Note

HAMILTONIAN CYCLE PROBLEM IN STRONG k-QUASI-TRANSITIVE DIGRAPHS WITH LARGE DIAMETER

Ruixia Wang
School of Mathematical Sciences
Shanxi University
Taiyuan, Shanxi, 030006, P.R. China
e-mail: wangrx@sxu.edu.cn

Abstract

Let k be an integer with $k \geq 2$. A digraph is k-quasi-transitive, if for any path $x_{0} x_{1} \ldots x_{k}$ of length k, x_{0} and x_{k} are adjacent. Let D be a strong k-quasi-transitive digraph with even $k \geq 4$ and diameter at least $k+2$. It has been shown that D has a Hamiltonian path. However, the Hamiltonian cycle problem in D is still open. In this paper, we shall show that D may contain no Hamiltonian cycle with $k \geq 6$ and give the sufficient condition for D to be Hamiltonian.

Keywords: quasi-transitive digraph, k-quasi-transitive digraph, Hamiltonian cycle.
2010 Mathematics Subject Classification: 05C20.

1. Terminology and Introduction

We shall assume that the reader is familiar with the standard terminology on digraphs and refer the reader to [1] for terminology not defined here. We only consider finite digraphs without loops or multiple arcs. Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$. For any $x, y \in V(D)$, we will write $x \rightarrow y$ if $x y \in A(D)$, and also, we will write $\overline{x y}$ if $x \rightarrow y$ or $y \rightarrow x$. For disjoint subsets X and Y of $V(D), X \rightarrow Y$ means that every vertex of X dominates every vertex of $Y, X \Rightarrow Y$ means that there is no arc from Y to X and $X \mapsto Y$ means that both of $X \rightarrow Y$ and $X \Rightarrow Y$ hold. For subsets X, Y of $V(D)$, we define $(X, Y)=\{x y \in A(D): x \in X, y \in Y\}$. If $X=\{x\}$, then we write (x, Y) instead of $(\{x\}, Y)$. Likewise, if $Y=\{y\}$, then we write (X, y) instead of $(X,\{y\})$. Let
D^{\prime} be a subdigraph of D and $x \in V(D) \backslash V\left(D^{\prime}\right)$. We say that x and D^{\prime} are adjacent if x and some vertex of D^{\prime} are adjacent. For $S \subseteq V(D)$, we denote by $D[S]$ the subdigraph of D induced by the vertex set S.

Let x and y be two vertices of $V(D)$. The distance from x to y in D, denoted $d(x, y)$, is the minimum length of an (x, y)-path, if y is reachable from x, and otherwise $d(x, y)=\infty$. The distance from a set X to a set Y of vertices in D is $d(X, Y)=\max \{d(x, y): x \in X, y \in Y\}$. The diameter of D is $\operatorname{diam}(D)=$ $d(V(D), V(D))$. Clearly, D has finite diameter if and only if it is strong.

Let $P=v_{1} v_{2} \cdots v_{p}$ be a path or a cycle of D. For $i \neq j, v_{i}, v_{j} \in V(P)$ we denote by $P\left[v_{i}, v_{j}\right]$ the subpath of P from v_{i} to v_{j}. Let $Q=u_{1} u_{2} \cdots u_{q}$ be a vertex-disjoint path or cycle with P in D. If there exist $v_{i} \in V(P)$ and $u_{j} \in V(Q)$ such that $v_{i} u_{j} \in A(D)$, then we will use $P\left[v_{1}, v_{i}\right] Q\left[u_{j}, u_{q}\right]$ to denote the path $v_{1} v_{2} \cdots v_{i} u_{j} u_{j+1} \cdots u_{q}$.

A digraph is quasi-transitive, if for any path $x_{0} x_{1} x_{2}$ of length $2, x_{0}$ and x_{2} are adjacent. The concept of k-quasi-transitive digraphs was introduced in [2] as a generalization of quasi-transitive digraphs. A digraph is k-quasi-transitive, if for any path $x_{0} x_{1} \cdots x_{k}$ of length k, x_{0} and x_{k} are adjacent. The k-quasi-transitive digraphs have been studied in $[2-7]$.

In [7], Wang and Zhang showed that a strong k-quasi-transitive digraph D with even $k \geq 4$ and $\operatorname{diam}(D) \geq k+2$ has a Hamiltonian path and proposed the following problem. Let k be an even integer with $k \geq 4$. Is it true that every strong k-quasi-transitive digraph with diameter at least $k+2$ is Hamiltonian?

