Discussiones Mathematicae Graph Theory 41 (2021) 685–690 doi:10.7151/dmgt.2187

Note

HAMILTONIAN CYCLE PROBLEM IN STRONG k-QUASI-TRANSITIVE DIGRAPHS WITH LARGE DIAMETER

Ruixia Wang

School of Mathematical Sciences Shanxi University Taiyuan, Shanxi, 030006, P.R. China

e-mail: wangrx@sxu.edu.cn

Abstract

Let k be an integer with $k \geq 2$. A digraph is k-quasi-transitive, if for any path $x_0x_1 \ldots x_k$ of length k, x_0 and x_k are adjacent. Let D be a strong k-quasi-transitive digraph with even $k \geq 4$ and diameter at least k+2. It has been shown that D has a Hamiltonian path. However, the Hamiltonian cycle problem in D is still open. In this paper, we shall show that D may contain no Hamiltonian cycle with $k \geq 6$ and give the sufficient condition for D to be Hamiltonian.

Keywords: quasi-transitive digraph, k-quasi-transitive digraph, Hamiltonian cycle.

2010 Mathematics Subject Classification: 05C20.

1. Terminology and Introduction

We shall assume that the reader is familiar with the standard terminology on digraphs and refer the reader to [1] for terminology not defined here. We only consider finite digraphs without loops or multiple arcs. Let D be a digraph with vertex set V(D) and arc set A(D). For any $x,y\in V(D)$, we will write $x\to y$ if $xy\in A(D)$, and also, we will write \overline{xy} if $x\to y$ or $y\to x$. For disjoint subsets X and Y of V(D), $X\to Y$ means that every vertex of X dominates every vertex of Y, $X\Rightarrow Y$ means that there is no arc from Y to X and $X\mapsto Y$ means that both of $X\to Y$ and $X\Rightarrow Y$ hold. For subsets X,Y of V(D), we define $(X,Y)=\{xy\in A(D):x\in X,y\in Y\}$. If $X=\{x\}$, then we write (x,Y) instead of (X,Y). Likewise, if $Y=\{y\}$, then we write (X,Y) instead of (X,Y). Likewise, if $Y=\{y\}$, then we write (X,Y) instead of (X,Y). Likewise,

R. Wang

D' be a subdigraph of D and $x \in V(D) \setminus V(D')$. We say that x and D' are adjacent if x and some vertex of D' are adjacent. For $S \subseteq V(D)$, we denote by D[S] the subdigraph of D induced by the vertex set S.

Let x and y be two vertices of V(D). The distance from x to y in D, denoted d(x,y), is the minimum length of an (x,y)-path, if y is reachable from x, and otherwise $d(x,y)=\infty$. The distance from a set X to a set Y of vertices in D is $d(X,Y)=\max\{d(x,y):x\in X,y\in Y\}$. The diameter of D is diam(D)=d(V(D),V(D)). Clearly, D has finite diameter if and only if it is strong.

Let $P = v_1 v_2 \cdots v_p$ be a path or a cycle of D. For $i \neq j$, $v_i, v_j \in V(P)$ we denote by $P[v_i, v_j]$ the subpath of P from v_i to v_j . Let $Q = u_1 u_2 \cdots u_q$ be a vertex-disjoint path or cycle with P in D. If there exist $v_i \in V(P)$ and $u_j \in V(Q)$ such that $v_i u_j \in A(D)$, then we will use $P[v_1, v_i]Q[u_j, u_q]$ to denote the path $v_1 v_2 \cdots v_i u_j u_{j+1} \cdots u_q$.

A digraph is quasi-transitive, if for any path $x_0x_1x_2$ of length 2, x_0 and x_2 are adjacent. The concept of k-quasi-transitive digraphs was introduced in [2] as a generalization of quasi-transitive digraphs. A digraph is k-quasi-transitive, if for any path $x_0x_1\cdots x_k$ of length k, x_0 and x_k are adjacent. The k-quasi-transitive digraphs have been studied in [2–7].

