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Abstract

For any pair of graphs G and H, both the size Ramsey number r̂(G,H)
and the restricted size Ramsey number r∗(G,H) are bounded above by the
size of the complete graph with order equals to the Ramsey number r(G,H),
and bounded below by e(G) + e(H) − 1. Moreover, trivially, r̂(G,H) ≤
r∗(G,H). When introducing the size Ramsey number for graph, Erdős et

al. (1978) asked two questions; (1) Do there exist graphs G and H such that
r̂(G,H) attains the upper bound? and (2) Do there exist graphs G and H

such that r̂(G,H) is significantly less than the upper bound?
In this paper we consider the restricted size Ramsey number r∗(G,H).

We answer both questions above for r∗(G,H) when G = P3 and H is a
connected graph.

Keywords: restricted size Ramsey number, path, connected graph, star.

2010 Mathematics Subject Classification: 05C55, 05D10.

1Corresponding author.

http://dx.doi.org/10.7151/dmgt.2188


758 D.R. Silaban, E.T. Baskoro and S. Uttunggadewa

1. Introduction

Let G be a graph, where the vertex set, edge set, order, size, minimum degree,
maximum degree, and its complement are V (G), E(G), v(G), e(G), δ(G), ∆(G),
and G, respectively. The degree of a vertex v in G is denoted by d(v). If H is
a subgraph of G, then G −H is a graph obtained from G by deleting the edges
of H [13]. Thus, V (G−H) = V (G). For further terminologies in graphs, please
see [6].

A graph F is called a graph arrowing a pair of graphs G and H, denoted by
F → (G,H), if any 2-coloring (say red and blue) of the edges of F contains a red
G or a blue H. In 1978, Erdős et al. in [9] introduced the question of how few
edges in such an arrowing graph can be. The size Ramsey number r̂(G,H) is the
smallest number of edges that an arrowing graph can have. If the order of the
arrowing graph is equal to the Ramsey number r(G,H), the smallest number of
edges in the arrowing graph is called the restricted size Ramsey number r∗(G,H).
The Ramsey number r(G,H) itself is the smallest number r such that Kr is an
arrowing graph for a pair of graphs G and H. For a diagonal case, when G = H,
we write r̂(G) and r∗(G) instead of r̂(G,G) and r∗(G,G), respectively.

To find the exact values for the (restricted) size Ramsey number for a pair
of graphs is a challenging but difficult problem even for small order graphs. The
complete list of the (restricted) size Ramsey numbers for all pairs of graphs of
order at most four with no isolates can be found in [13], and for the size and the
restricted size Ramsey numbers for all pairs of forest graphs of order at most five
with no isolates can be found in [18]. For further results about the (restricted)
size Ramsey number for graphs can be found in [2, 3, 12]. The current results on
the exact values of the (restricted) size Ramsey number for graphs can be found
in [16, 19, 21–23], and on the bounds of the (restricted) size Ramsey number
involving paths in [7, 8, 16, 17].

The (restricted) size Ramsey number for any pair of graphs G and H meet
the following inequalities.

(1) e(G) + e(H)− 1 ≤ r̂(G,H) ≤ r∗(G,H) ≤

(

r(G,H)
2

)

.

The first inequality was given by Erdős and Faudree in [10]. The diagonal version
of these bounds for the size Ramsey number was given by Harary and Miller
in [15].

When introducing the size Ramsey number for graphs, Erdős et al. in [9]
proposed two preliminary questions.

(i) Do there exist graphs G and H such that r̂(G,H) attains the upper bound?

(ii) Do there exist o-sequences?
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An o-sequence is defined to give the precise meaning to the idea that r̂(G,H)
is ’significantly’ less than

(

r(G,H)
2

)

. For diagonal case, a sequence of graphs {Gn}

is called o-sequence if r̂(Gn) = o
(

r(Gn)
2

)

.

Erdős et al. [9] provided a positive answer to the first question by showing
that r̂(Km,Kn) = r∗(Km,Kn) =

(

r(Km,Kn)
2

)

for all values of m and n. This result
is due to Chvátal (by personal communication). It is also true for some pairs of
small graphs, namely, (P3, C4), (C4, C4), and (C4,K4 − e) (see [11, 13]).