In this paper, we shall show that D may contain no Hamiltonian cycle with $k \geq 6$ and give the sufficient condition for it to be Hamiltonian.

2. Main Results

For the rest of this paper, let k be an even integer with $k \geq 4$ and D denote a strong k-quasi-transitive digraph with $\operatorname{diam}(D) \geq k+2$. There exist two vertices u, v such that $d(u, v)=k+2$ in D. Let $P=x_{0} x_{1} \cdots x_{k+2}$ denote a shortest (u, v)-path in D, where $u=x_{0}$ and $v=x_{k+2}$.

Theorem 1 [7]. The subdigraph induced by $V(P)$ is a semicomplete digraph and $x_{j} \rightarrow x_{i}$ for $1 \leq i+1<j \leq k+2$.

Lemma 2 [5]. Let k be an integer with $k \geq 2$ and D be a strong k-quasi-transitive digraph. Suppose that $C=x_{0} x_{1} \cdots x_{n-1} x_{0}$ is a cycle of length n with $n \geq k$ in D. Then for any $x \in V(D) \backslash V(C), x$ and C are adjacent.

By Theorem 1, $x_{k+2} \rightarrow x_{0}$. So $x_{0} x_{1} \cdots x_{k+2} x_{0}$ is a cycle of length $k+3$. By Lemma 2, every vertex of $V(D) \backslash V(P)$ is adjacent to P. Hence we can divide
$V(D) \backslash V(P)$ into three subsets:

$$
\begin{aligned}
O & =\{x \in V(D) \backslash V(P): V(P) \Rightarrow x\}, \\
I & =\{x \in V(D) \backslash V(P): x \Rightarrow V(P)\},
\end{aligned}
$$

and

$$
B=V(D) \backslash(V(P) \cup O \cup I)
$$

One of I, O and B may be empty.
Theorem 3 [7]. The subdigraph induced by $V(D) \backslash V(P)$ is a semicomplete digraph.

Lemma 4 [7]. For any $x \in B$, either x is adjacent to every vertex of $V(P)$ or $\left\{x_{k+2}, x_{k+1}, x_{k}, x_{k-1}\right\} \mapsto x \mapsto\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$. In particular, if $k=4$, then x is adjacent to every vertex of $V(P)$.

From the proof of Lemma 2.11 in [7], we have the following result.
Lemma $5[7] . V(P) \mapsto O$ and $I \mapsto V(P)$.
By Theorems 1 and 3 and Lemmas 4 and 5, a strong 4-quasi-transitive digraph D with $\operatorname{diam}(D) \geq 6$ is in fact a semicomplete digraph. It is well known that a strong semicomplete digraph is Hamiltonian. Hence, for the rest of this paper, we consider the case $k \geq 6$.

Lemma 6. Let H be a digraph and $u, v \in V(H)$ such that $d(u, v)=n$ with $n \geq 4$. Let $Q=x_{0} x_{1} \cdots x_{n}$ be a shortest (u, v)-path in H. If $H[V(Q)]$ is a semicomplete digraph, then, for any $x_{i}, x_{j} \in V(Q)$ with $0 \leq i<j \leq n$, there exists a path of length p from x_{j} to x_{i} with $p \in\{2,3, \ldots, n-1\}$ in $H[V(Q)]$.

Proof. We prove the result by induction on n. For $n=4$, it is not difficult to check that the result is true. Suppose $n \geq 5$. Assume $j-i=n$. It must be $j=n$ and $i=0$. Then the length of the path $x_{n} P\left[x_{2}, x_{p}\right] x_{0}$ is p with $p \in$ $\{2,3, \ldots, n-1\}$. Now assume $1 \leq j-i \leq n-1$. Then $x_{i}, x_{j} \in\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ or $x_{i}, x_{j} \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Without loss of generality, assume that $x_{i}, x_{j} \in$ $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$. By induction, there exists a path of length p from x_{j} to x_{i} with $p \in\{2,3, \ldots, n-2\}$. Now we only need to show that there exists a path of length $n-1$ from x_{j} to x_{i}. If $j-i=1$, then $P\left[x_{j}, x_{n-1}\right] P\left[x_{0}, x_{i}\right]$ is the desired path. If $j-i=2$, then $P\left[x_{j}, x_{n}\right] P\left[x_{0}, x_{i}\right]$ is the desired path. If $3 \leq j-i \leq n-1$, then $P\left[x_{j}, x_{n}\right] P\left[x_{i+2}, x_{j-1}\right] P\left[x_{0}, x_{i}\right]$ is the desired path.