In [7], Wang and Zhang showed that a strong k-quasi-transitive digraph D with even $k \geq 4$ and $\operatorname{diam}(D) \geq k + 2$ has a Hamiltonian path and proposed the following problem. Let k be an even integer with $k \geq 4$. Is it true that every strong k-quasi-transitive digraph with diameter at least k + 2 is Hamiltonian?

In this paper, we shall show that D may contain no Hamiltonian cycle with $k \geq 6$ and give the sufficient condition for it to be Hamiltonian.

2. Main Results

For the rest of this paper, let k be an even integer with $k \geq 4$ and D denote a strong k-quasi-transitive digraph with $\operatorname{diam}(D) \geq k+2$. There exist two vertices u, v such that d(u, v) = k+2 in D. Let $P = x_0x_1 \cdots x_{k+2}$ denote a shortest (u, v)-path in D, where $u = x_0$ and $v = x_{k+2}$.

Theorem 1 [7]. The subdigraph induced by V(P) is a semicomplete digraph and $x_j \to x_i$ for $1 \le i + 1 < j \le k + 2$.

Lemma 2 [5]. Let k be an integer with $k \geq 2$ and D be a strong k-quasi-transitive digraph. Suppose that $C = x_0x_1 \cdots x_{n-1}x_0$ is a cycle of length n with $n \geq k$ in D. Then for any $x \in V(D) \setminus V(C)$, x and C are adjacent.

By Theorem 1, $x_{k+2} \to x_0$. So $x_0x_1 \cdots x_{k+2}x_0$ is a cycle of length k+3. By Lemma 2, every vertex of $V(D) \setminus V(P)$ is adjacent to P. Hence we can divide

 $V(D) \setminus V(P)$ into three subsets:

$$O = \{ x \in V(D) \setminus V(P) : V(P) \Rightarrow x \},\$$

$$I = \{ x \in V(D) \setminus V(P) : x \Rightarrow V(P) \},\$$

and

$$B = V(D) \setminus (V(P) \cup O \cup I).$$

One of I, O and B may be empty.

Theorem 3 [7]. The subdigraph induced by $V(D) \setminus V(P)$ is a semicomplete digraph.

Lemma 4 [7]. For any $x \in B$, either x is adjacent to every vertex of V(P) or $\{x_{k+2}, x_{k+1}, x_k, x_{k-1}\} \mapsto x \mapsto \{x_0, x_1, x_2, x_3\}$. In particular, if k = 4, then x is adjacent to every vertex of V(P).

From the proof of Lemma 2.11 in [7], we have the following result.

Lemma 5 [7]. $V(P) \mapsto O$ and $I \mapsto V(P)$.

By Theorems 1 and 3 and Lemmas 4 and 5, a strong 4-quasi-transitive digraph D with $\operatorname{diam}(D) \geq 6$ is in fact a semicomplete digraph. It is well known that a strong semicomplete digraph is Hamiltonian. Hence, for the rest of this paper, we consider the case $k \geq 6$.

Lemma 6. Let H be a digraph and $u, v \in V(H)$ such that d(u, v) = n with $n \ge 4$. Let $Q = x_0x_1 \cdots x_n$ be a shortest (u, v)-path in H. If H[V(Q)] is a semicomplete digraph, then, for any $x_i, x_j \in V(Q)$ with $0 \le i < j \le n$, there exists a path of length p from x_j to x_i with $p \in \{2, 3, \ldots, n-1\}$ in H[V(Q)].