Erdős et al. [9] also give a positive answer to the second question by showing
that it is true for the size Ramsey number of stars and some graphs obtained by
star operation. By considering the value of r̂(nK2) (see [15]) and the value of
r(nK2) (see [20]), we conclude that {nK2} is also an o-sequence. Note that the
size Ramsey number of stars, r̂(K1,m,K1,n) = m + n − 1, is attaining the lower
bound. However, it is still open whether every sequence of graph {(G,H)} for
which r̂(G,H) is attaining the lower bound always belong to o-sequence. For a
special case, when G = H = P3, the lower and upper bounds are the same, which
is r̂(P3) = r∗(P3) = 3. They are equal to the size of K3 [4, 10].

In this paper we are concerned with the restricted size Ramsey number
r∗(P3, H) for any connected graph H. We characterize all connected graphs
H such that r∗(P3, H) attains the upper and lower bounds. We also show
that {(P3, H)} with r∗(P3, H) attaining the lower bound belongs to restricted
o-sequence. The main results of this paper are the following.

Theorem 1. Let H be a connected graph and v(H) = n.

r∗(P3, H) =

(

r(P3, H)
2

)

if and only if one of the following holds:

(a) n is even, n ≥ 4, and H = Kn − n
2K2,

(b) n is odd, n ≥ 5, and H is one of the following

(b1) H with β(H) = n−1
2 and ∆(H) = n− 1,

(b2) H = Kn −
(

P3 ∪
(

n−1
2 − 1

)

K2

)

, or

(b3) H = Kn −
(

C3 ∪
(

n−1
2 − 1

)

K2

)

.

Theorem 2. Let H be a connected graph and v(H) = n.

r∗(P3, H) = e(P3) + e(H)− 1

if and only if H = K1,n−1 and n is even.
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2. Preliminaries

In 1972, Chvátal and Harary [5] gave the Ramsey number for P3 and any graph
with no isolates, as stated in Theorem A. In finding r∗(P3, H), the order of graph
F satisfying F → (P3, H) will be determined by this result.

Theorem A [5]. For any graph H with no isolates,

r(P3, H) =

{

v(H), H has 1-factor,

2v(H)− 2β(H)− 1, otherwise,

where β(H) is the maximum number of independent edges in the complement

of H.

From the definition of the (restricted) size Ramsey number, the following
monotonicity property is obvious. If G′ ⊆ G and H ′ ⊆ H, then

(2) r̂(G′, H ′) ≤ r̂(G,H),

and

(3) r∗(G′, H ′) ≤ r∗(G,H).

Let F be a graph with all the edges colored by red and blue. Following
the idea of Faudree and Sheehan in [14], we define a graph that represents the
subgraph induced by the blue edges in such a coloring. A graph GF has V (GF ) =
V (F ) and E(GF ) that consists of red edges in the coloring of F and edges in F .
It is important to notice that GF is precisely the subgraph of F induced by blue
edges. The notation of the graph GF will be extensively used to prove the main
results.

3. Proof of Theorem 1

The following lemmas are used to prove this theorem.

Lemma 3 [14]. For a positive integer n ≥ 2,

r̂(P3,Kn) = r∗(P3,Kn) = 2(n− 1)2.

Lemma 4. Let H be a connected graph of order n such that β = β(H). If n ≥ 4
and β ≤

⌊

n
2

⌋

− 1, then

r∗(P3, H) ≤

(

2n− 2β − 1
2

)

− 1.
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Proof. Note that β(H) is the maximum number of independent edges in the
complement of H. For β = 0, by Theorem A we obtain r(P3, H) = 2n − 1 and
from Lemma 3 we have r∗(P3, H) = 2(n− 1)2 <

(

2n−1
2

)

− 1.

For 1 ≤ β ≤
⌊

n
2

⌋

− 1, by Theorem A we obtain r(P3, H) = 2n − 2β − 1.
Note that for any β, there will be a plenty of non-isomorphic graphs H such
that β(H) = β. However, such a graph H must satisfy H ⊆ Kn − βK2. By (3)
we have r∗(P3, H) ≤ r∗(P3,Kn − βK2). Therefore, we only need to show that
r∗(P3,Kn − βK2) ≤

(

2n−2β−1
2

)

− 1.