By Lemma 6, we can obtain the following lemma.

Lemma 7. For any $x \in V(D) \backslash V(P)$ and $x_{i} \in V(P)$, if $x \rightarrow x_{i}$, then x and every vertex of $\left\{x_{0}, x_{1}, \ldots, x_{i-1}\right\}$ are adjacent; if $x_{i} \rightarrow x$, then x and every vertex of $\left\{x_{i+1}, x_{i+2}, \ldots, x_{k+2}\right\}$ are adjacent.

Proof. If $x \rightarrow x_{i}$, then for any $x_{j} \in\left\{x_{0}, x_{1}, \ldots, x_{i-1}\right\}$, by Lemma 6 , there exists a path Q of length $k-1$ from x_{i} to x_{j}. Then the path $x Q$ implies $\overline{x x_{j}}$. If $x_{i} \rightarrow x$, then for any $x_{j} \in\left\{x_{i+1}, x_{i+2}, \ldots, x_{k+2}\right\}$, by Lemma 6 , there exists a path R of length $k-1$ from x_{j} to x_{i}. Then the path $R x$ implies $\overline{x x_{j}}$.

Using Lemma 7, Lemma 4 can be improved to the following result.
Lemma 8. For any $x \in B$, either x and every vertex of $V(P)$ are adjacent or there exist two vertices $x_{t}, x_{s} \in V(P)$ with $4 \leq t+1<s \leq k-1$ such that $\left\{x_{s}, \ldots, x_{k+2}\right\} \mapsto x \mapsto\left\{x_{0}, \ldots, x_{t}\right\}$.

Proof. If x and every vertex of $V(P)$ are adjacent, then we are done. Suppose not. By the definition of $B,(x, V(P)) \neq \emptyset$ and $(V(P), x) \neq \emptyset$. Take $t=\max \{i$: $\left.x \rightarrow x_{i}\right\}$ and $s=\min \left\{j: x_{j} \rightarrow x\right\}$. By Lemma $7, x$ and every vertex $\left\{x_{0}, \ldots, x_{t}\right\} \cup$ $\left\{x_{s}, \ldots, x_{k+2}\right\}$ are adjacent. Moreover, since x and some vertex of $V(P)$ are not adjacent, we can conclude $s>t+1$ and $\left\{x_{s}, \ldots, x_{k+2}\right\} \mapsto x \mapsto\left\{x_{0}, \ldots, x_{t}\right\}$. By Lemma $4, t \geq 3$ and $s \leq k-1$.

Lemma 9. Let $Q=z_{0} z_{1} \cdots z_{n}$ be a path of length n with $1 \leq n \leq k-1$ in $D-V(P)$. For some $x_{i} \in V(P)$, if $z_{n} \rightarrow x_{i}$, then z_{0} and $x_{i+(k-n-1)}$ are adjacent; if $x_{i} \rightarrow z_{0}$, then z_{n} and $x_{i-(k-n-1)}$ are adjacent, where the subscripts are taken modulo $k+3$.

Proof. Using the definition of k-quasi-transitive digraphs, the proof is easy and so we omit it.