Proof. We prove the result by induction on n. For n=4, it is not difficult to check that the result is true. Suppose $n\geq 5$. Assume j-i=n. It must be j=n and i=0. Then the length of the path $x_nP[x_2,x_p]x_0$ is p with $p\in\{2,3,\ldots,n-1\}$. Now assume $1\leq j-i\leq n-1$. Then $x_i,x_j\in\{x_0,x_1,\ldots,x_{n-1}\}$ or $x_i,x_j\in\{x_1,x_2,\ldots,x_n\}$. Without loss of generality, assume that $x_i,x_j\in\{x_0,x_1,\ldots,x_{n-1}\}$. By induction, there exists a path of length p from x_j to x_i with $p\in\{2,3,\ldots,n-2\}$. Now we only need to show that there exists a path of length n-1 from x_j to x_i . If j-i=1, then $P[x_j,x_{n-1}]P[x_0,x_i]$ is the desired path. If $1\leq j\leq n-1$, then $1\leq j\leq n-1$ then $1\leq n-1$ th

By Lemma 6, we can obtain the following lemma.

R. Wang

Lemma 7. For any $x \in V(D) \setminus V(P)$ and $x_i \in V(P)$, if $x \to x_i$, then x and every vertex of $\{x_0, x_1, \ldots, x_{i-1}\}$ are adjacent; if $x_i \to x$, then x and every vertex of $\{x_{i+1}, x_{i+2}, \ldots, x_{k+2}\}$ are adjacent.

Proof. If $x \to x_i$, then for any $x_j \in \{x_0, x_1, \dots, x_{i-1}\}$, by Lemma 6, there exists a path Q of length k-1 from x_i to x_j . Then the path xQ implies $\overline{xx_j}$. If $x_i \to x$, then for any $x_j \in \{x_{i+1}, x_{i+2}, \dots, x_{k+2}\}$, by Lemma 6, there exists a path R of length k-1 from x_j to x_i . Then the path Rx implies $\overline{xx_j}$.

Using Lemma 7, Lemma 4 can be improved to the following result.

Lemma 8. For any $x \in B$, either x and every vertex of V(P) are adjacent or there exist two vertices $x_t, x_s \in V(P)$ with $4 \le t + 1 < s \le k - 1$ such that $\{x_s, \ldots, x_{k+2}\} \mapsto x \mapsto \{x_0, \ldots, x_t\}$.

Proof. If x and every vertex of V(P) are adjacent, then we are done. Suppose not. By the definition of B, $(x, V(P)) \neq \emptyset$ and $(V(P), x) \neq \emptyset$. Take $t = \max\{i : x \to x_i\}$ and $s = \min\{j : x_j \to x\}$. By Lemma 7, x and every vertex $\{x_0, \ldots, x_t\} \cup \{x_s, \ldots, x_{k+2}\}$ are adjacent. Moreover, since x and some vertex of V(P) are not adjacent, we can conclude s > t+1 and $\{x_s, \ldots, x_{k+2}\} \mapsto x \mapsto \{x_0, \ldots, x_t\}$. By Lemma $4, t \geq 3$ and $s \leq k-1$.

Lemma 9. Let $Q = z_0 z_1 \cdots z_n$ be a path of length n with $1 \le n \le k-1$ in D-V(P). For some $x_i \in V(P)$, if $z_n \to x_i$, then z_0 and $x_{i+(k-n-1)}$ are adjacent; if $x_i \to z_0$, then z_n and $x_{i-(k-n-1)}$ are adjacent, where the subscripts are taken modulo k+3.

Proof. Using the definition of k-quasi-transitive digraphs, the proof is easy and so we omit it.

