23. Let u and v be nonadjacent vertices of a graph G. If γ(Gu,v,k) =
γ(G), then k ≤ 4. If k ≥ 5, then γ(Gu,v,k) > γ(G). If γ(Gu,v,4) = γ(G), then
γ(Gu,v,5) = γ(G) + 1.

Proof. By Theorem 22, γ(G) ≤ γ(Gu,v,4) ≤ γ(G) + 2. If γ(Gu,v,4) > γ(G), then
γ(Gu,v,k) > γ(G) for all k ≥ 5 because of Observation 13. So, let γ(Gu,v,4) =
γ(G). By Theorem 22(H), γ(G−{u, v}) = γ(G)−2. But then for each γ-set D of
G−{u, v}, the set D∪{x1, x3, x5} is a dominating set of Gu,v,5. Hence γ(Gu,v,5) ≤
γ(G) + 1. Let now M be a γ-set of Gu,v,5. Then at least one of x2, x3, x4 is in M
and hence γ(Gu,v,5) = |M | ≥ γ(G) + 1. Thus γ(Gu,v,5) = γ(G) + 1. Now using
again Observation 13 we conclude that γ(Gu,v,k) > γ(G) for all k ≥ 5.

Corollary 24. Let G be a noncomplete graph. Then epa(G) ≤ Epa(G) ≤ 5.
Moreover, the following holds.

(i) Epa(G) = 5 if and only if there are nonadjacent vertices u and v of G with

γ(G− {u, v}) = γ(G)− 2.

(ii) epa(G) = 5 if and only if G is edgeless.

(iii) epa(G) = Epa(G) = 4 if and only if for each pair u, v of nonadjacent vertices

of G, γ(G− {u, v}) ≥ γ(G)− 1 and at least one of the following holds:

(a) u ∈ V −(G) and v is a γ-good vertex of G− u,

(b) v ∈ V −(G) and u is a γ-good vertex of G− v.

Proof. By Theorem 23, Epa(G) ≤ 5.
(i) ⇒ Let Epa(G) = 5. Then there is a pair u, v of nonadjacent vertices of G

such that γ(Gu,v,4) = γ(G). Now by Theorem 22(H), γ(G− {u, v}) = γ(G)− 2.
(i) ⇐ Let γ(G− {u, v}) = γ(G)− 2 and D be a γ-set of G− {u, v}, where u

and v are nonadjacent vertices of G. Hence D1 = D ∪ {x1, x4} is a dominating
set of Gu,v,4 and |D1| = γ(G). This implies γ(Gu,v,4) = γ(G). The result now
follows by Theorem 23.

(ii) If G has no edges, then the result is obvious. So let G have edges and
epa(G) = 5. Then for any 2 nonadjacent vertices u and v of G is satisfied
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γ(G − {u, v}) = γ(G) − 2 (by (i)). Hence we can choose u and v so that they
have a neighbor in common, say w. But then w is a γ-bad vertex of G− u which
implies v 6∈ V −(G− u). This leads to γ(G− {u, v}) ≥ γ(G)− 1, a contradiction.

(iii) ⇒ Let epa(G) = Epa(G) = 4. Then for each two nonadjacent u, v ∈
V (G) we have γ(G) = γ(Gu,v,3) < γ(Gu,v,4). Now by Theorem 22(G), γ(G −
{u, v}) ≥ γ(G)− 1 and by Theorem 19, at least one of (a) and (b) is valid.

(iii)⇐ Consider any two nonadjacent vertices u, v of G. Then γ(G−{u, v}) ≥
γ(G) − 1 and at least one of (a) and (b) is valid. Theorem 19 now implies
γ(G) = γ(Gu,v,3), and by Theorem 22, pa(u, v) = 4.

Example 25. Let Gn be the Cartesian product of two copies of Kn, n ≥ 2.
We consider Gn as an n × n array of vertices {xi,j | 1 ≤ i ≤ j ≤ n}, where
the closed neighborhood of xi,j is the union of the sets {x1,j , x2,j , . . . , xn,j} and
{xi,1, xi,2, . . . , xi,n}. Note that V (Gn) = V −(Gn) and γ(Gn) = n [6]. It is easy to
see that the following sets are γ-sets of Gn−x1,1: Di = {x2,i, x3,i+1, . . . , xn,n+i−2},
i = 2, 3, . . . , n, where xk,j = xk,j−n+1 for j > n and 2 ≤ k ≤ n. Since D =⋃n

i=2
Di = V (Gn)\N [x1,1], all γ-bad vertices of Gn − x1,1 are the neighbors of

x1,1 in Gn. Since each vertex of D is adjacent to some neighbor of x1,1, V
−(Gn−

x1,1) is empty. Now by Theorem 19 we have pa(x1,1, y) ≥ 4, and by Theorem
22(H), pa(x1,1, y) < 5. Thus pa(x1,1, y) = 4. By reason of symmetry, we obtain
epa(Gn) = Epa(Gn) = 4.

4. Observations and Open Problems

A constructive characterization of the trees T with i(T ) ≡ γ(T ), and therefore a
constructive characterization of the trees T with Epa(T ) = 2 (by Corollary 7),
was provided in [9].

Problem 26. Characterize all unicyclic graphs G with Epa(G) = 2.

Problem 27. Find results on γ-excellent graphs G with Epa(G) = 2.

Problem 28. Characterize all graphs G with epa(G) = Epa(G) = 4.

Corollary 29. Let G be a connected noncomplete graph with edges. Then

(i) 2 ≤ epa(G) + Epa(G) ≤ 8,

(ii) 2 ≤ epa(G) + epa(G) ≤ 7,

(iii) 3 ≤ Epa(G) + Epa(G) ≤ 8,

(iv) 3 ≤ Epa(G) + epa(G) ≤ 7.

Proof. (i)–(iv) The left-side inequalities immediately follow by Corollary 5 and
Corollary 15. The right-side inequalities hold because of Corollary 10 and Corol-
lary 24.
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Note that all bounds stated in Corollary 29 are attainable. We leave finding
examples demonstrating this to the reader.

Problem 30. Characterize all graphs G that attain the bounds in Corollary 29.
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