Now, let F = K2n−2β−1 − K2. We will show that F → (P3,Kn − βK2) for
any β, where 1 ≤ β ≤

⌊

n
2

⌋

− 1. To do so, consider any 2-coloring of the edges of
F having no red P3. The graph GF will be isomorphic to a subgraph of either
P4 ∪ (n− β− 3)K2 ∪K1 or P3 ∪ (n− β− 2)K2. Since Kn−β ⊆ Kn − βK2, we will
show that we can construct Kn − βK2 in GF by constructing Kn−β first.

If GF ⊆ P4 ∪ (n − β − 3)K2 ∪ K1, then in GF there is a Kn−β induced by
two nonadjacent vertices from P4 (one of degree 1 and one of degree 2), vertex of
K1, and n − β − 3 non-adjacent vertices in (n − β − 3)K2. Furthermore, in GF

there are at least n− β − 2 (one is from P4) nonadjacent vertices of degree 1 (or
of degree 2n − 2β − 3 in GF ) which are not in Kn−β . Since for n ≥ 4 it is true
that n − β − 2 ≥ β and 2n − 2β − 3 ≥ n − β − 1, we can extend this Kn−β to
Kn − βK2 in GF .

If GF ⊆ P3 ∪ (n − β − 2)K2, then in GF there is a Kn−β induced by two
nonadjacent vertices from P3 and n−β−2 vertices each from K2 in (n−β−2)K2.
Furthermore, in GF there are at least n − β − 2 nonadjacent vertices of degree
1 (or of degree 2n− 2β − 3 in GF ) which are not in Kn−β . Since for n ≥ 4 it is
true that n− β − 2 ≥ β and 2n− 2β − 3 ≥ n− β − 1, we can extend this Kn−β

to Kn − βK2 in GF .

Since GF is exactly the subgraph of F induced by blue edges, F → (P3,Kn−
βK2). Thus r

∗(P3,Kn − βK2) ≤
(

2n−2β−1
2

)

− 1 for any 1 ≤ β ≤
⌊

n
2

⌋

− 1.

Next, we examine r∗(P3, H) when r(P3, H) = n. In Lemma 5 we give the
first conditions for a connected graph H with r(P3, H) = n, so that r∗(P3, H)
attains the upper bound of (1). Odd stars, wheels, and fans meet the conditions,
so we also obtain r∗(P3, H) for H are those graphs.

Lemma 5. Let H be a connected graph of order n such that β(H) = n−1
2 , and

∆(H) = n− 1 where n is odd and n ≥ 3.

r∗(P3, H) =

(

n

2

)

.

Proof. Since β(H) = n−1
2 , by Theorem A we obtain r(P3, H) = n. As a conse-

quence, r∗(P3, H) ≤
(

n
2

)

.
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Now, let F be a graph with v(F ) = n and e(F ) =
(

n
2

)

− 1. The only possible
F is isomorphic to Kn−K2. Since n is odd, we can give a 2-coloring of the edges
of F such that n−1

2 independent edges which are involving only one vertex from
non-edge are red and the remaining edges are blue. In this 2-coloring, there is
no red P3 and the maximum degree of the subgraph of F induced by blue edges
is n− 2. Since ∆(H) = n− 1, we cannot have a blue H. Thus F 9 (P3, H) and
r∗(P3, H) ≥

(

n
2

)

.

The maximal graph H with v(H) = n and β(H) =
⌊

n
2

⌋

is Kn−
⌊

n
2

⌋

K2, which
is the graph obtained by deleting a maximal matching from Kn. In Lemma 6 we
consider this graph. Note that if n is even, then the graph H is a cocktail party
graph.

Lemma 6. For n ≥ 3,

r∗(P3,Kn −
⌊n

2

⌋

K2) =

(

n

2

)

.

Proof. If n is odd, then β(H) = n−1
2 and ∆(H) = n − 1. From Lemma 5 we

have r∗(P3, H) =
(

n
2

)

.
If n is even, then H is an (n − 2)-regular graph. Since β(H) = n

2 (H has
1-factor), by Theorem A we obtain r(P3, H) = n. As a consequence, r∗(P3, H) ≤
(

n
2

)

.
Now, let F be a graph with v(F ) = n and e(F ) =

(

n
2

)

− 1. The only possible
F is isomorphic to Kn − K2. Since n is even, we can give a 2-coloring of the
edges of F such that n

2 independent edges are red and the remaining edges are
blue. In this 2-coloring, there is no red P3 and in the subgraph of F induced
by blue edges there are exactly two vertices of degree less than n − 2. Since H

is an (n − 2)-regular graph, we cannot have a blue H. Thus F 9 (P3, H) and
r∗(P3, H) ≥

(

n
2

)

.