According to Lemma 8, we can divide B into two subsets. Let $B_1 = \{x \in B : x \text{ and some vertex of } V(P) \text{ are not adjacent} \}$ and $B_2 = \{x \in B : x \text{ and every vertex of } V(P) \text{ are adjacent} \}$. Now we consider the arcs among I, O, B_1 and B_2 . First we show $I \mapsto O$. Let $x \in I$ and $y \in O$ be arbitrary. By Lemma 5, $x \mapsto V(P)$ and $V(P) \mapsto y$. If $y \to x$, then the path x_0yxx_{k+2} contradicts $d(x_0, x_{k+2}) = k+2 \geq 8$. Thus $I \mapsto O$. Let $z \in B_1$ be arbitrary. By the definition of B_1 , z and some vertex of V(P) are not adjacent, say x_{n_0} . By Lemma 8, $3 < n_0 < k - 1$. It is not difficult to see that $I \mapsto B_1$ and $B_1 \mapsto O$, otherwise, by Lemma 9, $I \mapsto V(P)$ and $V(P) \mapsto O$, z and every vertex of V(P) are adjacent. Since D is strong, $(B_2, I) \neq \emptyset$ and $(O, B_2) \neq \emptyset$. Let $B_2' = \{u \in B_2 : (u, I) \neq \emptyset\}$ and $B_2'' = \{v \in B_2 : (O, v) \neq \emptyset\}$. Let $u \in B_2'$ and $v \in B_2''$ be two arbitrary vertices. By the definition of B_2' , there exist $x_i \in V(P)$ and $x' \in I$ such that $x_i \to u \to x'$. Then the path $x_i u x' x_{k+2}$ implies that $d(x_i, x_{k+2}) \leq 3$. Hence $i \geq k-1$, which means $u \mapsto \{x_0, x_1, \dots, x_{k-2}\}$. By the definition of B_2'' , there

exist $x_j \in V(P)$ and $y' \in O$ such that $y' \to v \to x_j$. Then the path $x_0y'vx_j$ implies that $d(x_0, x_j) \leq 3$. Hence $j \leq 3$, which means $\{x_4, x_5, \ldots, x_{k+2}\} \mapsto v$. Note that $k-2 \geq 4$. Thus $u \neq v$, which implies $B_2' \cap B_2'' = \emptyset$. Hence $B_2' \mapsto O$ and $I \mapsto B_2''$. If $z \to u$, then considering the path zux', by Lemma 9, z and every vertex of V(P) are adjacent, a contradiction. Hence $B_2' \mapsto B_1$. If $v \to z$, then considering the path y'vz, by Lemma 9, z and every vertex of V(P) are adjacent, a contradiction. Hence $B_1 \mapsto B_2''$. If k = 6, denote the path $k = x_{k+2}x_{n_0}$. If $k \geq 7$, by Lemma 6, there exists a path of length k - 5 from x_{k+2} to x_{n_0} , denote it by $k \in B_1$. If $k \in B_2' \mapsto B_2''$.

Theorem 10. If D - V(P) is strong, then D is Hamiltonian.

Proof. By Lemma 3, D-V(P) is a semicomplete digraph. Hence D-V(P)contains a Hamiltonian cycle, denote it by $H = y_0 y_1 \cdots y_m y_0$. Clearly, if there exists a pair of arcs $x_i x_{i+1} \in A(P)$ and $y_i y_{i+1} \in A(H)$ such that $x_i \to y_{i+1}$ and $y_j \to x_{i+1}$, then D contains a Hamiltonian cycle $x_i H[y_{j+1}, y_j] P[x_{i+1}, x_i]$. Next we shall find out such a pair of arcs. Suppose $O \neq \emptyset$. Since D is strong, $B \cup I \neq \emptyset$ and there exists $y_j \in V(H)$ such that $y_j \in B \cup I$ and $y_{j+1} \in O$. There exists $x_i \in V(P)$ such that $y_j \to x_i$. Then $y_j y_{j+1}$ and $x_{i-1} x_i$ are the desired arcs. Now assume $O = \emptyset$. Analogously, assume $I = \emptyset$ and so $V(D) \setminus V(P) = B$. If $B_1 = \emptyset$, then D is semicomplete and so D is Hamiltonian. Now assume that $B_1 \neq \emptyset$. If |V(H)| = 1, then $y_0 \in B_1$ and $x_{k+2}y_0x_0x_1\cdots x_{k+2}$ is a Hamiltonian cycle of D. Assume $|V(H)| \geq 2$. If there exist two consecutive vertices $y_i, y_{i+1} \in B_1$, then $y_i y_{i+1}$ and $x_{k+2} x_0$ are the desired arcs. Assume there is no such a pair of arcs. So there exists a pair of vertices $y_j, y_{j+1} \in V(H)$ such that $y_j \in B_2$ and $y_{j+1} \in B_1$. If $y_i \to x_0$, then $y_i y_{i+1}$ and $x_{k+2} x_0$ are the desired arcs. Assume $x_0 \mapsto y_i$. If |V(H)| = 2, then $x_0y_1y_{j+1}x_1x_2\cdots x_{k+2}x_0$ is a Hamiltonian cycle of D. Assume $|V(H)| \geq 3$. According to the above argument, $y_{j+2} \in B_2$. If $y_{j+2} \to x_{k+2}$, then $x_0y_jy_{j+1}y_{j+2}x_{k+2}$ is a path of length 4 from x_0 to x_{k+2} , a contradiction to $d(x_0, x_{k+2}) \geq 8$. Thus $x_{k+2} \rightarrow y_{i+2}$. Then $y_{j+1}y_{j+2}$ and $x_{k+2}x_0$ are the desired arcs.