According to Lemma 8, we can divide B into two subsets. Let $B_{1}=\{x \in$ $B: x$ and some vertex of $V(P)$ are not adjacent $\}$ and $B_{2}=\{x \in B: x$ and every vertex of $V(P)$ are adjacent $\}$. Now we consider the arcs among I, O, B_{1} and B_{2}. First we show $I \mapsto O$. Let $x \in I$ and $y \in O$ be arbitrary. By Lemma $5, x \mapsto V(P)$ and $V(P) \mapsto y$. If $y \rightarrow x$, then the path $x_{0} y x x_{k+2}$ contradicts $d\left(x_{0}, x_{k+2}\right)=k+2 \geq 8$. Thus $I \mapsto O$. Let $z \in B_{1}$ be arbitrary. By the definition of B_{1}, z and some vertex of $V(P)$ are not adjacent, say $x_{n_{0}}$. By Lemma 8, $3<n_{0}<k-1$. It is not difficult to see that $I \mapsto B_{1}$ and $B_{1} \mapsto O$, otherwise, by Lemma $9, I \mapsto V(P)$ and $V(P) \mapsto O, z$ and every vertex of $V(P)$ are adjacent. Since D is strong, $\left(B_{2}, I\right) \neq \emptyset$ and $\left(O, B_{2}\right) \neq \emptyset$. Let $B_{2}^{\prime}=\left\{u \in B_{2}:(u, I) \neq \emptyset\right\}$ and $B_{2}^{\prime \prime}=\left\{v \in B_{2}:(O, v) \neq \emptyset\right\}$. Let $u \in B_{2}^{\prime}$ and $v \in B_{2}^{\prime \prime}$ be two arbitrary vertices. By the definition of B_{2}^{\prime}, there exist $x_{i} \in V(P)$ and $x^{\prime} \in I$ such that $x_{i} \rightarrow u \rightarrow x^{\prime}$. Then the path $x_{i} u x^{\prime} x_{k+2}$ implies that $d\left(x_{i}, x_{k+2}\right) \leq 3$. Hence $i \geq k-1$, which means $u \mapsto\left\{x_{0}, x_{1}, \ldots, x_{k-2}\right\}$. By the definition of $B_{2}^{\prime \prime}$, there
exist $x_{j} \in V(P)$ and $y^{\prime} \in O$ such that $y^{\prime} \rightarrow v \rightarrow x_{j}$. Then the path $x_{0} y^{\prime} v x_{j}$ implies that $d\left(x_{0}, x_{j}\right) \leq 3$. Hence $j \leq 3$, which means $\left\{x_{4}, x_{5}, \ldots, x_{k+2}\right\} \mapsto v$. Note that $k-2 \geq 4$. Thus $u \neq v$, which implies $B_{2}^{\prime} \cap B_{2}^{\prime \prime}=\emptyset$. Hence $B_{2}^{\prime} \mapsto O$ and $I \mapsto B_{2}^{\prime \prime}$. If $z \rightarrow u$, then considering the path $z u x^{\prime}$, by Lemma $9, z$ and every vertex of $V(P)$ are adjacent, a contradiction. Hence $B_{2}^{\prime} \mapsto B_{1}$. If $v \rightarrow z$, then considering the path $y^{\prime} v z$, by Lemma $9, z$ and every vertex of $V(P)$ are adjacent, a contradiction. Hence $B_{1} \mapsto B_{2}^{\prime \prime}$. If $k=6$, denote the path $R=x_{k+2} x_{n_{0}}$. If $k \geq 7$, by Lemma 6 , there exists a path of length $k-5$ from x_{k+2} to $x_{n_{0}}$, denote it by R. If $v \rightarrow u$, then $z y^{\prime} v u x^{\prime} R$ implies $\overline{z x_{n_{0}}}$, a contradiction. Hence $B_{2}^{\prime} \mapsto B_{2}^{\prime \prime}$.

Theorem 10. If $D-V(P)$ is strong, then D is Hamiltonian.
Proof. By Lemma 3, $D-V(P)$ is a semicomplete digraph. Hence $D-V(P)$ contains a Hamiltonian cycle, denote it by $H=y_{0} y_{1} \cdots y_{m} y_{0}$. Clearly, if there exists a pair of arcs $x_{i} x_{i+1} \in A(P)$ and $y_{j} y_{j+1} \in A(H)$ such that $x_{i} \rightarrow y_{j+1}$ and $y_{j} \rightarrow x_{i+1}$, then D contains a Hamiltonian cycle $x_{i} H\left[y_{j+1}, y_{j}\right] P\left[x_{i+1}, x_{i}\right]$. Next we shall find out such a pair of arcs. Suppose $O \neq \emptyset$. Since D is strong, $B \cup I \neq \emptyset$ and there exists $y_{j} \in V(H)$ such that $y_{j} \in B \cup I$ and $y_{j+1} \in O$. There exists $x_{i} \in V(P)$ such that $y_{j} \rightarrow x_{i}$. Then $y_{j} y_{j+1}$ and $x_{i-1} x_{i}$ are the desired arcs. Now assume $O=\emptyset$. Analogously, assume $I=\emptyset$ and so $V(D) \backslash V(P)=B$. If $B_{1}=\emptyset$, then D is semicomplete and so D is Hamiltonian. Now assume that $B_{1} \neq \emptyset$. If $|V(H)|=1$, then $y_{0} \in B_{1}$ and $x_{k+2} y_{0} x_{0} x_{1} \cdots x_{k+2}$ is a Hamiltonian cycle of D. Assume $|V(H)| \geq 2$. If there exist two consecutive vertices $y_{j}, y_{j+1} \in B_{1}$, then $y_{j} y_{j+1}$ and $x_{k+2} x_{0}$ are the desired arcs. Assume there is no such a pair of arcs. So there exists a pair of vertices $y_{j}, y_{j+1} \in V(H)$ such that $y_{j} \in B_{2}$ and $y_{j+1} \in B_{1}$. If $y_{j} \rightarrow x_{0}$, then $y_{j} y_{j+1}$ and $x_{k+2} x_{0}$ are the desired arcs. Assume $x_{0} \mapsto y_{j}$. If $|V(H)|=2$, then $x_{0} y_{j} y_{j+1} x_{1} x_{2} \cdots x_{k+2} x_{0}$ is a Hamiltonian cycle of D. Assume $|V(H)| \geq 3$. According to the above argument, $y_{j+2} \in B_{2}$. If $y_{j+2} \rightarrow x_{k+2}$, then $x_{0} y_{j} y_{j+1} y_{j+2} x_{k+2}$ is a path of length 4 from x_{0} to x_{k+2}, a contradiction to $d\left(x_{0}, x_{k+2}\right) \geq 8$. Thus $x_{k+2} \rightarrow y_{i+2}$. Then $y_{j+1} y_{j+2}$ and $x_{k+2} x_{0}$ are the desired arcs.