Since r∗
(

P3,Kn −
⌊

n
2

⌋

K2

)

is still attaining the upper bound of (1), we will
go further by considering the graphs obtained by removing one more edge from
Kn −

⌊

n
2

⌋

K2.

Lemma 7. Let H1 = Kn −
⌊

n
2

⌋

K2 and H = H1 − e for n ≥ 4. Then,

r∗(P3, H) =















(

n

2

)

− 1, n is even,
(

n

2

)

, n is odd.

Proof. Since v(H) = n and β(H) =
⌊

n
2

⌋

, by Theorem A we obtain r(P3, H) = n.
We divide the proof into two cases based on the parity of n.
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Case 1. n is even. The graphH will be isomorphic toKn−
(

P4 ∪
(

n
2 − 2

)

K2

)

.
Let F = Kn − K2. We will show that F → (P3, H). To do so, consider any 2-
coloring of F having no red P3. The graph GF will be a subgraph of P4 ∪
(

n
2 − 2

)

K2. As a consequence GF must contain H. Thus r∗(P3, H) ≤
(

n
2

)

− 1.

Now, let F be a graph with v(F ) = n and e(F ) =
(

n
2

)

− 2. Thus, F must
be isomorphic to either Kn − P3 or Kn − 2K2. We will show that F 9 (P3, H).
First, consider F = Kn − P3. There is exactly one vertex in F of degree n − 3.
We can color an edge incident to this vertex by red and the remaining edges by
blue. In this 2-coloring, there is no red P3 in F and the induced subgraph of F
by blue edges will contain a vertex of degree n−4. Since δ(H) = n−3, we cannot
have a blue H in F .

Consider F = Kn−2K2. There are exactly four vertices in F of degree n−2.
We can color independent edges incident to these four vertices by red and the
remaining edges by blue. In this 2-coloring, there is no red P3 in F , and the
induced subgraph of F by blue edges will contain at least four vertices of degree
n − 3. Since in H there are exactly two vertices of minimum degree, which is
n − 3, we cannot have a blue H. Thus, in any cases we have that F 9 (P3, H)
and so r∗(P3, H) ≥

(

n
2

)

− 1.

Case 2. n is odd. In this case, the graph H must be isomorphic to ei-
ther Kn −

(

P4 ∪
(

n−1
2 − 2

)

K2

)

or Kn −
(

P3 ∪
(

n−1
2 − 1

)

K2

)

. If H = Kn −
(

P4 ∪
(

n−1
2 − 2

)

K2

)

, then β(H) = n−1
2 and ∆(H) = n − 1. From Lemma 5 we

have r∗(P3, H) =
(

n
2

)

.

Let H = Kn −
(

P3 ∪
(

n−1
2 − 1

)

K2

)

. Since r(P3, H) = n, r∗(P3, H) ≤
(

n
2

)

.
Now, let F be a graph with v(F ) = n and e(F ) =

(

n
2

)

− 1. Thus, the graph F

must be isomorphic to Kn −K2. There are exactly two vertices in F of degree
n−2. Now, color the independent edges incident to these two vertices by red and
the remaining edges by blue. In this 2-coloring, there is no red P3 in F and the
induced subgraph of F by blue edges will contain two vertices of degree n − 3.
Since H contains exactly one vertex of degree n− 3 (minimum), we cannot have
a blue H in F . Thus F 9 (P3, H) and r∗(P3, H) ≥

(

n
2

)

.

We see in Lemma 7 that r∗
(

P3,Kn −
⌊

n
2

⌋

K2 − e
)

still attains the upper
bound of (1) if n is odd. So, we can consider its subgraph H by deleting one
edge and ∆(H) < n − 1. (If n is odd and ∆(H) = n − 1, then r∗(P3, H) has
been given in Lemma 5). We get four different graphs, namely, H1 = Kn −
(

C3 ∪
(

n−1
2 − 1

)

K2

)

(n ≥ 5), H2 = Kn −
(

P5 ∪
(

n−1
2 − 2

)

K2

)

(n ≥ 5), H3 =
Kn −

(

P4 ∪ P3 ∪
(

n−1
2 − 3

)

K2

)

(n ≥ 7), and H4 = Kn −
(

S1,3 ∪
(

n−1
2 − 2

)

K2

)

(n ≥ 5), where Sk,n is a graph obtained from K1,n by subdividing one edge k

times [1].