Theorem 11. If $B_2 = \emptyset$ or for any $x \in B_2$, $x_{k+2} \to x \to x_0$, then D is Hamiltonian.

Proof. If D - V(P) is strong, then, by Theorem 10, we are done. If D - V(P) is not strong, then let D_1, D_2, \ldots, D_t be strong components of D - V(P), where $t \geq 2$. Since D is strong, there exist $x \in V(D_1)$ and $y \in V(D_t)$ such that $(V(P), x) \neq \emptyset$ and $(y, V(P) \neq \emptyset)$. By the hypothesis of this theorem and Lemmas 4 and 5, $x_{k+2} \to x$ and $y \to x_0$. It is easy to see that there exists a Hamiltonian path R from x to y in D - V(P). So $x_{k+2}Rx_0x_1\cdots x_{k+2}$ is a Hamiltonian cycle of D.

R. Wang

Suppose D-V(P) is not strong and there exists a vertex $u \in B_2$ such that $u \mapsto x_{k+2}$, we may construct some k-quasi-transitive digraphs such that they are not Hamiltonian. For example, let $V(D) \setminus V(P) = \{u,v\}$ and $u \to v$, $\{x_{k-1}, x_k, x_{k+1}, x_{k+2}\} \to v \to \{x_0, x_1, x_2, x_3\}$ and $x_{k+1} \to u \to \{x_0, x_1, \dots, x_k, x_{k+2}\}$. It is not difficult to see that D contains no Hamiltonian cycle.

Acknowledgement

This work is supported by the National Natural Science Foundation for Young Scientists of China (11401354) (11501490) (11501341).

References

- [1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer-Verlag, London, 2000).
- [2] C. Hernández-Cruz and H. Galeana-Sánchez, k-kernels in k-transitive and k-quasitransitive digraphs, Discrete Math. 312 (2012) 2522–2530.
 doi:10.1016/j.disc.2012.05.005
- [3] H. Galeana-Sánchez. I.A. Goldfeder and I. Urrutia, On the structure of strong 3quasi-transitive digraphs, Discrete Math. 310 (2010) 2495–2498. doi:10.1016/j.disc.2010.06.008
- [4] H. Galeana-Sánchez, C. Hernández-Cruz and M.A. Juárez-Camacho, On the existence and number of (k+1)-kings in k-quasi-transitive digraphs, Discrete Math. 313 (2013) 2582–2591. doi:10.1016/j.disc.2013.08.007
- [5] R. Wang and W. Meng, k-kings in k-quasitransitive digraphs, J. Graph Theory 79 (2015) 55–62.
 doi:10.1002/jgt.21814
- [6] R. Wang, (k + 1)-kernels and the number of k-kings in k-quasi-transitive digraphs,
 Discrete Math. 338 (2015) 114–121.
 doi:10.1016/j.disc.2014.08.009
- [7] R. Wang and H. Zhang, Hamiltonian paths in k-quasi-transitive digraphs, Discrete Math. 339 (2016) 2094–2099. doi:10.1016/j.disc.2016.02.020

Received 9 May 2018 Accepted 5 November 2018