Theorem 11. If $B_{2}=\emptyset$ or for any $x \in B_{2}, x_{k+2} \rightarrow x \rightarrow x_{0}$, then D is Hamiltonian.

Proof. If $D-V(P)$ is strong, then, by Theorem 10, we are done. If $D-V(P)$ is not strong, then let $D_{1}, D_{2}, \ldots, D_{t}$ be strong components of $D-V(P)$, where $t \geq 2$. Since D is strong, there exist $x \in V\left(D_{1}\right)$ and $y \in V\left(D_{t}\right)$ such that $(V(P), x) \neq \emptyset$ and $(y, V(P) \neq \emptyset$. By the hypothesis of this theorem and Lemmas 4 and $5, x_{k+2} \rightarrow x$ and $y \rightarrow x_{0}$. It is easy to see that there exists a Hamiltonian path R from x to y in $D-V(P)$. So $x_{k+2} R x_{0} x_{1} \cdots x_{k+2}$ is a Hamiltonian cycle of D.

Suppose $D-V(P)$ is not strong and there exists a vertex $u \in B_{2}$ such that $u \mapsto x_{k+2}$, we may construct some k-quasi-transitive digraphs such that they are not Hamiltonian. For example, let $V(D) \backslash V(P)=\{u, v\}$ and $u \rightarrow v$, $\left\{x_{k-1}, x_{k}, x_{k+1}, x_{k+2}\right\} \rightarrow v \rightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ and $x_{k+1} \rightarrow u \rightarrow\left\{x_{0}, x_{1}, \ldots, x_{k}\right.$, $\left.x_{k+2}\right\}$. It is not difficult to see that D contains no Hamiltonian cycle.

Acknowledgement

This work is supported by the National Natural Science Foundation for Young Scientists of China (11401354) (11501490) (11501341).

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer-Verlag, London, 2000).
[2] C. Hernández-Cruz and H. Galeana-Sánchez, k-kernels in k-transitive and k-quasitransitive digraphs, Discrete Math. 312 (2012) 2522-2530. doi:10.1016/j.disc.2012.05.005
[3] H. Galeana-Sánchez. I.A. Goldfeder and I. Urrutia, On the structure of strong 3-quasi-transitive digraphs, Discrete Math. 310 (2010) 2495-2498. doi:10.1016/j.disc.2010.06.008
[4] H. Galeana-Sánchez, C. Hernández-Cruz and M.A. Juárez-Camacho, On the existence and number of ($k+1$)-kings in k-quasi-transitive digraphs, Discrete Math. 313 (2013) 2582-2591.
doi:10.1016/j.disc.2013.08.007
[5] R. Wang and W. Meng, k-kings in k-quasitransitive digraphs, J. Graph Theory 79 (2015) 55-62. doi:10.1002/jgt. 21814
[6] R. Wang, $(k+1)$-kernels and the number of k-kings in k-quasi-transitive digraphs, Discrete Math. 338 (2015) 114-121. doi:10.1016/j.disc.2014.08.009
[7] R. Wang and H. Zhang, Hamiltonian paths in k-quasi-transitive digraphs, Discrete Math. 339 (2016) 2094-2099.
doi:10.1016/j.disc.2016.02.020
Received 9 May 2018
Accepted 5 November 2018