The amalgamation of graphsH1 andH2, denoted by Amal(H1, H2), is formed
by identifying a vertex from H1 to a vertex from H2.
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Lemma 8. Let H1 = Kn −
(

C3 ∪
(

n−1
2 − 1

)

K2

)

(n ≥ 5), H2 = Kn −
(

P5 ∪
(

n−1
2

−2
)

K2

)

(n ≥ 5), H3 = Kn −
(

P4 ∪ P3 ∪
(

n−1
2 − 3

)

K2

)

(n ≥ 7), and H4 =
Kn −

(

S1,3 ∪
(

n−1
2 − 2

)

K2

)

(n ≥ 5). For odd n

r∗(P3, H1) =

(

n

2

)

, r∗(P3, H2) = r∗(P3, H3) = r∗(P3, H4) =

(

n

2

)

− 1.

Proof. Since v(Hi) = n, n is odd, and β(Hi) =
n−1
2 , by Theorem A we obtain

r(P3, Hi) = n for 1 ≤ i ≤ 4.

Case 1. H1 = Kn −
(

C3 ∪
(

n−1
2 − 1

)

K2

)

. Since r(P3, H1) = n, r∗(P3, H1) ≤
(

n
2

)

. Now, let F be a graph with v(F ) = n and e(F ) =
(

n
2

)

− 1. Then, F must be
isomorphic to Kn−K2. Consider a 2-coloring of the edges of F having no red P3

such that the graph GF is P4 ∪
(

n−1
2 − 2

)

K2 ∪K1. In this 2-coloring, GF is not
a subgraph of C3 ∪

(

n−1
2 − 1

)

K2 and so GF contains no H1. Thus F 9 (P3, H1)
and r∗(P3, H1) ≥

(

n
2

)

.

Case 2. H2 = Kn−
(

P5∪
(

n−1
2 −2

)

K2

)

, H3 = Kn−
(

P4∪P3∪
(

n−1
2 −3

)

K2

)

,
or H4 = Kn −

(

S1,3 ∪
(

n−1
2 − 2

)

K2

)

. If n = 5, then Silaban et al. have shown
that r∗(P3, H2) = r∗(P3, H4) =

(

n
2

)

− 1 = 9 [23].
For n ≥ 7, let F = Kn −K2. We will show that F → (P3, Hi) for 2 ≤ i ≤ 4.

To do so, consider any 2-coloring of F that have no red P3. Then GF will be
isomorphic to a subgraph of either P3 ∪

(

n−1
2 − 1

)

K2 or P4 ∪K1 ∪
(

n−1
2 − 2

)

K2.
Since each of P5∪

(

n−1
2 −2

)

K2, P4∪P3∪
(

n−1
2 −3

)

K2, and S1,3∪
(

n−1
2 −2

)

K2 is a
subgraph of both P3∪

(

n−1
2 −1

)

K2 and P4∪K1∪
(

n−1
2 −1

)

K2, GF must contain
Hi for 2 ≤ i ≤ 4. Thus F → (P3, Hi) and r∗(P3, Hi) ≤

(

n
2

)

− 1 for 2 ≤ i ≤ 4.
Now, let F be a graph with v(F ) = n and e(F ) =

(

n
2

)

− 2. Then, F must be
isomorphic to either Kn − P3 or Kn − 2K2. We will show that F 9 (P3, Hi) for
2 ≤ i ≤ 4 for such a graph F .

If F = Kn − P3, then F must contain exactly one vertex of degree n − 3
and two vertices of degree n − 2. Now, color three independent edges incident
to these three vertices by red so that GF contains an Amal(P4, P3) in a vertex
of P4 of degree 2 and leaf of P3. All the remaining edges are colored by blue.
In this 2-coloring, there is no red P3. Since Amal(P4, P3) * P5 ∪

(

n−1
2 − 2

)

K2,
Amal(P4, P3) * P4 ∪P3 ∪

(

n−1
2 − 3

)

K2, and Amal(P4, P3) * S1,3 ∪
(

n−1
2 − 2

)

K2,
we cannot have a blue Hi for 2 ≤ i ≤ 4. Thus F 9 (P3, Hi) for 2 ≤ i ≤ 4.

If F = Kn−2K2, then F contains exactly four vertices of degree n−2. Now,
color three independent edges incident to these four vertices of degree n−2 by red
such that GF contains a P6 and the remaining edges by blue. In this 2-coloring,
there is no red P3. Since P6 * P5 ∪

(

n−1
2 − 2

)

K2, P6 * P4 ∪ P3 ∪
(

n−1
2 − 3

)

K2,
and P6 * S1,3 ∪

(

n−1
2 − 2

)

K2, we cannot have a blue Hi for 2 ≤ i ≤ 4. Thus
F 9 (P3, Hi).

Hence r∗(P3, Hi) ≥
(

n
2

)

− 1 for 2 ≤ i ≤ 4.
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Since r∗
(

P3,Kn −
(

C3 ∪
(

n−1
2 − 1

)

K2

))

=
(

n
2

)

, then we can consider the
subgraph of Kn−

(

C3∪
(

n−1
2 −1

)

K2

)

by deleting one edge for n being odd. This
subgraph will be isomorphic to either H1 = Kn−

(

Amal(P3, C3)∪
(

n−1
2 −2

)

K2

))

for n ≥ 5 or H2 = Kn−
(

C3∪P4∪
(

n−1
2 −3

)

K2

))

for n ≥ 7 where Amal(P3, C3) is
the amalgamation of a leaf in P3 with a vertex in C3. Since Kn−

(

Amal(P3, C3)∪
(

n−1
2 −2

)

K2

))

⊆ Kn−
(

S1,3∪
(

n−1
2 −2

)

K2

)

and Kn−
(

C3∪P4∪
(

n−1
2 −3

)

K2

))

⊆
P4 ∪ P3 ∪

(

n−1
2 − 3

)

K2

)

, we have Corollary 9.

Corollary 9. Let H1 = Kn −
(

Amal(P3, C3) ∪
(

n−1
2 − 2

)

K2

)

(n ≥ 5) and H2 =
Kn −

(

C3 ∪ P4 ∪
(

n−1
2 − 3

)

K2

)

(n ≥ 7) where n is odd. Then,

r∗(P3, H1) =











8, n = 5,
(

n

2

)

− 1, n ≥ 7, and r∗(P3, H2) =

(

n

2

)

− 1.

Now, we are ready to prove Theorem 1.

Proof. (⇐) If n is even and H = Kn − n
2K2, then by Theorem A we have

r(P3, H) = n and the result follows by Lemma 6. Now, let us consider the case if
n is odd. If β(H) = n−1

2 , ∆(H) = n−1, then by Theorem A we have r(P3, H) = n

and the result follows by Lemma 5.

If Kn −
(

P3 ∪
(

n−1
2 − 1

)

K2

)

, then by Theorem A we have r(P3, H) = n and
the result follows by Lemma 7. If Kn −

(

C3 ∪
(

n−1
2 − 1

)

K2

)

, then by Theorem A
we have r(P3, H) = n and the result follows by Lemma 8.

(⇒) Suppose to the contrary that H is not one of (a)–(b) and r∗(P3, H) =
(

r(P3,H)
2

)

. If β(H) ≤
⌊

n
2

⌋

−1, then by Theorem A we have r(P3, H) = 2n−2β−1

and by Lemma 4 we have r∗(P3, H) <
(

r(P3,H)
2

)

.

So our next consideration is for the case if β(H) =
⌊

n
2

⌋

. By Theorem A
r(P3, H) = n. If n is even and H 6= Kn−

n
2K2, then H ⊆ Kn− (P4∪

(

n
2 − 2)K2

)

.

By Lemma 7 and (3) we have r∗(P3, H) <
(

r(P3,H)
2

)

.

If n is odd, ∆(H) < n − 1, H 6= Kn −
(

P3 ∪
(

n−1
2 − 1

)

K2

)

, and H 6=
Kn −

(

C3 ∪
(

n−1
2 − 1

)

K2

)

, then H ⊆ Kn −
(

P5 ∪
(

n−1
2 − 2

)

K2

)

or H ⊆ Kn −
(

P4 ∪ P3 ∪
(

n−1
2 − 3

)

K2

)

or H ⊆ Kn −
(

S1,3 ∪
(

n−1
2 − 2

)

K2

)

.

If H ⊆ Kn −
(

P5 ∪
(

n−1
2 − 2

)

K2

)

or H ⊆ Kn −
(

P4 ∪ P3 ∪
(

n−1
2 − 3

)

K2

)

or
H ⊆ Kn −

(

S1,3 ∪
(

n−1
2 − 2

)

K2

)

, then by Lemma 8 and (3) we have r∗(P3, H) <
(

r(P3,H)
2

)

.

4. Proof of Theorem 2

The following lemmas are used to prove Theorem 2.
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Lemma 10 [9]. For m,n ≥ 1,

r̂(K1,m,K1,n) = m+ n− 1.

Clearly, F = K1,m+n−1 satisfies that F → (K1,m,K1,n).

Lemma 11. Let H be a connected graph. If r∗(P3, H) = e(P3) + e(H)− 1, then
H is a star.

Proof. Let H be a connected graph. Suppose e(H) = m. Since r∗(P3, H) =
e(P3) + e(H) − 1 = m + 1, there is a graph F with e(F ) = m + 1 such that
F → (P3, H). It means that any 2-coloring of the edges of F having no red P3

must contain a blue H. As a consequence, there is at most one independent edge
in F . Thus, the only possible F is either K3 or K1,m+1. If F = K3, then H must
be K1,2. If F = K1,m+1, then H must be a subgraph of K1,m. In both cases, H
is a star.

Lemma 12. For integer n ≥ 2,

r∗(P3,K1,n−1) =











n, n is even,
(

n

2

)

, n is odd.

Proof. We know v(K1,n−1) = n. If n is odd, then the assertion holds from
Lemma 5 since β(K1,n−1) = n−1

2 and ∆(K1,n−1) = n − 1. If n is even, then
β(K1,n−1) =

n
2−1. By Theorem A we obtain r(P3,K1,n−1) = n+1. From Lemma

10 we have r̂(P3,K1,n−1) = n and the graph F = K1,n satisfies F → (P3,K1,n−1).
Since v(K1,n) = n+1 = r(P3,K1,n−1), we have r∗(P3,K1,n−1) = r̂(P3,K1,n−1) =
n.

As given in Lemma 12, if n is odd, then r∗(P3,K1,n−1) =
(

n
2

)

. In fact,
this value is the upper bound of (1). On the other hand, Lemma 10 gives that
r̂(P3,K1,n−1) = n, the lower bound of (1). This is an example of a pair of graphs
for which the size Ramsey number attains the lower bound of (1) while the
restricted size Ramsey number attains the upper bound of (1). If n is even, then
we have a different phenomenon. Both the size and the restricted size Ramsey
number, r̂(P3,K1,n−1) = r∗(P3,K1,n−1) = n are attaining the lower bound.

Now, we show the proof of Theorem 2.

Proof. (⇐) Let H = K1,n−1 and n be even. By Lemma 12 we have r∗(P3, H) =
n = e(P3) + e(H)− 1.

(⇒) LetH be a connected graph, v(H) = n and r∗(P3, H) = e(P3)+e(H)−1.
According to Lemma 11, H must be a star. By Lemma 12 we have H = K1,n−1

and n is even.
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5. Restricted o-Sequence

Erdős et al. [9] defined o-sequence for diagonal case of the size Ramsey number.
We can adopt the concept for non-diagonal restricted size Ramsey number and
we call it as a restricted o-sequence. Then, we have Corollary 13.

Corollary 13. For even n the sequence {(P3,K1,n−1)} is a restricted o-sequence.

Proof. Since v(K1,n−1) = n, and by Theorem A we have r(P3,K1,n−1) = n+ 1
if n is even, by Lemma 12 we obtain (if n is even),

lim
n→∞

r∗(P3,K1,n−1)
(

r(P3,K1,n−1)
2

) = lim
n→∞

n
(

n+ 1
2

) = 0.

In the introduction we have discussed that {(K1,m,K1,n)}, some graphs ob-
tained by star operation, and {nK2} belong to o-sequence. However, in Corollary
13 we showed that if m = 2, then {(K1,m,K1,n)} belongs to restricted o-sequence
only if n+ 1 is even.
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